Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/48184
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGonzalez, Logan M.-
dc.contributor.authorBaker, Christopher C. M.-
dc.contributor.authorDoherty, Stacey J.-
dc.contributor.authorBarbato, Robyn A.-
dc.creatorCold Regions Research and Engineering Laboratory (U.S.)-
dc.date.accessioned2024-02-07T20:21:52Z-
dc.date.available2024-02-07T20:21:52Z-
dc.date.issued2024-02-
dc.identifier.govdocERDC/CRREL TR-24-2-
dc.identifier.urihttps://hdl.handle.net/11681/48184-
dc.identifier.urihttp://dx.doi.org/10.21079/11681/48184-
dc.descriptionTechnical Reporten_US
dc.description.abstractSoil microorganisms interact with one another within soil pores and respond to external conditions such as temperature. Data on microbial community composition and potential function are commonly generated in studies of soils. However, these data do not provide direct insight into the drivers of community composition and can be difficult to interpret outside the context of ecological theory. In this study, we explore the effect of abiotic environmental variation on microbial species diversity. Using a modified version of the Lotka-Volterra Competition Model with temperature-dependent growth rates, we show that environmentally relevant temperature variability may expand the set of temperature-tolerance phenotype pairs that can coexist as two-species communities compared to constant temperatures. These results highlight a potential role of temperature variation in influencing microbial diversity. This in turn suggests a need to incorporate temperature into predictive models of microbial communities in soil and other environments. We recommend future work to parameterize the model applied in this study with empirical data from environments of interest, and to validate the model predictions using field observations and experimental manipulations.en_US
dc.description.sponsorshipUnited States. Army. Corps of Engineers.en_US
dc.description.tableofcontentsAbstract ................................................................................................................................................... ii Figures and Tables .................................................................................................................................. v Preface .................................................................................................................................................... vi 1 Introduction ..................................................................................................................................... 1 1.1 Background ..................................................................................................................... 1 1.2 Objective .......................................................................................................................... 2 1.3 Approach ......................................................................................................................... 2 2 Ecological Community Models ..................................................................................................... 3 2.1 The Lotka-Volterra Competition Model (LVCM) ............................................................. 3 2.2 Incorporating Environmental Conditions Into the LVCM .............................................. 4 2.3 Environmental Temperatures and Growth Rates ......................................................... 5 3 Methods ........................................................................................................................................... 7 3.1 Extending the LVCM with Temperature-Dependent Growth ......................................... 7 3.2 Equilibrium Outcomes of the Two-Species Modified LVCM .......................................... 9 3.2.1 Equilibria of the Modified LVCM with Constant Temperatures ....................... 9 3.2.2 Equilibria of the Modified LVCM with Variable Temperatures ....................... 11 3.3 Field Temperature Data ............................................................................................... 11 3.4 Analysis of the Modified LVCM ..................................................................................... 13 3.4.1 General Approach ............................................................................................ 13 3.4.2 Experiment 1: Constant Temperature Regimes ............................................. 17 3.4.3 Experiment 2: variable Temperature Regimes ............................................... 19 4 Results ........................................................................................................................................... 23 4.1 Experiment 1: Constant Temperature Regimes .......................................................... 23 4.1.1 Experiment 1a .................................................................................................. 23 4.1.2 Experiment 1b .................................................................................................. 25 4.2 Experiment 2: Variable Temperature Regimes ........................................................... 28 4.2.1 Experiment 2a .................................................................................................. 28 4.2.2 Experiment 2b .................................................................................................. 30 4.3 Discussion ..................................................................................................................... 33 5 Conclusions and Recommendations ......................................................................................... 36 5.1 Conclusions ................................................................................................................... 36 5.2 Recommendations ....................................................................................................... 36 Bibliography .......................................................................................................................................... 38 Appendix: Analytical Results for the Lotka-Volterra Competition (LVCM) .................................... 42 A.1 Invasibility Conditions for the Temperature Dependent LVCM .................................. 42 A.2 Equivalence of the Regions of Coexistence and Founder Control When Coefficients are Swapped ............................................................................................ 44 A.3 Solving for equilibrium outcomes ................................................................................ 45 Abbreviations ........................................................................................................................................ 46 Report Documentation Page (SF 298) .............................................................................................. 47-
dc.format.extent55 pages / 2.9 MB-
dc.format.mediumPDF-
dc.language.isoen_USen_US
dc.publisherEngineer Research and Development Center (U.S.)en_US
dc.relation.ispartofseriesTechnical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC/CRREL TR-24-2-
dc.rightsApproved for Public Release; Distribution is Unlimited-
dc.sourceThis Digital Resource was created in Microsoft Word and Adobe Acrobat-
dc.subjectBiodiversity-Climatic-factorsen_US
dc.subjectBiological-systems--Mathematical-modelsen_US
dc.subjectMicrobial ecologyen_US
dc.subjectPsychrotrophic organismsen_US
dc.titleEcological modeling of microbial community composition under variable temperaturesen_US
dc.typeReporten_US
Appears in Collections:Technical Report

Files in This Item:
File Description SizeFormat 
ERDC-CRREL TR-24-2.pdf2.9 MBAdobe PDFThumbnail
View/Open