Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/42421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWagner, Anna M.-
dc.contributor.authorMaakestad, Jon B.-
dc.contributor.authorYarmak, Edward-
dc.contributor.authorDouglas, Thomas A.-
dc.date.accessioned2021-11-22T15:37:38Z-
dc.date.available2021-11-22T15:37:38Z-
dc.date.issued2021-10-
dc.identifier.govdocERDC/CRREL TR-21-15-
dc.identifier.urihttps://hdl.handle.net/11681/42421-
dc.identifier.urihttp://dx.doi.org/10.21079/11681/42421-
dc.descriptionTechnical Reporten_US
dc.description.abstractThermosyphons are an artificial ground-freezing technique that has been used to stabilize permafrost since the 1960s. The largest engineered structure that uses thermosyphons to maintain frozen ground is the Trans Alaska Pipeline, and it has over 124,000 thermosyphons along its approximately 1300 km route. In passive mode, thermosyphons extract heat from the soil and transfer it to the environment when the air temperature is colder than the ground temperature. This passive technology can promote ground cooling during cold winter months. To address the growing need for maintaining frozen ground as air temperatures increase, we investigated a solar-powered refrigeration unit that could operate a thermosyphon (nonpassive) during temperatures above freezing. Our tests showed that energy generated from the solar array can operate the refrigeration unit and activate the hybrid thermosyphon to artificially cool the soil when air temperatures are above freezing. This technology can be used to expand the application of thermosyphon technology to freeze ground or maintain permafrost, particularly in locations with limited access to line power.en_US
dc.description.sponsorshipUnited States. Army. Corps of Engineers.en_US
dc.description.tableofcontentsAbstract .......................................................................................................................................................... ii Figures ............................................................................................................................................................ iv Preface ............................................................................................................................................................ vi 1 Introduction ............................................................................................................................................ 1 1.1 Background ..................................................................................................................... 1 1.2 Objective .......................................................................................................................... 5 1.3 Approach ......................................................................................................................... 5 2 Methods and Materials ........................................................................................................................ 6 2.1 Thermosyphon array ....................................................................................................... 6 2.2 Refrigeration ................................................................................................................... 7 2.3 Solar assembly ................................................................................................................ 8 2.4 Temperature monitoring ............................................................................................... 10 3 Results and Discussion .....................................................................................................................13 3.1 Refrigeration unit selection .......................................................................................... 13 3.2 Soil temperatures prior to active cooling ..................................................................... 15 3.3 Artificial cooling in the active phase ............................................................................ 18 4 Conclusions and Recommendations .............................................................................................. 22 References ................................................................................................................................................... 23 Report Documentation Page .................................................................................................................... 25-
dc.format.extent33 pages / 6.44 MB-
dc.format.mediumPDF-
dc.language.isoen_USen_US
dc.publisherCold Regions Research and Engineering Laboratory (U.S.)en_US
dc.publisherEngineer Research and Development Center (U.S.)-
dc.relation.ispartofseriesTechnical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC/CRREL TR-21-15-
dc.rightsApproved for Public Release; Distribution is Unlimited-
dc.sourceThis Digital Resource was created in Microsoft Word and Adobe Acrobat-
dc.subjectArtificial ground freezingen_US
dc.subjectClimatic changesen_US
dc.subjectCold regionsen_US
dc.subjectInfrastructureen_US
dc.subjectPermafrost--Stabilityen_US
dc.subjectRefrigerationen_US
dc.subjectSolar arrayen_US
dc.subjectThermosyphonsen_US
dc.subjectWarming climateen_US
dc.titleArtificial ground freezing using solar-powered thermosyphonsen_US
dc.typeReporten_US
Appears in Collections:Technical Report

Files in This Item:
File Description SizeFormat 
ERDC-CRREL TR-21-15.pdf6.44 MBAdobe PDFThumbnail
View/Open