Show simple item record

dc.contributor.authorDallriva, Frank D.
dc.contributor.authorJohnson, Carol F.
dc.contributor.authorO'Daniel, James L.
dc.contributor.authorDorrell, Cecil C.
dc.date.accessioned2016-10-28T21:07:35Z
dc.date.available2016-10-28T21:07:35Z
dc.date.issued2016 -08
dc.identifier.urihttp://hdl.handle.net/11681/20258
dc.descriptionTechnical Report
dc.descriptionAbstract: The Department of Defense needs the capability to accurately predict air-blast environments produced by explosive detonations and their interactions with objects that create a complex geometry, such as buildings, bridges, dams, and others. First-principle computer codes are typically used to generate high-fidelity simulations of these explosive events and their effects. These codes continue to improve but still require validation against experimental data to establish confidence in the results produced by the simulations. The objective of this effort was to conduct replicate experiments in the Blast Load Simulator (BLS) to evaluate its suitability for a future effort involving the inclusion of non-responding box-type structures in a BLS simulated blast environment. The BLS is a highly tunable com-pressed-gas-driven, closed-end shock tube designed to simulate blast waveforms for explosive yields up to 20,000-lb of TNT equivalent at a peak reflected pressure up to 80 psi and a peak reflected impulse up to 1,100 psi-msec. Data collected include incident overpressure at a particular location within the BLS and reflected pressures on a steel plate located at the end of the BLS. The uncertainty in the experimental pressures and impulses was evaluated for the replicate experiments, and 95% confidence intervals on the results were computed.
dc.publisherEngineer Research and Development Center (U.S.)
dc.publisherGeotechnical and Structures Laboratory (U.S.)
dc.relationhttp://acwc.sdp.sirsi.net/client/search/asset/1050929
dc.relation.ispartofseriesERDC/GSL;TR-16-27 rept.1
dc.rightsApproved for public release; distribution is unlimited.
dc.sourceThis Digital Resource was created in Microsoft Word and Adobe Acrobat.
dc.subjectExplosions.
dc.subjectBlast effect--Testing.
dc.subjectComputer simulation.
dc.subjectDetonation waves.
dc.subjectShock (Mechanics)
dc.subjectShock tubes.
dc.subjectScientific apparatus and instruments.
dc.titleBlast load simulator experiments for computational model validation. Report 1
dc.typeDocument


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record