The CAD/BIM Technology Center for Facilities, Infrastructure, and Environment

A/E/C Graphics Standard

Release 2.1

Stephen C. Spangler

August 2019

Approved for public release; distribution is unlimited.
The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation’s public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default.
A/E/C Graphics Standard
Release 2.1

Stephen C. Spangler
The CAD/BIM Technology Center
Information Technology Laboratory
U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, Mississippi 39180-6199

Final Report
Approved for public release; distribution is unlimited.

Prepared for Headquarters, U.S. Army Corps of Engineers
 Washington, DC 20314-1000

Under Project Number 611102AH68
Abstract

The A/E/C Graphics Standard has been developed by the Computer-Aided Design/Building Information Modeling (CAD/BIM) Technology Center to document how proper hand-drafting practices can be achieved in BIM, Civil Information Modeling (CIM), and CAD. It is through the collection and documentation of these practices that consistent models and drawings shall be achieved throughout the U.S. Army Corps of Engineers (USACE), as well as other federal agencies. In the collection of these practices, various historical USACE District drafting manuals were consulted and compared against practices contained in various industry and national standards. The documentation of these practices will help to achieve both clear and aesthetically pleasing construction documents.
Contents

Abstract .. ii

Figures and Tables .. vi

Preface .. viii

Acronyms and Abbreviations .. ix

1 Introduction .. 1
 1.1 Background .. 1
 1.2 United States National CAD Standard® .. 2
 1.3 Objectives ... 2
 1.4 Approach ... 2
 1.5 Scope ... 3
 1.6 Essentials of good drafting .. 3
 1.7 Additions/revisions ... 3

2 Border/Cover Sheets ... 5
 2.1 Border sheets .. 5
 2.1.1 Sheet sizes ... 5
 2.1.2 Sheet margins ... 5
 2.1.3 Border sheet areas ... 6
 2.1.4 Production data area .. 6
 2.1.5 Drawing area ... 7
 2.1.6 Title block area ... 10
 2.1.7 Designer Identification Block .. 11
 2.1.8 Revision (Issue) Block .. 11
 2.1.9 Management Block ... 11
 2.1.10 Project Identification/Sheet Title Block .. 13
 2.1.11 Sheet Identification Block ... 14
 2.1.12 Status ... 15
 2.2 Cover Sheet .. 16
 2.2.1 Owner/Designer information ... 18
 2.2.2 Project/Contract information (Part 1) ... 19
 2.2.3 Project rendering/small location map area ... 19
 2.2.4 Project/Contract information (Part 2) ... 20
 2.2.5 Signature Block Area ... 21
 2.2.6 Small project index/A-E stamps area ... 21

3 Orientation .. 23
 3.1 Common .. 23
 3.1.1 Drawing sheet coordinate system .. 23
 3.1.2 Plans, elevations, and details ... 23
 3.2 Horizontal .. 24
 3.2.1 Project coordinate system ... 24
3.2.2 Vicinity maps ... 25
3.2.3 Maps and drawings ... 25
3.2.4 Channels, locks, and dams .. 25
3.2.5 Waterways .. 26
3.2.6 Levees .. 28
3.2.7 Roadways and other structures 28

3.3 Vertical ... 29
3.3.1 Column grid system ... 29
3.3.2 Numbering of floors ... 30
3.3.3 Numbering of rooms ... 30
3.3.4 Numbering of doors .. 31
3.3.5 Identification of windows .. 32
3.3.6 Numbering of stairs .. 32
3.3.7 Numbering of elevators .. 33
3.3.8 Labeling of duct .. 33

4 Drawing Symbology .. 34
4.1 Corps castle ... 34
4.2 Symbols ... 35
4.2.1 Symbol descriptions ... 35
4.2.2 Symbol identifiers ... 35
4.2.3 Drawing area title ... 35
4.2.4 Elevations, sections, and details 38
4.2.5 Welding symbols ... 40
4.3 Linework ... 43
4.3.1 Showing work conditions within a drawing 45

5 Drawing Annotation .. 46
5.1 Text ... 46
5.1.1 General notes .. 46
5.1.2 Abbreviations .. 49
5.1.3 Capitalization ... 49
5.1.4 Orientation and placement ... 49
5.1.5 Font ... 51
5.1.6 Text height ... 52
5.2 Dimensions ... 54
5.2.1 Dimension placement ... 54
5.2.2 Graphic settings .. 55
5.2.3 Dimension terminators .. 55
5.2.4 Fractions ... 57
5.2.5 Elevations ... 58
5.2.6 Graphic settings .. 58
5.2.7 Dimensioning in metric (SI) .. 59
5.3 Match lines .. 61

6 Schedules .. 63
6.1 Features of a schedule ... 63
Figures and Tables

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2-1</td>
<td>Three main areas of the border sheet.</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2-2</td>
<td>Production data area.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2-3</td>
<td>Incorrect grid module use.</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2-4</td>
<td>Correct grid module use.</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2-5</td>
<td>Vertical title block.</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2-6</td>
<td>Designer identification block.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2-7</td>
<td>Management block.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2-8</td>
<td>Project Identification/Sheet Title Block.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2-9</td>
<td>Sheet Identification Block.</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2-10</td>
<td>Status field.</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2-11</td>
<td>Cover Sheet.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2-12</td>
<td>Cover Sheet information only.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2-13</td>
<td>Owner/Designer information.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2-14</td>
<td>Link between Project/Contract information on Cover Sheet and Border Sheet.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2-15</td>
<td>Project rendering/small location map area (example rendering shown).</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2-16</td>
<td>Project/contract information (Part 2) area.</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2-17</td>
<td>Signature Block Area (example signature block shown).</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2-18</td>
<td>Small project index/A-E stamps area (example index shown).</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>Proper orientation of detail views.</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3-2</td>
<td>Northing and eastings along edge of plan view boundary (example shown).</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3-3</td>
<td>Grid system described in general notes (example shown).</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3-4</td>
<td>Orientation of water flow in plan and profile.</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3-5</td>
<td>Orientation of water flow in waterways.</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3-6</td>
<td>Orientation of roadways.</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3-7</td>
<td>Room identifier symbol.</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3-8</td>
<td>Room numbering example.</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3-9</td>
<td>Numbering of doors.</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3-10</td>
<td>Window identifier symbol.</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3-11</td>
<td>Duct labeling.</td>
<td>33</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>U.S. Army Corps of Engineers Communication Mark (commonly known as the Corps Castle).</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4-2</td>
<td>Placement of FOA signature in USACE Communication Mark.</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4-3</td>
<td>Drawing area title identification symbol.</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4-4</td>
<td>Three acceptable methods for showing scales.</td>
<td>37</td>
</tr>
<tr>
<td>Figure 4-5</td>
<td>North arrow.</td>
<td>37</td>
</tr>
<tr>
<td>Figure 4-6</td>
<td>Back-referencing method using the drawing area title.</td>
<td>38</td>
</tr>
<tr>
<td>Figure 4-7</td>
<td>Elevation indicator symbol.</td>
<td>39</td>
</tr>
</tbody>
</table>
Tables

Table 2-1. ANSI and ISO sheet size comparison... 5
Table 4-1. Common welding processes... 42
Table 5-1. Comparison of font types .. 51
Table 5-2. Final allowable text height .. 52
Table 5-3. Inch-pound text heights and line type scales .. 53
Table 5-4. Metric text heights and line type scales .. 54
Table 5-5. Dimension element settings ... 58
Preface

This study was conducted for Headquarters, U.S. Army Corps of Engineers (HQUSACE). The technical monitor was Mr. Jason Fairchild, HQUSACE.

The work was performed by the Computer-Aided Design/Building Information Modeling (CAD/BIM) Technology Center of the Software Engineering and Informatics Division (SEID), U.S. Army Engineer Research and Development Center-Information Technology Laboratory (ERDC-ITL). At the time of publication, Mr. Edward L. Huell was Chief, CEERD-IS-C; Mr. Ken Pathak was Chief, CEERD-IS; and Dr. David R. Richards was the Technical Director, CEERD-IZ-T. The Deputy Director of ITL was Ms. Patti Duett and the Director of ITL was Dr. David A. Horner.

The Center acknowledges the support of Mr. Jason Fairchild, HQUSACE. Special thanks go to the following U.S. Army Corps of Engineers (USACE) staff for their technical expertise in the development and review of this document: Mr. Roger Fujan, U.S. Army Engineer District, Walla Walla; Mr. Carl Broyles, U.S. Army Engineer District, Kansas City; Mr. Gerald Piotrowski, U.S. Army Engineer District, Louisville; and Mr. Brian Baker, U.S. Army Engineer District, Pittsburgh.

COL Ivan P. Beckman was Commander of ERDC, and Dr. David W. Pittman was the Director.
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIA</td>
<td>American Institute of Architects</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BIM</td>
<td>Building Information Modeling</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>CADD</td>
<td>Computer-Aided Design and Drafting</td>
</tr>
<tr>
<td>CIM</td>
<td>Civil Information Modeling</td>
</tr>
<tr>
<td>CSI</td>
<td>Construction Specifications Institute</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>ERDC</td>
<td>Engineer Research and Development Center</td>
</tr>
<tr>
<td>FAC</td>
<td>Field Action CAD</td>
</tr>
<tr>
<td>FOA</td>
<td>Field Operating Activity</td>
</tr>
<tr>
<td>Ft</td>
<td>Foot/Feet</td>
</tr>
<tr>
<td>GSA</td>
<td>General Services Administration</td>
</tr>
<tr>
<td>HQUSACE</td>
<td>Headquarters, U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>in.</td>
<td>Inch(s)</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ITL</td>
<td>Information Technology Laboratory</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>NCS</td>
<td>National CAD Standard</td>
</tr>
<tr>
<td>NIBS</td>
<td>National Institute of Building Sciences</td>
</tr>
<tr>
<td>SEID</td>
<td>Software Engineering and Informatics Division</td>
</tr>
<tr>
<td>SMACNA</td>
<td>Sheet Metal and Air Conditioning Contractors National Association</td>
</tr>
<tr>
<td>TH</td>
<td>Dimension Text Height</td>
</tr>
<tr>
<td>USACE</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
</tbody>
</table>
1 Introduction

The *A/E/C Graphics Standard* has been developed by the Computer-Aided Design/Building Information Modeling (CAD/BIM) Technology Center (hereafter referred to as the Center) for Facilities, Infrastructure, and Environment at the Information Technology Laboratory (ITL), U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, MS. Its purpose is to address a need for standard BIM, Civil Information Modeling (CIM), and CAD drafting practices that were once covered by documents related to hand drafting techniques. This report supersedes *A/E/C Graphics Standard Release 2.0* (ERDC/ITL TR-12-1).

1.1 Background

The *A/E/C CAD Standard* (CAD/BIM Technology Center 2015), first published in May 1994, has been the go-to manual for developing CAD documents for tri-service A/E/C disciplines. The Standard defines symbology, graphic representations, and layer breakouts within the different types of CAD files the A/E/C disciplines typically create.

However, what it does not cover are the good practices behind CAD drafting. These practices were required learning for all new architects, engineers, and draftsmen when hand drafting was the only way of creating construction documents. With the incorporation of CAD into design, these practices were lost along the way. The U.S. Army Corps of Engineers (USACE) CAD/BIM Community of Practice (formerly the Field Action CAD (FAC) Committee) recognized this fact and tasked the Center to develop a manual reintroducing these practices, however, updating them to fit into the CAD workflow.

In the development of this manual, the Center collected many District drafting standards, compared them, and compiled similarities. Where applicable, the practices pulled from these drafting standards were compared with those of industry and national standards, since those documents address drafting to a certain extent. In situations where industry and national standards did not make a strong statement as to a drafting methodology, the USACE drafting standards were considered to be the expert opinion and took priority in decisions.
1.2 **United States National CAD Standard®**

In 1995, the combined resources of the Center, the American Institute of Architects (AIA), the Construction Specifications Institute (CSI), the United States Coast Guard, the Sheet Metal and Air Conditioning Contractors National Association (SMACNA), the General Services Administration (GSA), and the National Institute of Building Sciences (NIBS) Facility Information Council began an effort to develop a single CAD standard for the United States. Working together, these organizations agreed to develop an integrated set of documents that collectively would represent the United States National CAD Standard (NCS).

The primary NCS document referenced within the *A/E/C Graphics Standard* is the following:

“Uniform Drawing System”
The Construction Specifications Institute
99 Canal Center Plaza
Alexandria, VA 22314-1588

This document is available as part of the NCS to all USACE personnel through an enterprise license with NIBS. Additional information on the NCS can be obtained from the following:

National Institute of Building Sciences
1090 Vermont Avenue NW, Suite 700
Washington, DC 20005-4905

1.3 **Objectives**

The objective of the A/E/C Standards is to ensure design intent is consistently, efficiently, and effectively transmitted through the construction phase to operations and maintenance (O&M) and back to design for future work.

1.4 **Approach**

The approach chosen to respond to A/E/C community comments and feedback entailed reviewing the concerns and recommendations. If the comment was from a purely personal preference standpoint, it was
disregarded. If the comment made a valid point, a workaround was
determined on how to best resolve the issue while still maintaining the
intent of industry standards. A Frequently Asked Questions (FAQ) page
was established to document the interim solutions. This document
updates the A/E/C Standards to incorporate those solutions.

1.5 Scope

This manual provides guidance for preparing the presentation of A/E/C
designs within the Department of Defense (DoD).

1.6 Essentials of good drafting

Why bother with developing a manual that addresses drafting practices?
The A/E/C CAD Standard already implements practices in the formation
and presentation of final CAD files; isn’t that enough? The U.S. Army
Engineer District, Jacksonville, *Drafting Standards* manual (U.S. Army
Engineer District, Jacksonville 1976) states the reason best in the
“Essentials of Good Drafting” section:

“A well prepared drawing, complete so that it conveys the intended
meaning yet contains a minimum of unnecessary detail, is the type of
drawing which is required. Such a drawing, when [correctly] prepared,
reflects credit to the [engineer, architect], or draftsman who was
responsible for it. While the principal object in working up drawings is to
produce a neat, accurate set of plans in the shortest possible time, it is not
the intention to sacrifice neatness and accuracy for speed or vice versa.
When making alterations or additions to existing drawings, special care
shall be exercised to follow the same style and size of lettering and all
other conventions on the drawings for uniformity."

In addition to this reason, agencies should constantly strive for a sense of
consistency. This results in a more unified workplace as all architects,
engineers, drafters, and partners are following a consistent set of rules and
guidelines.

1.7 Additions/revisions

This graphics standard is intended to be neither static nor all inclusive,
and thus, will be updated and enhanced as appropriate. Suggestions for
improvements are strongly encouraged so that subsequent updates will reflect the input and needs of CAD users.

Recommendations or suggested additions should be sent to CADBIM@usace.army.mil.
2 Border/Cover Sheets

Note: In an effort to make sheets more consistent across all agencies, the only borders/cover sheets that shall be used are those defined in this section. This supersedes all previous border definitions from all other various locations. The border and cover sheet files can be found on the Center’s website: https://cadbimcenter.erdc.dren.mil/.

2.1 Border sheets

2.1.1 Sheet sizes

A/E/C projects (contract documents) shall be prepared on American National Standards Institute (ANSI) D sheets (ANSI E or F may be used for large maps [e.g., installation master plans and drawings for civil works projects]). For international projects, International Organization for Standardization (ISO) A1 sheets are to be used (ISO A0 may be used for large maps). Table 2-1 lists the standard sizes of ANSI and ISO sheets.

<table>
<thead>
<tr>
<th>Mark</th>
<th>Size in inches (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>28.0 x 40.0</td>
</tr>
<tr>
<td>E</td>
<td>34.0 x 44.0</td>
</tr>
<tr>
<td>D</td>
<td>22.0 x 34.0</td>
</tr>
<tr>
<td>C</td>
<td>17.0 x 22.0</td>
</tr>
<tr>
<td>B</td>
<td>11.0 x 17.0</td>
</tr>
<tr>
<td>A</td>
<td>8.5 x 11.0</td>
</tr>
<tr>
<td>A0</td>
<td>33.1 x 46.8 (841 x 1189 mm)</td>
</tr>
<tr>
<td>A1</td>
<td>23.4 x 33.1 (594 x 841 mm)</td>
</tr>
<tr>
<td>A2</td>
<td>16.5 x 23.4 (420 x 594 mm)</td>
</tr>
<tr>
<td>A3</td>
<td>11.7 x 16.5 (297 x 420 mm)</td>
</tr>
<tr>
<td>A4</td>
<td>8.3 x 11.7 (210 x 297 mm)</td>
</tr>
</tbody>
</table>

Table 2-1. ANSI and ISO sheet size comparison.

Note: The CAD/BIM Technology Center provides only ANSI and ISO border sheets on its website. For those agencies requiring other size sheets, those sheets are to be developed internally following the guidelines set in this section.

2.1.2 Sheet margins

- The minimum distance from the paper’s edge to any item in a design is 3/16 inch (in.). Borders and related data (grid callouts and production data) shall be centered vertically in the space and shifted to the right as
far as practical to maintain a binding edge on the left. The borders provided by the Center shall be used for all printed contract and O&M designs (not including shop drawings). This includes both electronic (PDF) and/or hard copies.

2.1.3 Border sheet areas

The border sheet is broken out into three main areas. These areas are the Production Data Area, the Drawing Area, and the Title Block Area (Figure 2-1). Of these three areas, only the Production Data Area is optional.

![Figure 2-1. Three main areas of the border sheet.](image)

2.1.4 Production data area

The Production Data Area contains detailed production information about the sheet. The information is located outside of the Drawing Area border in the lower left corner of the sheet (Figure 2-2).
As mentioned, use of this area is optional. Examples of information that could be provided in the Production Data Area include

- full path and file name
- date/time the sheet was plotted
- name of the user who plotted the sheet
- plot scale of the sheet.

Note: *The default text is commented with percent signs (%) to allow for text substitution via design scripts, pen tables, or attributes/tags.*

2.1.5 Drawing area

The Drawing Area is where graphic/textual items (e.g., plans, sections, elevations, schedules, details, notes) used to convey the project design intent are placed. The Drawing Area is broken up into a modular grid for
the placement of these items. To identify locations within the Drawing Area, the grid is labeled with characters going in alphabetical order (A, B, C, D, etc.) from lower left to top left and characters going in numerical order (1, 2, 3, 4, etc.) from upper left to upper right. To avoid confusion, the alphabetic characters I and O are not used.

The Border Sheet provided by the Center uses a grid with modules measuring 3 in. × 3 in. and 1-1/2 in. × 1-1/2 in. This allows the placement of more graphic/textual items within the Drawing Area. When placing items into the grid, the lower left corner of the item shall fall near a grid intersection. Items are not required to fit exactly within the modules; they are allowed to take up more than one module in the vertical and/or horizontal direction. However, if an item does not fill up a complete module, other items are not allowed to take up the remainder of the module’s space (Figure 2-3). Instead, that item shall be placed in the next available module (Figure 2-4).

If general notes, keynotes, or key plans are included on a sheet, they shall be located in the rightmost modules. The key plan shall always be located within the lowest module of this area.

Note: The border sheet previously released by the Center had a Drawing Area with five horizontal by five vertical grids, equally spaced. This resulted in limited space for inserting details onto a sheet while still being within the guideline of using whole modules for individual details. Smaller modules allow for the placement of more details on a single sheet.
Figure 2-3. Incorrect grid module use.

Figure 2-4. Correct grid module use.
2.1.6 Title block area

The A/E/C Graphics Standard requires the use of a vertical title block placed in the right-hand margin of the border sheet as shown in Figure 2-5. Use of a vertical title block allows for the most usable drawing area on a sheet. The vertical title block also ensures the most prevalent and pertinent information remains at the bottom right of the sheet. The title block area shall include the following:

- Designer Identification Block
- Revision (Issue) Block
- Management Block
- Project Identification/Sheet Title Block
- Sheet Identification Block.

Figure 2-5. Vertical title block.
Note: The blocks contained in the Title Block Area shall not be resized or modified.

2.1.7 Designer Identification Block

The Designer Identification Block (Figure 2-6) contains the logo and/or name of the agency that is the owner of the sheet. The Owner Communication Mark is inserted into the border to represent the owner of the information (typically the Issuing Agency responsible for the project). No modification of either the symbology or text within the Communication Mark shall be allowed. Designers shall refrain from reducing the size of the Communication Mark to add text identifying a specific organization/site within the Designer Identification Block. Instead, that information shall be added to the Management Block.

![Figure 2-6. Designer identification block.](image)

Example: Using the U.S. Army Corps of Engineers Communication Mark only in the Designer Identification Block provides for consistency within USACE and eliminates duplicating information contained elsewhere on the Border Sheet (see Section 4.1).

2.1.8 Revision (Issue) Block

See section 7.3 Revision (Issue) Block.

2.1.9 Management Block

The Management Block (Figure 2-7) contains information about the owner, the design firm, sheet data, and project management data. All text placed within this block shall be 3/32 in. high.
OWNER: The top left portion of the Management Block is dedicated to the owner of the information (typically the agency responsible for the project). Four lines are provided for this information. The top line shall always read U.S. ARMY CORPS OF ENGINEERS. The second line shall identify the specific District (e.g., VICKSBURG DISTRICT). The third line shall identify the street address of the District (e.g., 4155 CLAY STREET). The fourth line shall identify the city, state, and zip code of the District (e.g., VICKSBURG, MS 39183).

DESIGN FIRM: The bottom left portion of the Management Block shall capture information about the design firm (A-E firm or District) that did the design on that particular sheet. Four lines are provided to provide the name and address of that design firm. If desired, an A-E firm may substitute a logo for this information.

Note: If a USACE District is performing the design work for another District, the format of the information in the Design Firm portion of the block shall follow the same format as the Owner information. Districts performing design work internally may leave the Design Firm area blank.

DESIGNED BY: The name of the lead architect or engineer who did the design shall provide his/her information here. The format of the name provided shall be first initial, followed by a period, then full last name (e.g., J. DESIGNER).

DRAWN BY: The name of the person who created the sheet shall provide his/her information here. The format of the name provided shall be first initial, followed by a period, then full last name (e.g., J. DRAWER).
CHECKED BY: The name of the person who verified the data on the sheet is consistent with the design intent shall provide his/her information here. The format of the name provided shall be first initial, followed by a period, then full last name (e.g., J. CHECKER).

SUBMITTED BY: The name of the Project Architect or Project Engineer shall provide his/her information here. The format of the name provided shall be first initial, followed by a period, then full last name (e.g., J. SUBMITTER).

SIZE: The nominal size of the sheet (e.g., ANSI D, ANSI F, ISO A).

ISSUE DATE: The month and year going to advertisement. The format of the date shall be MMMMMYYYY (e.g., OCTOBER 2014).

SOLICITATION NO.: This section shall be filled with the solicitation for advertisement number.

CONTRACT NO.: This section shall be filled with the actual construction contract award number.

Note: SOLICITATION NO. and CONTRACT NO. may vary on several factors such as the project is design-build, design-bid-build, or other contractual requirements.

Note: Two optional sections are available in the lower right of the Management Block. These sections could potentially be used to record the total number of sheets in the construction document set, to record the number of the sheet in the set, or to capture information such as the file name, facility code, or drawing code. This data shall be defined by the Issuing Agency.

2.1.10 Project Identification/Sheet Title Block

The Project Identification/Sheet Title Block (Figure 2-8) is comprised of two sets of information: project identification and sheet information. The organization of data in each half of the block reflects a philosophy of moving from general information to specific.
PROJECT IDENTIFICATION: The top half of this block contains information about the project. All text within this part of the block shall be 3/32 in. high. The first line shall provide information about the project location (e.g., FORT LEONARD WOOD, MISSOURI). The second line shall provide a description of the project (e.g., DINING FACILITY). The third line shall provide a project identifier (e.g., P2#, PN#, FY). If more space is required for the description of the project, this description information shall continue into the third line, and the project identifier information shall be provided in the fourth line.

SHEET TITLE: The bottom half of this block contains a description of the content of the sheet. All text within this part of the block shall be 1/8 in. high. The first line shall provide a description of what is presented on the sheet (e.g., REFLECTED CEILING PLAN, FLOOR PLAN). If more than one type of information is presented on the sheet (e.g., plans, schedules, details), the most important information is identified. The second line shall provide what floor the information on the sheet is located (e.g., FLOOR 2, BASEMENT). The third line shall provide specific quadrant location information if required (e.g., ZONE 3, AREA B).

2.1.11 Sheet Identification Block

The Sheet Identification Block (Figure 2-9) contains, at a minimum, the "SHEET ID" title and the sheet identifier. The sheet identifier is composed of the discipline designator, the sheet type designator, and the sheet sequence number (e.g., A-101). The "SHEET ID" title shall be 1/8 in. high. The height of the sheet identifier shall be 9/32 in. high.
Figure 2-9. Sheet Identification Block.

Note: An optional BLDG ID field is available for those construction projects where the sheet set contains more than one structure, feature, or option. If this field is used, identification for that particular structure, feature, or option is placed in this field. The height of the BLDG ID field shall be 3/16 in. high. If this field is not used, leave this space blank.

Note: “Sheet X of Y” has been removed from the Sheet Identification Block. The primary reason the Index Sheet is the prevailing owner of sheet information is because it contains a record of every sheet in the drawing set and the drawing set order. Trying to keep "Sheet X of Y" constantly updated becomes a huge burden on the design team during project close out. When pages are added or removed, the entire drawing set must be renumbered to modify the page count and sheet numbers. Even on small projects (fewer than 100 sheets), the renumbering process can take several hours to make the necessary changes. Reprinting, reviewing, correcting, and potential reprinting again of all the sheets increases the burden of time and labor on the design team. On larger projects, this renumbering process potentially could take several days.

2.1.12 Status

An additional field (Figure 2-10) is available on the Border Sheet for specifying the current status of the project (e.g., 30%, 60%, 90%, READY FOR ADVERTISEMENT, AS AWARDED, AS-BUILT). This information shall be located at the bottom right corner of the Border Sheet and shall be 3/16 in. high.
Note: Status data is specific to each project or design organization. Be sure to contact the organization for details on how this information is to be presented.

2.2 Cover Sheet

Similar to the cover of a book, a Cover Sheet contains information provided for both informational and promotional purposes. Like the rest of the project set, the Cover Sheet information is contained within a Border Sheet and is always given the Sheet Identifier of G-001 (Figure 2-11).
Information captured on a Cover Sheet is comprised of mandatory textual information and areas available for promotional/approval/contractual items (Figure 2-12).

Note: Areas shown inside the dashed lines are intended for visual reference in this section. The dashed lines and text within are NOT intended to be plotted.
2.2.1 Owner/Designer information

Starting at the top left of the Cover Sheet and proceeding counterclockwise, the first information that is captured on the Cover Sheet is information about the owner and designer(s) (Figure 2-13). The Owner’s logo shall be presented to the far left of this section. For USACE Districts, this logo shall be the USACE Communication Mark with 1/4 in. high text directly beneath, identifying the specific District. To the right of the Owner logo, there is an area provided for designer logos. These logos could be another District’s logo (using the same USACE Communication Mark, with identifying District text) or an A-E’s logo. However, the Owner’s logo shall always be the largest of the logos provided in this section of the Cover Sheet.
2.2.2 Project/Contract information (Part 1)

Directly below the Owner/Designer information section, there are four lines of textual information identifying the project/contract (Figure 2-14). The information captured in this section shall be the same information that is shown in the top half of the Border Sheet’s Project identification/Sheet Title Block. All text in this section shall be 1/2 in. high.

Figure 2-14. Link between Project/Contract information on Cover Sheet and Border Sheet.

PROJECT/CONTRACT LOCATION 1
PROJECT/CONTRACT DESCRIPTION 2
PROJECT/CONTRACT DESCRIPTION / IDENTIFIER 3
PROJECT/CONTRACT IDENTIFIER IF NEEDED 4

2.2.3 Project rendering/small location map area

Below the Project/Contract Information is a large area (Figure 2-15). This space is available for providing a rendering of the project, showcasing the intended final look. Another possible use for this space is for providing a small vicinity map.
2.2.4 Project/Contract information (Part 2)

The next section of the Cover Sheet is devoted to information about the construction contract (Figure 2-16). Three of these text items shall be the same as information already contained in the Border Sheet’s Management Block while the fourth is an optional field.

SOLICITATION NO.: This field shall be filled with the solicitation for advertisement number.

CONTRACT NO.: This field shall be filled with the actual construction contract award number.

Note: SOLICITATION NO. and CONTRACT NO. may vary on several factors such as the project is design-build, design-bid-build, or other contractual requirements.
ISSUE DATE: This field is for the month and year going to advertisement. The format of the date shall be MMMMMMMMM YYYY (e.g., OCTOBER 2014).

VOLUME: This field is optional and is available for those projects where more than one volume of contract drawings is required.

2.2.5 Signature Block Area

The bottom right portion of the Cover Sheet is dedicated to any required agency signature blocks (Figure 2-17). These could be signature blocks that cover the entire drawing set, either showing approval and/or review of the set by a District’s Chief of Engineering.

Figure 2-17. Signature Block Area (example signature block shown).

2.2.6 Small project index/A-E stamps area

The last area of the Cover Sheet, contained in the upper right quadrant, is available for either a small project’s index of drawings or A-E professional stamps (Figure 2-18).
Figure 2-18. Small project index/A-E stamps area (example index shown).

<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

NOTE: SMALL PROJECT INDEX AREA - ALL STAMPS
3 Orientation

3.1 Common

3.1.1 Drawing sheet coordinate system

Drawing sheets have an intrinsic coordinate system that is arranged in columns and rows. “Columns are identified with numerical characters starting with 1 and increasing to the right. Rows are identified with alphabetical characters beginning at the bottom with A and increasing toward the top of the sheet” (UDS Module 2 – Sheet Organization (CSI 2014). The drawing coordinate system is used to identify/discuss drawing objects.

3.1.2 Plans, elevations, and details

Views shall be oriented on the sheet so that elevations and features are aligned whenever possible. When detailing is being added, details shall appear on the sheet based on their orientation on the feature. For instance, the top view of a detail shall be oriented above the front view of the same detail (Figure 3-1). If a detail is taken from a large-scale plan or elevation, the orientation shall remain the same as the view from which the cut was taken. If this is not possible, a note stating that the orientation was changed shall be added (e.g., VIEW ROTATED 90 DEGREES). When two or more plans are put on the same drawing, the orientation of all must conform to one another and to their relative positions on the ground.
3.2 **Horizontal**

3.2.1 **Project coordinate system**

The specified coordinate system/datum (usually State Plane) used for the project shall be denoted on maps (civil plans). Coordinates shall be identified using tick marks, which are oriented to show north, south, east, and west. Northings and eastings shall be shown along the edges of the plan view boundary at the beginning of the plan set or on every sheet (Figure 3-2). The grid system used shall be described in the general notes (Figure 3-3).
3.2.2 Vicinity maps

Vicinity maps shall be oriented with true north toward the top of the sheet.

3.2.3 Maps and drawings

Civil works maps and plans shall be oriented so that plan north is toward the top of the sheet when practicable or toward the left when impracticable.

3.2.4 Channels, locks, and dams

General plans, elevations, and longitudinal sections of channels, locks, dams, and similar structures shall be oriented with the direction of water
flow from top to bottom of the sheet, if practicable, or from left to right. Detailed plans shall be oriented with the direction of water flow from top to bottom. Plans and profiles of floodgates in levee construction shall be oriented with the observer looking downstream. Cross sections of locks shall be shown as if the observer were looking downstream, except in special cases where an upstream view would better clarify a complex positioning of adjoining elements. Typical dam sections shall be shown with the upstream side on the left and the downstream side on the right. The words UPSTREAM and DOWNSTREAM shall be shown in their proper places at the top of the sections.

3.2.5 Waterways

Included under this heading are new channels and channel improvements such as channel clearing and snagging, cleanout, enlargement, and realignment (cutoffs). Detailed plans shall be oriented with the direction of water flow from top to bottom of sheet, if practicable, or from left to right (Figures 3-4 and 3-5). The direction of water flow for all waterways shall be indicated by arrowheads at the upper and lower limits of the sheet, pointing in the direction the water flows.

Note: For coastal projects with tidal flows rather than river flows, all channel sections are oriented looking inshore, which is usually also looking toward increasing stations. Typically, labeling for port entry channels begins offshore with negative stations and increases inshore with station 0+00 at the crossing of the shoreline into a landlocked channel. Stations continue to increase inshore/upstream. However, it is recommended that users research specific District requirements to follow proper District procedure.

Channel cross sections shall be shown as if the observer were looking downstream. The words LEFT BANK and RIGHT BANK shall be shown in their proper places at the top of the sections (Note: River banks are always determined as being right bank or left bank by facing in direction of water flow). Where cross sections are plotted on a common center line, the words LEFT BANK and RIGHT BANK need to be shown but once, on the top section only.
Figure 3-4. Orientation of water flow in plan and profile.

Figure 3-5. Orientation of water flow in waterways.
Some construction drawings of flood control projects will require the section to be shown looking upstream. For instance, downstream elevations will be unique for some projects and drawn in projection.

3.2.6 Levees

Detailed plan maps of levees, dikes, berms, and slide repairs shall be oriented with the stream side (unprotected side) at the top of the sheet, irrespective of stream flow. All levee cross sections shall be plotted looking in the direction in which the stations increase. The words LANDSIDE and WATERSIDE shall be shown in their proper places at the top of all plotted sections. Where cross sections are plotted on a common center line, the words LANDSIDE and WATERSIDE need be shown but once, on the top section only.

Note: Because of channel orientation and irregular shapes of leved dredged material placement areas (PA), plans are sometimes oriented

1. to match channel orientation (stationing increasing right to left) allowing the channel to be shown either above or below the PA
2. to best fit the irregular shape to the plan sheet trying to best maintain the north up/left orientation.

3.2.7 Roadways and other structures

General plans, elevations, and longitudinal sections of roadways and other structures shall be oriented so that north is toward the top of the sheet or toward the right of the sheet if top orientation is impracticable. Stationing shall be from west to east or south to north. For short roads and entrances (i.e., driveway to parking lot), start stationing at the center line of the most major road. Cross sections shall be shown as if the observer were looking up station. Stationing shall read up station (Figure 3-6).
3.3 Vertical

3.3.1 Column grid system

A grid system is used to indicate structural columns, load-bearing walls, shear walls, and other structural elements on the drawings. It is used primarily for reference in schedules of structural data. A grid system is also used if the design of a building is based on a module system, regardless of the structural system. Grid lines are used as a basis for dimensioning. Proper planning and layout of a drawing on the selected sheet size requires the accommodation of alphanumeric grid designations within column indicators. Vertical grid lines shall have designators at the top of the grid numbered from left to right. Horizontal grid lines shall have designators at the right side of the grid alphabetized from bottom to top. To eliminate confusion with the numerals 0 (zero) and 1 (one), do not use letters O or I (UDS Module 4 – Drafting Conventions [CSI 2014]).

Where additional intermediate structural support elements occur between grid lines, a [decimal] designation is used. For example, a column occurring at midpoint between grid lines 2 and 3 would be designated 2.5. In a similar manner, columns occurring between grid lines A and B would be represented as A.1, A.2, A.3, and A.4 (UDS Module 4 – Drafting Conventions [CSI 2014]).
3.3.2 Numbering of floors

The ground floor shall be designated as the first floor. All occupied floors above the first floor are to be numbered sequentially upward (second floor, third floor, fourth floor, etc.). The floor below the first floor is considered to be a basement and should be designated as B1. Subsequent floors below B1 are numbered sequentially (B2, B3, B4, etc.). The topmost floor of the building that does not contain office or habitable space is designated as the attic (typically this area contains structural framing and HVAC equipment/ducts).

3.3.3 Numbering of rooms

All floor plans (except structural) shall show room identifiers (Figure 3-7). The first part of a room identifier shall match the floor number. Typically, room numbering starts at the most prominent means of access (e.g., main entrance, elevator, or stair) to the floor and proceeds sequentially. For instance, if the building is a single-story structure, then the first room to the right of the main entrance would be 101. If the main entrance opens into a lobby or vestibule, then the lobby would be numbered 100, and numbering would continue sequentially with the first room to the right (Figure 3-8).

![Room identifier symbol](image)

Figure 3-7. Room identifier symbol.

Note: Room numbers on construction documents are typically for construction references and do not necessarily reflect the final room numbers. See the Signage schedule for final room number/names. It is recommended that the architect consult the building owner before beginning room numbering.
3.3.4 Numbering of doors

Each door opening in a building shall have a door mark symbol comprised of a 3/32 in. (2.4 mm) text unique identifier inside of an elongated circle 3/8 in. (10 mm) wide x 3/16 in. (5 mm) high. For rooms that have one door opening, the door opening number shall be the same as the secure side room number. If more than one door opening in a room exists, door openings within that room shall be identified by the room number followed by an alphabetical character starting clockwise from the corridor access door opening. For example, for Room 126 (Figure 3-9), the corridor access door opening would be numbered 126A and the second door opening within Room 126 would be numbered 126B.
3.3.5 Identification of windows

Each type of window shall have a unique identifier (Figure 3-10). The window identifier symbol with identifier number and/or letter shall also be placed in the Mark column of Window Schedules that are developed.

Figure 3-10. Window identifier symbol.

3.3.6 Numbering of stairs

The most prominent stair with the largest egress capacity shall be identified with 3/32 in. (2.4 mm) high text as STAIR 1. On the first floor, number the stairs sequentially moving clockwise from the first stair. The stair number remains the same for its entire height. Stairs above or below the first floor that do not connect with the first floor are numbered following those that do. If several prominent stairs with large egress capacity exist, the stairs
may be numbered in order of their importance to the main egress point in the building. Additional stairs may be numbered as described.

3.3.7 Numbering of elevators

The elevator nearest to the building entrance with the largest access and egress capacity shall be identified with 3/32 in. (2.4 mm) high text as ELEVATOR 1. Number additional elevators moving clockwise within elevator banks. Use the same sequence and arrangement of numbers on additional banks of elevators if present.

3.3.8 Labeling of duct

The SMACNA labels rectangular duct as shown in Figure 3-11a (SMACNA 2001). The first value represents the side of the duct shown (width), and the second value represents the side of the duct not shown (depth). Round duct is shown as the diameter of the duct, followed by a diameter symbol (Figure 3-11b).

![Figure 3-11. Duct labeling.](image)
4 Drawing Symbology

4.1 Corps castle

The appearance of the USACE Communication Mark (commonly known as the Corps Castle) has very specific requirements (Figure 4-1). Customized versions of the Communication Mark for individual USACE organizations are prohibited, unless the purpose is for “employee morale welfare activities.” The Communication Mark is trademarked, and the ® symbol is to be included “when reproducing printed promotional material that is intended for public usage.”

![Figure 4-1. U.S. Army Corps of Engineers Communication Mark (commonly known as the Corps Castle).](image)

The “US Army Corps of Engineers®” text located underneath the Communication Mark shall be aligned with its left edge. If a Field Operating Activity (FOA) signature is added to the Communication Mark (Figure 4-2), the text shall always be placed below the “US Army Corps of Engineers®” text. For more information on the USACE Communication Mark go to http://www.publications.usace.army.mil/Portals/76/Publications/EngineerPamphlets/EP_310-1-6.pdf.

![Figure 4-2. Placement of FOA signature in USACE Communication Mark.](image)
4.2 Symbols

4.2.1 Symbol descriptions

Symbol descriptions, located anywhere in a drawing set, shall adhere to the following basic guidelines to allow their repetition from job to job, preclude conflicts within the drawings, and maximize suitability for CAD interface:

- Symbol descriptions in legends shall be concise and worded in a comma-separated structure that flows from the general to the specific. For example, in lieu of wording the description of a convenience receptacle as WALL-MOUNTED, DUPLEX RECEPTACLE, structure the wording as RECEPTACLE, DUPLEX, WALL-MOUNTED.
- The symbol description shall not contain specific information that would normally be contained in equipment schedules or on the plans.
- Where equipment or devices within a room are all identical, one symbol shall be identified with the full type identifier, and other information and a callout shall be referenced to this symbol with the following words: TYPICAL FOR THIS ROOM. TYPICAL, when used by itself, applies to everywhere a symbol is used in a drawing set unless otherwise noted.

4.2.2 Symbol identifiers

Identifying letters within and around symbols must be legible at one-half normal size. Therefore, letter sizes for symbols shall be a minimum of 3/32 in. (2.4 mm) for that symbol.

4.2.3 Drawing area title

4.2.3.1 Drawing area title identification and placement

The drawing area title is composed of multiple pieces. The identification is a bubble with a combination alphabetic/numeric identification (Figure 4-3). The alphabetic/numeric identification is based on where the detail area title is placed on the sheet grid in the drawing area (see “Border Sheets”). For instance, if the lower left corner of a detail is placed close to the intersection of sheet grid row B and sheet grid column 3, then the detail identification becomes B3. That identification is also used in the top half of the detail/section/elevation indicator symbols.
The decision on where to place the drawing area title within the drawing area of the sheet shall be based on priority and convenience:

“[When placing details, sections, or elevations,] locate the most frequently used referenced drawing block at the lowest drawing module adjacent to the title or notation block [bottom right portion of the drawing area]. Add additional drawings in order of priority, from bottom to top and from right to left. Starting the drawings from the right to the left makes it easier to use partially filled sheets. This eliminates the need to open a heavy set of drawings all the way to the binding to refer to a few details drawn on the left-hand side of the sheets” (UDS Module 4 – Drafting Conventions [CSI 2014]).

Note: When only one subject appears on a drawing, and its title already appears in the title block, a drawing area title shall also be placed under the entire area of the subject.

Note: For consistency and uniformity, multiple details with subtitles are no longer allowed in the same drawing area. Details are to be a single subject matter. Additional information can be added as a note.

4.2.3.2 Drawing area title text

All text placed in the drawing area title shall be Arial. The height of the text within the bubble and on the drawing area title line shall be 3/16 in. The scale text underneath the drawing area title line shall be 3/32 in.

4.2.3.3 Scales

The scale or scales used for a drawing shall be stated in words and/or figures under the Drawing Block Title of each plan, elevation, section, part, or detail (Figure 4-4). If one or more scales are used on a sheet, a graphic scale or scales must appear on the sheet for each scale used on that sheet. This will ensure that if a sheet is plotted, the sheet can be verified as plotted to the correct scale. When used, the drawing scale text shall be placed at the bottom left of the drawing title, and/or the graphic scale shall be placed on the bottom right of the drawing title as shown in Figure 4-4.
When a drawing is not drawn to any particular scale, the words SCALE: NTS shall be so stated, where NTS indicates Not To Scale.

The north arrow (Figure 4-5) shall be placed in the lower right-hand corner of the drawing area. Floor plans shall be oriented so that the plan north arrow points to the top of the drawing block. The true north arrow (i.e., points to the North Pole) is adjusted so that the building grid and plan north arrow are parallel to the sheet orientation. If possible, the orientation of true north shall be maintained throughout an entire drawing set.

4.2.3.4 Back-referencing

Back-referencing occurs when the drawing area title references back to the original sheet and location where a detail/section/elevation is called out. The practice of back-referencing is not addressed by the NCS. While not
against the A/E/C Standards, back-referencing requires an inordinate amount of coordination to make sure all information is kept up-to-date.

To provide a standard means to accomplish back-referencing that does not conflict with the NCS convention (Figure 4-6), a simple method was developed. The method places the back-reference to the left of the drawing area title bubble and has two parts. The upper half shows the grid location of the original indicator symbol. The lower half shows the first sheet number that indicator symbol shows up on.

Figure 4-6. Back-referencing method using the drawing area title.

4.2.4 Elevations, sections, and details

4.2.4.1 Elevation/section/detail indicator symbol

The symbology for elevation, section, and detail callouts may be different, but the procedure for identifying and naming them is essentially the same. The elevation, section, or detail is called out in a drawing with a two-part symbol that identifies the following:

- the elevation/section/detail identification
- the sheet on which the elevation/section/detail is located.

4.2.4.2 Elevation indicator symbol

The elevation indicator symbol (or callout) is a two-part symbol that indicates an area of the drawing that shall be shown in an elevation on the elevations sheet (Figure 4-7). As mentioned previously, the top part of the circle is filled in with the elevation identification, and the bottom part is filled in with the sheet number on which the elevation occurs. The sheet
number shall always be an XX2NN designation where XX is the Discipline Designator, 2 indicates it is an Elevations sheet, and NN is the Sheet Sequence Number (01–99).

4.2.4.3 Section indicator symbol

The section indicator symbol (or callout) is a two-part symbol that cuts through an area of the drawing that shall be shown in a section cut on the sections sheet (Figure 4-8). As mentioned previously, the top part of the circle is filled in with the section identification, and the bottom part is filled in with the sheet number on which the section occurs. The sheet number shall always be an XX3NN designation, where XX is the Discipline Designator, 3 indicates it is a Sections sheet, and NN is the Sheet Sequence Number (01–99).

4.2.4.4 Detail indicator symbol

The detail indicator symbol (or callout) is a two-part circle that points to an area of the drawing that shall be enhanced in a detail on the details sheet (Figure 4-9). As described previously, the top part of the circle is filled in with the detail identification, and the bottom part is filled in with the sheet number on which the detail occurs. The sheet number shall always be an XX5NN designation where XX is the Discipline Designator, 5 indicates that it is a Details sheet, and NN is the Sheet Sequence Number (01–99).
4.2.5 Welding symbols

When typical weld symbols are developed, the following drafting convention shall be followed (Figures 4-10, 4-11 and Table 4-1).

The numbers in Figure 4-10 are keyed to the following list:

1. Finishing symbol
2. Contour symbol
3. Groove angle: includes angle of countersink for plug welds
4. Root opening: depth of filling for plug and slot welds
5. Groove weld size
6. Depth of bevel: size or strength for certain welds
7. Specification, process, or other references
8. Tail (may be omitted when reference not used)
9. Length of weld segment
10. Pitch (center-to-center spacing) of weld segments
11. Field weld symbol (flag always points to tail of weld symbol)
12. Arrow connecting reference line to arrow side member of joint or arrow side of joint
13. Reference line
14. Basic weld symbol or detail reference
15. Number of spot, seam, stud, plug, slot, or projection welds
16. Weld-All-Around symbol

Figure 4-10. Typical welding symbols.
Figure 4-11. Weld symbols.

BASIC WELD SYMBOLS

<table>
<thead>
<tr>
<th>FILLET</th>
<th>GROOVE OR BUTT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SQUARE</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>BEVEL</td>
</tr>
<tr>
<td></td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>FLARE V</td>
</tr>
<tr>
<td></td>
<td>FLARE BEVEL</td>
</tr>
</tbody>
</table>

SUPPLEMENTARY WELD SYMBOLS

<table>
<thead>
<tr>
<th>WELD ALL AROUND</th>
<th>FIELD WELD</th>
<th>MELT-THRU</th>
<th>CONTOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FLUSH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONVEX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONCAVE</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-1. Common welding processes.

<table>
<thead>
<tr>
<th>Process</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc Welding</td>
<td></td>
</tr>
<tr>
<td>Electrogas welding</td>
<td>EGW</td>
</tr>
<tr>
<td>Flux cored arc welding</td>
<td>FCAW</td>
</tr>
<tr>
<td>Gas metal arc welding</td>
<td>GMAW</td>
</tr>
<tr>
<td>Gas tungsten arc welding</td>
<td>GTAW</td>
</tr>
<tr>
<td>Plasma arc welding</td>
<td>PAW</td>
</tr>
<tr>
<td>Submerged arc welding</td>
<td>SAW</td>
</tr>
<tr>
<td>Shielded metal arc welding</td>
<td>SMAW</td>
</tr>
<tr>
<td>Resistance Welding</td>
<td></td>
</tr>
<tr>
<td>Flash welding</td>
<td>FW</td>
</tr>
<tr>
<td>Resistance welding</td>
<td>RW</td>
</tr>
<tr>
<td>Oxyfuel Gas Welding</td>
<td></td>
</tr>
<tr>
<td>Oxyfuel gas welding</td>
<td>OFW</td>
</tr>
<tr>
<td>Solid-State Welding</td>
<td></td>
</tr>
<tr>
<td>Diffusion welding</td>
<td>DFW</td>
</tr>
<tr>
<td>Friction welding</td>
<td>FRW</td>
</tr>
<tr>
<td>Brazing</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Dip</td>
<td>DB</td>
</tr>
<tr>
<td>Diffusion</td>
<td>DFB</td>
</tr>
<tr>
<td>Furnace</td>
<td>FB</td>
</tr>
<tr>
<td>Induction</td>
<td>IB</td>
</tr>
<tr>
<td>Infrared</td>
<td>IRB</td>
</tr>
<tr>
<td>Resistance</td>
<td>RB</td>
</tr>
<tr>
<td>Torch</td>
<td>TB</td>
</tr>
<tr>
<td>Other Welding</td>
<td></td>
</tr>
<tr>
<td>Electron beam welding</td>
<td>EBW</td>
</tr>
<tr>
<td>Electroslag welding</td>
<td>ESW</td>
</tr>
<tr>
<td>Laser beam welding</td>
<td>LBW</td>
</tr>
</tbody>
</table>

4.3 Linework

Various types of lines require specific line weights. Some of those line types and associated line weights are shown in Figure 4-12.

![Figure 4-12. Types of lines and associated line weights.](image)
Center Lines: Center lines (“014200-914 Center Line” in the *A/E/C CAD Standard*) are used to indicate the travel of a center. Center lines shall cross without voids. Short center lines may be unbroken if there is no confusion with other lines.

Dimension Lines: Dimension lines are used to show a linear measurement indicated on a drawing. Dimensions show the extent and significance of the object.

Leaders: Leaders shall be used to indicate a part or portion to which a number, note, or other reference applies.

Break Lines: Break lines are used to indicate that only a portion of a drawing or a partial view is being shown.

Phantom Lines: Phantom lines (“014200-915 Phantom Line” in the *A/E/C CAD Standard*) shall be used to indicate the alternate position of parts, repeated detail, or the relative position of an absent part.

Hidden Lines: Hidden lines (“014200-913 Hidden Line” in the *A/E/C CAD Standard*) are used to show the hidden features of a part or object. Relevances for clarity must be considered. Crossing and stacked hidden lines shall be avoided.

Existing Features: Existing feature lines are used for all lines on the drawing representing objects or structures that already exist and will impact the design. Existing feature lines are typically shown screened.

Primary Features: Primary features represent all new work in the design documents.

Edge of Interior/Exterior Elevations: The edges of interior/exterior elevations are the outlines around the perimeter of an elevation.

Section Cutting Plane Lines: Cutting plane lines shall be used to indicate a plane or planes in which a section is taken.

Borders: Border lines are used to create a margin on the drawing sheet.
Footprints: Footprints show the outline of a building or other object within the drawing.

Match Lines: Match lines (use “014200-914 Center Line” in the A/E/C CAD Standard) are used to show where part of a drawing that is too large to be contained on one sheet matches the continuation of that drawing on another sheet.

4.3.1 Showing work conditions within a drawing

4.3.1.1 New work vs. demolition work

For clarity in as-built drawings, plan views of demolition work shall not be combined with those for new work. Demolition plans shall not show features that have no contractual significance to the work in the construction contract. Notes shall state that all items shown on the demolition plans will be removed unless noted or specified. Notes, key notes, symbol modifiers, patterns, line styles, or callouts shall be used to delineate items to be removed or relocated.

4.3.1.2 New work vs. existing conditions

New work shall be easily distinguishable from other information shown on the drawings. Show new work at 100% (unscreened), and show existing conditions, including text, screened at a percentage between 20% and 60%. This screening is performed so that the new work will stand out from the existing conditions.

Survey drawings shall be shown at 100% (unscreened) to be screened later if incorporated into design drawings.
5 Drawing Annotation

5.1 Text

5.1.1 General notes

Notes on drawings shall be clear and concise. General notes are notes with universal application to contract work on all drawings or to all work on specific drawings. General notes shall be worded such that they are independent of the drawing(s), without cross-referencing or pointing with leader arrows to plans, details, etc. General notes shall be capable of being removed from the drawings and placed in the specifications.

All general sheet notes shall be placed in the far right column(s) of the drawing area of the Sheet File (Figure 5-1). All notes under the GENERAL NOTES heading shall be numbered sequentially starting with 1. General notes shall not include contractual requirements, such as statements of costs, time and place of delivery, methods of payment, and requirements for submission, approval, or distribution of data or reports.

Figure 5-1. Location of General notes area.
General notes that apply to all disciplines shall be located in the General set of sheets and have a sheet title GENERAL NOTES (Figure 5-2). General notes applicable to sheets for a particular discipline (e.g., architectural, electrical, mechanical) shall be located on the first sheet for that discipline and be titled GENERAL (Insert Discipline) NOTES (Figure 5-3). General notes applicable to a range of sheets shall be worded GENERAL NOTES: SHEETS ____ THRU ____. Sheet-specific notes shall be located on the applicable sheet and titled GENERAL SHEET NOTES (Figure 5-4).

Figure 5-2. General notes.

Figure 5-3. General discipline notes.
Figure 5-4. General sheet notes.

Figure 5-5. General and Discipline Note Organization and Location.

Locate General Notes and/or General Discipline Notes as far right on a sheet as practicable. When General Notes and/or General Discipline Notes span multiple columns, lower numbered notes are always located to the left of higher numbered notes (Figure 5-5).
5.1.2 Abbreviations

Abbreviations for words or phrases frequently used in plans, sections, elevations, or details shall follow the abbreviations as established in the NCS UDS Module 5 – Terms and Abbreviations. In addition to this requirement, the following rules regarding abbreviations shall be followed:

- The use of abbreviations shall be kept to a minimum and only when their meanings are unquestionably clear. When in doubt, spell it out.
- Once an abbreviation has been used, the same abbreviation must be continued throughout the project document. Only one abbreviation is allowed for each nomenclature.
- Other abbreviations, particularly discipline-unique abbreviations, may be used but must not conflict with those established in the NCS.
- Any abbreviation used shall be identified in the abbreviations list of the drawing set.
- The rules of grammar concerning capitalization shall be followed. Upper case letters shall be used in all abbreviations except where the use of lower case has been established by the NCS or by long practice.
- Spell out all titles and subtitles.
- The ampersand (&) may be used in firm names (e.g., Jones & Co., Mobile & Ohio R.R.), or in abbreviations of commonly joined words (e.g., T&G for tongue and groove, C&G for curb and gutter), but never to take the place of and in sentences, notations, or titles.

5.1.3 Capitalization

Capital letters shall be used in text, since capital letters retain readability when reproduced at one-half size (Figure 5-6).

![Figure 5-6. Capitalization in text.](Text vs. TEXT)

5.1.4 Orientation and placement

Text shall be set parallel to the primary base of the drawing. If necessary, text can be rotated at 30-degree angles up to 180 degrees as long as the orientation is as shown in Figure 5-7. However, rotating the text is discouraged to prevent having to turn the drawing sheet to read notations.
Note: An exception to maintaining this text orientation would be on waterways projects because of the various directions in which channels are located. Often text that has a definite bearing on the contract is kept at proper orientation while map features incidental to the contract are allowed to follow the orientation when created in a north-up base map, which may result in upside-down text on rotated plan sheets.

Figure 5-7. Orientation of text.

Text shall never be placed over other text. Text shall not be placed over feature lines, hatching, or patterning. If text is required in a hatched or patterned area, the hatching/patterning shall be clipped (masked) so the text can be clearly read.

Text justification depends upon the type of text being placed. For example, general numbered notes shall have upper-left justification, elevation labels appearing to the left of a feature shall have bottom-right justification, and elevation labels appearing to the right of a feature shall have bottom-left justification.

Note: Use proper planning for text justification, so future editing does not require the text to be moved. Use multiline text (node) vs. single line text wherever multiple lines of text are placed.
5.1.5 Font

Contrasting text fonts are used within a drawing to delineate types of information. In most A/E/C drawings, the font shown in Table 5-1 and described below should be sufficient.

- Regular font: This font is appropriate for most general notes, labels, dimensions, or title blocks.
- Italic font: An italic font is used where text needs to be easily distinguished from other text.
- Filled font: Filled fonts are used primarily for titles and on cover sheets.
- Symbol font: This font shall be used in cases where Greek symbols are representations for technical information.

<table>
<thead>
<tr>
<th>Font Type</th>
<th>True Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>Arial</td>
</tr>
<tr>
<td></td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ UVWXYZ</td>
</tr>
<tr>
<td>Italic</td>
<td>Arial (Italic)</td>
</tr>
<tr>
<td></td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ UVWXYZ</td>
</tr>
<tr>
<td>Filled</td>
<td>Arial (Bold)</td>
</tr>
<tr>
<td></td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ UVWXYZ</td>
</tr>
<tr>
<td>Symbol</td>
<td>Arial (Symbols)</td>
</tr>
<tr>
<td></td>
<td>ΑΒΧΔΕΦΓΗΙΘΚΛΜΝΟΠΘΡΣΤ ΨΩΞΥΖ αβχδεφγηιφκλμνοπθρςτ υψωξψζ</td>
</tr>
</tbody>
</table>
5.1.6 Text height

The minimum text height for dimensions, notes, callouts, table/schedule text, and general text in plotted files is $3/32$ in. (2.4 mm). Title and subtitles shall be plotted equivalent to $3/16$ in. (5 mm) and $1/8$ in. (3 mm) lettering size, respectively. The text height and text width shall be assigned equal number values. Line spacing shall be equal to one-half of the text height.

To avoid confusion of the word “minimum”, Table 5-2 shows the allowable text height variations from paragraph above.

<table>
<thead>
<tr>
<th>Units</th>
<th>Actual</th>
<th>International Feet</th>
<th>Survey Feet</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Architectural Civil</td>
<td>Architectural Civil</td>
<td>Actual</td>
</tr>
<tr>
<td>Normal Text Height</td>
<td>0.09375"</td>
<td>3/32"</td>
<td>0.1"</td>
<td>N/A</td>
</tr>
<tr>
<td>Sub-Title Text Height</td>
<td>0.125"</td>
<td>1/8"</td>
<td>0.125"</td>
<td>N/A</td>
</tr>
<tr>
<td>Title Text Height</td>
<td>0.1875"</td>
<td>3/16"</td>
<td>0.1875"</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 5-3 lists recommended text heights for common inch-pound scales, as well as line type scale factors for those scales. Table 5-4 lists recommended text heights for common metric scales.

Note: The scales shown are not all inclusive. Scales used shall be limited to those commonly found on hand-held architectural, mechanical, and engineering scales. Common scale factors are provided in the A/E/C Workspace through annotation scale. Tables 5-3 and 5-4 are provided as a reference for AutoCAD and legacy drawings.
<table>
<thead>
<tr>
<th>Scale</th>
<th>Text Height</th>
<th>Line Type Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>12" = 1'-0" or Full Size</td>
<td>3/32"</td>
<td>1</td>
</tr>
<tr>
<td>6" = 1'-0"</td>
<td>3/16"</td>
<td>2</td>
</tr>
<tr>
<td>3" = 1'-0"</td>
<td>3/8"</td>
<td>4</td>
</tr>
<tr>
<td>1-1/2" = 1'-0"</td>
<td>3/4"</td>
<td>8</td>
</tr>
<tr>
<td>1" = 1'-0"</td>
<td>1.125"</td>
<td>12</td>
</tr>
<tr>
<td>3/4" = 1'-0"</td>
<td>1.5"</td>
<td>16</td>
</tr>
<tr>
<td>1/2" = 1'-0"</td>
<td>2.25"</td>
<td>24</td>
</tr>
<tr>
<td>3/8" = 1'-0"</td>
<td>3"</td>
<td>32</td>
</tr>
<tr>
<td>1/4" = 1'-0"</td>
<td>4.5"</td>
<td>48</td>
</tr>
<tr>
<td>3/16" = 1'-0"</td>
<td>6"</td>
<td>64</td>
</tr>
<tr>
<td>1/8" = 1'-0"</td>
<td>9"</td>
<td>96</td>
</tr>
<tr>
<td>3/32" = 1'-0"</td>
<td>12"</td>
<td>128</td>
</tr>
<tr>
<td>1/16" = 1'-0"</td>
<td>18"</td>
<td>192</td>
</tr>
<tr>
<td>1/32" = 1'-0"</td>
<td>36"</td>
<td>384</td>
</tr>
<tr>
<td>1" = 5'</td>
<td>5.625"</td>
<td>60</td>
</tr>
<tr>
<td>1" = 10'</td>
<td>11.25"</td>
<td>120</td>
</tr>
<tr>
<td>1" = 20'</td>
<td>1.875'</td>
<td>240</td>
</tr>
<tr>
<td>1" = 30'</td>
<td>2.8125'</td>
<td>360</td>
</tr>
<tr>
<td>1" = 40'</td>
<td>3.75'</td>
<td>480</td>
</tr>
<tr>
<td>1" = 50'</td>
<td>4.6875'</td>
<td>600</td>
</tr>
<tr>
<td>1" = 60'</td>
<td>5.625'</td>
<td>720</td>
</tr>
<tr>
<td>1" = 100'</td>
<td>9.375'</td>
<td>1200</td>
</tr>
<tr>
<td>1" = 200'</td>
<td>18.75'</td>
<td>2400</td>
</tr>
<tr>
<td>1" = 400'</td>
<td>37.5'</td>
<td>4800</td>
</tr>
<tr>
<td>1" = 500'</td>
<td>46.875'</td>
<td>6000</td>
</tr>
<tr>
<td>1" = 1000'</td>
<td>93.75'</td>
<td>12000</td>
</tr>
<tr>
<td>1" = 2000'</td>
<td>187.5'</td>
<td>24000</td>
</tr>
</tbody>
</table>
Table 5-4. Metric text heights and line type scales.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Text Height</th>
<th>Line Type Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1 or Full Size</td>
<td>2.4 mm</td>
<td>1</td>
</tr>
<tr>
<td>1:2.5</td>
<td>6 mm</td>
<td>2.5</td>
</tr>
<tr>
<td>1:5</td>
<td>12 mm</td>
<td>5</td>
</tr>
<tr>
<td>1:10</td>
<td>24 mm</td>
<td>10</td>
</tr>
<tr>
<td>1:20</td>
<td>48 mm</td>
<td>20</td>
</tr>
<tr>
<td>1:30</td>
<td>72 mm</td>
<td>30</td>
</tr>
<tr>
<td>1:40</td>
<td>96 mm</td>
<td>40</td>
</tr>
<tr>
<td>1:50</td>
<td>120 mm</td>
<td>50</td>
</tr>
<tr>
<td>1:60</td>
<td>144 mm</td>
<td>60</td>
</tr>
<tr>
<td>1:100</td>
<td>240 mm</td>
<td>100</td>
</tr>
<tr>
<td>1:200</td>
<td>480 mm</td>
<td>200</td>
</tr>
<tr>
<td>1:400</td>
<td>960 mm</td>
<td>400</td>
</tr>
<tr>
<td>1:500</td>
<td>1.2 m</td>
<td>500</td>
</tr>
<tr>
<td>1:600</td>
<td>1.44 m</td>
<td>600</td>
</tr>
<tr>
<td>1:700</td>
<td>1.68 m</td>
<td>700</td>
</tr>
<tr>
<td>1:1000</td>
<td>2.4 m</td>
<td>1000</td>
</tr>
<tr>
<td>1:2000</td>
<td>4.8 m</td>
<td>2000</td>
</tr>
<tr>
<td>1:5000</td>
<td>12 m</td>
<td>5000</td>
</tr>
<tr>
<td>1:6000</td>
<td>14.4 m</td>
<td>6000</td>
</tr>
<tr>
<td>1:10000</td>
<td>24 m</td>
<td>10000</td>
</tr>
<tr>
<td>1:20000</td>
<td>48 m</td>
<td>20000</td>
</tr>
</tbody>
</table>

5.2 Dimensions

5.2.1 Dimension placement

Dimension values shall always be placed above the dimension line, preferably midway between the dimension terminators (Figure 5-8). The dimension line shall never be broken to insert the dimension, with the exception of angular dimensioning. It is preferred that dimensions always be placed outside the view, preferably located at the top and/or the right side of the plans. With that in mind, dimensions shall apply to one view only (i.e., no shared dimensions between views). The dimension shall be placed on the view that shows its true length. Exploded dimensions or dimensions where the dimension text has been edited are strongly discouraged except for the following: where software limitations prevent users from providing the appropriate dimensioning, where the dimension
is intended to be an approximation and is notated as such, or where a dimension is displayed as a mathematical formula. An exploded dimension for the sole purpose of displaying a value different from the actual measured value is strictly prohibited.

Figure 5-8. Positioning of text in dimensions.

5.2.2 Graphic settings

Dimensions shall be spaced a minimum of $4 \times TH$ (where $TH = \text{dimension text height}$) from the outlines of the view (shown as dimension “A” in Figure 5-9). Dimension extension lines shall be offset a minimum of $0.5 \times TH$ from the element being dimensioned (dimension “B” in Figure 5-9). Extension lines shall extend $0.5 \times TH$ beyond the dimension line (dimension “C” in Figure 5-9). Parallel dimension lines shall be spaced at least $3 \times TH$ between lines (Figure 5-10). Extension lines that cross other extension lines or dimension lines shall be masked (Reason: if the dimension is dropped or exploded, the dimension will lose its association to the element). The numeral size in dimensions shall match the height of the text in the drawing.

Continuous or staggered dimension lines may be used, depending on convenience and readability; however, continuous dimension lines are preferred.

5.2.3 Dimension terminators

Slashes or filled arrowheads are allowed for dimension terminators. Filled arrowhead terminators shall have an arrowhead width of $1.5 \times TH$ and a height of $0.5 \times TH$ (Figure 5-11).
Figure 5-9. Dimension settings.

Figure 5-10. Parallel dimension line spacing.
For slash terminators, the slash shall be at an angle of 45 degrees with a height equal to the current text height (Figure 5-12).

Note: Dimension terminator selection shall be consistent across the entire set of drawings.

5.2.4 Fractions

All fractions on the drawing shall be inline (not stacked) (Figure 5-13). Fractions shall not be less than 1/16 in. (1.5 mm) because accuracy in the field rarely requires more precision. Decimal values shall always have a leading zero before the decimal point when values are less than 1.
Generally, architectural construction dimensions are shown in feet and inches. Decimals of a foot shall be used where dimensions are being set by surveying equipment, such as beam spacing, foundation locations, and structure widths.

![Figure 5-13. Fraction format.](image)

5.2.5 Elevations

Elevations shall be indicated with no more than two decimals (e.g., EL 241.56 or EL 123.00).

5.2.6 Graphic settings

Line width settings for dimensions shall follow those shown in Table 5-5 and Figure 5-14.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Dimension Element</th>
<th>Line Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Dimension text</td>
<td>N/A*</td>
</tr>
<tr>
<td>B</td>
<td>Terminators</td>
<td>0.35</td>
</tr>
<tr>
<td>C</td>
<td>Extension lines</td>
<td>0.25</td>
</tr>
<tr>
<td>D</td>
<td>Dimension lines</td>
<td>0.25</td>
</tr>
</tbody>
</table>

* Not Applicable for TrueType fonts.
5.2.7 Dimensioning in metric (SI)

5.2.7.1 Millimeters

For metric vertical design, the unit of measure is typically millimeters. Unit notations are unnecessary and should not be used. The dimension is provided as a whole number as shown in Figure 5-15. Also, a note shall be added to the drawing stating “All dimensions and/or dimensions shown in callouts/notes are in millimeters unless otherwise noted.”

![Figure 5-15. Dimension in millimeters. Always shown as a whole number.](image)

Note: In circumstances where very small dimensions are used (e.g., machine details), it is permissible to use real numbers for millimeter dimensions. A note shall be placed on the detail regarding this fact.

5.2.7.2 Meters

For metric horizontal design, the unit of measure is typically meters. Where greater accuracy is required, show dimensions to three decimal places (Figure 5-16). A note shall be added to the drawing stating “All dimensions and/or dimensions shown in callouts/notes are in meters unless otherwise noted.”

When meter measurements are included on the same sheet as millimeter measurements, the meter dimension is provided as a real number taken to three places past the decimal point (Figure 5-16). Again, unit notations are unnecessary.

![Figure 5-16. Dimension in meters. Always shown as a real number (with decimal).](image)

5.2.7.3 Large units of measure

Commas shall not be used when providing large units of measure; instead, a space replaces the traditional comma in numbers containing four or
more digits (e.g., the number 5,000 is displayed as 5 000, the number 45,000 is displayed as 45 000). This method is shown in Figure 5-17.

![Figure 5-17. Proper dimension presentations for metric measurements with four or more digits.]

Note: The automatic dimensioning features of AutoCAD do not allow users to replace commas with spaces in dimension text, otherwise the associative properties of the dimension to the object being dimensioned would have to be overridden. Until AutoCAD includes a dimension setting to allow this, AutoCAD users are not mandated to follow this requirement.

5.2.7.4 Dual units

To avoid confusion, dual units (both inch-pound and metric) shall not be used. As stated in Construction Metrication Council (1998), the use of dual units “increases dimensioning time, doubles the chance for errors, makes drawings more confusing, and only postpones the (metric) learning process.”

Exceptions to this include certain “standard building designs” where dual dimensions ensure that the design can be used in either SI or inch-pound projects and in situations where products/components used in an SI project are available only as inch-pound products (Construction Metrication Council 1998).

5.3 Match lines

As mentioned in section 4.3, match lines shall use a 0.70 mm line width and use line style “014200-914 Center Line”. The text above and below the match line shall be subtitle height (1/8 in.) per the NCS (Figure 5-18). However, since it is apparent from the text “MATCH LINE” that the reviewer will be required to go to another sheet to see the continuation, the word “SEE” required by the NCS is redundant and not required. At a minimum, use “XX/X-XXX” only when there are multiple drawing views
on the referenced sheet and “X-XXX” when there is only one (see Figure 5-19 for information on these fields).

Figure 5-18. Match lines.

```
MATCH LINE
XX/X-XXX
```

Figure 5-19. Format for Match Line fields.
6 Schedules

6.1 Features of a schedule

The purpose of a schedule is to relay more detailed information about items shown in the drawing set. At a bare minimum, “a schedule consists of four parts—a subject title (Heading), a column identifying an item (Mark), a column for the description of an item (Item Description), and a column for indicating some notable characteristic (Distinguishing Feature)” (Figure 6-1) (UDS Module 3 – Schedules CSI 2014). While a minimum of three columns is required in a schedule, additional columns are allowed (UDS Module 3 – Schedules CSI 2014).

![Figure 6-1. Schedule.](image)

<table>
<thead>
<tr>
<th>HEADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARK</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

6.2 Graphic settings

As far as graphic conventions for schedules, schedule linework shall have the following line widths (Figure 6-2):

- schedule outlines – extra-wide line, 0.70 mm, or Weight 5
- schedule grid lines – medium line, 0.35 mm, or Weight 2.

![Figure 6-2. Schedule linework.](image)

It is recommended that headings in a schedule be at least 3/16 in. (5 mm) in height and all other text within the schedule be at least 3/32 in. (2.4 mm) in height.
6.3 Excel schedules

For Excel spreadsheets imported for use as schedules, the following settings shall be followed:

- schedule headings – use Arial with a font size of 19
- schedule text – use Arial with a font size of 10
- use embedded schedules with a scale of 1.
7 Drawing Revisions

7.1 Revision designations

During development of CAD contract drawings, revisions are inevitable. There are two different designations for these types of revisions, amendments, and modifications. Amendments are revisions that occur during the contract advertisement period. Modifications are revisions that are made after the award of a construction contract.

7.2 Revision graphics

All revisions shall be flagged by a revision symbol (Figure 7-1). This symbol shall be an equilateral triangle.

![Revision symbol](image)

The revision symbol shall be positioned adjacent to the revision. The revision shall be enclosed in a revision cloud drawn at medium thickness (0.35 mm). The revision triangle shall contain sequential numbers for amendments (i.e., 1, 2, 3) or sequential capitalized alphabetical characters for modifications (i.e., A, B, C) per UFC 1-300-09N (Department of Defense 2011).

7.3 Revision (Issue) Block

The Revision (Issue) Block (Figure 7-2) contains a history of revisions to the sheet. It is made up of three fields that contain information about each
amendment or modification—MARK, DESCRIPTION, and DATE. All text placed within this block shall be 3/32 in. high.

Figure 7-2. Revision (Issue) Block.

- **MARK.** The MARK column shall contain either a numeric Amendment character (1, 2, 3, etc.) or an upper-case alphabetic Modification character (A, B, C, etc.) per Unified Facilities Criteria 1-300-09N. These characters shall relate to revision symbols (equilateral triangles) with the same corresponding characters found on the sheet. The first Amendment or Modification character shall be placed on the lowest line of the Revision (Issue) Block and subsequent entries shall be made above it.

- **DESCRIPTION.** The DESCRIPTION column shall present brief information related to the Amendment or Modification that directs the reader to more detailed information found in a revision document (e.g., REVISED IN ACCORDANCE WITH AMDT 0004, GENERAL REVISIONS MOD 0006, REVISED TO SHOW AS-BUILT CONDITIONS). The DESCRIPTION column shall not be used to provide lengthy information about the revision. Although not required (or recommended), the initials of the designer who made the revision may be provided beside the Description (e.g., REVISED IN ACCORDANCE WITH AMDT 0001 – WDG).

- **DATE.** The DATE column contains the date (month and year) the revision was released in the change documentation. All dates shall be in the following format: MMM YYYY (e.g., OCT 2014, JUN 2013)

Note: The APPR. column was removed from the Revision (Issue) Block due to lack of consistency in its use. Currently, there is no consistent legal/management direction on how to enforce this field. Initials are text placed in this field using CAD, so there is no method for legal tracking of the data. If showing who approved revisions becomes a requirement, a legal signature (physical or electronic) should be required, as well as direction for consistent usage.
The Revision (Issue) Block provided by the CAD/BIM Technology Center provides eight rows for identifying revisions. However, what if more than eight revision rows are required on a sheet? There are two possible options for dealing with this situation:

- **Option 1 (Preferred):** Replace the oldest revision in the Revision (Issue) Block with the most current revision and continue replacing revisions as needed (Figure 7-3). If needed, older revisions can be copied outside the plotted area of the sheet for record purposes.

 ![Figure 7-3. Option 1 for showing more than eight revisions.](image)

- **Option 2:** Continue adding revisions directly above the eighth revision row so that they begin to spill out into the Drawing Area (Figure 7-4). This is not the preferred option, as it runs the risk of running into General Notes that may be placed into this section of the Drawing Area.

 ![Figure 7-4. Option 2 for showing more than eight revisions.](image)

Note: The option that is chosen shall remain consistent across the entire drawing set.
8 Conclusion

Standards have been recognized as a vital tool in the development of CAD drawings for DoD. Without standards, CAD drawings would be hard to create, review, and interpret, resulting in excessive time and monetary costs for DoD. With these factors in mind, the A/E/C Graphics Standard has been an important document for DoD since 2012 by serving as the go-to for the look and organization of CAD drawings.
References

A/E/C Graphics Standard: Release 2.1

The A/E/C Graphics Standard has been developed by the Computer-Aided Design/Building Information Modeling (CAD/BIM) Technology Center to document how proper hand-drafting practices can be achieved in Building Information Modeling (BIM), Civil Information Modeling (CIM), and Computer-Aided Design (CAD). It is through the collection and documentation of these practices that consistent models and drawings shall be achieved throughout the U.S. Army Corps of Engineers (USACE), as well as other federal agencies. In the collection of these practices, various historical USACE District drafting manuals were consulted and compared against practices contained in various industry and national standards. The documentation of these practices will help to achieve both clear and aesthetically pleasing construction documents.

Subject Terms
- Computer-aided design
- Computer graphics
- Engineering design

Security Classification of:
- Report: Unclassified
- Abstract: Unclassified
- This Page: Unclassified

Limitation of Abstract
- SAR

Number of Pages
- 81