Ultra High Performance Concrete Information and Literature Search - 2011
(UHPC I&LS-2011)

Beverly P. DiPaolo

August 2011
Ultra High Performance Concrete Information and Literature Search – 2011
(UHPC I&LS-2011)

Beverly P. DiPaolo

Geotechnical and Structures Laboratory
U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report
Approved for public release; distribution is unlimited.

Prepared for Headquarters, U.S. Army Corps of Engineers
Washington, DC 20314-1000

Under DHS S&T Directorate Inter/Intra-Agency Agreements
HSHQDC-10-X-00194 and HSHQDC-09-X-00460
Advanced Materials Effort and Counter IED Mitigation (Active Blast Protection)
Abstract: Ultra high performance concrete (UHPC) materials are advanced cementitious materials that display much higher levels of technical performance compared to conventional strength and high strength concretes. This category can include materials such as defect-free, dense particle, reactive powder, engineered composite, multi-scale particle, and fiber-reinforced concretes. UHPC materials can have unique advantages with respect to response capabilities, mechanical properties, environmental stability, construction methods and forms, and aesthetic qualities, and have the potential to help revitalize a deteriorating infrastructure. This report is the 2011 version of search results for open-source information and technical literature references on UHPC materials. References are provided on product information from engineering and scientific journals, conference proceedings, magazine articles, books, and patents. The scope extends from basic and applied research to construction projects.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
Contents

Figures and Tables... iv

Preface ... v

1 UHPC Materials and UHPC I&LS-2011 .. 1
 Section 1: UHPC Products and Information.. 3
 Section 2: UHPC References ... 8
 Section 3: U.S. and Foreign Patents on UHPC and Precursor Materials ... 166

Report Documentation Page
Figures and Tables

Figures

Figure 1. Microstructures of two concrete materials ... 2
Preface

The research for the Ultra High Performance Concrete Information and Literature Search-2011 reported herein was conducted by personnel of the U.S. Army Engineer Research and Development Center (ERDC). Funding for the work was provided by the Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection and Disaster Management Division: Mila Kennett, Program Manager.

Dr. Beverly P. DiPaolo is the author of this report and is an ERDC staff member in the Structural Engineering Branch (SMB), Geosciences and Structures Division (GSD), Geotechnical and Structures Laboratory (GSL). The work was performed under the general direction of Dr. Gordon W. McMahon, Chief, SMB; Bartley P. Durst, Chief, GSD; Dr. William P. Grogan, Deputy Director, GSL; and Dr. David W. Pittman, Director, GSL.

The author gratefully acknowledges Deborah J. Carpenter, Jim A. Dolan, Susan D. Hicks, Helen Ingram, Nancy C. Liston, Mary E. McAlpin, and Ruthie G. McCoy of the ERDC Information and Technology Laboratory and George G. Tom of ACE-IT for their help and assistance in the database searches and procurement of information. The author also thanks Brian H. Green of the GSL Concrete and Materials Branch and Professors David L. McDowell and Min Zhou, Brett Ellis, Jennifer Gordon, Christopher Lammi, and Andrew Moore from the George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, for their assistance in obtaining reference materials.

COL Kevin J. Wilson was Commander and Executive Director of ERDC. Dr. Jeffery P. Holland was Director.
Currently, there is a critical need for advanced building materials for the U.S. domestic infrastructure, not only for new high-performance construction, but also to enhance the performance of existing structures. These materials are required to be increasingly more energy-efficient, environmentally friendly, sustainable, and resilient. They need to meet multi-hazard and multi-performance design criteria and be easily produced and incorporated into construction. Furthermore, these materials must be cost effective through a structure’s life cycle.

Concrete is the most widely used material in building construction. However, there are durability, security, and sustainability issues concerning current commercially available products. Within the last few decades, research has been conducted on advanced cementitious materials displaying ultra high performance characteristics. This includes a broad range of materials such as defect-free, dense particle, reactive powder, engineered composite, multi-scale particle, and fiber-reinforced concretes. Research and commercial brands are available and examples are BCV® - beton composite vicat, BSI - Beton Special Industriel, CARDIFRC®, Cemtecmultiscale®, Ceracem®, CRC® - compact reinforced composites, Cor-Tuf®, DSP - densified small particles, Densit®, DFG UHPC, DORSICEM, Ducon®, Ductal®, MDF - macro-defect free, Microdur®, NIM - new inorganic materials, RPC - reactive powder concrete, SIFCON, and SIMCON.

For purposes of the current research effort, a definition of ultra high performance concrete (UHPC) is a class of “concrete” materials that display “ultra high” performance in at least one technical performance area and with an unconfined compressive strength approximately 20,000 psi (140 MPa) and higher. The materials can have high binder content and special fine aggregates. They may contain fibers to achieve non-brittle behavior and, if possible, to dispense with passive (non-prestressed) reinforcement. One type of UHPC material of interest has very small pores, low porosity, and disconnected pore spaces, and steam curing and pressure can be used to attain strengths approaching 30,000 psi (210 MPa) and higher. Example microstructures of a conventional strength concrete material and a reactive powder UHPC material are shown in Figure 1.
If viewed on the basis of just a cubic yard of material, the cost of UHPC materials can be over ten times greater than the cost of conventional strength concrete. However, UHPC materials may offer unique advantages and higher performance levels that justify the increased cost. Such factors to be considered include strength, ductility, flexibility and toughness, impact resistance, dimensional stability, durability / increased useful life, impermeability /freeze/thaw resistance, corrosion resistance, abrasion resistance, aggressive environment resistance, and chemical resistance. Other advantages may include ability to construct thin sections and use complex structural forms, elimination of passive reinforcement (reinforcement bars), precise replication, use of conventional concrete equipment, ability to cast by pouring, injection or extrusion techniques, self-consolidation, off-site manufacturing, fast construction, and reduced maintenance. From an aesthetic viewpoint, but also for security purposes such as disguising the appearance of the material, some UHPC mixtures may have color and texture options, sanded or polished surfaces, and even are made to look similar to materials such as stone or marble. Laboratory and field testing have shown that some UHPC materials may be significantly better than conventional concrete for protective structure applications. Research efforts on UHPC are being conducted around the world to reduce costs and use local and “green” materials.

In summary, advanced cementitious materials known as UHPC have a strong potential to help in the revitalization of a deteriorating infrastructure and in the building of new infrastructure that is sustainable, resilient, and long-lasting. However, to date, application of this material has been limited in the U.S. construction industry.
This UHPC Information and Literature Search-2011 (UHPC I&LS-2011) is a “work in-progress” to provide a listing of information on and references for UHPC materials with respect to basic and applied research, technical data, and project information. It is an expansion and update of an unpublished, baseline UHPC I&LS that was generated by the author in 2008. In the UHPC I&LS-2011 report, information and reference items from the baseline UHPC I&LS are given in black and not preceded by a symbol. An item preceeded by a plus sign (symbol “+) is a reference obtained subsequent to the 2008 version. An item preceded by a negative sign (symbol “-”) and displayed in a light gray color was obtained from the reference section of a document referenced in the baseline UHPC I&LS, and the item content needs to be verified and its corresponding reference material needs to be obtained.

The UHPC I&LS-2011 is divided into three sections: Section 1 contains a listing of product information references; Section 2 is a bibliography of technical documents and articles from engineering and scientific journals, conference proceedings, magazines, and books; and Section 3 includes a list of U.S. and foreign patents on UHPC materials and their precursors. It is hoped that this report provides a helpful and efficient resource for anyone interested in UHPC materials and their potential to enhance infrastructure performance.

Section 1: UHPC Products and Information

The following is a listing of information on UHPC products, technical data, and projects:

Bekaert

Bekaert StrHiCsteel fibres 2003

+Ceracem. Sika Ceracem®: Brevet BSI®

+CRC® – Compact Reinforced Composite www.cr-tech.com
 +CRC® – Intro web
 +CRC® – A description
 +CRC® – Compact Reinforced Composite
 +CRC® – Durability
 +CRC® – Safety Data Sheet
 +CRC® JointCast
 +CRC® JointCast – Handling instructions
 +CRC® JointCast – Examples of applications
+CRC® Joints - High strength joints for precast bridge slabs – Summary report
+Tech-Wise – Off-shore wind turbine towers in high-strength concrete

Densit®

Densit® advantages[1]
+Densit® – CtO’s field of operations
Densit® pro-concrete-binder[1]
Densit® pro-flexbinder-uk[1]
Densit® pro-inducast-3000-uk[1]
Densit® pro-inducast-4000-uk[1]
Densit® pro-inducast-6000-uk[1]
Densit® pro-inducast-tt5-uk[1]
Densit® security barriers
Densit®

Ductal® – Lafarge, Bouygues & Rhodia

Lafarge, Bouygues & Rhodia websites
http://www.lafargenorthamerica.com/wps/portal/
http://www.imagineductal.com/imagineductal/history.asp?RND=3P4IS4OECDFDIYXR

Ductal® – Technical & Project Information

Ductal® – Technical Information
+CSTB Ductal® -FO Evaluation Technique, 28 pgs.
Ductal00 FAQ
Ductal00 Introduction Comm Kit
Ductal01 WhatIsDuctal
Ductal02 HowStrongIsDuctal
Ductal03 HowDurableIsDuctal
Ductal04 AestheticsOfDuctal
Ductal05 HowDuctileIsDuctal
Ductal® – Products and Services
+Ductal® A revolutionary new material for new solutions, 38 pgs.
Ductal® Aesthetic qualities
Ductal® At a glance
+Ductal® BS1000 – Product Data Sheet
Ductal® Characteristics
Ductal® Durability data
Ductal® Durability
Ductal® History and Evolution
Ductal® Mechanical performance
+Ductal® Product Data Sheet AN1000
+Ductal® Product Data Sheet AR1000
+Ductal® Product Data Sheet BS1000
+Ductal® Product Data Sheet CS1000
+Ductal® Product Data Sheet JS1000
Ductal® Spec-FM Gris 2GM2.0
Ductal® Spec-FM Gris 3GM2.0
Ductal® Spec-FM Gris Feu 2GM2.0F
Ductal® Spec-FM Gris Feu 3GM2.0F
Ductal® Spec-FO Blanc 2Bo4.3
Ductal® Spec-FO Blanc 3Bo4.3
Ductal® Spec-FO Gris 2Go4.3
Ductal® Spec-FO Gris 3G04.3
Ductal® Standard Operating Procedure
Ductal® TechChar Metallic Fibres – Imperial
Ductal® TechChar Metallic Fibres – Metric
Ductal® TechChar Organic Fibres – Imperial
Ductal® TechChar Organic Fibres – Metric
Ductal® Trademark
+Ductal® Ultra-High Performance Concrete - Building Envelope Solutions
Ductal® What can Ductal do for you
Ductal® What is ductal
Lafarge cement manuf 1
Lafarge cement manuf 2
Lafarge cement manuf 3
Lafarge cement manuf 4
Lafarge Ductal® – Architectural Brochure
Lafarge Ductal® MechPerf web 2006
Lafarge Ductal® Passanti home 2007
Lafarge Ductal® Premix MSDS
Lafarge Ductal® R&D
Lafarge Research – Nanomaterials
Lafarge Research – Nanotechnologies – Monteiro
Monteiro – Strength presentation
RPC concrete
+VSL Ductal® - Roof protection system against mortar threats. 2007, 2 pgs.
+VSL Ductal® protection solutions. 8 pgs.
z Lafarge Ductal® docs

Ductal® Projects
CN de Arts&Metiere Ductal
Ductal®-o-AESTHETICS
Ductal®-o-DUCTILITY
Ductal®-o-DURABILITY
Ductal®-o-STRENGTH
Ductal® – aalborgwhite wu_01_2007
Ductal® Applications Bridges & Footbridges – words
Ductal® Applications Bridges & Footbridges
Ductal® Applications Building Envelope
Ductal® Applications Urban Environment
Ductal® Architect Ductal Qualities
Ductal® Architect References
Ductal® Architect Testimony
Ductal® Discover Ductal Engineering Office
Ductal® Engr Office Methods & Calculations
Ductal® Engr Office References
Ductal® Engr Office Testimony
Ductal® Owner Durability and Maintenance
Ductal® Owner References
Ductal® Owner Standards and Certifications
Ductal® Owner Testimony
Ductal® Potential Applications
Ductal® Precaster Applications
Ductal® Precaster References
Ductal® Precaster Testimony
Ductal® Renovation
Ductal® Structure
Ductal® Bus shelter
Ductal® Escaliers Decors – Staircase
Ductal® Joppa long span silo roofs
Ductal® Shawnessy LRT Awards PrRel
Ductal® Thias Bus Center 03122007-MIPIM-uk
ETT Proposal FLA Ductal®
Lafarge Ductal® Making headlines - Photos
Lafarge – Ductal® Correctional Facilities
Lafarge – Ductal® Projects – 0 List – website
Lafarge – Ductal® Projects – Alberta Construction
Lafarge – Ductal® Projects – Anchor Plates for Seawall Tie
Lafarge – Ductal® Projects – Anchor Plates
Lafarge – Ductal® Projects – Cottenom Cooling Towers Beam
Lafarge – Ductal® Projects – Detroit-Columns
Lafarge – Ductal® Projects – Joppa Long Span Silo Roof
Lafarge – Ductal® Projects – Martel Tree
Lafarge – Ductal® Projects – Monaco Train Station
Lafarge – Ductal® Projects – ratp thiais
Lafarge – Ductal® Projects – Shawnessy LRT Station
Lafarge – Ductal® Projects – Sherbrooke Bridge
Lafarge – Ductal® Projects – The Footbridge of Peace
Lafarge – Seonyu – Ductal® 09162004-press_Skorea_042602-uk
Lafarge Discover Ductal® Owner
Lafarge Ductal® A new dimension of concrete
Lafarge Ductal® Aesthetic Qualities
Lafarge Ductal® Concrete
Lafarge Ductal® Making headlines – Photos
Lafarge Ductal® Making Headlines
Lafarge Ductal® New Applications
Lafarge Ductal® Newsletter 2005 ANGnum2
Lafarge Ductal® Precaster
Lafarge Ductal® Sustainable Development
Lafarge Ductal® Use
Lafarge NA Ductal® projects
Lafarge NA Project list
Lafarge Research Hypergreen
z Ductal® Projects – misc images 1
z Ductal® Projects – misc images 2
z Ductal® Projects – additional information

Lafarge, Bouygues & Rhodia & VSL
Bouygues – SefiFrance
Bouygues & Rhodia
Lafarge 03222006-press_themabook-Brochure_Chair_sustainable-uk
Lafarge 03222006-press_themabook-PressKit_Chair_sustainable-uk
Lafarge 06202005-pub_sus_dev-Lafarge_and_wwf_partnership-uk
Lafarge 06212006-press_sus_dev-Lafarge_Award_Renew_Energy__uk
Lafarge 06222006-press_group_finance-Excellence_2008_analyst_pres-uk
Lafarge 22032006-press_sus-academic_chair-uk
Lafarge – 05312006-press-arts_et_metiers_exhibition-uk
Lafarge – Batimat 09162004-press2003_110303-uk
Lafarge – Batimat 09152004-press_2001_110201-uk
Lafarge – CNRS 09162004-press_CNRS_012202-uk
Lafarge – Hypergreen 03092006-press_sus_products-MIPIM-uk
Lafarge – Lafargeenviroev
Lafarge – Thias Bus Center Ductal® 03122007-press-MIPIM_mar07-uk
Lafarge – WETC 09162004-press_products-R&D_100903-uk
Lafarge Annual Report 2004
Lafarge ANON CementAn2004
Lafarge Group web 2006
Lafarge Joppa Roofs Nova Award NomBook2003
Lafarge Lafont Interview 2006
Lafarge Overview web 2006
Lafarge Sales web 2006
Lafarge Technology Center
Lafarge, Bouygues & Rhodia Co Symbols
Lafarge Perry ecosmart
Perry PressRelease2003 Shawnessy LRT Station
Perry PressRelease Detroit Columns
Rhodia_dans_le_monde
VSL Int website 2007

Ducon® [http://www.excendinc.com]
Ducon® rev
Excend-DUCON®SecurityProducts2007

ERDC – VHSC, Cor-Tuf
WES Treat Island

+Fondu Fyre – Anon, Wikipedia, 2010

f-u-r web2007 [http://f-u-r.de/]

G crete web2007 [www.gtecz.com]

Holcim [www.holcim.com www.hocim.de]
Holcim web
HolcimDeutschland_Sulfo_2006

IntExtFab IslandInt web2007 [www.islandcompanies.com]

Max Bogl
Max Bogl Company Profile
MaxB UHPC

Schillaci architecture – uhpc web2007
[http://architettura.supereva.com/architetture/20060715/index.htm]

Smartec RocTest Gp web 2007
Taiheiyo Cement Corp
Taiheiyo Cement annual report 2005
Taiheiyo Cement Bldg Mat Website
Taiheiyo Cement NL July 30 2007

+Takenaka – APC [http://www.takenaka.co.jp]
+Architectural technology certification received from third-party organization for
the “APC® concrete,” 2009
+The world’s first practical use of 200 newtons per square millimeter-strong
advanced performance concrete, 2008
+Technology established for high fire-resistant and high-strength concrete able
to withstand up to 200 newtons per square millimeter, 2006
+Construction of a 56-story reinforced concrete condominium, the tallest in
Japan, 2002
+Preparing for an era of 50-floor-class superhigh-rise RC structures, 2002
+New superhigh-strength concrete with advanced fire resistance that can expand
floor space and reduce the costs and construction time of 50-story-class RC
condominium high-rises, 2000

Section 2: UHPC References

The following references are from engineering and scientific journal,
conference proceedings, magazine articles, books, and other publications
and presentations available as open source information on UHPC materials:

— A —

In: Proceedings of a Conference, 2000, Finland, 6 pgs. [www.crc-tech.com]

+Aarup, B., Jensen, L.R., Ellegaard, P., 2005. Slender CRC columns. Nordic Concrete
Research 34(2), pp. 80-97. [www.crc-tech.com]

+Aarup, B., 2008. CRC – Structural applications of ultra high performance fibre
reinforced concrete. In: Ultra High Performance Concrete (UHPC), Proceedings
of the Second International Symposium on Ultra High Performance Concrete, 5-7
March 2008, Kassel, Germany, Eds. E. Fehling, M. Schmidt, S. Stürwald (Kassel,

+Aarup, B., 2009. CRC - Precast applications of fibre reinforced ultra high performance
Performance Fibre Reinforced Concrete - Designing and Building with UHPFRC:
State of the Art and Development, 17-18 November 2009, Marseille, France,
AFGC/fib, Paper 4.1.1, 11 pgs.

+Aarup, B., xxxx. CRC – A special fibre reinforced high performance concrete. In:
Proceedings of a Symposium, xxxx, Chicago, IL, USA, 6 pgs. [www.crc-tech.com]

+Aarup, B., Karlsen, J., Lindström, G., xxxx. Fiber reinforced high performance concrete for
[www.crc-tech.com]

AFGC, 2002. Durability of UHPFRC, Part 3 Interim recommendations. AFGC-Groupe de travil BFUP, pp. 73-98. (in French and English)

Anon, 2001. New Construction material is developed. Composites Technology (March/April 2001), pg. 11.

-Anon, 2002. Ceracem® is a cold-formable ceramic cement. Quality Concrete 8(5).

Anon, 2003. 48th concrete Congress: Focus on technology. BFT 69(12), pp. 77-78. (in German and English)

Anon, 2004. Ductal material used for rail station canopy. Composites Technology (February), pg. 11.

Anon, 2005. Design and construction of New Zealand’s first reactive powder concrete bridge. Concrete (CCANZ- Cement and Concrete Association of New Zealand) 49(4), pg. 4.

Anon, 2005. New concrete handles a heavy, heavy load. Composites eNews (June), pg. 6.

Anon, 2006. Iowa bridge marks technology milestone. Public Works (June), pg. 13.

Anon, 2006. Jumping trout – Glenmore Elbow Interchange (GE5), Calgary, Alberta. CPCi - Canadian Precast/Prestressed Concrete Institute, 8 pgs. http://www.cpci.ca/?sc=potm&pn=monthly112006

 • Kennett, M., High performance - Integrated design program.
 • Brownell, B., Concrete transformations: From mongrel material to smart surface.
 • Perry, V., Keynote address: The past, present and future of UHPC.
 • Naaman, A.E., In search of ultra high performance fiber reinforced concrete (UHP-FRC).
 • Shah, S.P., UHPC through nanotechnology.
 • Garboczi, E., NIST concrete research: Measurement science, computer models, and standards.
 • Ulm. F.J., UHPC bottom up: From atoms to structures.
 • Graybeal, B.A., UHPC in the U.S. highway transportation infrastructure.
 • Volgyi, J.F.J., AASHTO specifications for UHPC - Current status and future needs.
 • Sritharan, S., Design of demonstration bridges using UHPC.
 • Ahlborn, T., Steinberg, E., Challenges to developing and implementing a UHPC design guide for the U.S.
 • Seibert, P., Technical challenges when commercializing UHPC - Demonstration projects.
 • Novak, L., Lane, S., Application of UHPC for buildings and bridges.
 • Rossi, P., Progress in Europe concerning design recommendations for UHCP use.
 • Fischman, G., Ettouney, M., DHS advanced materials database.
 • Rebentrost, M., UHPC applications and development for infrastructure protection.
 • Roursgaard, B., UHPC application opportunities in infrastructure.
• Schmidt, M., Sustainable building with UHPC: A comprehensive research and application program in Germany.
• Aitcin, P.-C., Construction and long term behavior (12 years) of the Pasarelle de Sherbrooke.
• Tue, N.V., Modular construction made of UHPC: Experiences and lessons learned.
• Juntunen, D., Moving research to production in state highway programs.
• Almansour, H., Renewal of aging highway bridges using innovative precast-prestressed UHPC girder bridges.
• Hallissy, J., Transforming protection of buildings and infrastructure with innovative UHPBC solutions.
• Royce, M., Field cast ultra-high performance concrete joints in NYSDOT bridges.
• Alampalli, S., Inspection, maintenance and bridge management issues for new materials.
• Conley, C., Meyer, F., Research needed to facilitate expanded utilization of UHPC.
• Crane, C.K., Field evaluations of UHPC.

- Anon-Federal Highway Administration, 2002. UHPC testing: Shear. (Handout made available at FHWA shear test)
+ Anon, XXXX. Ultra high-strength French import moves forward. ENR, 1 pg.

— B —

Bache, H.H., XXXX. Concrete and concrete technology in a broad perspective. CBL reprint no. 26.

BCA, 2005. Modern cements and how to specify them, 29 pgs.

Bennett, D., XXXX. MDF and DSF – the new ultra high strength concretes. Web, 3 pgs.

(Bonncu)

Borghoff, M., 2006. Die erste europäische Verbundbrücke mit UHPC in Kassel Herstellung der ultrahochfesten Betonfertigteile (The first European composite bridge made with UHPC in Kassel Production of ultra high strength precast parts). Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology (BFT International) 72(9), pp. 58-65. (in German and English)

Collepardi, M., Corinaldesi, V., Monosi, S., Moriconi, G., 2002. Applicazioni di calcestruzzi innovativi (SCC, HPC, RPC) nell’ingegneria edile, civile ed ambientale (Applications of innovative concretes (SCC, HPC, RPC) in the building, civil and environmental engineering. Industria Italiana del Cemento (October), pp. 784-791. (in Italian and English)

+Collepardi, M., Corinaldesi, V., Monosi, S., Moriconi, G., 2002. Applicazioni e sviluppo dei materiali DSP (DSP materials applications and development progress). Industria Italiana del Cemento 777, pp. 540-544. (in Italian and English)

Collepardi, S., Coppola, L., Troli, R., Collepardi, M., XXXX. Mechanical properties of modified reactive powder concrete, 16 pgs.

+Coppola, L., Troli, R., Collepardi, S., Borsoi, A., Cerulli, T., Collepardi, M., 1996. Materiali cementizi innovativi: Dagli HPC verso gli RPC, Parte II: L’influenza del cemento e del fumo di silice sulla resistenza meccanica del reactive powder concrete (Innovative cementitious materials from HPC to RPC, Part II: The effect of cement and silica fume type on the compressive strength of reactive powder concrete). L’Industria Italiana del Cemento 707, pp. 112-125. (in Italian and English)

-Cuny, J., 1995. Essais de caracterisation de poteaux en materiau BPR. Rapport de DEA,
Ecole Normal Superieure de Cachan, Juin.

+Curbach, M., Speck, K., 2007. Versuchstechnische ermittlung und mathematische
beschreibung der mehraxialen festigkeit von ultra-hochfestem beton (UHPC) –
Zweiaxiale druckfestigkeit. Arbeitsbericht an die Deutsche
Forschungsgemeinschaft (DFG) zum Forschungsvorhaben CU 37/6-1, TU
Dresden, 72 pgs. (in German)

Beton- und Stahlbetonbau 102(10), pp. 664-673. (in German)

+Curbach, M., Speck, K., 2008. Ultra high performance concrete under biaxial
compression. In: Ultra High Performance Concrete (UHPC), Proceedings of the
Second International Symposium on Ultra High Performance Concrete, 5-7
March 2008, Kassel, Germany, Eds. E. Fehling, M. Schmidt, S. Stürwald (Kassel,

+Cwirzen, A., Penttala, V., Vornanen, C., 2005. RPC mix optimization by determination
of the minimum water requirement of binary and polydisperse mixtures. In:
Proceedings of the International Symposium on Innovation and Sustainability of

+Cwirzen, A., Penttala, V., 2006. Effects of increased aggregate size on the mechanical
and rheological properties of RPC. In: Proceedings of the Second International
Symposium on Advances in Concrete through Science and Engineering, 11-13
September 2006, Quebec, Canada, pg. 299. (abstract only)

-Cwirzen, A., Penttala, V., Vornanen, C., Junna, K., 2006. Self-compacting ultra-high-
strength concrete containing coarse aggregates. TKK report, Laboratory of
Building Materials, Department of Civil and Environmental Engineering,
Helsinki University of Technology, Report 20, 129 pgs.

Cwirzen, A., 2007. The effect of the heat-treatment regime on the properties of reactive

properties of low-water cement ratio ultra-high strength concrete. In:
Proceedings of the International Concrete Symposium, Adelaide, Australia, pp.11.

+Cwirzen, A., Habermehl-Cwirzen, K., Penttala, V., 2008. The effect of heat treatment on
the salt freeze-thaw durability of UHSC. In: Ultra High Performance Concrete
(UHPC), Proceedings of the Second International Symposium on Ultra High
Performance Concrete, 5-7 March 2008, Kassel, Germany, Eds. E. Fehling, M.
Schmidt, S. Stürwald (Kassel, Germany: Kassel University Press, 2008), pp. 221-
230. (in book pdf)

+Cwirzen, A., Penttala, V., Vomanen, C., 2008. Reactive powder based concretes:
Mechanical properties, durability and hybrid use with OPC. Cement and Concrete
Research 38, pp. 1217-1226.

Dehn, F., Konig, G., 2002. Neue Konstruktionsmöglichkeiten mit ultrahochfestem Beton (UHPC) (New construction possibilities by the use of ultra high-performance concrete (UHPC)). Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology (BFT International) 68(2), pp. 16-17. (in German and English)

DOE, 2004. Application of advanced construction technologies to new nuclear power plants, MPR-2610 Revision 2 DE-AT01-02NE23476, 132 pgs.

— E —

+Empelmann, M., Müller, C., 2009. Precast columns - New possibilities of concrete technology (Fertigteil-Stützen - Neue betontechnologische Möglichkeiten). Betonwerk und Fertigteil-Technik/(Concrete Plant and Precast Technology 75(10), pp. 4-12. (in English and German) (Muller)

+Empelmann, M., Müller, C., 2010. Concrete columns - New possibilities from NPC up to UHPC. In: Proceedings of the Third International fib Congress and Exhibition and PCI Bridge Conference, 29 May-2 June 2010, National Harbor, MD, UHPC TT Paper 413, 10 pgs. (Muller)

— F —

Fehling, E., 2004. Tragwerke aus UHPC - Bemessung und Konstruktion (Structures made of UHPC – Design and construction). Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology (BFT International) 70(2), pp. 92-93. (in German and English)

-Fehling, E., Leutbecher, T., Sturwald, S., 2008. Compression-tension-strength of ultra high performance concrete (UHPC) and ultra high performance fiber reinforced concrete (UHPFRC) in panel-shaped structural members. Research Report of the Chair of Structural Concrete, Faculty of Civil Engineering, University of Kassel.

Fernández, C., XXXX. Concretos de ultra alto desempeno tecnología y aplicaciones. Universidad de Costa Rica, Departamento de Ingenieria Civil. Web2007 Carlos.fernandez@hocim.com (2 versions) (Fernandez)

— G —

+Garrecht, H., Baumert, C., 2009. Ultra-high performance concrete at the precast plant - Is a low-cost retrofit of conventional mixing units with high-tech drives and an adjusted mixing pattern possible? (Ultrahochfester Beton im Fertigteilwerk - Lassen sich mit Hightech-Antrieb und angepasstem Mischregime konventionelle Mischanlagen kostengünstig aufrüsten?) Betonwerk und Fertigteile-Technik/Concrete Plant and Precast Technology 75(2), pp. 20-22. (in English and German)

Groeneweg, T.W., 2007. Shield driven tunnels in ultra high strength concrete. MS Thesis – Department of Civil Engineering, Delft University of Technology (Gemeentewerken Rotterdam (Public Works Rotterdam)), 141 pgs.

— H —

Hegger, J., Kommer, B., Tuchlinski, D., 2006. Untersuchungen an Spannbetonträgern aus UHPC (Studies on prestressed concrete beams made from UHPC). Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology (BFT International) 72(1), pp. 14-20. (in German and English)

— I —

— J —

Jackson, B., 2005. Reactive powder shows its versatility. Civil Engineers Australia 77(11), pg. 57.

— K —

Klotz, S., XXXX. Ultrahochfester Beton Unter Teilflachenbelastung. (book)

durability of reactive powder concrete. Proceedings of the ASTM Symposium on
Advances in Adhesives, Adhesion Science, and Testing, 4-6 October 2004,

Lee, M.-G., Kan, Y.-C., Chen, K.-C., 2006. A preliminary study of RPC for repair and
retrofitting materials. Zhongguo gong cheng xue kan (Journal of the Chinese
Institute of Engineers) 29(6), pp. 1099-1103.

concrete as a new repair material. Construction and Building Materials 21(1),
pp. 182-189.

Lee, M.-G., Huang, Y.-S., 2009. Fire-damage or freeze-thaw of strengthening concrete
International Conference on Multi-Functional Materials and Structures (MFMS-
2009), 9-12 October 2009, Qingdao, China 79-82, pp. 2047-2050.

compacting high-performance concrete, and self-compacting reactive powder
concrete under severe impact loading conditions. In: Proceedings of the Third
International Conference on Concrete Under Severe Conditions – Environment
and Loading (CONSEC ’01), 18-20 June 2001, Vancouver, BC, Canada, Eds. N.
Banthia, K. Sakai, O.E. Gjørv (Vancouver, BC, Canada: University of British
Columbia, 2001) 1, pp. 676-682.

hydrothermally cured ultra-high performance concrete (UHPC). In: Proceedings
of Nanotechnology in Construction 3 (NICOM3), Eds. Z. Bittnar, P.J.M. Bartos, J.
Nemecek, V. Smilauer, J. Zeman (Berlin: Springer-Verlag, 2009), pp. 287-293.
(Muller)

ersten Brücke mit UHPC in Europa, Tagungsbeiträge zu den 3. Kasseler Baustoff-
und Massivbautagen, am 10. September 2003, Eds. M. Schmidt, E. Fehling (Kassel,
German)

Leutbecher, T., Fehling, E., 2004. Structural behaviour of UHPC under tensile stress and
biaxial loading. In: Ultra High Performance Concrete (UHPC), Proceedings of the
International Symposium on Ultra High Performance Concrete, 13-15 September
2004, Kassel, Germany, Eds. M. Schmidt, E. Fehling, C. Geisenhanslüke (Kassel,

http://www.civenv/unimelb.edu.au

http://www.archinfo.it/articoli/0,1254,53_ART_198470,00.html (in Italian and English)

Morris, M., XXXX. Performance Concrete. Popular Science, 1 pg.

+Müller, H.S., Haist, M., 2008. Building in the context of existing structures - A future market - Innovative concrete construction methods - Opportunities for prefabrication? (Bauen im Bestand - Markt der Zukunft - Innovative Betonbautechniken - Potenziale für die Vorfertigung?). Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology 74(2), pp. 144-145. (in English and German) (Muller)

+Müller, H.S., Scheydt, J.C., 2009. The durability potential of ultra-high performance concretes - Opportunities for the precast concrete industry (Dauerhaftigkeitspotenzial ultrahochfester betone - Chancen für die Betonfertigteilindustrie). Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology 75(2), pp. 17-19. (in English and German) (Muller)

— N —

-O-

-P-

-Paduli, F., 1999. High temperature effects on RPC. Undergraduate Thesis, UNSW.

-Q-

+ Rebentrost, M., Wight, G., XXXX. Behaviour and resistance of ultra high performance concrete to blast effects. Australia, 8 pgs.

-Resplendino, J., xxxx. Les betons fibres ultra performants BFUP: Perspectives offertes vis-à-vis de la perennite et la maintenance des ouvrages.

Premium pavements from alternative materials for European roads
 • Sinis, F., 2006. What is the situation?
• Krass, K., 2006. The need for environmental assessment to promote sustainability – Introduction to WP 4 – Task 4.3.

Health, safety, environment assessment

• Colwell, S., 2006. Reaction to fire performance of pavement materials.
• Nicholls, C., 2006. Implications of asphalt deformation results for standardization.
• Soliman, S., Drouadaine, I., 2006. WP6: Techniques for recycling.
• Anon, 2006. Conclusions.

• Denarié, E., 2006. Ultra high performance fibre reinforced concretes (UHPFRC) for rehabilitation – 1. Motivation and background. (Denarie)
• Putallaz, J.-C., Denarié, E., 2006. Ultra high performance fibre reinforced composites (UHPFRC) for rehabilitation. (Denarie)
 2. Case study – first application.
• Brühwiler, E., 2006. Advances in rehabilitation of highway structures. (Bruhwiler)

• WP14 – High performance fiber reinforced cementitious composites for rehabilitation
• Denarié, E., 2005. Part A – General overview and laboratory tests. (Denarie)
• Denarié, E., 2005. Part B – First pilot test of application of UHPFRC for rehabilitation of a bridge. (Denarie)

Schmidt, M., 2005. Beton auf dem Wege zum High-Tech-Werstoff-Leistungsfähiger als Stahl? (Concrete on the way to becoming a high-tech material- more efficient than steel?) Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology (BFT International) 71(2), pp. 14-16. (in German and English)

Schmidt, M., Bunje, K., Fehling, E., 2006. Marktpotenzial Brückenbau: Der Weg zum Hochleistungsافتية – Kasseler Brückenfamilie mit UHPC Erfahrungen und Perspektiven (Market potential bridge building: The way to a high performance precast element – Kassel bridge family with UHPC – Experiences and perspectives). Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology (BFT International) 72(2), pp. 58-60. (in German and English)

32. Teichmann, T., Schmidt, M., 2007. Mix design and durability of ultra high performance concrete (UHPC). (Fourth International Ph.D. Symposium in Civil Engineering, Munich, 2002), pp. 417-422. (in English)

+Schmidt, M., Herget, E., 2007. Building with ultra-high-strength concrete – Current state and outlook from the standpoint of science and practice (Bauen mit ultrahochfestem Beton – Aktueller Stand und Ausblick aus der Sicht der Wissenschaft und der Praxis). BFT 73(2), pp. 82-84. (in English and German)

+Schmidt, M., 2009. Ultra-high performance concrete in Germany and the world - Current state of research, technical rules and standards and practical application (Ultrahochfester Beton in Deutschland und der Welt - Stand der Forschung, technische Regelwerke und praktische Anwendung). Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology 75(2), pp. 14-16. (in English and German)

Soutsos, M.N., web2007. Reactive glass powder concrete (RGPC) for paving flags – Phase I. The University of Liverpool, 40 pgs. (writeup and presentation)

Strunge, J., 2009. Special cement to produce ultra-high performance concrete to specification without silica fume - Application and design examples (Spezialzement zur praxisgerechten Herstellung von ultrahochfestem Beton ohne Silicstaub - Anwendung und Ausführungsbeispiele). Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology 75(2), pp. 86-87. (in English and German)

-Teutsch, M., Steven, G., xxxx. DFG-SPP 1182 – Arbeitsbericht UHPFRC-Druckglieder. (not published)

+Tue, N.V., Küchler, M., Ma, J., Henze, S., 2006. Überlegungen zur anwendungsoorientierten Stoffzusammensetzung von UHFB., Beton und Stahlbetonbau 101(11), pp. 834-841. (in German) (Kuchler)

-Tue, N.V., XXXX. Stellunhnahme zu den Anforderungen an Baustoffeigenschaften und zum Bemessungskonzept der Gartnerplatzbrücke aus UHFB, Universität Leipzig, Institut für Massivbau und Baustofftechnologie.

— U —

Vande Voort, T., Suleiman, M., Sritharan, S., 2008. Design and performance verification of UHPC piles for deep foundations (Final report of project entitled Use of Ultra-High Performance Concrete in Geotechnical and Substructure Applications). CTRE (Center for Transportation Research and Education), Iowa State University, Ames, Iowa, USA IHRB Project TR-558, 224 pgs.

Weisman, J., web2007. Reactive Powder Concrete. Penn State University, 13 pgs. (presentation)
http://www.personal.psu.edu/users/j/r/jrw5001/Reactive%20Powder%20Concrete2.ppt

— Y —

Zehentner, H., 2007. Innovative precast elements of high-strength and ultra-high-strength concrete to increase the punching shear resistance of flat slabs (Innovative Fertigteilelemente aus hochfestem und ultrahochfestem Beton zur Erhöhung des Durchstanzwiderstandes von Flachdecken). BFT 73(2), pp. 52-53. (in English and German)

dynamic performance for the particular kind of concrete reinforced with steel-
UHPC/RPC, but of interest)

-Zhang, J., 2003. Experiment investigation on behavior of reactive powder concrete filled

-Zhang, J., Yan, C., Jia, J., 2010. Crack resistance capacity of SRUHSC column to RC
beam joint under frequent earthquake load. In: Proceedings of the 2010
International Conference on Mechanic Automation and Control Engineering,

-Zhang, J., Yan, C., Jia, J., 2011. Calculation methods on crack resistance capacity of
SRUHSC column to SRC beam joint subjected to reversal cycle load. In:
Advanced Materials Research – Proceedings of the 2010 International
Conference on Advances in Materials and Manufacturing Processes (ICAMMP
2010), 6-8 November 2010, Shenzhen, China 152-153, pp. 1835-1838.

-Zhang, J., Yan, C., Jia, J., 2011. Crack pattern of SRUHSC column and SRC beam joint
subjected to reversal cycle load. In: Advanced Materials Research – Proceedings
of the 2010 International Conference on Advances in Materials and
Manufacturing Processes (ICAMMP 2010), 6-8 November 2010, Shenzhen,
China 152-153, pp. 1125-1128.

World’s Science and Technology Research and Development 27(6), pp. 49-52. (in
Chinese)

Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology 37, pp.
85-88. (in Chinese)

Zhang, M., Yan, G., Zhong, T., Yan, G., 2006. Study on flexural performance of 200 MPa
reactive powder concrete. Progress in Safety Science and Technology, pp. 2335-
2339.

reactive powder concrete beams. Zhongguo Tiedao Kexue/China Railway Science

powder concrete and its application. Key Engineering Materials 405-406, pp. 62-
68.

concrete to projectile impact. International Journal of Impact Engineering 31(7),
pp. 825-841.

-Zhang, M.-B., Yan, G.-P., Yan, G.-J., An, M.-Z., 2007. Experimental research on the
flexing resistance of 200 MPa reactive powder concrete. Beijing Jiaotong Daxue

-Zilch, K., xxxx. Fugen von Bauteilen aus ultrahochfestem Beton (UHPC) durch Verkleben. DFG SPP 1182, ZI 134/22-1.

Section 3: U.S. and Foreign Patents on UHPC and Precursor Materials

The following is a listing of patent websites and patents on UHPC and precursor materials:

Patent websites

European Patent Office
http://www.epo.org/patents.html
http://gb.espacenet.com/search97cgi/s97_cgi.exe?Action=FormGen&Template=gb/EN/home.hts

US Patent and Trademark Office, Department of Commerce
http://www.uspto.gov/patents/index.jsp

World Intellectual Property Organization
http://www.wipo.int/portal/index.html.en

Patent download
http://free.patentfetcher.com/Patent-Fetcher-Form.php
Patents

Ultra high performance concrete (UHPC) materials are advanced cementitious materials that display much higher levels of technical performance compared to conventional strength and high strength concretes. This category can include materials such as defect-free, dense particle, reactive powder, engineered composite, multi-scale particle, and fiber-reinforced concretes. UHPC materials can have unique advantages with respect to response capabilities, mechanical properties, environmental stability, construction methods and forms, and aesthetic qualities and have the potential to help revitalize a deteriorating infrastructure. This report is the 2011 version of search results for open-source information and technical literature references on UHPC materials. References are provided on product information from engineering and scientific journals, conference proceedings, magazine articles, books, and patents. The scope extends from basic and applied research to construction projects.