Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/9217
Title: Mathematical model to correlate frost heave of pavements with laboratory predictions
Authors: United States. Federal Aviation Administration
United States. Federal Highway Administration
University of California, Irvine. Department of Civil Engineering
Berg, Richard L.
Guymon, Gary L.
Johnson, T. C. (Thaddeus C.)
Keywords: Computerized simulation
Computer simulations
Computer programs
Laboratory tests
Mathematical models
Pavements
Soils
Soil tests
Frost heave
Frost heaving
Frost action
Publisher: Cold Regions Research and Engineering Laboratory (U.S.)
Engineer Research and Development Center (U.S.)
Series/Report no.: CRREL report ; 80-10.
Description: CRREL Report
Abstract: A mathematical model of coupled heat and moisture flow in soils has been developed. The model includes algorithms for phase change of soil moisture and frost heave and permits several types of boundary and initial conditions. The finite element method of weighted residuals (Galerkin procedure) was chosen to simulate the spatial regime and the Crank-Nicholson method was used for the time domain portion of the model. To facilitate evaluation of the model, the heat and moisture fluxes were essentially decoupled; moisture flux was then simulated accurately, as were heat flux and frost heave in a laboratory test. Comparison of the simulated and experimental data illustrates the importance of unsaturated hydraulic conductivity. It is one parameter which is difficult to measure and for which only a few laboratory test results are available. Therefore, unsaturated hydraulic conductivities calculated in the computer model may be a significant source of error in calculations of frost heave. The algorithm incorporating effects of surcharge and overburden was inconclusively evaluated. Time dependent frost penetration and frost heave in laboratory specimens were closely simulated with the model. After 10 days of simulation, the computed frost heave was about 2.3 cm vs 2.0 cm and 2.8 cm in two tests. Frost penetration was computed as 15 cm and was measured at 12.0 cm and 12.2 cm in the two laboratory samples after 10 days.
Rights: Approved for public release; distribution is unlimited.
URI: http://hdl.handle.net/11681/9217
Appears in Collections:CRREL Report

Files in This Item:
File Description SizeFormat 
CR-80-10.pdf10.04 MBAdobe PDFThumbnail
View/Open