Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/6487
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWalton, Raymonden_US
dc.contributor.authorMartin, Thomas H.en_US
dc.contributor.authorChapman, Raymond S.en_US
dc.contributor.authorDavis, Jack E.en_US
dc.creatorEnserch Environmental Corporationen_US
dc.creatorRay Chapman & Associatesen_US
dc.creatorWetlands Research Program (U.S.)en_US
dc.creatorU.S. Army Engineer Waterways Experiment Stationen_US
dc.date.accessioned2016-03-23T20:10:11Zen_US
dc.date.available2016-03-23T20:10:11Zen_US
dc.date.issued1995-10en_US
dc.identifier.govdocTechnical Report WRP-CP-6en_US
dc.identifier.urihttp://hdl.handle.net/11681/6487en_US
dc.descriptionTechnical Reporten_US
dc.description.abstractWe investigated hydrologic characteristics of the Cache River wetland between Patterson and Cotton Plant, AR. The Cache River is an underfit stream with wetlands predominantly located in abandoned channels and backswamps. Much of the Cache River upstream of the study area has undergone extensive channelization to allow agricultural development in the basin. Hydrologic measurements included U.S. Geological Survey river gauges at the upstream and downstream limits of the study area (40 river km apart), water level recorders inside the study area, a nest of deep and shallow groundwater wells that monitored variations in the underlying aquifer, a meteorological recording station that collected precipitation, air temperature, and solar radiation data inside the study area, and regional precipitation data. Analysis of the wetland's water budget showed that the system is dominated by river flows and the magnitudes of the other water budget components fall within the error of well maintained river gauges (5 to 10 percent). The system is characterized by the floods occurring from late-fall to late winter and again in mid- to late spring. Peak flood flows are approximately 185 m³/s for a 2-year return event and 270 m³/s for a 5-year event. Peak flows between the upstream and downstream gauges are reduced by 10 to 20 percent with greater attenuation. occurring when the system is initiaJJy drier. Peak flow at the downstream gauge lags the peak at the upstream gauge by 4 to 8 days depending on the antecedent conditions. Flooding of the overbank areas is a result of constrictions in the downstream reaches of the study area. Flood-peak attenuation between the upstream and downstteam gauges is due mainly to floodplain storage with flow resistance contributing minimally. A Wetlands Dynamic Water Budget Model was developed and applied to support the field investigation. The model augmented the field study's measured hydrologic data by filling data gaps that occurred due to gauge problems and by providing simulated data for broad areas of the wetland, particularly those far away from any measurement station. The model includes three dynamically linked modules to account for all the major components of a typical water budget, including precipitation, canopy interception, overland flow, channel flow, infiltration, evapotranspiration, and saturated groundwater flow. The model is called the Wetlands Dynamic Water Budget Model because it provides magnitudes for the water budget components, as well as water depths, discharges, and flow velocities over different parts of the modeled system. The development of the computer program is based on concepts and approaches of a number of programs in common use. The model was used to simulate various wetland modification scenarios to help build an understanding of how wetlands, like those along the Cache River, function hydrologically. Scenarios included creating various types of constrictions across the wetland, such as might occur with the construction of a highway crossing, channelizing the river by installing levees on the overbanks, and creating wider floodplains by restoring agricultural lands to wetland habitat.en_US
dc.description.sponsorshipPrepared for U.S. Army Corps of Engineers, Washington, DC 20314-1000en_US
dc.description.tableofcontentsPreface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Vlll 1-Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2-Wetlands Hydraulic and Hydrologic Processes . . . . . . . . . . . . . . . . 5 Wetland Basin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Evaporation and Transpiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Channel and Overbank Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Overland Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Groundwater Recharge and Discharge . . . . . . . . . . . . . . . . . . . . . . . . . 7 Tidal and Related Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3--Cache River Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Data, Reviewed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Data Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 River Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Spatial md Temporal Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Surface Water Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Vertical Processes Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Horizontal Groundwater Flow Module . . . . . . . . . . . . . . . . . . . . . . . . 49 Model Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Stability Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5-Model Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Surface Water flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Vertical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Horizontal Groundwater Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 &-PC Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Surface Water Module Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Vertical Processes Module Selection . . . . . . . . . . . . . . . . . . . . . . . . . 67 Horizontal Groundwater Module Selection . . . . . . . . . . . . . . . . . . . . . 69 Model Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Output Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7-Cache River Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Model Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Model Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Downstream Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8-Future Needs in Wetlands Hydraulic and Hydrologic Modeling . . . . . . 87 Model Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Future Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Simplified Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 1 0---References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Appendix A: Cache River Cross Sections . . . . . . . . . . . . . . . . . . . . . A1 SF298en_US
dc.format.extent122 pagesen_US
dc.format.mediumPDFen_US
dc.language.isoen_USen_US
dc.publisherU.S. Army Engineer Waterways Experiment Stationen_US
dc.relationhttp://acwc.sdp.sirsi.net/client/en_US/search/asset/1040784en_US
dc.relation.ispartofseriesTechnical Report (Wetlands Research Program (U.S.)) ; no. Technical Report WRP-CP-6en_US
dc.rightsApproved for public release; distribution is unlimited.en_US
dc.sourceThe ERDC Library created this digital resource using one or more of the following: Zeta TS-0995, Zeutcehl OS 12000, HP HD Pro 42-in. map scanner, Epson flatbeden_US
dc.subjectBottomland hardwoodsen_US
dc.subjectCanopy interceptionen_US
dc.subjectChannel flowen_US
dc.subjectEvapotranspirationen_US
dc.subjectField studyen_US
dc.subjectGroundwater flowen_US
dc.subjectHydraulicsen_US
dc.subjectHydrologic cycleen_US
dc.subjectHydrologyen_US
dc.subjectInfiltrationen_US
dc.subjectModelen_US
dc.subjectOverland flowen_US
dc.subjectSimulationen_US
dc.subjectWater budgeten_US
dc.subjectWetlandsen_US
dc.subjectCache River (Ark.)en_US
dc.titleInvestigation of wetlands hydraulic and hydrological processes, model development, and applicationen_US
dc.typeREPORTen_US
Appears in Collections:Technical Report

Files in This Item:
File Description SizeFormat 
TR-WRP-CP-6.pdf27.62 MBAdobe PDFThumbnail
View/Open