Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/45704
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDeCarlo, Christopher J.-
dc.contributor.authorElshaer, Mohamed H.-
dc.contributor.authorCox, Benjamin C.-
dc.contributor.authorLein, Wade A.-
dc.contributor.authorAli, Ayman-
dc.contributor.authorMehta, Yusuf-
dc.contributor.authorSaidi, Ahmed-
dc.creatorCold Regions Research and Engineering Laboratory (U.S.)-
dc.creatorGeotechnical and Structures Laboratory (U.S.)-
dc.date.accessioned2022-10-06T20:04:58Z-
dc.date.available2022-10-06T20:04:58Z-
dc.date.issued2022-10-
dc.identifier.govdocERDC TR-22-21-
dc.identifier.urihttps://hdl.handle.net/11681/45704-
dc.identifier.urihttp://dx.doi.org/10.21079/11681/45704-
dc.descriptionTechnical Reporten_US
dc.description.abstractThe main goal of this study was to improve the performance of cold in-place recycling (CIR) mixtures by using a balanced mix design (BMD) approach. This study involved preparing and testing CIR mixtures in the lab at varying contents of bituminous additives and constant content of 1% ce-ment and 3% water. Eight combinations of CIR mixtures were produced for this study using two binders (emulsion and foamed asphalt), compaction efforts (30 and 70 gyrations), and curing processes (72 hours at 140°F and 50°F). Results showed that asphalt pavement analyzer, semicircular bend, and indirect tensile strength tests presented the highest correlation with the change of binder contents. The study successfully used the developed BMD for designing CIR mixtures and selecting their optimum binder contents. It then used three balanced CIR mixtures to construct full-scale pavement sections to validate the BMD approach in the field. A heavy vehicle simulator was used to apply different accelerated loadings on each section. Results showed that the CIR section with 2% binder presented the best rutting performance under truck loading and the highest rutting susceptibility under aircraft loading. Conversely, the CIR section with 3% binder presented the highest cracking resistance under both truck and aircraft loading.en_US
dc.description.sponsorshipUnited States. Army. Corps of Engineers.en_US
dc.description.tableofcontentsAbstract ................................................................................................................................................... ii Figures and Tables ................................................................................................................................. vi Preface ....................................................................................................................................................ix Executive Summary ................................................................................................................................ x 1 Introduction ..................................................................................................................................... 1 1.1 Background ..................................................................................................................... 1 1.2 Objectives ........................................................................................................................ 2 1.3 Approach ......................................................................................................................... 3 2 Literature Review ........................................................................................................................... 4 2.1 Introduction ..................................................................................................................... 4 2.2 General cold in-place recycling process ........................................................................ 4 2.2.1 Step 1: Project selection and CIR requirements .............................................. 5 2.2.2 Step 2: Mix design of CIR................................................................................... 5 2.2.3 Step 3: Milling the deteriorated surface pavement layer ................................ 5 2.2.4 Step 4: Millings sizing and mixing with bituminous and cementitious additives ............................................................................................................. 6 2.2.5 Step 5: Placement of the CIR mix ..................................................................... 6 2.2.6 Step 6: Compaction of placed CIR mix ............................................................. 7 2.2.7 Step 7: Curing and maintenance ....................................................................... 8 2.3 General laboratory CIR mixture design approach ......................................................... 8 2.3.1 Overview of CIR mix design methods ................................................................ 8 2.3.2 Step 1: Collect RAP samples from the field ...................................................... 9 2.3.3 Step 2: Determine RAP properties .................................................................... 9 2.3.4 Step 3: Add aggregate (optional) ...................................................................... 9 2.3.5 Step 4: Select type, amount, and grade of bituminous and cementitious additives..................................................................................... 10 2.3.6 Step 5: Determine the moisture content required for mixing ........................ 11 2.3.7 Step 6: Compaction, curing, and density measurements ............................. 11 2.3.8 Step 7: Determine the optimum binder content ............................................ 12 2.4 Laboratory CIR mix design methods ............................................................................ 13 2.4.1 Unified Facilities Guide Specifications (UFGS) mix design procedure for CIR (DoD method) ....................................................................................... 13 2.4.2 Modified Marshall mix design ......................................................................... 14 2.4.3 Modified Marshall mix design used for Superpave mix design ..................... 15 2.4.4 Modified Hveem mix design ............................................................................ 15 2.4.5 Mix design developed for Oregon .................................................................... 16 2.4.6 Wirtgen mix design .......................................................................................... 17 2.4.7 Mix design method developed for Rhode Island DOT .................................... 17 2.4.8 Mix design method developed for Iowa DOT .................................................. 18 2.4.9 Other mix design procedures .......................................................................... 18 2.5 Best practices of CIR field construction ...................................................................... 19 2.5.1 Best practices for CIR mix production ............................................................. 19 2.5.2 Environmental and other considerations ....................................................... 20 2.6 Laboratory and field performance of CIR .................................................................... 21 2.6.1 Laboratory performance tests ......................................................................... 22 2.6.2 Laboratory Performance Evaluation ............................................................... 24 2.6.3 Field Performance Evaluation ......................................................................... 26 2.7 Summary ....................................................................................................................... 29 3 Description of Cold In-Place Recycling (CIR) Materials Used ................................................. 31 3.1 Reclaimed asphalt pavement ...................................................................................... 31 3.1.1 Sieve analysis ................................................................................................... 32 3.1.2 Maximum specific gravity ................................................................................ 33 3.1.3 Existing binder content .................................................................................... 33 3.2 Bituminous additives .................................................................................................... 34 3.2.1 Emulsified asphalt ........................................................................................... 34 3.2.2 Foamed asphalt ............................................................................................... 35 3.3 Additives portland cement and water .......................................................................... 36 4 Balanced Mix Design Approach for Cold In-Place Recycling Mixtures ................................. 37 4.1 Description of the BMD method .................................................................................. 37 4.1.1 Step 1: Obtain representative RAP materials and select bituminous additives ........................................................................................................... 39 4.1.2 Step 2: Select CIR water content and dosages for other stabilizing additives ........................................................................................................... 39 4.1.3 Step 3: Mix components and produce CIR mixtures ...................................... 39 4.1.4 Step 4: Compact, cure, and determine volumetrics of CIR samples ............ 40 4.1.5 Step 5: Density measurements of CIR mixtures ............................................ 41 4.1.6 Step 6: Conduct performance testing and determine optimum binder content .................................................................................................. 41 4.2 CIR test methods .......................................................................................................... 42 4.2.1 Asphalt pavement analyzer ............................................................................. 43 4.2.2 Dynamic complex modulus ............................................................................. 43 4.2.3 Indirect tensile strength ................................................................................... 44 4.2.4 Semicircular bend ............................................................................................ 45 5 Results, Analysis, and Discussion .............................................................................................. 46 5.1 Overview of CIR mixes and factors considered ........................................................... 46 5.2 Analysis of volumetric data (air voids) ......................................................................... 47 5.3 Identification of proper performance tests for balanced design of CIR mixes .......... 48 5.4 Balanced CIR optimum binder content selection ....................................................... 52 5.4.1 Case I: Both performance measures are relevant ......................................... 53 5.4.2 Case II: Only cracking measures are relevant ................................................ 55 5.4.3 Case III: Both performance measures show increasing trends ..................... 56 5.5 Performance of CIR mixtures at optimum binder content .......................................... 58 5.5.1 General performance comparison .................................................................. 58 5.5.2 Impact of bituminous additives on performance (rutting and cracking) ........................................................................................................... 61 5.5.1 Compaction-level impact on performance (rutting and cracking) .................... 64 5.5.1 Impact of curing process on performance (rutting and cracking) .................... 67 5.6 Statistical analyses ....................................................................................................... 70 5.6.1 ANOVA results for APA rut-depth measurements ........................................... 70 5.6.2 ANOVA results for dynamic complex modulus (|E*|) data ............................ 71 5.6.3 ANOVA results for ITS measurements ............................................................. 71 5.6.4 ANOVA results for semicircular bend fracture energy data ........................... 72 6 Construction and Accelerated Testing of Full-Scale CIR Pavement Sections ...................... 73 6.1 Description of constructed CIR sections ..................................................................... 73 6.2 Measured field densities and actual layer thicknesses ............................................. 77 6.3 Properties of field-produced CIR mixes ....................................................................... 78 6.3.1 Water and binder contents of field-produced CIR mixtures ........................... 78 6.3.2 Compactability and volumetric properties ...................................................... 79 6.3.3 Performance of plant-produced, lab-compacted mixes ................................. 81 6.4 Testing program of full-scale CIR pavement sections ................................................. 82 6.4.1 Full-scale accelerated loading ......................................................................... 83 6.4.2 Structural integrity testing using a heavy weight deflectometer ................... 83 6.4.3 Quantification of rut depth and permanent deformation by using a laser profiler ..................................................................................................... 84 6.4.4 Mechanistic responses recorded from pavement instruments .................... 86 6.5 Discussion of full-scale testing results ........................................................................ 87 6.5.1 Heavy weight deflectometer (HWD) results .................................................... 87 6.5.2 Permanent deformation and rutting ............................................................... 94 6.5.3 Analysis of mechanistic responses ............................................................... 100 7 Summary of Findings, Conclusions, and Recommendations............................................... 111 7.1 Summary of findings and conclusions ...................................................................... 111 7.2 Future works ............................................................................................................... 114 References ......................................................................................................................................... 116 Acronyms and Abbreviations ........................................................................................................... 127 Report Documentation Page ........................................................................................................... 129-
dc.format.extent144 pages / 4.98 MB-
dc.format.mediumPDF-
dc.language.isoen_USen_US
dc.publisherEngineer Research and Development Center (U.S.)en_US
dc.relation.ispartofseriesTechnical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC TR-22-21-
dc.rightsApproved for Public Release; Distribution is Unlimited-
dc.sourceThis Digital Resource was created in Microsoft Word and Adobe Acrobat-
dc.subjectAggregates (Building materials)en_US
dc.subjectAsphalt emulsion mixtures--Evaluationen_US
dc.subjectBinders (Materials)en_US
dc.subjectBituminous materialsen_US
dc.subjectCementen_US
dc.subjectPavements, Asphalt--Maintenance and repairen_US
dc.subjectPavements, Asphalt--Recyclingen_US
dc.titleDevelopment and validation of a balanced mix design approach for CIR mixtures using full-scale testingen_US
dc.typeReporten_US
Appears in Collections:Technical Report

Files in This Item:
File Description SizeFormat 
ERDC TR-22-21.pdf4.98 MBAdobe PDFThumbnail
View/Open