Please use this identifier to cite or link to this item:
https://hdl.handle.net/11681/45625
Title: | Buried-object-detection improvements incorporating environmental phenomenology into signature physics |
Authors: | Clausen, Jay L. Truong, Vuong H. Bragdon, Sophia N. Frankenstein, Susan. Wagner, Anna M. Affleck, Rosa T. Williams, Christopher R. |
Keywords: | Climate Detection Detectors Environmental Infrared detectors Machine learning Military surveillance Soil Thermal |
Publisher: | Engineer Research and Development Center (U.S.) |
Series/Report no.: | Technical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC/CRREL TR-22-19 |
Abstract: | The ability to detect buried objects is critical for the Army. Therefore, this report summarizes the fourth year of an ongoing study to assess environmental phenomenological conditions affecting probability of detection and false alarm rates for buried-object detection using thermal infrared sensors. This study used several different approaches to identify the predominant environmental variables affecting object detection: (1) multilevel statistical modeling, (2) direct image analysis, (3) physics-based thermal modeling, and (4) application of machine learning (ML) techniques. In addition, this study developed an approach using a Canny edge methodology to identify regions of interest potentially harboring a target object. Finally, an ML method was developed to improve automatic target detection and recognition performance by accounting for environmental phenomenological conditions, improving performance by 50% over standard automatic target detection and recognition software. |
Description: | Technical Report |
Gov't Doc #: | ERDC/CRREL TR-22-19 |
Rights: | Approved for Public Release; Distribution is Unlimited |
URI: | https://hdl.handle.net/11681/45625 http://dx.doi.org/10.21079/11681/45625 |
Size: | 168 pages / 10.14 MB |
Types of Materials: | |
Appears in Collections: | Technical Report |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ERDC-CRREL TR-22-19.pdf | 10.14 MB | Adobe PDF | ![]() View/Open |