Please use this identifier to cite or link to this item:
https://hdl.handle.net/11681/44340
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sharp, Jeremy A. (Jeremy Allen), 1982- | - |
dc.contributor.author | Bryant, Duncan B. | - |
dc.contributor.author | Savant, Gaurav, 1979- | - |
dc.creator | Coastal and Hydraulics Laboratory (U.S.) | - |
dc.date.accessioned | 2022-05-20T14:28:38Z | - |
dc.date.available | 2022-05-20T14:28:38Z | - |
dc.date.issued | 2022-05 | - |
dc.identifier.govdoc | ERDC/CHL TR-22-8 | - |
dc.identifier.uri | https://hdl.handle.net/11681/44340 | - |
dc.identifier.uri | http://dx.doi.org/10.21079/11681/44340 | - |
dc.description | Technical Report | en_US |
dc.description.abstract | The effort performed here describes the process to determine the gate lifting loads at the Low-Sill Control Structure. To measure the gate loads, a 1:55 Froude-scaled model of the Low-Sill Control Structure was tested. Load cells were placed on 3 of the 11 gates. Tests evaluated the gate loads for various hydraulic heads across the structure. A total of 109 tests were conducted for 14 flows with each flow having two gate settings provided by the United States Army Corps of Engineers, New Orleans District. The load data illustrated the potential for higher gate lifting loads (GLL) to occur at the mid-range gate opening (Go) for Gates 3 and 6. While for Gate 10, the highest GLL (452 kips, maximum load in testing) was at a Go = 4.2 ft. Conversely, for the low-flow bays, the highest load occurred at Go = 24.86 ft. | en_US |
dc.description.sponsorship | United States. Army. Corps of Engineers. New Orleans District. | en_US |
dc.description.tableofcontents | Abstract .................................................................................................................................... ii Figures and Tables .................................................................................................................. iv Preface ..................................................................................................................................... vi 1 Introduction ...................................................................................................................... 1 1.1 Background ........................................................................................................ 2 1.2 Objective............................................................................................................. 3 1.3 Approach ............................................................................................................ 4 2 Testing Process and Setup ............................................................................................. 5 2.1 Low-Sill Control Structure (LSCS) Model design .............................................. 5 2.2 Data collection/instrumentation ...................................................................... 8 2.3 Boundary conditions and model operation.................................................... 10 2.4 Gate lift load calculation .................................................................................15 3 Results ............................................................................................................................. 16 3.1 Water surface elevation (WSE) ....................................................................... 16 3.2 Load cell data ................................................................................................. 25 4 Discussion ....................................................................................................................... 37 4.1 Model load ....................................................................................................... 37 4.2 Load impacts from vortex/binding ................................................................ 39 4.3 Flow curvature and super elevation ............................................................... 41 5 Conclusions and Recommendations ........................................................................... 43 References ............................................................................................................................. 44 Appendix: Adaptive Hydraulics (AdH) Model Development and Application ................. 45 Unit Conversion Factors ....................................................................................................... 53 Acronyms and Abbreviations ............................................................................................... 54 Report Documentation Page | - |
dc.format.extent | 63 pages / 11.56 MB | - |
dc.format.medium | - | |
dc.language.iso | en_US | en_US |
dc.publisher | Engineer Research and Development Center (U.S.) | en_US |
dc.relation.ispartofseries | Technical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC/CHL TR-22-8 | - |
dc.rights | Approved for Public Release; Distribution is Unlimited | - |
dc.source | This Digital Resource was created in Microsoft Word and Adobe Acrobat | - |
dc.subject | Concordia Parish (La.) | en_US |
dc.subject | Diversion structures (Hydraulic engineering) | en_US |
dc.subject | Hydraulic gates | en_US |
dc.subject | Hydraulic models | en_US |
dc.subject | Mississippi River | en_US |
dc.title | Low-Sill Control Structure gate load study | en_US |
dc.type | Report | en_US |
Appears in Collections: | Technical Report |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ERDC-CHL TR-22-8.pdf | 11.56 MB | Adobe PDF | ![]() View/Open |