Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/43826
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGlasscott, Matthew W.-
dc.contributor.authorJernberg, Johanna N.-
dc.contributor.authorAlberts, Erik.-
dc.contributor.authorMoores, Lee C.-
dc.creatorEnvironmental Laboratory (U.S.)-
dc.date.accessioned2022-03-31T16:45:44Z-
dc.date.available2022-03-31T16:45:44Z-
dc.date.issued2022-03-
dc.identifier.govdocERDC/EL TR-22-3-
dc.identifier.urihttps://hdl.handle.net/11681/43826-
dc.identifier.urihttp://dx.doi.org/10.21079/11681/43826-
dc.descriptionTechnical Reporten_US
dc.description.abstractAnalytical methods to rapidly detect explosive compounds with high precision are paramount for applications ranging from national security to environmental remediation. This report demonstrates two proof-of-concept electroanalytical methods for the quantification of 2,4-dinitroanisol (DNAN) and pentaerythritol tetranitrate (PETN). For the first time, DNAN reduction was analyzed and compared at a bare graphitic carbon electrode, a polyaniline-modified (PANI) electrode, and a molecularly imprinted polymer (MIP) electrode utilizing PANI to explore the effect of surface-area and preconcentration affinity on the analytical response. Since some explosive compounds such as PETN are not appreciably soluble in water (<10 μg/L), necessitating a different solvent system to permit direct detection via electrochemical reduction. A 1,2-dichloroethane system was explored as a possibility by generating a liquid-liquid extraction-based sensor exploiting the immiscibility of 1,2-dichloroethane and water. The reduction process was explored using a scan rate analysis to extract a diffusion coefficient of 6.67 x 10⁻⁶ cm/s, in agreement with literature values for similarly structured nitrate esters. Once further refined, these techniques may be extended to other explosives and combined with portable electrochemical hardware to bring real-time chemical information to soldiers and citizens alike.en_US
dc.description.sponsorshipUnited States. Army. Corps of Engineers.en_US
dc.description.tableofcontentsAbstract .................................................................................................................................... ii Figures ..................................................................................................................................... iv Preface ...................................................................................................................................... v 1 Introduction ...................................................................................................................... 1 1.1 Background ........................................................................................................ 1 1.2 Objectives ........................................................................................................... 2 1.3 Approach ............................................................................................................ 2 2 Experimental Methods .................................................................................................... 3 2.1 Materials ............................................................................................................ 3 2.2 Instrumentation ................................................................................................. 3 2.3 Electrochemical methodology and parameters ............................................... 3 3 Results and Discussion ................................................................................................... 5 3.1 Characterization and optimization of screen-printed electrodes ................... 5 3.2 Redox evaluation of model nitroaromatic compounds for matrix selection ....................................................................................................................... 9 3.3 Electropolymerization and characterization of polyaniline-modified sensors .......................................................................................................................11 3.4 Detection of DNAN using polyaniline-modified sensors ................................15 3.5 Assessment of DNAN/polyaniline molecularly imprinted polymer (MIP) sensor ...............................................................................................................19 3.6 Evaluation of PETN in liquid-liquid extraction amenable 1,2-dichloroethane .......................................................................................................... 22 4 Conclusions and Future work ....................................................................................... 27 References ............................................................................................................................. 29 Acronyms and Abbreviations ............................................................................................... 33 Report Documentation Page-
dc.format.extent43 pages / 3.21 MB-
dc.format.mediumPDF-
dc.language.isoen_USen_US
dc.publisherEngineer Research and Development Center (U.S.)en_US
dc.relation.ispartofseriesTechnical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC/EL TR-22-3-
dc.rightsApproved for Public Release; Distribution is Unlimited-
dc.sourceThis Digital Resource was created in Microsoft Word and Adobe Acrobat-
dc.subjectExplosives, Military--Environmental aspectsen_US
dc.subjectElectrochemical sensorsen_US
dc.subjectExplosives, Military--Residues--Detectionen_US
dc.subjectElectrolytic reductionen_US
dc.titleToward the electrochemical detection of 2,4-dinitroanisole (DNAN) and pentaerythritol tetranitrate (PETN)en_US
dc.typeReporten_US
Appears in Collections:Technical Report

Files in This Item:
File Description SizeFormat 
ERDC-EL TR-22-3.pdf3.21 MBAdobe PDFThumbnail
View/Open