Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/37618
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDonovan, Jordan T.en_US
dc.creatorInformation Technology Laboratory (U.S.)en_US
dc.date.accessioned2020-07-30T17:08:41Zen_US
dc.date.available2020-07-30T17:08:41Zen_US
dc.date.issued2020-07en_US
dc.identifier.govdocERDC/ITL MP-20-1en_US
dc.identifier.urihttps://hdl.handle.net/11681/37618en_US
dc.identifier.urihttp://dx.doi.org/10.21079/11681/37618en_US
dc.descriptionMiscellaneous Paperen_US
dc.description.abstractNeural networks (NNs) excel at solving several complex, non-linear problems in the area of supervised learning. A prominent application of these networks is image classification. Numerous improvements over the last few decades have improved the capability of these image classifiers. However, neural networks are still a black-box for solving image classification and other sophisticated tasks. A number of experiments conducted look into exactly how neural networks solve these complex problems. This paper dismantles the neural network solution, incorporating convolution layers, of a specific material classifier. Several techniques are utilized to investigate the solution to this problem. These techniques look at specifically which pixels contribute to the decision made by the NN as well as a look at each neuron’s contribution to the decision. The purpose of this investigation is to understand the decision-making process of the NN and to use this knowledge to suggest improvements to the material classification algorithm.en_US
dc.description.sponsorshipEngineer Research and Development Center (U.S.)en_US
dc.description.tableofcontentsABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Neural Networks and Visualization . . . . . . . . . . . . . . . . 1 1.2 Material Classification . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Neural Network Visualization . . . . . . . . . . . . . . . . . . . 5 2.2 Material Classification . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Material Databases . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Material Recognition . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Convolutional Neural Networks (CNNs) . . . . . . . . . . 15 3. METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4. EXPERIMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 Material Classifier Replication . . . . . . . . . . . . . . . . . . . 21 4.2 Neural Network Visualization . . . . . . . . . . . . . . . . . . . 24 4.3 In-depth Comparison of Material Classification Methods and Recommendations for Improvement . . . . . . . . . . . . . . . . . . 26 5. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1 Material Classifier Analysis . . . . . . . . . . . . . . . . . . . . 27 5.2 Visualization Tool Analysis . . . . . . . . . . . . . . . . . . . . 40 5.3 In-Depth Material Classification Technique Comparison . . . . . 45 5.3.1 Material Databases . . . . . . . . . . . . . . . . . . . . . 45 5.3.2 Material Features and Recognition Techniques . . . . . . . 54 5.3.3 Convolutional Neural Networks . . . . . . . . . . . . . . . 71 5.4 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 73 6. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82en_US
dc.format.extent100 pages / 27.53 MBen_US
dc.format.mediumPDF/Aen_US
dc.language.isoen_USen_US
dc.publisherEngineer Research and Development Center (U.S.)en_US
dc.relation.ispartofseriesMiscellaneous Paper (Information Technology Laboratory (U.S.)) ; no. ERDC/ITL MP-20-1en_US
dc.rightsApproved for Public Release; Distribution is Unlimiteden_US
dc.sourceThis Digital Resource was created in Microsoft Word and Adobe Acrobaten_US
dc.subjectNeural networks (Computer science)en_US
dc.subjectMachine learningen_US
dc.subjectComputer visionen_US
dc.subjectImage processingen_US
dc.subjectDigital images--Deconvolutionen_US
dc.subjectDeep visualizationen_US
dc.subjectImage segmentationen_US
dc.subjectObject detectionen_US
dc.subjectMaterial classificationen_US
dc.titleUnderstanding state-of-the-art material classification through deep visualizationen_US
dc.typeReporten_US
Appears in Collections:Miscellaneous Paper

Files in This Item:
File Description SizeFormat 
ERDC-ITL MP-20-1.pdfERDC/ITL MP-20-127.53 MBAdobe PDFThumbnail
View/Open