Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/36654
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAllen, Jeffrey B.-
dc.contributor.authorMoser, Robert D.-
dc.contributor.authorMcClelland, Zackery B.-
dc.contributor.authorKallivayalil, Jacob.-
dc.contributor.authorTekalur, Arjun.-
dc.date.accessioned2020-05-18T15:06:29Z-
dc.date.available2020-05-18T15:06:29Z-
dc.date.issued2020-05-
dc.identifier.govdocERDC TR-20-6-
dc.identifier.urihttps://hdl.handle.net/11681/36654-
dc.identifier.urihttp://dx.doi.org/10.21079/11681/36654-
dc.descriptionTechnical Report-
dc.description.abstractFor purposes relating to force protection through advancments in multiscale materials modeling, this report explores the use of the phase-field method for simulating microstructure solidification of metallic alloys. Specifically, its utility was examined with respect to a series of increasingly complex solidification problems, ranging from one dimensional, isothermal solidification of pure metals to two-dimensional, directional solidification of non-isothermal, binary alloys. Parametric studies involving variations in thermal gradient, pulling velocity, and anisotropy were also considered, and used to assess the conditions for which dendritic and/or columnar microstructures may be generated. In preparation, a systematic derivation of the relevant governing equations is provided along with the prescribed method of solution.en_US
dc.description.sponsorshipUnited States. Army. Corps of Engineers.en_US
dc.description.tableofcontentsAbstract .................................................................................................................................... ii Figures and Tables .................................................................................................................. iv Preface ...................................................................................................................................... v 1 Introduction ...................................................................................................................... 1 1.1 Background ........................................................................................................ 1 1.2 Objective............................................................................................................. 2 2 Model Derivation and Numerical Considerations ........................................................ 4 2.1 Generalized theory and preliminary considerations ....................................... 4 2.2 Generalized solidification equations: Isothermal binary alloys ...................... 4 2.3 Generalized solidification equations: Non-isothermal pure metals ............... 8 2.4 Generalized solidification equaitons: Directional solidification of binary alloys ................................................................................................................. 8 2.5 Techniques for numerical solution ................................................................... 9 3 Material Properties and Thermophyscial Data .......................................................... 12 4 Discussion and Results ................................................................................................. 13 4.1 Nonisothermal pure metals ........................................................................... 13 4.2 Isothermal binary alloys ..................................................................................15 4.2.1 Preliminary one-dimensional simulations ................................................................ 15 4.2.2 Two-dimensional simulations ................................................................................... 17 4.3 Directional solidification of binary alloys .......................................................19 5 Summary and Conclusions ........................................................................................... 23 References ............................................................................................................................. 24 Acronyms and Abbreviations ............................................................................................... 27 Report Documentation Page-
dc.format.extent35 pages / 3.03 MB-
dc.format.mediumPDF-
dc.language.isoen_USen_US
dc.publisherInformation Technology Laboratory (U.S.)en_US
dc.publisherGeotechnical and Structures Laboratory (U.S.)-
dc.publisherEngineer Research and Development Center (U.S.)-
dc.relation.ispartofseriesTechnical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC TR-20-6-
dc.rightsApproved for Public Release; Distribution is Unlimited-
dc.sourceThis Digital Resource was created in Microsoft Word and Adobe Acrobat-
dc.subjectMaterials--Technological innovationsen_US
dc.subjectManufacturing processesen_US
dc.subjectAlloys--Microstructureen_US
dc.subjectSolidificationen_US
dc.subjectMaterials--Mathematical modelsen_US
dc.subjectMaterials--Mathematical modelingen_US
dc.titlePhase-field simulations of solidification in support of additive manufacturing processesen_US
dc.typeReporten_US
Appears in Collections:Technical Report

Files in This Item:
File Description SizeFormat 
ERDC TR-20-6.pdf3.03 MBAdobe PDFThumbnail
View/Open