Please use this identifier to cite or link to this item:
https://hdl.handle.net/11681/36654
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Allen, Jeffrey B. | - |
dc.contributor.author | Moser, Robert D. | - |
dc.contributor.author | McClelland, Zackery B. | - |
dc.contributor.author | Kallivayalil, Jacob. | - |
dc.contributor.author | Tekalur, Arjun. | - |
dc.date.accessioned | 2020-05-18T15:06:29Z | - |
dc.date.available | 2020-05-18T15:06:29Z | - |
dc.date.issued | 2020-05 | - |
dc.identifier.govdoc | ERDC TR-20-6 | - |
dc.identifier.uri | https://hdl.handle.net/11681/36654 | - |
dc.identifier.uri | http://dx.doi.org/10.21079/11681/36654 | - |
dc.description | Technical Report | - |
dc.description.abstract | For purposes relating to force protection through advancments in multiscale materials modeling, this report explores the use of the phase-field method for simulating microstructure solidification of metallic alloys. Specifically, its utility was examined with respect to a series of increasingly complex solidification problems, ranging from one dimensional, isothermal solidification of pure metals to two-dimensional, directional solidification of non-isothermal, binary alloys. Parametric studies involving variations in thermal gradient, pulling velocity, and anisotropy were also considered, and used to assess the conditions for which dendritic and/or columnar microstructures may be generated. In preparation, a systematic derivation of the relevant governing equations is provided along with the prescribed method of solution. | en_US |
dc.description.sponsorship | United States. Army. Corps of Engineers. | en_US |
dc.description.tableofcontents | Abstract .................................................................................................................................... ii Figures and Tables .................................................................................................................. iv Preface ...................................................................................................................................... v 1 Introduction ...................................................................................................................... 1 1.1 Background ........................................................................................................ 1 1.2 Objective............................................................................................................. 2 2 Model Derivation and Numerical Considerations ........................................................ 4 2.1 Generalized theory and preliminary considerations ....................................... 4 2.2 Generalized solidification equations: Isothermal binary alloys ...................... 4 2.3 Generalized solidification equations: Non-isothermal pure metals ............... 8 2.4 Generalized solidification equaitons: Directional solidification of binary alloys ................................................................................................................. 8 2.5 Techniques for numerical solution ................................................................... 9 3 Material Properties and Thermophyscial Data .......................................................... 12 4 Discussion and Results ................................................................................................. 13 4.1 Nonisothermal pure metals ........................................................................... 13 4.2 Isothermal binary alloys ..................................................................................15 4.2.1 Preliminary one-dimensional simulations ................................................................ 15 4.2.2 Two-dimensional simulations ................................................................................... 17 4.3 Directional solidification of binary alloys .......................................................19 5 Summary and Conclusions ........................................................................................... 23 References ............................................................................................................................. 24 Acronyms and Abbreviations ............................................................................................... 27 Report Documentation Page | - |
dc.format.extent | 35 pages / 3.03 MB | - |
dc.format.medium | - | |
dc.language.iso | en_US | en_US |
dc.publisher | Information Technology Laboratory (U.S.) | en_US |
dc.publisher | Geotechnical and Structures Laboratory (U.S.) | - |
dc.publisher | Engineer Research and Development Center (U.S.) | - |
dc.relation.ispartofseries | Technical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC TR-20-6 | - |
dc.rights | Approved for Public Release; Distribution is Unlimited | - |
dc.source | This Digital Resource was created in Microsoft Word and Adobe Acrobat | - |
dc.subject | Materials--Technological innovations | en_US |
dc.subject | Manufacturing processes | en_US |
dc.subject | Alloys--Microstructure | en_US |
dc.subject | Solidification | en_US |
dc.subject | Materials--Mathematical models | en_US |
dc.subject | Materials--Mathematical modeling | en_US |
dc.title | Phase-field simulations of solidification in support of additive manufacturing processes | en_US |
dc.type | Report | en_US |
Appears in Collections: | Technical Report |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ERDC TR-20-6.pdf | 3.03 MB | Adobe PDF | ![]() View/Open |