Please use this identifier to cite or link to this item:
https://hdl.handle.net/11681/35753
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Skahill, Brian E. (Brian Edward) | - |
dc.contributor.author | Baggett, Jeffrey S. | - |
dc.date.accessioned | 2020-03-04T18:30:18Z | - |
dc.date.available | 2020-03-04T18:30:18Z | - |
dc.date.issued | 2020-03 | - |
dc.identifier.govdoc | ERDC/CHL TR-20-2 | - |
dc.identifier.uri | https://hdl.handle.net/11681/35753 | - |
dc.identifier.uri | http://dx.doi.org/10.21079/11681/35753 | - |
dc.description | Technical Report | - |
dc.description.abstract | Markov chain Monte Carlo (MCMC) methods are widely used in hydrology and other fields for posterior inference in a Bayesian framework. A properly constructed MCMC sampler is guaranteed to converge to the correct limiting distribution, but convergence can be very slow. While most research is focused on improving the proposal distribution used to generate trial moves in the Markov chain, this work instead focuses on efficiently finding an initial population for population-based MCMC samplers that will expedite convergence. Four case studies, including two hydrological models, are used to demonstrate that using multi-level single linkage implicit filtering stochastic global optimization to initialize the population both reduces the overall computational cost and significantly increases the chance of finding the correct limiting distribution within the constraint of a fixed computational budget. | en_US |
dc.description.sponsorship | Flood and Coastal Systems Research and Development Program (U.S.) | en_US |
dc.description.tableofcontents | Abstract ................................ ................................ ................................ ................................ .... ii Figures and Tables ................................ ................................ ................................ .................. iv Preface ................................ ................................ ................................ ................................ ...... v 1 Introduction ................................ ................................ ................................ ...................... 1 1.1 Background ................................ ................................ ................................ ........ 1 1.2 ObjectiveObjective................................ ................................ ................................ ............. 2 1.3 Approach ................................ ................................ ................................ ............ 4 2 Methods ................................ ................................ ................................ ............................ 5 2.1 Implicit filtering (IMFIL) ................................ ................................ ...................... 5 2.2 MultiMulti-level single linkage (MLSL) ................................ ................................ ...... 5 2.3 Markov chain Monte Carlo (MCMC) ................................ ................................ .. 7 2.4 MCMCMCMC -MLSLMLSL-IMFIL ................................ ................................ ............................. 8 3 Examples and Results ................................ ................................ ................................ ..... 9 3.1 Bimodal normal target ................................ ................................ ...................... 9 3.2 TwentyTwenty-component mixture normal target ................................ ..................... 14 3.3 Hydrologic model applications ................................ ................................ ....... 28 4 Discussion and Conclusions ................................ ................................ ......................... 30 References ................................ ................................ ................................ ............................. 38 Acronyms and Abbreviations ................................ ................................ ............................... 42 Report Documentation Page | - |
dc.format.extent | 50 pages / 887.4 Kb | - |
dc.format.medium | PDF/A | - |
dc.language.iso | en_US | en_US |
dc.publisher | Coastal and Hydraulics Laboratory (U.S.) | en_US |
dc.publisher | Engineer Research and Development Center (U.S.) | - |
dc.relation.ispartofseries | Technical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC/CHL TR-20-2 | - |
dc.rights | Approved for Public Release; Distribution is Unlimited | - |
dc.source | This Digital Resource was created in Microsoft Word and Adobe Acrobat | - |
dc.subject | Hydrologic models | en_US |
dc.subject | Markov processes | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Monte Carlo method | en_US |
dc.subject | Numerical analysis | en_US |
dc.title | A practical two-phase approach to improve the reliability and efficiency of Markov chain Monte Carlo directed hydrologic model calibration | en_US |
dc.type | Report | en_US |
Appears in Collections: | Technical Report |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ERDC-CHL TR-20-2.pdf | 887.49 kB | Adobe PDF | ![]() View/Open |