Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/35599
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarchant, Christian C.-
dc.contributor.authorKirkpatrick, Ryan W.-
dc.contributor.authorOber, David B.-
dc.date.accessioned2020-02-19T20:19:42Z-
dc.date.available2020-02-19T20:19:42Z-
dc.date.issued2020-02-
dc.identifier.govdocERDC/GRL TR-20-1-
dc.identifier.urihttps://hdl.handle.net/11681/35599-
dc.identifier.urihttp://dx.doi.org/10.21079/11681/35599-
dc.descriptionTechnical Report-
dc.description.abstractPhoton-sensitive mapping lidar systems are able to image at greater collection area rates and ranges than linear-mode systems. However, these systems also experience greater noise levels due to shot noise, image blur, and dark current, which must be filtered out before the imagery can be exploited. Described in this report is a synthetic test data set of imagery from a notional airborne Geiger-mode lidar. Also described is the Bridge Sign algorithm, which uses a least-squares technique for noise filtering. The algorithm’s performance was validated using synthetic test imagery of both a toy scene and of a realistic scene, which were generated using the parameters of a notional airborne Geiger-mode system. Analysis of the results shows the technique effectively removes noise and preserves fine details with good fidelity.en_US
dc.description.sponsorshipUnited States. Army. Corps of Engineers.en_US
dc.description.tableofcontentsAbstract ................................ ................................ ................................ ................................ .......................... ii Figures and Tables ................................ ................................ ................................ ................................ ........ iv Preface ................................ ................................ ................................ ................................ ............................. v 1 Introduction ................................ ................................ ................................ ................................ ............ 1 1.1 Background ................................ ................................ ................................ .................... 1 1.2 Objective ................................ ................................ ................................ ........................ 2 1.3 Approach ................................ ................................ ................................ ........................ 3 2 Coincidence Processing Approach ................................ ................................ ................................ ... 4 3 Validation Methodology ................................ ................................ ................................ ....................... 6 3.1 Artificial scene ................................ ................................ ................................ ............... 7 3.2 Real scene ................................ ................................ ................................ ................... 10 3.3 L1 generation process ................................ ................................ ................................ . 10 3.4 Realism of synthetic L L1 data ................................ ................................ ...................... 12 4 Coincidence Processing Steps ................................ ................................ ................................ ......... 14 4.1 Rasterization ................................ ................................ ................................ ................ 14 4.2 LeastLeast-squares filtering ................................ ................................ ................................ . 15 4.3 Surface finding ................................ ................................ ................................ ............ 16 5 Discussion ................................ ................................ ................................ ................................ ............ 18 6 Conclusion ................................ ................................ ................................ ................................ ............ 19 References ................................ ................................ ................................ ................................ ................... 20 Acronyms ................................ ................................ ................................ ................................ ...................... 22 Report Documentation Page-
dc.format.extent31 pages / 1.568 Mb-
dc.format.mediumPDF/A-
dc.language.isoen_USen_US
dc.publisherGeospatial Research Laboratory (U.S.)en_US
dc.publisherEngineer Research and Development Center (U.S.)-
dc.relation.ispartofseriesTechnical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC/GRL TR-20-1-
dc.rightsApproved for Public Release; Distribution is Unlimited-
dc.sourceThis Digital Resource was created in Microsoft Word and Adobe Acrobat-
dc.subjectOpticsen_US
dc.subjectAlgorithmsen_US
dc.subjectPhotonicsen_US
dc.subjectPhoton detectorsen_US
dc.subjectLighten_US
dc.subjectElectronic data processingen_US
dc.subjectLasersen_US
dc.subjectLidaren_US
dc.subjectMappingen_US
dc.subjectTopographyen_US
dc.subjectOptical radaren_US
dc.titleCoincidence processing of photon-sensitive mapping lidar dataen_US
dc.typeReporten_US
Appears in Collections:Technical Report

Files in This Item:
File Description SizeFormat 
ERDC-GRL TR-20-1.pdf1.61 MBAdobe PDFThumbnail
View/Open