Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/34693
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMitchell, Kenneth Ned.-
dc.contributor.authorDiJoseph, Patricia K.-
dc.contributor.authorChambers, Matthew.-
dc.contributor.authorKress, Marin M.-
dc.date.accessioned2019-11-21T15:51:41Z-
dc.date.available2019-11-21T15:51:41Z-
dc.date.issued2019-11-
dc.identifier.govdocERDC/CHL TR-19-21-
dc.identifier.urihttps://hdl.handle.net/11681/34693-
dc.identifier.urihttp://dx.doi.org/10.21079/11681/34693-
dc.descriptionTechnical Report-
dc.description.abstractFreight fluidity, defined here as travel time reliability or consistency, has important implications for many sectors of the national economy. Due to limited information, waterway fluidity has historically been difficult to measure. However, with time-stamped and geo-referenced vessel position reports now available through the U.S. Coast Guard Nationwide Automatic Identification System archives, it is possible to conduct detailed examinations of fluidity along most portions of the U.S. inland waterway system. This report presents case studies of waterway fluidity and seasonal trends for three heavily trafficked segments of the inland waterway system: the Upper Ohio River from the Port of Pittsburgh to the Ports of Cincinnati-Northern Kentucky (above the metropolitan Cincinnati, OH area), the Lower Mississippi River Main Stem from the Port of Metropolitan St. Louis to the Port of South Louisiana near New Orleans, LA, and the Gulf Intracoastal Waterway from the Port of Houston, TX, to the Port of South Louisiana near New Orleans, LA.en_US
dc.description.sponsorshipNavigation Systems Research Program (U.S.)en_US
dc.description.tableofcontentsAbstract .......................................................................................................................................................... ii Figures and Tables ........................................................................................................................................ iv Preface ............................................................................................................................................................. v 1 Introduction ............................................................................................................................................ 1 Background .............................................................................................................................. 1 Objective ................................................................................................................................... 1 Approach ................................................................................................................................... 1 2 Methods .................................................................................................................................................. 2 Data source .............................................................................................................................. 2 Key assumptions ...................................................................................................................... 2 Inland port overview ................................................................................................................. 3 Fluidity assessment 1: Corridor between Port of Pittsburgh and the Ports of Cincinnati-Northern Kentucky (Upper Ohio River) ...................................................................... 7 Fluidity assessment 2: Corridor between Port of Houston and Port of South Louisiana along the Gulf Intracoastal Waterway (GIWW) ........................................................ 10 Fluidity assessment 3: Corridor between Port of Metropolitan St. Louis and the Port of South Louisiana (Lower Mississippi River Main Stem) ................................................ 12 3 Summary Conclusion ......................................................................................................................... 16 References ................................................................................................................................................... 17 Unit Conversion Factors ............................................................................................................................18 Report Documentation Page-
dc.format.extent26 pages / 1.387 Mb-
dc.format.mediumPDF/A-
dc.language.isoen_USen_US
dc.publisherCoastal and Hydraulics Laboratory (U.S.)en_US
dc.publisherEngineer Research and Development Center (U.S.)-
dc.relation.ispartofseriesTechnical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC/CHL TR-19-21-
dc.rightsApproved for Public Release; Distribution is Unlimited-
dc.sourceThis Digital Resource was created in Microsoft Word and Adobe Acrobat-
dc.subjectGulf Intracoastal Waterwayen_US
dc.subjectHarborsen_US
dc.subjectInland navigationen_US
dc.subjectOhio Riveren_US
dc.subjectWaterwaysen_US
dc.subjectMississippi Riveren_US
dc.titleInland marine transportation system fluidity : Case studies from the Ohio River, Lower Mississippi River, and Gulf Intracoastal Waterwayen_US
dc.typeReporten_US
Appears in Collections:Technical Report

Files in This Item:
File Description SizeFormat 
ERDC-CHL TR-19-21.pdf1.42 MBAdobe PDFThumbnail
View/Open