Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/33481
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcClelland, Zackery B.-
dc.contributor.authorShannon, Jameson D.-
dc.contributor.authorMoser, Robert D.-
dc.contributor.authorAllen, Jeffrey B.-
dc.contributor.authorCarroll, Jasonen_US
dc.contributor.authorChaudhary, Anilen_US
dc.contributor.authorKallivayalil, Jacob-
dc.contributor.authorKillian, Mike-
dc.contributor.authorSchultheis, Benjamin-
dc.contributor.authorTekalur, Arjun-
dc.date.accessioned2019-07-24T18:04:01Z-
dc.date.available2019-07-24T18:04:01Z-
dc.date.issued2019-07-
dc.identifier.govdocERDC TR-19-9-
dc.identifier.urihttps://hdl.handle.net/11681/33481-
dc.identifier.urihttp://dx.doi.org/10.21079/11681/33481-
dc.descriptionTechnical Report-
dc.description.abstractThe report includes work conducted in a collaborative research and development program between Eaton Corporation and the U.S. Army Engineer Research and Development Center focused on novel multiscale modeling approaches to optimize metal additive manufacturing (AM) processes. The research focused on developing new lower-length scale thermal history predictions with microstructure to property relationships to computationally study a variety of manufacturing parameters and their correlation to defects generation and mechanical properties. Direct metal laser sintering (DMLS – a powder bed AM method) and directed energy deposition (DED – a blown powder AM method) were studied. The results indicated that the developed tools could rapidly predict optimal manufacturing parameters through fast running layer-by-layer thermal models of each respective AM process. Physical test specimens and prototypes were also produced as part of the study to aid in model calibration and validation through mechanical testing and microstructural characterization.en_US
dc.description.sponsorshipUnited States. Army. Corps of Engineers.en_US
dc.description.tableofcontentsAbstract .................................................................................................................................... ii Figures and Tables .................................................................................................................. iv Preface ..................................................................................................................................... x Unit Conversion Factors ........................................................................................................ xi 1 Introduction ...................................................................................................................... 1 1.1 Objective ............................................................................................................ 1 1.2 Report layout ...................................................................................................... 1 2 Direct Metal Laser Sintering (DMLS) ............................................................................. 2 2.1 Distortion ............................................................................................................ 2 Numerical prediction approaches .............................................................................. 2 Proposed numerical method ...................................................................................... 3 Experimental validation ............................................................................................ 15 2.2 Residual stress ................................................................................................ 27 Numerical method .................................................................................................... 27 Preliminary validation ............................................................................................... 28 2.3 Porosity mitigation ........................................................................................... 31 Numerical framework for porosity mitigation .......................................................... 31 Design of Experiments (DOE) ................................................................................... 46 Experimental validation ............................................................................................ 62 2.4 Heterogeneity in microstructure .................................................................... 90 Background ............................................................................................................... 90 Types of microstructural heterogeneity ................................................................... 92 Control of microstructural heterogeneity ................................................................. 93 Numerical method for heterogeneity prediction ..................................................... 94 Experimental validation for minimization of nonuniformity of microstructure for alloy AlSi10Mg ............................................................................................ 99 2.5 Conclusions ................................................................................................... 108 3 Directed Energy Deposition ....................................................................................... 109 3.1 Manufacturing setup .................................................................................... 109 3.2 Plate configurations ..................................................................................... 111 Layered plates ......................................................................................................... 111 Functionally graded plates ..................................................................................... 114 3.3 Selected parameters, results, and key conclusions ................................... 123 References .......................................................................................................................... 133 Report Documentation Page-
dc.format.extent148 pages / 36.72 Mb-
dc.format.mediumPDF-
dc.language.isoen_USen_US
dc.publisherGeotechnical and Structures Laboratory (U.S.)en_US
dc.publisherInformation Technology Laboratory (U.S.)-
dc.publisherEngineer Research and Development Center (U.S.)-
dc.relation.ispartofseriesTechnical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC TR-19-9-
dc.rightsApproved for Public Release; Distribution is Unlimited-
dc.sourceThis Digital Resource was created in Microsoft Word and Adobe Acrobat-
dc.subjectAdditive manufacturingen_US
dc.subjectModelingen_US
dc.subjectDMLAen_US
dc.subjectDEDen_US
dc.subjectMetalsen_US
dc.subject3-D printingen_US
dc.subjectMicrostructureen_US
dc.subjectLaser sinteringen_US
dc.titleAdditive manufacturing of metallic materials with controlled microstructures : multiscale modeling of direct metal laser sintering and directed energy depositionen_US
dc.typeReporten_US
Appears in Collections:Technical Report

Files in This Item:
File Description SizeFormat 
ERDC TR-19-9.pdf37.61 MBAdobe PDFThumbnail
View/Open