Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/32980
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChandler, Mei Qiang, 1968--
dc.contributor.authorLawrimore, William B.-
dc.contributor.authorEdwards, Micael C.-
dc.contributor.authorShannon, Jameson D.-
dc.contributor.authorO'Daniel, James L.-
dc.date.accessioned2019-06-10T15:46:22Z-
dc.date.available2019-06-10T15:46:22Z-
dc.date.issued2019-05-
dc.identifier.govdocERDC/GSL TR-19-25-
dc.identifier.urihttps://hdl.handle.net/11681/32980-
dc.identifier.urihttp://dx.doi.org/10.21079/11681/32980-
dc.descriptionTechnical Report-
dc.description.abstractCementitious materials such as concrete are intrinsically heterogeneous and include internal structures and constituents across length scales ranging from nanometers to millimeters. These materials are widely used as protective materials for military applications. They need not only to withstand conventional quasi-static loadings but also to defeat extreme loadings such as high-rate blast, impact, and penetration. To fully explore the design and application of these materials in war-fighting efforts, it is essential to understand the deformation and failure mechanisms of multiscale internal structures and constituents under different loading conditions. Mesoscale structures and constituents of cementitious materials include mesoscale particles such as aggregates, sand, fibers, mesoscale porosities, and cracks. Several numerical methods have been developed to investigate the deformation and failure mechanisms of mesoscale structures and constituents under different loading conditions. In this report, we explored the Lattice Discrete Particle Method (LDPM) and the Finite Element Method (FEM). The work provides some basic knowledge on these methods and aids in formulating a path forward in the next phase of the research.en_US
dc.description.sponsorshipUnited States. Army. Corps of Engineers.en_US
dc.description.tableofcontentsAbstract ................................................................................................................................................... ii Contents ................................................................................................................................................. iii Figures and Tables ................................................................................................................................. iv Preface ..................................................................................................................................................... v Unit Conversion Factors ........................................................................................................................ vi 1 Introduction ..................................................................................................................................... 1 1.1 Background .................................................................................................................... 1 1.2 Objective ........................................................................................................................ 3 2 Mesoscale Modeling with LDPM .................................................................................................. 4 2.1 Basic LDPM theory ........................................................................................................ 4 2.2 Model setup ................................................................................................................... 7 2.3 Results and discussion ............................................................................................... 10 3 Mesoscale Modeling with the FEM ............................................................................................ 17 3.1 Finite-element mesh generation................................................................................. 17 3.1.1 Primitive geometry approach ................................................................................... 17 3.1.2 Direct translation from hydration simulations approach ........................................ 20 3.2 Material model and boundary conditions .................................................................. 23 3.3 Results and discussion ............................................................................................... 24 4 Summary and Future Work.......................................................................................................... 25 References ............................................................................................................................................ 27 Report Documentation Page-
dc.format.extent39 pages / 3.869 Mb-
dc.format.mediumPDF-
dc.language.isoen_USen_US
dc.publisherGeotechnical and Structures Laboratory (U.S.)en_US
dc.publisherEngineer Research and Development Center (U.S.)-
dc.relation.ispartofseriesTechnical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC/GSL TR-19-25-
dc.rightsApproved for Public Release; Distribution is Unlimited-
dc.sourceThis Digital Resource was created in Microsoft Word and Adobe Acrobat-
dc.subjectConcreteen_US
dc.subjectMechanical propertiesen_US
dc.subjectMesoscale modelingen_US
dc.subjectLattice Discrete Particle Modeling (LDPM)en_US
dc.subjectFinite Element Modeling (FEM)en_US
dc.subjectConstitutive lawsen_US
dc.subjectCement compositesen_US
dc.subjectMaterials scienceen_US
dc.subjectFinite element methoden_US
dc.titleMesoscale modeling of cementitious materials : phase Ien_US
dc.typeReporten_US
Appears in Collections:Technical Report

Files in This Item:
File Description SizeFormat 
ERDC-GSL TR-19-25.pdf3.96 MBAdobe PDFThumbnail
View/Open