Please use this identifier to cite or link to this item:
https://hdl.handle.net/11681/32749
Title: | Numerical simulation of biological structures : paddlefish rostrum |
Authors: | Acosta, Felipe J. Riveros, Guillermo A. Patel, Reena R. Hodo, Wayne D. |
Keywords: | Paddlefish Computational mechanics Rostrum Bio-inspired materials Bones Plankton Numerical analysis--Data processing Hydrodynamics |
Publisher: | Information Technology Laboratory (U.S.) Geotechnical and Structures Laboratory (U.S.) Engineer Research and Development Center (U.S.) |
Series/Report no.: | Technical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC TR-19-7 |
Abstract: | The rostrum of a Paddlefish is used as an antenna to detect electrostatic impulses emitted by plankton and also for hydrodynamic stability while feeding. The rostrum is formed by a network of cartilage, tissue, and interlocking star shaped bones called stellate bones. The objective of this work is to study the load transfer mechanisms of the rostrum bone structure. Steel with elastic-plastic behavior is considered in this study as a basic homogeneous material to evaluate the performance of four models using the following elements: first-order reduced integration, first-order full integration, second-order reduced integration, and second-order full integration. From the study is found that second-order formulation resulted in lower structural stiffness as seen by higher displacements and stresses than using first-order formulated elements. Von Mises stresses as well as global stresses along the rostrum and at a particular location and bones were extracted and compared for the second-order-reduced integration model. |
Description: | Technical Report |
Gov't Doc #: | ERDC TR-19-7 |
Rights: | Approved for Public Release; Distribution is Unlimited |
URI: | https://hdl.handle.net/11681/32749 http://dx.doi.org/10.21079/11681/32749 |
Size: | 60 pages / 21.70 Mb |
Types of Materials: | |
Appears in Collections: | Technical Report |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ERDC TR-19-7.pdf | 22.22 MB | Adobe PDF | ![]() View/Open |