Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/31594
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Byung J. (Byung Joo)-
dc.contributor.authorCha, Daniel K.-
dc.contributor.authorSong, June S. (June Sup)-
dc.contributor.authorConstruction Engineering Research Laboratory (U.S.)-
dc.date.accessioned2019-01-28T17:23:49Z-
dc.date.available2019-01-28T17:23:49Z-
dc.date.issued1995-09-
dc.identifier.govdocUSACERL Technical Report 95/44-
dc.identifier.urihttp://hdl.handle.net/11681/31594-
dc.descriptionTechnical Reporten_US
dc.description.abstractArmy industrial sludge may be classified as a hazardous waste when it contains oil and grease, metals, and energetic compounds. It is difficult to treat this hazardous waste according to regulatory requirements at a reasonable cost using conventional sludge treatment methods. Biologic separation/treatment of metals from industrial sludge has been identified as a possible alternative to conventional technologies for treating industrial sludge. Biologic treatment of sludge uses naturally occurring biochemical reactions in which pollutants can be used as resources. The process offers a low-cost, highly efficient alternative to existing sludge treatment methods. This report summarizes a literature review that examined the development and status of biotechnology to separate and treat metals in sludge and wastewater.en_US
dc.description.sponsorshipThis study was conducted for Headquarters, U.S. Army Corps of Engineers (HQUSACE) under Project 4Al62720D048, "Industrial Operations Pollution Control Technology"; Work Unit UZ3, "Sludge Treatment at AMC Installations."en_US
dc.description.tableofcontentsSF 298 ............................................................ 1 Foreword .......................................................... 2 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Background· .................................................... 5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Approach ...................................................... 6 Mode of Technology Transfer ....................................... 6 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Microbial Leaching of Heavy Metals From Contaminated Solids . . . . . . . . . . . 7 Metabolic Mechanism of Bioleaching ............................... ; . . 7 Microbiology of Iron-Oxidizing Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Physiology of Metal-Leaching Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Metal Resistance of the Microbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Parameters Affecting Bacterial Leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Bioleaching of Metals From Anaerobically Digested Biosolids . . . . . . . . . . . . . . . . 15 Cited References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Uncited References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Microbial Sorptlon of Heavy Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Binding of Metals to Cell Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Immobilization of Metals by Extracellular Compounds: Removal of Metals From Wastewater in the Activated Sludge Process . . . . . . . . . . . . . . . . . . . . . . . 29 AlgaSORB® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 30 Cited References ............................................... 31 Uncited References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Microbial Precipitation of Heavy Metals Under Sulfate-Reducing Conditions . 35 Sulfide Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Sulfate-Reducing Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Biological Metal Sulfide Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Reduction of Hexavalent Chromium Under Sulfate-Reducing Condition . . . . . . . . 39 Cited References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Uncited References . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Distribution-
dc.format.extent48 pages / 4.282Mb-
dc.format.mediumPDF/A-
dc.language.isoen_USen_US
dc.publisherConstruction Engineering Research Laboratories (U.S.)en_US
dc.relation.ispartofseriesTechnical Report (Construction Engineering Research Laboratories (U.S.));no. 95/44-
dc.rightsApproved for public release; distribution is unlimited-
dc.sourceThe ERDC Library created this digital resource using one or more of the following: Zeta TS-0995, Zeutcehl OS 12000, HP HD Pro 42-in. map scanner, Epson flatbed-
dc.subjectHazardous wastes--Biodegradationen_US
dc.subjectHeavy metals--Environmental aspectsen_US
dc.titleBiotechnology to Separate and Treat Metals in Sludge and Wastewater : A Literature Reviewen_US
dc.typeReport-
Appears in Collections:Technical Report

Files in This Item:
File Description SizeFormat 
USACERL Technical Report 95-44.pdf4.39 MBAdobe PDFThumbnail
View/Open