Please use this identifier to cite or link to this item:
https://hdl.handle.net/11681/31239
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vance, Samuel J. | - |
dc.contributor.author | Richards, Matthew E. | - |
dc.contributor.author | Walters, Matthew C. | - |
dc.date.accessioned | 2019-01-07T16:39:51Z | - |
dc.date.available | 2019-01-07T16:39:51Z | - |
dc.date.issued | 2018-12 | - |
dc.identifier.govdoc | ERDC/CERL TR-18-39 | - |
dc.identifier.uri | http://hdl.handle.net/11681/31239 | - |
dc.identifier.uri | http://dx.doi.org/10.21079/11681/31239 | - |
dc.description | Technical Report | - |
dc.description.abstract | Management of the extensive U.S. Army roof portfolio increasingly relies on intelligent, data-driven decisions in a resource-limited environment. Roof leaks constitute millions of dollars in damage to equipment, insulation, and other assets, and can be the source for mold and other human environmental hazards. In recent years, thermographic imaging has been used as a nondestructive means to detect the location of wet insulation in low-pitched roofs. Traditional acquisition methods of nondestructive roof leak detection include handheld rooftop inspection and aerial imaging by conventional, manned aircraft. Through the advent and maturation of un-manned aircraft system (UAS) technology, nondestructive thermographic inspections are a viable alternative to traditional thermographic data acquisition methods. This report concludes that the use of a UAS for roof leak detection is a cost-effective and efficient alternative to other inspec-tion methods, and it gives recommendations for the U.S. Army’s use of the technology. | en_US |
dc.description.sponsorship | United States. Department of the Army. Office of the Assistant Chief of Staff for Installation Management. | en_US |
dc.description.sponsorship | Installation Technology Transfer Program (U.S.) | - |
dc.description.tableofcontents | Abstract ................................................................................................................................... iii Figures and Tables ................................................................................................................. vii Preface ...................................................................................................................................viii Unit Conversion Factors ........................................................................................................ ix Abbreviations ........................................................................................................................... x 1 Introduction ...................................................................................................................... 1 1.1 Background ........................................................................................................ 1 1.2 Objectives ........................................................................................................... 1 1.3 Approach ............................................................................................................ 1 2 Roof Leak Detection Using Thermal Imaging............................................................... 3 2.1 Science of roof leak detection via thermal imaging ........................................ 3 2.2 Traditional thermal roof imaging acquisition ................................................... 4 2.3 Unmanned aircraft system thermal imaging ................................................... 5 3 Equipment for UAS Thermal Imaging ............................................................................ 6 4 Assessments at ERDC-CERL .......................................................................................... 8 5 Assessments at Fort Leonard Wood ............................................................................ 10 6 Comparison of Thermal Roof Leak Detection Methods and Feasibility for Use by Department of Army .......................................................................................... 12 6.1 Efficacy ............................................................................................................ 12 6.2 Efficiency .......................................................................................................... 14 6.3 Safety ................................................................................................................15 6.4 Cost comparison .............................................................................................. 17 6.5 Conclusion ...................................................................................................... 18 7 Outline of Implementation Plan for Army Installations ............................................. 19 7.1 An Army UAS roof-leak detection team ...........................................................19 7.2 Discussion ........................................................................................................ 21 8 Recommendations for Future Research ..................................................................... 22 8.1 Evaluation of UAS as replacement ................................................................ 22 8.2 Discovery of other UAS applications .............................................................. 22 8.3 Development of UAS toolkit ........................................................................... 22 9 Unmanned Aircraft System Flight Approval Process ................................................ 23 9.1 Standing operating procedure development ................................................. 24 9.2 System Safety Management Plan development ........................................... 25 9.3 Operational Risk Acceptance Letter .............................................................. 25 9.4 Material Risk Acceptance Letter (UAS model-specific) ................................ 25 9.5 Restricted airspace ......................................................................................... 25 References ............................................................................................................................. 26 Appendix A: Arduino Source Code ...................................................................................... 27 Appendix B: Raspberry Pi, Flir Camera Control Source Code ......................................... 31 Appendix C: Flir Thermal Camera Commands .................................................................. 34 Appendix D: Standing Operating Procedure Template/Sample for Unmanned Aircraft System Army Flight Approval .......................................................................... 37 Appendix E: System Safety Management Plan Template/Sample ................................ 79 1. Introduction ....................................................................................................................... 82 1.1 Purpose ................................................................................................................ 82 1.2 References ........................................................................................................... 82 1.3 Scope ................................................................................................................... 83 1.4 System Safety Program Goal............................................................................... 83 1.5 Policy ................................................................................................................... 83 1.6 Definitions ........................................................................................................... 84 1.7 Acronyms............................................................................................................. 85 2. Organizations and Responsibilities ................................................................................. 87 2.1 General ................................................................................................................. 87 2.2 Integration of Associated Disciplines ................................................................... 87 2.3 Responsibility ....................................................................................................... 87 2.3.1 Program Manager .............................................................................................................. 87 2.3.2 Safety Manager .................................................................................................................. 88 2.3.3 Aviation and Missile Research, Development, and Engineering Center (AMRDEC): ................................................................................................................................ 90 2.3.4 Contractor System Safety Support ...................................................................................... 90 3. Risk Management ............................................................................................................. 90 3.1 Hazard Severity Categories ................................................................................. 90 3.2 Hazard Probability Levels .................................................................................... 91 3.3 Risk Assessment Code (RAC) ............................................................................ 92 3.4 Risk Resolution ................................................................................................... 93 3.5 Risk Acceptance .................................................................................................. 95 3.6 Hazard Tracking .................................................................................................. 96 Appendix F: Operational Risk Assessment and Acceptance Memo Template (unformatted) ............................................................................................................... 105 Appendix G: Material Risk Assessment Memo Template ............................................. 108 Report Documentation Page | - |
dc.format.extent | 123 pages / 5.991 Mb | - |
dc.format.medium | PDF/A | - |
dc.language.iso | en_US | en_US |
dc.publisher | Construction Engineering Research Laboratory (U.S.) | en_US |
dc.publisher | Engineer Research and Development Center (U.S.) | en_US |
dc.relation.ispartofseries | Technical Report (Engineer Research and Development Center (U.S.)) ; no. ERDC/CERL TR-18-39 | - |
dc.rights | Approved for Public Release; Distribution is Unlimited | - |
dc.source | This Digital Resource was created in Microsoft Word and Adobe Acrobat | - |
dc.subject | Drone aircraft | en_US |
dc.subject | Remote sensing | en_US |
dc.subject | Thermography | en_US |
dc.subject | Roofing | en_US |
dc.subject | Military bases | en_US |
dc.title | Evaluation of roof leak detection utilizing unmanned aircraft systems equipped with thermographic sensors | en_US |
dc.type | Report | en_US |
Appears in Collections: | Technical Report |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ERDC-CERL TR-18-39.pdf | 6.14 MB | Adobe PDF | ![]() View/Open |