Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/30742
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchwartz, J.-
dc.contributor.authorTaylor, William R.-
dc.contributor.authorConstruction Engineering Research Laboratory (U.S.)-
dc.contributor.authorBurkhardt, Earle Edmund-
dc.date.accessioned2018-12-06T20:09:34Z-
dc.date.available2018-12-06T20:09:34Z-
dc.date.issued1996-01-
dc.identifier.govdocUSACERl Technical Report 96/41-
dc.identifier.urihttp://hdl.handle.net/11681/30742-
dc.descriptionTechnical Reporten_US
dc.description.abstractMost Army installations purchase electricity from local utilities and pay an additional charge for peak demand. If the peak demand can be reduced, installations can realize significant cost savings. This research investigated the technical and economic issues associated with constructing a small scale superconducting magnetic energy storage (SMES) system for reducing peak demand at Army installations. Analyses included magnetic design parameters, and costs of materials currently available and those being developed. Although advanced materials could reduce costs by as much as 45 percent, current SMES technology is still too costly for use at Army installations. Technological advances and future wide-spread use of SMES systems may reduce costs to the point where this alternative would he practical.en_US
dc.description.sponsorshipThis study was conducted for U.S. Army Center for Public Works under Project 4A162784AT45, "Energy and Energy Conservation"; Work Unit EB-XP2, "Retrofit Technology for Electrical Energy Conservation." The technical monitor was S. Baidoo, CECPW-E.en_US
dc.description.tableofcontentsSF 298 ............................................................ 1 Foreword .......................................................... 2 List of Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Background .................................................... 7 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Approach ...................................................... 7 Mode of Technology Transfer ....................................... 8 2 Storing Off Peak Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pumped Hydroelectric Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Battery Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Compressed Air Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Superconducting Magnetic Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Superconducting Magnet Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Magnet Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Superconductor Critical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Quench Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 AC Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Electromagnetic Forces ............................................ 26 4 Superconducting Magnet Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Superconductors ............................... : . . . . . . . . . . . . . . . . 29 Stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Structural Metals ................................................ 31 Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 Toroidal SMES Analysis ......................................... 35 Magnetic Field and Radius at Constant Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Cost Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Identification of Base Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Future Technologies ............................................. 44 6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Summary ..................................................... 52 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-
dc.format.extent64 pages / 5.352Mb-
dc.format.mediumPDF/A-
dc.language.isoen_USen_US
dc.publisherConstruction Engineering Research Laboratories (U.S.)en_US
dc.relation.ispartofseriesTechnical Report (Construction Engineering Research Laboratories (U.S.));no. 96/41-
dc.rightsApproved for public release; distribution is unlimited-
dc.sourceThe ERDC Library created this digital resource using one or more of the following: Zeta TS-0995, Zeutcehl OS 12000, HP HD Pro 42-in. map scanner, Epson flatbed-
dc.subjectSuperconductorsen_US
dc.subjectEnergy storageen_US
dc.subjectMilitary basesen_US
dc.titlePreliminary Investigation of Small Scale Superconducting Magnetic Energy Storage (SMES) Systemsen_US
dc.typeReport-
Appears in Collections:Technical Report

Files in This Item:
File Description SizeFormat 
USACERL Technical Report 96-41.pdf5.48 MBAdobe PDFThumbnail
View/Open