Please use this identifier to cite or link to this item: https://hdl.handle.net/11681/2891
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEllingwood, Bruce R.en_US
dc.contributor.authorMcAllister, Thereseen_US
dc.coverage.spatialname=John Hollis Bankhead Lock and Dam; north=33.4582; west=87.3567en_US
dc.coverage.spatialname=New Cumberland Locks and Dam; North=40.525066; west=80.62480en_US
dc.creatorNational Institute of Standards and Technology (U.S.). Materials and Construction Research Divisionen_US
dc.creatorGeorgia Institute of Technology. School of Civil Engineeringen_US
dc.creatorInformation Technology Laboratory (U.S.)en_US
dc.date.accessioned2016-03-15T15:20:26Zen_US
dc.date.available2016-03-15T15:20:26Zen_US
dc.date.issued2006-04en_US
dc.identifier.govdocERDC/ITL CR-06-1en_US
dc.identifier.urihttp://hdl.handle.net/11681/2891en_US
dc.descriptionContract Reporten_US
dc.description.abstractThe lock and dam system along the inland waterways of the United States is vital to the transportation of agriculture and industrial goods. The U.S. Army Corps of Engineers is responsible for providing reliable and uninterrupted operation of the locks within allocated funds. The Corps is working to develop rational policies based on life cycle costs and risk management for in-service inspection, maintenance, and repair. Many of the locks built in the early part of this century are degrading and are frequently inspected and repaired. The time-varying failure probability of a lock is an essential part of evaluating the lifetime costs and risk of the system. This research presents improved methods for performing condition assessment and forecasting the reliability of welded steel miter gate structural systems during future service periods. Miter gates from two operating locks were chosen for study, the John Hollis Bankhead locks in Alabama and the New Cumberland locks in Ohio, for which supporting field data were available to validate the proposed methods. Mathematical models describing time-dependent fatigue damage to the miter gates are presented, and statistical data supporting these models are summarized. The analysis of miter gate fragility is described, with discussion of how fragilities provide insights into the nature of the structural system performance under specified hazards. Miter gate reliability was estimated for the fatigue limit state, including the effects of fabrication quality, flaw detection, and inspection intervals. NOTE: This file is large. Allow your browser several minutes to download the file.en_US
dc.description.sponsorshipPrepared for U.S. Army Corps of Engineers, Washington, DC 20314-1000en_US
dc.description.tableofcontentsIntroduction .................................. .................................................................. .. 1 1.1 Background ........................ .... ... ............ ..... ................................................ 1 1.2 Assessment of Analysis Methods for Miter Gate Performance and Fatigue Damage .... ............................................................................... ...... 5 1.2.1 Structural Analyses and Behavior .................................................... 5 1 .2 .2 Fatigue and Crack Growth Models ....................................... ........... 6 1.2.3 Welding Effects on Fatigue .................................... ............... ........... ? 1.2.4 Field Inspections and Nondestructive Testing and Evaluation ........ 7 1.2.5 Reliability Methods .......................................................................... 8 1.3 Critical Appraisal ............... .......... .............................................................. 9 1.4 Objective and Scope .. .................................. .................................... ........ 11 1.5 Outline ofReport ................... ... ............................................................... ll 2-Miter Gate Design, Fabrication and Inspection ........................................ ...... 13 2.1 Design Loads for Miter Gates ........................................... ....................... 13 2.1.1 Gravity Loads ...... ........................................................... ................ 14 2.1.2 Operating Strut Loads and Hydrodynamic Loads .......................... 14 2.1.3 Hydrostatic Load ... ............. ..... ............................. .......................... 14 2.1.4 Vessel Impact Loads ..... ...................................... .. ......................... 15 2.10 Environmental Loads ....... ... .................................... ....................... 16 2.1 .6 Load Combinations ................ ................................ ... ..................... 16 2.2 Miter Gate Structural Characteristics ....................................................... 17 2.2.1 Horizontally Framed Miter Gate Designs ................ .................... .. 17 2.2.2 Miter Gate Fabrication ............................ ..... ............. ..................... 19 2.2.3 Structural Degradation and Inspection ........................................... 19 2.2.4 Miter Gates Selected for Analysis .................................................. 20 2.2.5 Summary ..................... ................................................. ... ........ ....... 22 3-Miter Gate Limit States .................. ................................................. ... .. .......... 24 3.1 Lim it States from Structural Design and Performance History ............... 24 3.2 Serviceability Limit States ......................... ................. ............................. 25 3.3 Strength Limit States .... ........................................................................... 27 3.4 Lim it States Assessment ........................................... ................. .............. 29 4-Structural Modeling and Analysis of Miter Gates ....... .................................. .31 4.1 Miter Gate Finite Element Model Development and Validation ............. 33 4.1 .1 John Hollis Bankhead Lock Gates, Alabama ...... .......................... .3 5 4.1.2 New Cumberland Lock Gates, Ohio .......................... ................... .41 4.2 Weld Detail at Gusset Plate and Girder Flanges ...................................... 44 4.2.1 Fillet Welded Cover Plate Detail.. .................................................. 44 4.2.2 Groove Weld Detail. ...................................................................... .48 4.3 Review of Miter Gate Limit States and Structural Behavior ................... 50 5- Analysis ofCrack Growth in Weld Details .................................................... 51 5.1 Rate of Crack Growth Observed in Gates ................................................ 51 5.2 Prediction ofF atigue Life with S-N Curves ......... .................. ................. 51 5 .2.1 Characteristics ofF atigue Cracking ............................................... 51 5.2.2 Stress Range for Compressive Stresses .............. .. .......................... 52 5.2.3 Predicting Weld Detail Fatigue Life with S-N Curves ...... ............. 53 5.3 Modeling Stochastic Crack Growth with Fracture Mechanics ................ 56 5.3 .1 Stochastic CPack Propagation ................................... ...................... 56 5.3 .2 Crack Growth Parameters ................................... ............................ 59 5.3 .3 Crack Growth Model Validation .......................................... ... ... .... 64 5 .3 .4 Crack Growth in Miter Gates ............... .... .. .................................... 69 5 .. 4 Summary ......................... ..................................................... ........ .............. 78 6-Miter Gate System Reliability Analysis ...... .......................... ......................... 79 6.1 Fragility Analysis ..................................................................................... 80 6.1.1 Fragility of Fatigue Limit State Conditional on Flaw Size ............ 82 6.1.2 Modeling Flaw Size ............................................ ........... ................ 85 6.2 Failure Probability Measures and Targets .............. .... ............................. 89 6.3 Probability of Failure for Fatigue Limit State ..................................... .. ... 92 6.4 Role of In-Service Inspection and Maintenance Scheduling .... ... .......... .. 96 ?-Conclusions and Recommendations ........... ............ ... ....... ..... ........... .............. 98 7.1 Summary and Conclusions .......................................... ........... .... ......... .... 98 7.2 Recommendations for Enhancing Miter Gate Performance ... ............... 1 01 8- References ................. .................... ............................................................... 1 04 Appendix A- Photographs and Field Data from New Cumberland Miter Gates on the Ohio River ................................................................................ A 1 Appendix B-Photographs and Field Data from John Hollis Bankhead Miter Gates ............................................................................................................. B1 SF 298 List of Figures Figure 1.1 Figure 1.2 Figure 1.3 Figure 1.4 Map of Lock Locations ....................... .... ..................................... 1 Hydrostatic Load Sequence During Lockage .............................. .3 Miter Gate Boundary Conditions ................................................ .4 Miter Gate Components ... ............................................................ 5 Figure 1.5 Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 Figure 3.1 Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8 Figure 4.9 Figure 4.10 Figure 4.11 Figure 5.1 Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5 Figure 5.6 Figure 5.7 Figure 5.8 Residual Stresses in a Butt-Welded Plate ..................................... & Hydrostatic Loads on a Miter Gate Vertical Cross Section ...... ..................... .......................................... .................... 15 Warping Behavior in Miter Gates ..................... ............. ............ 18 New Cumberland Miter Gate ..................................... ................ 21 John Hollis Bankhead Miter Gate .............................................. 22 Miter Contact Offsets ... .............................................................. 26 Bent Grid Model. ....... ..... ... ................. .................................. ...... 33 Boundary Conditions for Open and Mitered Configurations ............... ............................................. ................ 34 John Hollis Bankhead Strain Gage Locations .... ....................... .36 Plot of Computed vs. Measured Strains at John Hollis Bankhead Midspan G 5 ............. ........ ................ ........ ................. .3 8 Plot of Computed vs. Measured Strains at John Hollis Bankhead Quoin G8 ................................................................... 39 Plot of Computed vs. Measured Strains at John Hollis Bankhead Midspan G8 .................................................. ............ .40 Plot of Computed vs. Measured Strains at John Hollis Bankhead Miter G8 ...... ...... ... ..... ............................................... .41 Plot of Computed vs. Measured Strains at John Hollis Bankhead Midspan G 12 ............................. .............. ................. .42 Finite Element Model of Cover Plate Fillet Weld Detail .......... .46 Groove Weld Contact Angle ..... ......... ...... ..... ....... ........ ....... ...... .49 Finite Element Model of flange Transition Groove Weld Detail .......................................................................................... 50 AASHTO S-N Curves ................. ....................... ...... .................. 53 S-N Curve for Beams with Welded Cover Plates ...................... 54 Category E or E' Cover Plate Detai I .......................................... 55 Category E orE' Wide Cover Plate Detai1.. ............................... 55 Category B Transverse Groove Weld Straight Transition ......... 55 Category C Transverse Groove Weld Flange Splice .... ..... ......... 55 Geometric Stress Concentration Factor ...................................... 62 Weld Imperfections ..... .. ............................................................. 62 Figure 5.9 Figure 5.10 Figure 5.11 Figure 5.12 Figure 5.13 Figure 5.14 Figure 5.15 Figure 5.16 Figure 5.17 Figure 5.18 Figure 5.19 Figure 5.20 Figure 5.21 Figure 5.22 Figure 5.23 Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4 Figure 6.5 Figure 6.6 Probability Density Functions of Initial Flaws .................. ......... 64 Validation of Crack Growth Model with Mean SCF and Initial Flaw Depth .............................................................. ......... 65 Validation of Crack Growth Model with SCF = 3.0 and Lognormal Initial Flaw Depth Distribution ....................... ......... 66 Validation of Crack Growth Model with SCF = 3.0 and Exponential Initial Flaw Depth Distribution .............................. 67 Validation of Crack Growth Model with SCF = 4.0 and Lognormal Initial Flaw Depth Distribution .............................. .. 68 Validatio~ of Crack Growth Model with SCF = 4.0 and Exponential Initial Flaw Depth Distribution ........ ...... ................ 69 New Cumberland Miter Gate Fatigue Life for Initial Flaw Depth of 0.12 mm (0.0048 in) .................. ........ .............. ... 70 New Cumberland Miter Gate Fatigue Life for Initial Flaw Depth of 0.5 mm (0.02 in) .. ............................................. .. 71 New Cumberland Miter Gate Fatigue Life for Initial Flaw Depth of 1.0 mm (0.04 in) ................................................. 72 John Hollis Bankhead Miter Gate Fatigue Life for Initial Flaw Depth of 0.12 mm (0.0048 in) ........................................... 73 John Hollis Bankhead Miter Gate Fatigue Life for Initial Flaw Depth of0.5 mm (0.02 in) ....................... .......................... 74 John Hollis Bankhead Miter Gate Fatigue Life for Initial Flaw Depth of 1.0 mm (0.04 in) ................................................. 75 Order Statistics for Fatigue Data ................................................ 76 Fatigue Failure Curves for the New Cumberland Miter Gates ................ ..... ........................................................... ............. 77 Fatigue Failure Curves for the John Hollis Bankhead Miter Gates .............................................................................. ... 78 Fragility Curves Depicting Increasingly Severe Damage .......... 81 Fragility Family and Mean Fragility Curves .............................. 82 John Hollis Bankhead Fragility Curves ...................................... 84 New Cumberland Fragility Curves ............................................. 85 Probab i 1 ity of Non-Detection (PND) Curves .......... ................... 8 8 Flaw Depth PDF Modified by Poor Detection Method at Periodic Inspection ................ ... .................................................. 90 Figure 6. 7 Flaw Depth PDF Modified by Good Detection Method at Periodic Inspection ................................................................. 91 Figure 6.8 New Cumberland Miter Gates Fatigue Failure Probabilities with Excellent Fabrication and Poor Detection at 5-Year Intervals ..................................................... 94 Figure 6.9 New Cumberland Miter Gates Fatigue Failure Probabilities with Very Good Fabrication and Good Detection at 5-Year Intervals ..................................................... 95 Figure 6.10 New Cumberland Miter Gates Fatigue Failure Probabilities with Very Good Fabrication and Good Detection at 10-Year Intervals ................................................... 96 Figure 6.11 Summary ofNew Cumberland Miter Gates Fatigue Failure Probabilities with Varying Fabrication, Detection, and Inspection Intervals .......... .................................. 96 Figure A-1 General Location Map of the New Cumberland Locks and Dam on the Ohio River. ............................... ......... .............. A3 Figure A-2 Aerial View of the New Cumberland Locks and Dam ...... ........ A4 Figure A-3 Land-side lock chamber looking toward the river at the downstream gates while mitered ............................................... A4 Figure A-4 Land-side lock chamber while the downstream gates are mitered, looking toward the land ............................... ................ AS Figure A-5 Coal barges in the land-side lock chamber. ............................... A5 Figure A-6 River-side lock chamber in drydock for inspection and maintenance, looking at the downstream miter gates ................ A6 Figure A-7 River-side lock chamber in drydock for inspection and maintenance, looking at the upstream miter gates ........ ............. A6 Figure A-8 Skin plate on the upstream, land-side miter gate ....................... A 7 Figure A-9 Close up of the skin plate on the upstream, land-side miter gate at the quoin and pintle support ................................. AS Figure A-1 0 View of miter surface and miter guide at the top of the Figure A-ll Figure A-12 Figure A-13 gate ........ .. ............................. ... ....... ............................................. A9 Close-up view of the miter guide at the top of the gate ............. A9 Center gusset plate for attaching the diagonals at the midspan of the bottom girder on the upstream, river-side miter gate ................................................................................. A 10 Close-up view of the fatigue crack at the toe of the fillet weld that extended through two thirds of the web depth ........ A 1 0 Figure A-14 End gusset plate for attaching the diagonals near the quoin of the bottom girder on the upstream, river-side miter gate ................................................................................. A 1 1 Figure A-15 Close-up view of the fatigue crack at the toe of the fillet weld ....................................... .................................................. All Figure A -16 Sketch of damages found on upstream middle wall (USMW) gate in 1996 from Corps maintenance records ........ A12 Figure A-17 Sketch of damages found on upstream river wall (USRW) gate in 1996 from Corps maintenance records ......... A13 Figure A-18 Sketch of pamages found on downstream middle wall (DSMW) gate in 1996 from Corps maintenance records ........ A 14 Figure A-19 Sketch of damages found on downstream river wall (DSR W) gate in 1996 from Corps maintenance records ......... A 15 Figure B-1 Location of John Hollis Bankhead Lock and Dam on the Black Warrior River .................................................................. B2 Figure B-2 Plan Drawing of the John Hollis Bankhead Lock and Figure B-3 Figure B-4 Figure B-5 Figure B-6 Figure B-7 Dam Site .............. ......... ............................................................. B3 Lower girders of the downstream miter gates, looking at the downstream side with the diagonals, with quoin to the right ..................................................................................... B4 Close-up view of the other miter gate (quoin is to the left) around the gusset plate at the bottom girder ...................... B4 Same view as Figure B-4, but with a better view of triangular cover plates ............. ................... ..................... .......... B5 Sketch of damages found on downstream river wall (DSR W) gate in 1997 from Corps maintenance records ........... B6 Sketch of damages found on downstream land wall (DSL W) gate in 1997 from Corps maintenance records ...... ... .. B7 List of Tables Table 2.1 Table 4.1 Table 4.2 Miter Gate Load Statistics .......................................................... 13 John Hollis Bankhead Miter Gate: Measured and Computed Strains for the Mitered Position ................................ 37 John Hollis Bankhead Miter Gates: Mitered Stresses and Deflections Computed for 138 MPa (20 ksi) Pre- Tensioned and Slack Diagonal Members .................................. .42 Table 4.3 Table 4.4 Table 4.5 Table 6.1 Table 6.2 New Cumberland Miter Gates: Computed Stresses and Deflections Computed for 13 8 MPa (20 ksi) Pre- Tensioned and Slack Diagonal Members .................................. .43 Stress Concentration Factors at Weld Toe ................................ .47 Stress Concentration Factors for Fillet Weld Contact Ang1e ............................................................................................. 48 Probability of Failure for the Fatigue Limit State of the John Hollis Bankhead Miter Gates ............................................. 92 Probability of Failure for the Fatigue Limit State of the New Cumberland Miter Gates ................................................ .... 93en_US
dc.format.extent145 pages/25.46 MBsen_US
dc.format.mediumPDF/Aen_US
dc.language.isoen_USen_US
dc.publisherEngineer Research and Development Center (U.S.)en_US
dc.relationhttp://acwc.sdp.sirsi.net/client/en_US/search/asset/1035044en_US
dc.relation.ispartofseriesContract Report (Information Technology Laboratory (U.S.)) ; no.ERDC/ITL CR-06-1en_US
dc.rightsApproved for public release; distribution is unlimiteden_US
dc.sourceThe ERDC Library created this digital resource from scans of the Print Resourceen_US
dc.subjectFatigueen_US
dc.subjectHydraulic structuresen_US
dc.subjectFracture mechanicsen_US
dc.subjectInspectionen_US
dc.subjectMiter gatesen_US
dc.subjectNondestructive evaluationen_US
dc.subjectProbabilityen_US
dc.subjectSteel structural engineeringen_US
dc.subjectStructural reliabilityen_US
dc.subjectWeldmentsen_US
dc.subjectLocksen_US
dc.subjectDamsen_US
dc.titleAssessing the reliability of highly redundant welded steel frame structuresen_US
dc.typeReporten_US
Appears in Collections:Contract Report

Files in This Item:
File Description SizeFormat 
ERDC-ITL-CR-06-1.pdfERDC/ITL CR-06-125.46 MBAdobe PDFThumbnail
View/Open