Please use this identifier to cite or link to this item:
Title: Strength studies of high-density snow
Authors: Butkovich, Theodore R.
Keywords: Snow
Snow mechanics
Snow strength
Snow density
Strength tests
Publisher: U.S. Army Snow, Ice, and Permafrost Research Establishment.
Engineer Research and Development Center (U.S.)
Series/Report no.: Research report (U.S. Army Snow
Description: Research Report
Summary: Various strength properties of naturally compacted high-density snows, in the density range of from 0.40 to 0.75 g/cm^3, are reported. Test results are given for: unconfined compression; unconfined and confined double shear; ring, flexural, and centrifugal tensile strength; torsional shear; and work of disaggregation. The work of disaggregation per unit volume was related to crushing, tensile, and shear strength at various lateral pressures, using the same empirical relationship. The results of the various tests measuring the tensile strength of the snow compare favorably with each other. An attempt was made to use the direct shear strength results in Coulomb’s equation for the determination of Mohr’s envelope of rupture for snow. These tests yield higher values than those obtained in unconfined compression tests. However, angles of internal friction obtained considering Mohr’s envelope to be straight line seem to agree with measurements taken on an unconfined compression specimen.
Rights: Approved for public release; distribution is unlimited.
Appears in Collections:Research Report

Files in This Item:
File Description SizeFormat 
SIPRE-Research-Report-18.pdf13.34 MBAdobe PDFThumbnail