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THE VISCOELASTIC DEFLECTION
OF AN INFINITE FLOATING ICE PLATE
SUBJECTED TO A CIRCULAR LOAD

Shunsuke Takagi

INTRODUCTION

Since ancient times floating ice plates have been used to cross rivers and lakes. During recent
years traffic load on frozen rivers and lakes has greatly increased, and at the same time vehicles have
become heavier. Aircraft landing and parking facilities also have added loads on these bodies of water.
In addition, during the past several years, oil companies have started to use ice plates as drilling plat-
forms. Thus, we now need to acquire a more detailed understanding of the creep of ice plates.
Formulation of the creep of a floating ice plate began
after World War Il with the intense development of the linear

E viscoelasticity theory. In 1947 Golushkevich (referred to by
! Maxwell Kheysin'®) presented an analysis assuming that ice behaves
77| LIJ Unit elastically for volumetric deformations and viscoelastically
for deviatoric deformations. Kheysin'® used a general visco-

elastic thin-plate theory to analyze the infinite floating ice

) plate. He used the Maxwell unit (Fig. 1) only, and considered
M, L sEp Voi 9: only a concentrated load. Nevel'! also used the Maxwell unit
uni only, but considered a distributed load. He limited his

l numerical computation only to the center of the load.

William L. Ko, as reported by Garbaccio,® * used the
Maxwell-Voigt type four-element model (Fig. 1), which is
known to represent the creep of ice satisfactorily (Jellinek
Figure 1. Maxwell-Voigt type and Brill®). In addition to thin-plate theory, Ko used
four element model. Reissner’s plate theory, which includes the deflection due
to vertical shear forces. Garbaccio® numerically evaluated
Ko’s solution for specific values of material constants rather
than for nondimensional parameters. Garbaccio’s numerical answers show that the discontinuity of
the load distribution yields a strong influence on the values of deflection. It is reasonable to suspect
that his numerical evaluation may contain some errors.

IAkunin® 7 has solved the same problem as Ko, but he used only thin-plate theory. Unfortunately,
only an abstract of IAkunin’s work is available to western researchers.

Katona® and Vaudrey and Katona!” solved the same problem with a finite-element viscoelastic
computer program,

We solved this problem analytically by use of thin plate theory, and also developed an effective
method of numerical integration of the solution integrals. However, the theoretical curves did not
satisfactorily fit the field-test curves. It is now evident that a large scale laboratory test eliminating
the variation due to natural conditions must be carried out and the theoretical assumptions must be
tested.



1. THE PROBLEM

We shall consider the viscoelastic ice plate floating on water extending horizontally to infinity.
We shall use the Maxwell-Voigt type four-element model (Fig. 1) to describe the viscoelastic deforma-
tion of ice.

Using the notation of Fig. 1, we can show that this model gives the stress-strain relationship
which we show in an operator form,

€ = d 41 + 1 o (1.1)
E] n 9 E, +n 9
19t 27125t

where t is time. To extend the one-dimensional relationship (1.1) to the three-dimensional relation-
ship, we assume, as explained by Fliigge,? that e and o are deviatoric and relate them by

o = 2Ge

where G is the rigidity modulus relative to the three-dimensional deformation. Using (1.1), 2G is
given as an operator

715=l+ 1a+ 1 5 - (1.2)
Vomyg; Eatmys

The differential equation describing the deflection w of an elastic plate on water is

DY*w+pw = g (1.3)

where ¢4 is the biharmonic operator

_ (92 92 \2
vt = (4 + 1.4
(ax2 ay2) a4

p the density of water, g the load per unit area, D the flexural rigidity defined by
D = 2Gh3/[12(1 -v)] (1.5)

in which A is the thickness of the ice plate, and v Poisson’s ratio. Substituting 2G from (1.2) into
(1.5), and D thus found into (1.3), we find the differential equation governing the viscoelastic de-
flection of a floating ice plate. We shall show this equation later in the nondimensional form.

We assume the load g to be astep loading applied at ¢ = 0 and distributed uniformly over a circle
of radius @ with the center at origin. Then, letting r be the radial distance from origin

il

q=qoUlt) for0Sr<a
(1.6)

=0 fora < r

where U(t) is the step function, and ¢ the time. Our problem is axisymmetric, and the biharmonic
operator ¥4 reduces to



We shall nondimensionalize our differential equation. We define the characteristic length £ by

24 = Eg h3/[120(1 -v)] (1.7)
where

-1, 1 (1.8)

E, E| E

We have chosen £, rather than £, or £,, to define &, because £ is related to the secondary
creep (Nevel'2), which is the main interest in our field observation.
Let D, be definqd by
D, = D/(p%). (1.9)
Use of (1.4) and (1.7) changes (1.9) to

D,

2G/E,. (1.10)

Substituting G in (1.2), (1.10) becomes

Ey . E E
Dy =2+ 2+ 1. (1.11)
Bomg Ermi

We choose nondimensional time 7

T = Eyt/n, (1.12)
and a parameter 7

T = m Eof(ny Ep). (1.13)

Then (1.11) becomes

D, = /{E+a—1-+ "1/’;2) (1.14)

where
E = E/E; . (1.15)
It is noted that

0

A

E

IIA

1. (1.16)

Clearing the denominator, (1.14) becomes

=0 (3 92 K
D, 37 (ar +T)/ EaT2 +(1+7) 37 T (1.17)

where use is made of the relation



Er+ny/n, =1

which can be proved by use of (1.13), (1.15), and (1.8).
We define the nondimensional length R by

R = r/%.
We replace D in (1.3) with D in (1.9), and (1.3) becomes
DiVRw+w = q/p

where

With D given by (1.17), (1.19) is the differential equation to be solved.

2. THE SOLUTION

We denote the Hankel transform of £(R) by 7(B)

00

F5) = [ AR)Jo (BR) RaR
0

and the two-sided Laplace transform (Van der Pol and Bremmer'®) of g(7) by g(s)

oo

gls) =S / g(Ne>TdT.

- oo

We denote the inverse of (2.2) by

g(1) = L1 [g(S)].
Applying these two transforms, (1.19) becomes

+

/o

h
b 3N
QI

D, g*

where

D. = S(S+71) .
ES2+(1+7)S+7

Applying the two transforms to ¢ defined by (1.6), we get
(1/0)g = [PI(mALR)] (11B) /1 (BA)

where

(1.18)

(1.19)

(1.20)

(2.1)

(2.2)



P = malq (2.6)
and
A = a/e. (2.7)

Thus the transformed solution is given by

T /1(84).

Performing the Hankel inverse, we find

oo

— P 1
= — Jo(BR) dB. (2.8)
W of1+0164 /1(84) Jo(BR)

Performing the Laplace inverse, we find

P F 1
) e R) dB. 29
" A pQ2 6/ (] +5]64> /1(ﬁA) /0(6 ) d8B (2.9)

To find L= [1/(1 + D, g*)], we compute the partial fraction

JB-w) 1 Br-ay)

1 1 -1
S DESC Stay /DESC Sto

S1+D,8*

where — a; and - a, are the roots of the quadratic equation
(E+B*)S2+(rp4+14+7)S+7 = 0. (210)

They are given by

o | - 78t +1+73/DESC (2.11)
oy 2(84 + £)

where
DESC = (rf*+1+7)2 - 47(8* + £) (212)

which transforms to
= [r(8*+1)=1]2 +47(1 - £). (2.13)
From (2.13), it is clear that
DESC > 0. (2.14)

The roots ay and a, are therefore always real. Moreover, inspection of (2.11) and (2.12) shows
that both o and a; are always positive. Thus we find that



L“( 1 ) _ ]+I34(T-a2) ot _BHr-oy) T

R F— 2,15
1+ 51 fixd VDESC VDESC (215)

Substituting (2.15) into (2.9), the solution for w is found:

=_PF F 34(1-0‘2) -ayT 64(7'0‘1) - T
¥ A pQ2 ofl1+\/—D_ET ¢ " DESC e “1°1 J1(BA) Jo(BR) dB. (2.16)

The radial and hoop stresses are given by

r

__6D (22w v aw
h2 \ a2 r or

- _60 (1L ow, 2%
Oe h2 (r or +Va,2 )

respectively. Changing D to D, by use of (1.9) and r to nondimensional R by use of (1.18), they
become

602 p (32w v dw
or h2 D1(aR2 +R 0

- 6022 p 10w, , 2w
% =70 1(R R 7 SR2

where D, is the operator on T given by (1.17). The two-sided Laplace transform yields

o~ _6p22 (02 ,v 3 \5p—

a, b2 (3R2 " 3R Dyw (2.17)
— - _6p22(1 9 32

T, 2 (R— Y- E SR Diw (2.18)

where D, w is the Laplace transform of D w.
Using (2.8) one gets

—— P F D-[ :
D = R) dg.
et of S 104 k) 0

The Laplace inverse of this is

F D
Dyw =L L (-——‘ A R) dp.
1w nApQ2 f 1+D, |)/1(ﬁ )/o(ﬁ ) dB

0

To find L™ [D;/(1 + Dy B*)], we compute the partial fraction,



1 D, Tt 1 _T-% 1
S 1+D,p* DESC stay /DESC sty

Thus we find

L"( D, )_ T-  cayT _ 1= ool

— ———— e — —————
1+ 51 g4 VDESC VDESC

Thus the inverse of (2.17) is

_ 6 [ 1-v (r-a)e 17 —(r-g,) 2"
o = Of J164)1 /0 BR) - 122 1, (6R) N/ lae g (219)
The inverse of (2.18) is
S N N RS TN Lt Ll M int. L PR
© pan2 § 0 prR 71 /DESC S

Tabulation of o, and g, becomes easier if linear combinations of (2.19) and (2.20) that do not con-
tain v are computed.

3. METHOD OF NUMERICAL INTEGRATION

It is impossible to analytically integrate the solution integrals (2.16}, (2.19) and (2.20). (See
App. 1)

The direct numerical integration is inconvenient because of the slow convergence of the Bessel
functions for large values of the independent variable 8. We shall choose finite ranges of integration
that give sufficiently close approximations. The essence of our method consists of the following
integration procedure:

Consider the integral

oo

1= [ 68 J1(64) Jo(6R) b (3.1)
0
where the non-Bessel factor ¢(8) is finite in the range of integration, and asymptotically
¢(B) ~ ap" (3.2)
in which a is constant. The value of n in our formulas in the previous section is 2 4. The general
case is discussed in Appendix I.

We will replace the infinite integral (3.1) with a finite integral. Given a large value N, we can esti-
mate an upper bound of the absolute integral,

[ 16@) 11(64) 1o(6R)| B (3.3)
N



called the absolute remainder, by substituting the asymptotic expansions of ¢(8) and Bessel functions.
We let the trigonometric functions in the latter equal one. Denoting the absolute remainder by

[Abs 1], we find
[Abs 1135 < [2a/(n\/aA )] (nNP)T (3.4)

Let € be the error we can tolerate in our computation. In our actual computation, we chose

e =107,
The value of NV is evaluated by equating the right hand side of (3.4) to €:

[2a/(nv/aA )] (n NPT = e, (3.5)
Then, integral / in (3.1) is approximated by

N
1= [ 66) J1(84) JoBR) dB. (3.6)

0

The value of N was small in most of our computation [N = 10 except in (6.4)], and our numerical
scheme worked very effectively.

We list in the following the asymptotic expansions of the non-Bessel factors ¢(8) contained in the
integrands of our integral solutions (2.16), (2.19), and (2.20):

Oq ~ 6-4
Qy ~ 7(1 +ﬁ-4)

e 1T o178

e ~ €

(r - a;)\/DESC ~ g*-p8
(r = 0ay)\DESC ~ - (1-E)88.

4. RAMP/STEADY LOADING

We used two load tests to fit our theoretical curves. One was the Sun Oil Corporation’s
{SUNOCO) data obtained during the winters of 1973-1974 and 1974-1975 at Resolute Bay, North-
west Territory (unpublished). The other was Frankenstein’s data® obtained on Portage Lake,
Michigan, and the Garrison Dam Reservoir, North Dakota, on 20 March 1956 and 18 January 1957.
Among these tests, we chose the ideal ramp/steady loading for our numerical computation. In this
loading, as illustrated in Figure 2, the load P is increased initially at a constant rate P and, after a
certain time 7, kept constantat P = PTO. However, since SUNOCO does not allow the pubtication
of their data, we cannot include their data in this paper.

We will derive the ramp/steady formulas by use of the step-loading formulas given in the previous
section. However, since both SUNOCO and Frankenstein measured only deflection, we derive only
the deflection formulas.

Define the influence function w (7) by letting” = 1 in (2.16):



Figure 2, Definition of the ramp/steady loading.

o0

1 34(7 BHT-0) T BHT-oq) a7 R) d 41
wo (7) nApQ2f1 e <2 - Sl T 1 (54) Jo(BR) d. (A1)

The deflection w(7) for 0 = T = T, is given by

.
w(T) f we (T = N) Pd) (4.2)
0 .

and for Ty = Tby

To
[ wo(m=NpPa (4.3)
6

where P = PIT,.
Substituting (4.1) into (4.2) and integrating with regard to A, we get the deflection w(7) for
0ST=T,:
w(T) = [P(nAp&?)] (U; ~ Uy + Us) (4.4)

where

N
U = f 03“ €17 =1 +0,7) /,(84) Jo(BR) dB (4.5)
I R | »
Uy _J [_—\/D;ES:C_L—qE]—“—e 1Ty J1(BA) Jo(BR) dB (4.6)
4
Us = f Eoae L= p(s4) Jo6R) a5, @)

The absolute remainders are as follows:

[Abs U 1% < [T2/(4nAR)I N* (4.8)
[Abs Uyl 3 < [T/(2nJAR )} N™* (4.9)



[Abs U3l < [(1 - E)/(2n+AR)] l_ (1-eTT)N*4 . (4.10)

Substituting (4.1) into (4.3) and integrating with regard to X, we get the deflection w(T) for
ToST:
0 .

w(T) = [PI(mApR2)] (14 + 1y +13) (4.11)
where
ho= fN 1 Be) 1 eiTo by ) so0R) ds @12)
s T VDESC o7, L 0 :
8 - .
2 = f ,()TES?) =) e 170-1) 1, (84) Jol6R) (4.13)
Iy = fNM 2’ L (e%270_1) ,(84) /o(@R) d (4.14)
3§ DEsC T, i 0 : :

The absolute remainders are as follows:

[Abs 1117 < (2nVAR) TN (4.15)
[Abs 1,17 < [T/(2rJAR )] N* (4.16)
[Abs 1513 < [(1 - E)/(2nAR ) [(e"T0 - 1)/(r To)] e T N4 4.17)

Computer programs for these formulas are shown in Appendix 1.

5. CURVE FITTING TO TIME LAPSE DEFLECTIONS

Frankenstein® placed a 12-ft-diameter tank on the ice and pumped the adjoining water into the
tank. {We call this the distributed load test.) However, the temperature of the water in the tank
obviously disturbed the ice temperature. He then tried a variation by placing a 17.3-in.-diameter
concrete block under the 12-ft-diameter tank. (We call this the concentrated load test.). The water
in the tank was, in this case, isolated from the ice and did not disturb the ice temperature.

The load-vs-time curves of these tests and the measured deflections are shown in Figures 3 and
4. “TANK designates the deflection of the edge of the tank. “RODS” are the sites where the
measurements were taken. The distances of the measurement sites from the center of the load are
listed in Tables | and 11,

The material constants found by the curve fitting are shown in Tables | and 1l. They vary with
the location of the measurement.

To show the significance of the material constant variation with the measurement sites, we chose
the material constants determined at rod 1 of Frankenstein’s concentrated-load time-lapse curve, and
computed the deflections at the other measurement sites. Figure 5 shows the comparison of the
computed curves and the measured data. The left and right columns show the ramp and steady
portions of the deflection curves, respectively. They are designated by (r) and (s) respectively.

To express the degree of curve fitting we devised the trapezoidal error (TE). In Figure 6, a, A
and b, B show two pairs of measured and computed deflections at two consecutive times £{ and £,,

10
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Figure 3. Distributed load test by Frankenstein (ref. 3, test 5),
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Figure 4. Concentrated load test by Frankenstein (ref, 3, test 8).
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Table I. Material constants found by using the time-lapse curves of
Frankenstein’s distributed load test (ref. 3, test 5).

TANK Rod 1 Rod 2 Rod 3
Distance 1.83m 4.9m 9.8m 19.6 m

T 20 20 26 5

E 0.028 0.014 0.005 0.02
Eq (kg/m?) 2.159x108  3.729x108  9.812x108  3.925x10°
n1/Eq (sec) 1.488x100  1.469%10%  1.224x10%  2.448x10°
TE (ramp) (m)  4.928x10°3  2.780x103  3.117x103  1.0541x1073
TE (flat) (m) 3.048x103  2.195x103  3.882x103  1.393x10°3

Table Il. Material constants found by using the time-lapse curves of
Frankenstein’s concentrated load test (ref. 3, test 8).

TANK Rod 1 Rod 2 Rod 3
Distance 0.22m 4.9m 9.8 m 19.6 m
T 2 6.5 20 5
E 0.0005 0.007 0.05 0.1
Eq (kg/m?) 1.766x10  9.813x107  6.869x108  9.813x10!!
n4/Eq (sec) 2.815%100  4.896x10° 1.101x10%  2.448x10%
TE {ramp} (m)  4.718x10°>  5.812x10°3  2.063x1073
TE (flat) (m) 4727x103  2.730x10°3  2.884x10%  2.750x1073

0.5r Tank(r) Tank(s)
09" TE-2 42006x10 2 " TE-=0.107849 .
0.2 r . . P o ot
o1 . e
st 1 L s s N . ) )
0
0.3r Rod I(r) [~ Rod 1 (s)
OZ_TE=5.8||65x|o’3 | TE=27299x10°
0.4+ —
O ™ 1 1 L " 1 . 1 )]
0.21 Rod 2(r) [ Rod 2(s)
y TE=4.09208x10 > TE=3.73625xI10°2
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Figure 5. Comparison of the calculated curves and measured points of Frankenstein 53

concentrated load test.
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Figure 6. Elements of TE, Figure 7. The TE of Frankenstein’s distributed load test
(ref. 3, test 5).

respectively. We squared A-a and B-b and, in case of the upper figure where the errors are of the
same sign, computed the area of the trapezoid of which the bases are (A-a)2 and (B-b)? and the
height t, — £;. In case of the lower figure where the errors change sign, we calculated the sum of
the areas of the two triangles of which the bases are (A-a)? and (b-B)? and the heights ¢, ~ 71 and
t, -ty respectively, where ¢ is the abscissa of the intersection. Denoting by S the area of such a
figure, we defined TE by

TE = VES)/T (5.1)

where the summation is over all the intervals and 7 the sum of the abscissa intervals.

The TE indicates a sort of absolute maximum error. lts unit is m. If the deflections are of
ordinary magnitude, the TE of order 10°3 and 10"2 means a good and tolerable fit, respectively. If
the deflections are very small, as in the case of rod 4, the smallness of the value of TE does not mean
much. We did not list the computed values at rod 4 in Tables | and 1.

We evaluated the TE for all the possible cases. They are shown in Figures 7 and 8. The abscissa
is the distance from the center of the load. The measurement sites are noted on the abscissa axis.
The circled points are those whose material constants are used to compute a set of TE. The sets of
TE thus computed are connected with solid or broken lines and labeled with the appellations of the
circled measurement sites.

Comparison of Figures 7 and 8 shows that the concentrated load test has smaller overall TE values
than the distributed load test. However, we cannot recognize any significant effect of the tempera-
ture distribution due to the watertank temperature disturbance. Probably the cracks, whose appear-
ances are noted in Figures 3 and 4 but are not considered in our formulation, were more detrimental

After the numerical computation was finished in 1976, Dr. Andrew Assur, an ice mechanics
expert at CRREL, notified us that the variations of material constants in Tables | and Il are in the
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Figure 8 The TE of Frankenstein’s concentrated load test
(ref. 3, test 8).

range of reasonable values from the viewpoint of the nonlinear viscoelastic constants (Shumskij'®).
We tried in 1977 to reevaluate the material constants; we thought that, although the theoretical
curve is formulated on the linear assumption, if we fit the theoretical curve in the narrow time
interval and space span, we can find the material constants close to the incremental viscoelastic

constants. However, this plan could not be executed because the distances between the measuring
rods were too large.

6. ASYMPTOTIC DEFLECTION
We shall show in the following that only one material constant is contained in the asymptotic
formulas. The curve fitting, therefore, must be carried out in the initial stage.

Referring to the asymptotic relationships in (3.7), we find that, when T is large, both the step-
loading formulation (2.16) and the ramp/steady loading formulation (4.11) reduce to

w = [P/(nApR2)] (K/A) (6.1)

where

D=

K= [ (-eT 1, 64) Jo (6R) ab. 6.2)
0

It is assumed in this derivation that 7 > 0, and that only large values of § are effective in the integra-
tion. Letting

14
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(6.2) becomes

oo

k= [ ( T 1 ) Jol(RIAN] dx (6.4)
0
where
Th = TA% (6.5)
- ta* 12p(1-v) (6.6)
h3 m

Thus, all the material constants are lumped into the second factor of (6.6). The stress formulas, al-
though not mentioned here, can be similarly transformed.

As shown in Appendix I, (6.4) cannot be analytically integrated; it must be numerically integrated.
To effect the numerical integration, the non-Bessel factor in (6.4) is so chosen that it becomes zero
at x = oo, The absolute remainder is estimated:

[Abs K] < [TA 51%' L/;‘_ JN-4, (6.7)

Graphs of integral K for the values of R/A = 0.2 and 2.0 are shown in Figure 9. When 7, = oo,
the non-Bessel factor becomes equal to one. At this limit, therefore, K = 1 when R < A,and K =
0 when R > A. Asshown in the graphs, this limit is almost reached when 7, > 1000.

Exact integral K was formulated for the ramp/steady loading, and evaluated by use of a set of
constants: Ty = 6x103 sec,7 = 10,E = 1/6,n,/Ey = 6.12x10*sec = 17 hr, £, = 7x108
kg/m2,v = 0.5,and A = 0.5. These constants give £ = 29.31m and Ty = 1(2.48x1073 day™1).

As shown in Figure 9, the asymptotic integral K is very close to the exact integral in the range
T, > 0.1. The above constants are the rough estimates used before starting the elaborate calculations,

15



They are not listed in the Tables. We did not use other sets of constants to evaluate the exact
integral K. We expect that all the exact curves should show the similar coincidence with the
asymptotic curve although with individual variations.

The values of 7, at the final time of the two tests are listed in Table I1l. These values are very
small. However we experienced that the modification of some material constants was insensitive on
the modification of the computed deflection values.

Table I1l. Final time of the three tests.

in physical unit in T p unit

7hr  2.67x10%

H

Frankenstein’s distributed load test 420 min

concentrated load test 240 min = 4 hr 1.2 x10-8

7. DEFLECTION PROFILES

We computed the deflection profiles of the concentrated load test (Frankenstein,® test 8) at 12.7,
32.6, and 118.5 min by use of the material constants, 7 = 10, £ = 0.02,n,/E = 7x103 sec, and
Ey = 2x108 kg/m2, as shown in Figure 10. These material constants are round numbers intermediate
between the material constants at rod 1 and rod 2 in Table 11, The three chosen times mentioned
above are marked in Figure 4. The computed profiles are quite different from the measured profiles.
We varied the material constants but could not find values that make the theoretical curve assume a
similarity to the measured curve. It is our impression that the measured profiles do not belong to
the family of curves that our analytical formula can describe. The measured and computed curves
intersect between rod T and rod 2, indicating the reliability of our computation, as may be expected
from the choice of the material constants.

Tank Rod Number
4
I
[¢] ___-_—____-_
Curve | minutes —— Observed
w 0.l
(m) o-lo A. 12.7 — -~ Computed
A
B 326
BI
2, 8.5
0.20
[N WY NV WU RPN SRNPUNN RN SHIPUI SR SR
4 8 12 6 20 24 28 32 36 40

Distance (m)

Figure 10. Deflection profile. (Frankenstein'’s concentrated load test, ref. 3,
test 8.)
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Figure 11. Asymptotic deflection profile. (Theoretical continuation
of Frankenstein’s concentrated load test, ref. 3, test 8.)

Att = oo the integral K in (6.4) becomes

K=1 forO < r<a

0 forO<acx<r.

The deflection w_, att = s

w, =g/p for0O<r<a
(7.2)

0 for0 < a < r.

Therefore, the water tank sinks theoretically to w,, = 93.3 m in the case of the concentrated load.
However, the ice thickness # 15 0.556 m. Our analytical formulas, therefore, become invalid beyond
a certain elapsed time. (In the case of the distributed load test, w,, = 1.350 mand # = 0.597 m.)
Theoretical deflection profiles for large times are shown in Figure 11. At time infinity, our

analytical deflection comes to the vertical line denoted by ¢ = o. Because 7, 5.41 x108 xt (days)
in the case of the concentrated load test, the largest time, 500 days, chosen for this calculation is still
too short. However, the mode of approach to the ultimate # = oo curve is observable with the curves
in Figure 11. [In the case of the distributed load test, T, = 1.98x10-4xr (days).]
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APPENDIX 1. ANALYTICAL BACKGROUND

A. The following theorem shows the condition under which the integral (3.1) becomes either
discontinuous or continuous at R = A.

Theorem 1. The integral (3.1) is discontinuous or continuous at R = A when n in (3.2} is equal
to or larger than zero, respectively.

Proof. We can rewrite (3.1) to a one-parameter integral

Ha) = f flx, a) dx (A1)
0
by lettingx = BA,i.e.a = R/A, where f(x, @) is continuous with regard to x and a. The condition
that /{a) is a continuous function of « is that the integral (A.1) converges uniformly with respect to

a (c.f. Titchmarch,'s p. 25). The integral (A.1) uniformly converges whenn > 0, but does not
whenn = 0,

B. We shall consider in the following the integral (3.1} whose non-Bessel factor ¢(B) is finite in the
range of integration but asymptotically becomes zero in a more general form than in the specific
form (3.2).

Let an asymptotic expansion of ¢(8) be

o(6) - Z; 6.(6). (B.1)

Rewrite {3.1) as

/= /0+:Kn (B-2)
n=

where

=/ ‘¢(B)—2 808) | 1164) J6R) dB (®3)
0 n=

and

Kn = | 0a8) 11(84) Jo(BR) dB. (B.4)
0
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Figure 12. Contour of integrations (B.5) and (B.6).

€/ \E
0

+ 00

We choose such an integer m that makes /, rapidly convergent. We choose such a function ¢, (8)
that makes (B.4) analytically integrable. The following theorem is useful for the choice of ¢,,(8).

Theorem 2. Let F(z) be an even function of the complex variable z = x + jy that becomes zero
atz = oo and possesses only algebraic singularities (pole or branch points) on the upper half plane
but no poles on the real axis. Then

oo

f FIx) /(ax) Jo(bx) dx

0

= l/:(o)+l 927 F(z) H{") (az) Jo(bz)dz whena > b > 0 (B.5)
a 2 J 0 .

- 15-2’0 F(z) /4(az) H61) (bz) dz  whenO < g < b (B.6)

where % dz means the integral along the contour in Figure 12, where radius ¢ is infinitesimal, and
the z-plane is cut along the negative real axis.
Proof. Consider the contour integrals

+ oo

lla > b) = F(z) H\1) (az) J,(b2) dz (i)

1
2

—~"o0

wherea > & > 0, and

+o0

fla < b) =% 5& F(z) /,(az) H{) (bz) dz (i)

- 00

when 0 < ag < b. Use of the asymptotic formulas show that HS” (az) Jq (bz) and /4 (az)
HS” (bz) are zero on the infinitely large circle whena > 6 > O0and 0 < a < b, respectively.
Therefore we may consider only the contour along the real axis

+ oo

la > b) = ;_ f Flz) H{D (az) J, (b2) dz (iii)
la < b) = 17 fw F(2) /4 (az) HEY (bz) d-. (iv)

-0
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We divide the real axis in three parts: — ~ —¢, -~¢ ~ €,and € ~ o, We letz = ~x in the
region —o© ~ ~¢,and z = x in the region € ~ =, neglect the infinitesimal terms, and let

Flz) = F(0)
H{Y (az) = - 2i/(maz)
Hg”(bz) = [2i/(bz)]log(bz/2).

Then (iii) and (iv) become

It

la > 6) = =L Ao+ [ Fix) Jy(ax) Jolbx) ax v)
0

oo

/ F(x) Jqlax) Jq(bx) dx. (vi)
0

lla < b)

1}

Equations (v) and (vi} prove (B.5) and (B.6), respectively.

C. The need of Theorem 2 appears frequently in the mathematical study of the problems of a float-

ing ice plate and the problems of an elastic plate on an elastic foundation. A similar integral in-

cluding only one Bessel function was proved by Dougal (ref. 1, p. 138 and 147) as early as in 1903.
When t = 0, our solution of the viscoelastic plate reduces to the solution of the elastic plate.

The elastic solution thus found is composed of the following integrals:

my = [ 1 bx) d
o= [ ik e soton) ax

oo

- X
M, Of —— J1lax) ], (bx) dx

Fx2
M, = / 1":/\/4 /1 lax) Jo (bx) dx

wherea = AE/andb = RE/A. We can carry out these integrals by direct or indirect application
of Theorem 2:

My = berb ker'a —beib kei'a+a!  whenb < g
= ber'a kerb — bei'a keib whena < b
M = —ber'b ker'a + bei'b kei'a whenb £ a
= —ber'a ker'b + bei'a kei'b whena < b
M, = beib ker'a + berb kei'a whenb £ ¢
= bei'a kerb + ber'a keib whenag £ b
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Mgy and M, are found by directly applying the theorem. M, is found by differentiating M with
regard to 8. Wyman'® derived M, by integrating a concentrated-load elastic-plate solution over the
loading circle.
The continuity of Mg and M, ata = b is obvious on the strength of Theorem 1. We shall show,
however, a direct proof in the following. We shall prove that
berx ker'x — beix kei'x + x~1 = ber'x kerx — bei'x keix (c.1)
and

beix ker'x + berx kei'x = bei’'x kerx + ber'x keix. (C.2)

To prove this, note that

"

wq (x) = berx +/ beix (C.3)

and

w, (x) = kerx +/ keix (C.4)
are the solutions of the differential equation

d?w, 1dw _;. -0
dx2 x dx

This can be proved by decomposing the equation

2 2
dx2 X dx

of which (C.3) and (C.4) are the solutions.
We can find that the Wronskian

[wi ) wylx)

lWH(X) wh (x)
is equal to

= ~x7t,

Thus we have the identity

berx +/ beix kerx +/ keix

1
. . X
ber'x +/bei'x ker'x +/ kei'x

of which the real part gives (C.1) and the imaginary part gives (C.2).
Theorem 2 can be extended in many ways. Nevel'® found that

+ oo

of Fix) dx = # % F(z) logz dz (C.3)
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for an odd function F{z) that does not have any pole on the real axis and vanishes atz = oo,

D. Itis impossible to apply Theorem 2 to the integrals of w in (2.16), g, in (2.19), and g, in (2.20)
for the following reason.
The function exp(- &, T) has essential singularities at the roots of

B+E =0,
because

lim a, =

pi--E.

The function exp(-a; 7) does not possess any essential singularities because the limit of

ap = 2/[rpt+ 1 +7+ /(P + 1+ 7)2 - 478 + E) |

is finite. However, the real part of a; becomes negative, and exp(-a, 7) diverges, asl Bl —>oina
certain range of direction.
Theorem 2 does not apply to integral K in (6.4) because the point x = 0 is an essential singularity.
The only alternative we can find for the integration of (3.1) is the use of Barnes’ integral method.
[t consists in substituting the integrals

w)
=_1 [(- S)(¥ox)¥*25
f) = 5 _! Fy+S+1) ds (D.1)
. 1 A i v+2S
7 ey )mi Hg” 2) = 57 f I(-v-5) I'(-9) (—é—z) ds (D.2)
— ¢ —ooj

for /, (x) and H‘(ﬂ ) (z), respectively, where c is a real number satisfyingc > R(v), z is complex, and
x is real. We can usually exchange the order of integration to carry out the integration with regard
to x or z, Then, we can carry out the rest of the integration in most cases by use of the theorem

of residue. Only the forms (D.1) and {D.2) serve this purpose. The other Barnes’ representations
of /,(x) and HQ ) {z) do not enable us to carry out the above two procedures,

However, as mentioned by Watson (ref. 18, p. 192), (D.1) does not hold true for v = 0, and
(D.2) does not hold true whenv = O and zisreal. In these two cases, the integrands of {(D.1) and
(D.2) become proportional to s”! as s approaches /e as the limit on the imaginary axis. Therefore
we cannot use Barnes’ integral method to carry out our integrals.
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APPENDIX II. COMPUTER PROGRAMS
Ramp Time Profiles

100 * NUMERICAL STUDY OF THE VISCOELASTIC DEFORMATION
110 ' OF IHE LCE PLATE UNDER A CIRCULAR LOAD

120 ' S, TAKAGwls 1976 (J. BAGGER)
_130 ' [RAMP FORMULATION] _ R —

140

150 e S

160 ! tﬁit.t...tttﬁt"ﬁtﬁﬁtt:t.ﬁtﬁtﬁttﬁt.
170 ' »exPlGTTING OF EXPERJMENTAL DATA*sw

180 " wa v hr AN R R R A A RN A AN R RN R AR AR N RN

A0 e - -

200 ' THLS SECTION OF THE PROGRAM PLOTS THE FLELD DATA FROM

210 ' GUENTHER FRANKE|

220 ' DEFORMATION OF THE ICE FROM A CIRCULAR LOAD WAS MEASURED
. " .

240 ' WITH THE RAMP FORMULATION OF THE VISCOELASTIC THEORY
250 ' FOR OFFORMATION,. . . JE

NSTEIN'S TESTS ONM LAKE Y€€ SHFEYS, _THE

260
270 - —— oL . SO .
280 ' xxuwnrnxwnr SYMBOL TABLE Wk *wkawknw
_290_* A .— DEEINED BELOW IN MAIN PROGRAM SYMBOL TABLE
300 ' AY PHYSICAL LOAD RADIUS
310 ¢ . Az DATA FILE NAME _ _
320 3 DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE
330 ' Y-y - EQ0 -- EQUATION 1.8

N 340 ° HY PHYSICAL ICE THICKNESS

w350 ¢ L COUNTER . -
360 ° L9 CHARACTERISTIC LENGTH
370 * we N1/E0D
380 °* Ng NU =-=- EQUATION 1,5
390 4 . NON-DIMENSIONALIZED P-00T -- EQUATION 4.3
400 ' Py PHYSICAL P=-DOT
410 ' R _OEFINED BELOW [N MAIN PROGRAM SYMBOL TABLE
420 ' ko RHO -- EQUATION 1.3
430 ' Ry PHYSICAL RADIUS OF OBSERVATION
440 ° T DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE
450 ' 71 DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE
460 TS MAXIMUM NON-DIMENSIONALIZED T
L 4 ¢ ™ A TABLE
480 X5 MAXIMUM X-PLOT
490 ' Y5 . . MAXIMUM Y-PLOT ® J—
S00 " sunhahnwkrhehh dha ek Ak h RN R h ke hdhhk N
510 I _ o _ —
520
530 ' SET uP PLQTTER DETAJLS
540

550 LIBRARY "PHYSLIBwws:FLABEL"
560 LIBRARY "PLOTLIB##+:TEK10"
570 DIM C(e00)

580 DIM Cs(60W)
590 PRINT "IwPyYl FILE";

680
690 ' INPUT TESI SITE DATA

700

710 INPUT#1: P9,H9,RY
720 ' P9 = P=-DOT
730 ' H9 = 1CE THICKNESS

7640 ' R9 = RADIUS
750

760 INPUT A1: AY
770 ' A9 = PHYSICAL LOAD RADIUS
780

790 ' PARAMETERS (VARY TC FIT)
800

810 LET T1 = 1y

600 INPUT A3
610 FILENIzA®

620 PRINT "XMAX":
630 INPUT X5

640 FRINT "YMAX"S
650 INPUT Y5

660 CALL "PLABEL"1C(),00X5,-Y5,Y5,"TIME (SEC)"," W (METERS)",-1

670 CALL "CONNECT":C(),0,0,X5,0

820 LET € = ,u¢
830 LET N7 = P E¢S . . o . 0
B840 LET to = ¢,E+8
850 ' T1 = TAy

860 " E = &

870 ' N7 = N1/EW

880 ' E8 = tu

890 U

900 ' COwSTAWTS (STANDARD)

910 - e

920 LEV Ro = 1000 "RHO

930 LET _wd = .5 . TNY e
940 -

950 * CONVEKRT Ty NONDIMENSIONALIZED FORM __

960

970 LET Ly = (Eo*H9t3)/(124R8*(1-N8)) _ "CHAR. LENGTH _
980 LET Ly = LYT(1/4)

990 LET K = R9/LY o

1000 LET A = AY/L9Y

1010 LET P = PY#N7

1020

1030 * PLuTl VIMcNSIONALIZED EXPERIMENTAL DATA

1040

1050 INPUT#1:m1
1060 FOR I = 1 TC N1

1070 INPUTHT . Tow _ N
1080 ' CUNVERT TO MKS UNITS

1090 LET T = T#60 e
1100 LET w = W« 3048

1110 _CALL "MOVE":CO) ,T.W

1120 CALL "LABEL":C(),C30),"+",,1,0,0

1130 NEXT I _
1140 CALL "LIFT":CQ)
1150 LET T5 = T
1160

1170 ' Mk R AE R AR AR R R ARR AR R AN R RN R RN kR R Rk
1180 ' ##«PLOTTING OF THEORETICAL CURVEw*«
1190 " #* wadr ddkdw ke AE A AR ARA N AAAR R R A RNk
1200

1210 ' TH4S SECTION OF THE PROGRAM PLOTS THE THEQRETICAL
1220 ' CURVE FUK COMPARISON WITH THE EXPERIMENTAL DATA.
1230 .

1240

1250 °* tneatnnankSYMBOL TABLE* *xawhwrnw

__'SAVE MAXIMUM TIME




9

1260 * ) EQUATION 2.7 - - 1860 PRINT "%, %NORMALIZED TRAPEZOIDAL ERROR “;E6 -
1270 ° Al ALPHA1 -- EQUATION 2,11 1850 PRINT * had
1280 * A2 ALPHA2 == EQUATION 2,11 1860
1290 ° E EQUATION .13 _— 4 1870 * FUNCTiui DEFINITIONS AND SUBPROGRAMS
1300 * €6 NORMALIZED TRAPEZOIDAL ERROR : 1880 -
1310 °* FNA ALPHAYL (BETA) . _ S e 1890 DEF FNACALE/R,T,T1,X)
1320 * FNB ALPHA2(BETA) 1900 * ALPHA1 -
1330 °* ENI 40¢x) b 1910 LET FNA_= (T14X24) 4 1 ¢ T1 = FNS(AsEsR,T,T1,X)
1340 °* ENJ J1(x) 1920 LET Fuh = FNA/(24(Xt4 + E)) -TT T
1350 * FNS SQR(PESC) ~- EQUATION 2,12 . R o, 1930 FNEND .
1360 ¢ FNU INTEGRAND OF U1 1940
1370 * FNY INTEGRAND QF. U2 . L _ . _ 1950 DEF Fwo(AstsRsToT1,X)
1380 °* FNW INTEGRAND OF U3 1960 ' ALPHAC
1390 * 1 TIME COUNTER 1970 LET Fium = (T1#X94) ¢ 1 ¢ T1 ¢ ENSCALEsR,T,T1sX)
1400 °* N UPPER BOUND OF INTEGRATION -- EQUATION 4,8 1980 LET Fang = FNB/(2+(X14 + E)) o o
1410 °* N1 UPPER BOUND OF INVEGRATION == EQUATION 4.9 . . 1990 FNEWL
1420 * N2 UPPER BOUND OF INTEGRATION -- EQUATION 4,10 2000
1430 ° R EQUATION 1,18 o . __ A 2010 DEF FNSCALEsR,T,T1,X)
1440 ¢ T EQUATION 1,12 2020 ' oSuR(DESC)
1450 ' 11 . __TAY -- EQUATXON 1,13 . 2030 LET Fud = C(T14X%4) 4 1 4 T1)92 - 4*T1a(Xt4 ¢ E)
1460 °* u1 EQUATION 4.5 2040 LET Fds = SQR(FNS)
1470 °* 2 EQUATION 4,6 . 2050 FNEwv
1480 * u3 EQUATION 4.7 2060
1490 * M . _ _DEFORMATION __ 2070 DEF FNUCAstsRIT,T1,X)
1SN0 * ensatanaa st dutwtAwshae At asasdn 2080 LET A1 = FNACALE,R,T,T1,X)
1510 I . . 2090 LET Fnu 3 T - (1/A1)* (1 =« EXP(=T#A1))
1520 2900 T -UET Fuu = FNUSFNJCX*A)*FNI(X#R)
1530 LET P1 = 5,141593 _ . . 2110 FNEww
1540 D 2120
1550 ' CUMPUTE uPPER BDUNDS OF INTEGRATION R 5 2130 DEF FNVChascsR,T,T1,X)
1560 2140 LET A1 2 FNACAZESR,T,T1,X)
. 1570 LET T52T5/n? - _'NONDIMENSIQNALIZE MAXIMUM TIME . 2150 LET FNy 2 (X2&)%(T1 = AY)/ENSCAsEsR, ToT1,X) = 1
1580 LET ~ = ((F5t2+1E5)/(4+P1+SQR(A%R)IIIT(1/4) 2160 Lel Fuv = FAVC1 - EXP(-A1+T)) /A1
1590 LET N1 = ((TS«1ES)/(2%P1~SQRCA¥R)III*(1/4) 2170 LET Fuv = FNV*ENJ(X#A) #FNI(X*R)
1600 LET we = (((1 = E)*1ES)/(2+P1#SQRI(A*RI#TT)a(1 ~ EXP(=TS«T1)))2(1/4) 2180 FNEwu
1610 ; _ 5 2190
1620 FOR i=u Tu 15 STEP T5/20 'NONDIMENSIONAL TIME LOOP 2200 DEF FNw(AsEsR,T,TH, %)
1630 o _ . Lel Ae = FNOCALZE,RIT,TI,X)
1640 el 131 CET Faw = (XT4) «(T1 = A2 /FNSCASESRSTHT1,X)
1650 CALL "SIMP": D/N,FNUSUT,ALE,R,T,TY _ ; LET Fuw = FNWACY = EXP(-A2+T)) /A2
1660 CALL "S1MP": O/N1,FNV,U2,AEsR,T,T1 LeT Fow = FNWUMFNJCA®X) «FNICXaR)
1670 CALL "S1MP": 0sN2,FNWsUS,A,E,RITHTY, _ : _ 5 2250 FNEND
1680 2260
1690 LET w = U} - U2 + U3 _ e 2270 DEF_Fni(a) . L
1700 LET T=Tw&N? *CONVERT TIME TO SECONDS 2280 B ’ - -
1710 Lel waw/(3,14159+A¢R8«LO12/P) *CONVERT DEFLECTION TO METERS . 2290 ' e UNCTION SUBPROGRAM: JO(X)ews
1720 CaLL "ULINE":CO ,ToW *DRAW THEORETICAL CURVE 2300
1730 e B o . ; 231¢ ' PuLYNOMIAL APPROXIMATIONS FROM:
1740 NEXT I 2320 ' HANDBOOK OF WATHEMATICAL FUNCTIONS,
_.1750 2330 ¢ Yo wEPARTMENT OF COMMERCE, 1964
1760 * PRINT JITLE BLDCK 2340 ' (Yo4els 9.4.3) - - )
1770 o } L 2350
1780 CALL "FINISH":CO) 2360 - -
1790 PRINT "",”  SITE ";SEGS(ASe1,1);" TEST “;SEGS(AS,2,2);" __POSITION "; SEGSCAS,3,LENCAS)=1) 2370 P wmssawames SYMBOL TABLE waewtwreus - .
1800 PRINT , 2380 ' Jo JO(X) ZEROTH-ORDER BESSEL FUNCTION
1810 PRINT ™%, "TAU: "ST1,"N1/EO; “IN7 “ 2390 ' 3 F(X) IN NBS BOOK _ :
1820 PRINT "™, "E: "JE,"E0: ";EB8 Al 2400 ’ T3 THETA(X) IN NBS ROOK
1830 CALL_"ERRO NeN1 N2, ENUZ PNV ENWeAZE R, T1 N7 R8,LI,PEG N | 2410 ' X . _ARGUMENT



Le

2420 ' Y X/3. OR 3.,/X
2430 ! AR ARG AR R AR N RR N AR R R AR R A e AR AR
2440
2450
2460 IF X >= 0 THEN 2510
2470 PRINT "FUNCTION JOC(X): ARGUMENT MUST BE >= 0"
2480 PRINT "x="3
2490 >ToP - — e
2500
2510 1F X>35 THEN 2590
2520
2530 ' POLYNUMIAL APPROX, 0<=X<=3,
2540 LET Y=x/3.
2550 LET JO = 1 - 2.26999 97#+Y12 + 1,26562 08#rté
2560 LET Ju = JO = .31638 66+Yt6 + 066444 79xY13
2570 wulu ¢730
2580
2590 ' POLYNUMIAL APPROX, X>3,
2600 LET Y=3,./X
_...2610 ' F = F_IN NBS EOOK __ S
2620 LeT F = .79788 456 - ,00000 277+Y
2630 LET F = F - ,00552 740*vt2 - ,00009 512+Y13
2640 LET F = F + ,00137 237+Yt4 - 00072 805+Yt5
2650 LET F = F + ,00016 476+Y16
2660 ' T3 = THETA IN NBS BOOK
2670 LeT T35 = X = ,78539 816 -~ .04166 3397+*Y
2680 LeT Ts = 73 -~ ,0C003 954+Y12 + 00262 573+Y13
2690 Lel 73 = T3 - .0C054 125+vt6_ - .00029 333#Yt5
2700 LeT Ts = T3 + .0C013 558+Y16
2710 LeT Ju = (1,/7SQAR(X)I)I*F*COS(T3)
2720
2730 Lel FNL =40 _ - _ _
2740 FNEnD
2750
2760 DEF FNJ(X)
2770
27840 ' **« FUNCTION SU3PROGRAM: J1(X)*ex
2790 . o
2800 ' PULYNOMIAL AFPROXIMATIONS FROM:
2810 ' HAnNUBOOK OF NMATHEMATICAL FUNCTIONS.,
28240 ' U> DEPARTMENT OF COMMERCE, 1964
2830 . ' (Yeboby 9.6.6)
2840
2850 o
2860 . hhkh bk rkrt SYMBOL TABLE #akakdkaan
2870 N .. 41(X) FIRST-ORDER BESSEL FUNCTION
2880 M F1 F1(X) IN NBS BO0OK
2890 ' T¢ _ .. THETA1(x) IN NBS BOOK _
2900 M X ARGUMENT
2910 ' Y X/3. OR 3./X%
2920 . AR A AR A AR R A RN A AR AN AN R AR R R R AR N A
2930 ST L [
2940
2950 1F X >= 0 _THEN 3C00 . I e
2960 PRINT "FUNCTION J1(X): ARGUMENT MUST BE >= 0"
2970 PRINT *x=",x
2980 SToP
2990

3000 LF x>35 THEN 3090

23010 _

3020 ' POLYNUMIAL APPROX, 0<=x<=3,

3030 LET Y=x/3, e .

3040 LET J1 = .5 = .56249 98S5S+Y12 + 21093 S73sxve4

3050 LET J1 = J1 - 03954 289%Yt6 + ,00443 319*vt3 o _
3060 LET J1 = X*J13

3070 _LWVTu 3¢50 S
3080

3090 ' PULYNUMIAL APPROX, X>3, o

3100 LET Y=5./X

3110 * F1 = F1 IN NBS BUOK [

3120 LET F1 = ,79788 456 + .0C000 156=Y

3130 kel F1 = F1 + ,01659 667*¥t2 + ,00017 1Q5+Yt3 N

3140 LET F1 = F1 - ,00269 511xyr4 + 00113 653+Y25

3150 Lel F1 = F1 - (0020 033s+Yt6 e e

3160 ' T2 = THETA1 IN NBS 800K

3170 LeT Te = X = 2,35619 449 + 12499 612«Y =

3180 LET T¢ = 72 + .0C005 650%Yt2 - ,00637 879+Y13

3190 LeT T¢ = T2 + ,0CQ76 348+¥t4 + ,00079 824#Y15S .

3200 Lel T¢ = 72 - ,0C029 166+Y16

3210 LET 41 = (1,/SQR(X)II*FI*COS(T2)

3220

3230 LeT Fug = 1

3240 FNEww

3250 END . . . B e e

3260

3270 SUB “S1nP"iX1,X2,FNFrALLALE,R,T, T

3280 ' xxx SUBPROGRAM: SIMPSON'S RULE INTEGRATION %%+

3290

3300 ' SIMP3UN'S RULE FORMULA FROM:

3310 ' NJMERLCAL CALCULUS - PR —

3320 ' WwiLLLANM MILNE, 1949

3330

334C P oakaxwehkkh SYMBOL TABLE Awawwdudaw

3350 ' A3 SIMPSON APPROXIMATION FOR PREVIOUS TRIAL
3360 ' AL SIMPSON APPROXIMATION FOR CURRENT TRIAL
3370 M FNF . . FUNCTION SUBPROGRAM FOR INTEGRAND

3380 ’ H INTERVAL WIDTH

3390 ' 1 COUNTER e

3400 ' N 2*N = NUMBER OF INTERVALS

3410 ' s1 PARTIAL SUM OF THE 00D TERMS

3420 ' §2 PART IAL SUM OF THE EVEN TERMS

3430 d X VARIABLE OF INTEGRATION = = . N
3440 ! X2 UPPER BOUND OF INTEGRATION

3450 ' x1 LOWER BOUND OF INTEGRATION

3460 MR A e R R R R R T R R ]

3470 . S o -

3480 LF X¢>x1 THEN 3530

3490 PRINT "SUBPROGRAM SIMP: XMAXIMUM MUST BE > XMIN" - —
3500 PRINT "XMIN=";XT,"XMAX=";X2

3510 >T0P [ JE -

3520

3530 ' _INITEALIZE OLD APPROXIMATION e - - —
3540 LET A>=u

3550 ' INTIALIZE 7O 100 INTERVALS

3560 LET N = 50

3570 '_CALCULATE INTERVAL WIDTH N




N
(o]

31580 LET H2(X2-X1)/C2%N) 4160 LF E2#E4 > O THEN 4190 *CURVES DON'T CROSS 2> TRAP
_ 3590 .._' INITIAMIZE PARTIAL SUMS . _. 4170 LET §2 = S2 + ,5#(T4 = T2)*(ERT4 + F44)/(E212 + E4t2)
3600 LET st1=52=0 4180 GUTo 4200
.3610 ' CALLULATE PARTIAL SUMS [ 4190 _LET 52 % $2 + ,5+(T4 - T2)#(ELt2 + E212) 'INCREMENT TRAP. AREA SUM
3620 LET x=x1 4200 LET E2 E4 ‘NEW BECOMES OLD
3630 FUR [=0 TO N 4210 . LET T2 = T4 _'NEW BECQMES OLD —
3640 LET 52=S2+FNF(ALELR,T,T1,X) 4220 NEXT I . * I
3680 . _LET AzX#2*4 4230 LET Eo = S2/7¢& 'NORMALIZE SUM
3660 NEXT | 4240 LET Eo = SQR(ES)
3670 LET X=X1+H _ — 4250 SUBEND e , I
3680 FOR I=1 TO N o ) T
3690 LET 51=SV14FNFCALE,R,T2T1,X) . . _ e
3700 LET X=X42%H T
3710, _ NEXT &
3720 ' CALCULATE NEW APPROXIMATION
3730 LET A4=H*(4*ST1+424S2-FNFCAJE/R2T2T 12X 1) ~FNFCAIELR2T2T1,X2))/3 - i _ e _ R,
3740
3750 IF AYY(A3Z-R4)<=1,E-6 THEN 3850 I - _
3760 T T
3770 ' PREPARE T0Q TRY AGAIN
‘3780
3790 LET Ald=ad R _
3800 LET 32=51+52
3810 . LET S1=Q - I
3820 LET N=2«N o -
3830 LET_H=(Xx2-X1)/C2*N) R
3840 GuT0 3670
3850 sSustwD .
3860 o
3870 SUB "ERRUR"™ :N,N1,N2,FNU, FNV,FNWsALEsR,T1,N7,R8,L9+P,E6, H1
3880 RESETH1 ) T
3890 INPUTRY ; N3 I __ _*DISCARD FIRST LINE S
3900 INPUTH#1: N3 *DISCARD SECOND LINE [
3910 INPUTH1: N3 *NUMBER OF DATA PDINTS ,
3920 INPUTHT: T2,W2 '"TIME, DEFORMATION T
3930 LET T2 = T2+60 ‘TIME IN SECONDS .
3940 LeT we = w2+.3048 'DEFORMATION IN METERS T
3950 LET T3 = T2/N7 e *NONDIMENSIONALIZE TIME
3960 CALL "SIMP": 0,N,FNU,U1,A/E,R,T3,T1
3970 CALL ">IMP™: OsN1,ENV,U2,A,E/R,T3,T1 e
3980 CALL "SIMP": 0,N2,FNW,U3,A/E/R,T3,T1 -
3990 LeT ws = Ul = U2 + U3 ‘COMPUTE NONDIMENSIONAL DEFORMATION
4000 LeT w5 = W3/(3.14159+A%R8*L9t2/P) *DIMENSIONALIZE IT ° T
4010 LET £2 = (W3 - W2)_ _ 'COMPUTE ERROR [
4020 LET To = 0 *INITIALIZE TIME SUM FOR NORMALIZATION
4030 LET 32 = 0 *INITIALIZE TRAPEZOIDAL _AREA_SUM I
4040 FOR I = 1 T0 N3 - 1
_4050 INPUTHT Thowh : *NEXT TIME, DEFORMATION PAIR e
4060 LET T4 = T4w6C
4070 LEI w6 = We*,.3048 _ e -
4080 LET TS = T4/N7
4090 CALL "SIMP"; CoN,FNU,UT,A/ESR TS, T1 _ R _ e
4100 CALL "SIMP": O,N1,FNV,UZ,A,E/R,TS5,T1
6110 CALL "SIMP"™: CeNZ2,FNW,U3PA»E,RLTS,TH _ o —
4120 LET wS = Ul - U2 + U3
4130 LET wS = W5/(3.164159#A*RB*L9P2/P) . I e - _
4140 LET £4 = (WS=W4) 'NEXT ERROR
4150 LeET T6 = T4 - T2 + 16 'INCREMENT TIME SUM o i
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Steady Time Profiles

100 * NUMErRICAL STUDY OF THE VISCOELASTIC DEFORMATION

110 * OF Tre ICE PLATE UNDER A CIRCULAR LOAD e o
120 * S, TAKAuwis 1976 (J. BAGGER)

130 * CRAMAP FURMULATION =-- STEADY STATE SOLUTION]

140

150

TO0 ' wndkmdh kh ke kR ANk Ak Ak Ak ok ke kb b

170 * wxwxpPLyTTIiG OF EXPERIMENTAL DATA*#» - e
T80 ¢ *rkwmamku khh kA hkk ke kR RNk Rk kkkkk ko h Rk

190

200 ' THLS SECTION OF THE PROGRAM PLOTS THE FIELDO DATA

210 ' GUEWTHEKR FRANKENSTEIN'S TESTS ON LAKE ICE SHEETS, THE

220 * DEFUKAMATLUN OF THE ICE FROM A CIRCULAR LOAD WAS MEASURED

230 ' UNUcR vAK10US CONDITIONS, _THIS OATA IS COMPARED BELOW

240 ' WITH Tdr STEADY-STATE FORMULATICN GF THE VISCOELASTIC

250 ' THecuRY Fux DEFORMATION,

260

270

280 ' wwaahanrwnwSYMBOL TABLE* wwhahmwwnsn

290 ' A DEFINED BELOW IN MAIN PROGRAMA SYMBOL TABLE
300 AY PHYSICAL LOAD RADIUS

310 ¢ A DATA FILE NAME

320 ¢ 3 DEFIMED BELOW IN MAIN PROGRAY SYMBOL TABLE
330 ¢ Eo EQ -- EQUATION 1,8

340 * HYy PHYSICAL ICE THICKNESS

3s0_* A . COUNTER

360 * Ly CHARACTERISTIC LENGTH

370 ¢ w7 N1/EQ

380 °* No Ny ~= EQUATION 1.5

390 * P NON-DIMENSIONALIZED P-DOT -=- EGUATION 4.3
400 Py PHYSICAL P-DOT

410 ' _ " . DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE.
420 * K3 RHO ~-- EQUATION 1.3

430 ° Y PHYSTICAL RADIUS OF OBSERVATION

440 * T DEFINED BELOW IN MAIN PROGRAM SYM3OL TABLE
450 Tu TIME OF CONSTANT LOAD

460 °* L] DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE
470 °* —ds — _MAXIMUM NON-DIMENSIONALIZED T . -
480 * ~ DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE
490 °* L] MAXIMUM X=PLOT

S00 °* Y> MAXIMUM Y=PLOT

ST10 ' *a s s hrmnr ke w ke r hk kAR Ak h kb

520

530 e D R .
5S40 * SET uP PLUTTER DETAILS

550 )

560 LIBRARY "pPrYSLIB#*w»* :FLABEL"

570 LIBRARY "PLuTLIB#*#**:TEK10"

580 DIM ((o6uyu)

590 DIM Cslouy) . __ e e

600 PRINT "jwrul FILE"™;

610 INPUT As

620 FILE# 1A

630 PRINT "xmax'"; _

640 INPUI x5

650 PRINT "ymAx"™; I

660 INPUT Y5

670

680 ' INPUT TEST SITE DATA

690 J—
700 INPUT #1: PY,H9,R9,TO

710 * P9 = P-uuT e _

720 ' H9 = ICe THICKNESS

730 ' R9 = RALIUS X e _

740 " TO = TimMe WHEN LOAD BECOMES CONSTANT

750 —

760 INPUT#1: AY

770 ' A9 = PRYSICAL LOAD RADIUS
780

790 ' PARAMETERS (VARY TO FIT)
800

810 LET 11 = 11U

820 LET & = ,u2

830 LEYT N7 = /7,t+5 -

840 LET €6 = c.t+8

850 ' T1 = Tayu

860 ' £ = ¢

870 ' N7 = wil/iky e e -
880 ' E8 = U

890

900 * COnoTANI> (STANDARD)

910

920 LET ®¢ = 1Lul 'RHO

930 LET wWo = .5 _ . Ny o
940

950 ' CONVERT Tu NOWDIMENSIONALIZED FORM

960

970 LET Lv¥ (Eo*HPT3)/ (12#RB*(1-N8)) "CHAR, LENGTH

980 LET LY = Lyt(1/4)
990 LET r = R¥/L9

1000 LET n = Aav/LY9

1010 LET P = pPywN?

1020

1030 * PLUT DIMENSIONALIZED EXPERIMENTAL DATA

1040

1050 LAPEL”iC O TCoX32-Y5,Y5, "TIME (SECI"," W (METERS)™,1

1060 CALL
1070

1080 INPUTHI WY
1090 FOR i = 1

CownweT":CO),T0,0,X5,0

TC N1

1100 LuPuUTwl: ToW

1110 LED T = T60 .
1120 LeT W = We,3048

1130 CALL "mUVE":CO),TowW

1140 CALL "LABEL"™:C(),C30),"+",.1,0.0

1150 NEXT |

1160 CALL "LIFT":C0)
1170 LET VS =71

1180

1190 ' wwdkdwpanhhhhhhh a ke kR ke Rk R W kb R AR
1200 * +#«PLOTTING OF THEORETICAL CURVE#*w»«
1210 " whdrubamnhrhn ek kr ARk kR kA kAR AN ARy
1220

123C ' Trfy >p(CTION OF THE PROGRAM PLQTS THE THEORETICAL
1240 ' CurRVE Fux COMPARISON WITH THE EXPERIMENTAL DATA.

1250 . IS S

*SAVE MAXIMGM TIME




1260
1270 #maraskrrs5YMP0L TABLES#awsanntn
1280 * A EQUATION 2.7
1290 * A ALPHAT -- EQUATION 2.11 - .
1300 * A2 ALPHA2 -=- EQUATION 2.1
1310 ' 3 EGUATION 1.15 .
1320 ' FNA ALPHAT(BETA)
1330 * ENg oo ALPHA2(BETA) . . . .
1340 * FNI J0CX)
1350 ° FNJ J1O0 .
1360 * FNS SGR(DESC) ~-- EQUATION 2.12
1370 ° FNU INTEGRAND OF 11
1380 * Fv INTEGRAND OF 12
1390 ' e FNW. — INTEGRAND OF 13 . L
1400 * 1 TIME COUNTER
1470 ° N UPPER BOUND OF INTEGRATION -- EQUATION 4.15
1420 ° N1 UPPER BOUND OF INTEGRATION -- EQGUATION &.16
1430 ! N2 UPPER BOUND OF INTEGRATION -~ EQUATION 4,17
1440 R EQGUATION 1,18
1450 ° PR § EQUATION 1,12 _ . . .
1460 T TAU -- EQUATION 1.13
1470 ° I1 EQUATION 4.12
148C ! 12 EQUATION 4.13
1490 I3 EQUATION 4.14
1500 ¢ W DEFORMATION
1SN0 R AR AR RN A A RN R KA AN AR AR NN AR RRA A .
1520
1530
1540 LET Pt = 35,141593
1550
1560 ' CuwmPUTE uPPER 30UNDS OF INTEGRATION
sz .
1580 LET T *NONDIMENSIONALIZE MIN TIME
1590 LET T5=13/u07? *NONDIMENSIONALIZE MAXIMUM TIME
1600
1610 LET N=(1&3/ (2*P1xSGRIASR) II*(1/4)
1620 IF FaA(ALE,R,T,TO,T1,N)<,005/70 THEN 1650
1630 LIS _ - - -
1640 GOTu 16lu
1650 LET al=(1e3%75/(2#P1#SAR(A*K))IIT(1/4)
1660 IF FHACA,EsR,T,TO,T1,N1)<.N05/T0 THEN 1690
1670 LET Ni=n1+1
1680 GOTu tobu
1690 LET NQ=(1e5*(EXP(TI*TO)~1) #(1-E)/(T14T0+2+P1*SQR(A*RI)II (1 /4) .
1700
1710 CALL "StmP": OsNsFNLATT/A EAR,T,TO,TT
1720
1730 FOR [ = Tu TO TS STEP (T5-70)/20 *NONDIMENSIONAL TIME LOOP
1740
1750 Let T=l e e S,
1760 CALL "SIM Qsii1sFNVeT12,A,E4R,T,T0, T
1770 CALL "SLMP": O,N2,FNW,13,A,EsRsT,T0,T1
1780
1790 CET w = I1 + 12 + 13
1800 LET T=T*N? *CONVERT TIME TO SECONDS
1810 kbl w=w /(3. 146159*A%RB*L912/P) .  ‘CONVERI DEFLFECTION TO METERS _ _ .
1820

CALL "LLNE":‘C():T:N ‘DRAW THEORETICAL CURVE

1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960

1920 Funklivy DEFINITIONS AND SUBPROGRAMS

1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
211¢C
2120
2130
2140
2150
2160
217C
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270 .
2280
2290
2300
2310
2320

R330 gl Fouv = FNVFNJCX®A)~ENICX*R) .

NEXT |

* PRINT TITLE BLOCK

CALL "FINISH":CO)

PRINT ""™,” SITE "J/SEGS(AS,1,1);" TEST "JSEGS(AS,2,2);" POSITION

PRINT

PRINI  "TAU; "1
PRINT ";Es"ED:
CALL "ERKUK™: NpNT/N2sT1,FNV,FNWLALEsR, TOsT1,N7sRBALYSP,EG,HT
PRINT "","NORMALIZEL TRAPEZOIDAL ERROR "JE6

PRINT " "

DEF FNACASESR,T,TOAT1,X)
' ALPnAl
Lel FNA = (TT1aX14) + 1 + T1 - FNSCALEsR,T,TO0,T1,X)
LET FivA = FNA/(24(Xt4 + E))

FNEw©

DEF FNolAstsRsT,TU,TY, X)
' ALPhAY
cel Fuo = (T1#X14) + 1 + T1 + FNSCALE-R,T,T0,T1,X)
LET bFoaa = FNB/(2%(Xt4 + £))

FNEN Y

DEF tud(AscsReT,TN,T1,%)
YLWRLDESCO)
CeT o = ((TT1eX?4) + 1 + T1)42 ~ 4aTia(X*4 + E)
LeT FAY = SUR(FNS)

FUEww

DEF FNUCAsE,R,T,TN,T1,x)
Lel Al = FNACAZELR,T,TO,T14X)
LET Fou = XT4s(T1t ~ A1) /FNSCALE,R,T,TOFT1,X)
L ala1y > ,005 THEN 2230
Lel riju = FNU*CT + AT=TQ/2)
wuTo ¢est
cel Fau = FHUSCEXP(AT®TU)=1)/(ATATD)
Lel Fvu = TOx(Y = FNUD
Lel FRy = FAUSFNJ(X~A) *FATC(X*R)
FNEN U
DEF FNV(A,sEsR,T,TO,T1,X)
LET AT = FNACAZELR,T,TO,T1,X)
LET Fav = X16*(T1 = A1) /FNSCAZELR,T,T0,T1,X)
Lel Fav FNV# (1 = EXP(-AT1*T)) /A1
Lel Finv = FNVSCEXP(AT-TO) - 1)

2340 FNENW

2350

2360 DEF tim(AsesR,T,TO,11,X)

2370 LT A = FNBCALELR,T,T0,T1,X) i

2380 LET Fivw = Xt4a(T1 = A2)/FNSCALESR,T,TOLT1,X)

2390 = * ~A2*T)/A2 . —_ -
2400 LET Ftaw = FNWaC(EXPCAZ2ATO) - 1)

2410 Lel Fow = FNRAENJCANX) *FENT (XaR)

" SEGS(AS,3,LEN(AS)-1)



1€

2420 FNEND 3000 ¢ us OEPARTMENT OF COMMERCE, 1966

L -.2430 3010 ! (Vababe 924462
2440 DEF FNICX) 3020
2450 . el 3030 .
2460 ' #*«FUNCTION SUBPROGRAM: JO(X)*%wx 3040 ' waxenheaws SYMBOL TABLE #wwwwnrwww
2470 . e JE PR 3050 ' 41 J1(X) FIRST-ORDER BESSEL FUNCTION
2480 ' POLYNOMIAL APPROXIMATIONS FROM: ; 3060 ' F1 F1(X) IN NBS BOOK
2490 ' HANOBOOK QF MATHEMATICAL FUNCTIONS, 3070 ' T¢ THETA1C(X) IN NBS 800K
2500 ' US VEPARTMENT OF COMMERCE, 1964 3080 ' X ARGUMENT
2510 ' (Yabdls 9.6.3) S 3090 ‘ Y . X/3, OR 3./x —
2520 3100 . I I I
2530 . . R L 3110 —
2540 . Ak whhhhah SYMBOL TABLE Aaakwnnnsn 3120
2550 ! J0 e — . 40CX) ZERQTH-QRDER BESSEL FUNCTIQON 3130 1F x >= 0 THEN 3180
2560 ' F F(X) IN NBS BOOK 3140 PRINT "FUNCTION J1(X): ARGUMENT MUST BE >= 0"
2570 ' T3 THETA(X) IN NBS BOOX 3150 PRINT " x3",X e . _
2580 ' X ARGUMENT 3160 >TuP
2590 ' Y X/3. OR 3./X 3170 e o
2600 ' R R AR R R AR R AR R R R R AR AR R AR A A R Ak 3180 LF x>35 THEN 3280
2610 . e 3190
2620 3200 ' PULYWOUMIAL APPROX, 0<=x<=3,
2630 IF X >= 0 THEN 2€80 3210 LET Y=x/3, B . e e
2640 PRINT "FUNCTION JO(X): ARGUMENT MUST BE >= 0" 3220 LET 41 = .5 = .56249 985+Yt2 + ,21093 S573+Yt4
2650 PRINT "x=";X ) 323¢ LET 41 = J1 - .03954 289x¥t6 + 00443 37T9+v18 L
2660 3TOP 3240 LeT J1 = J1 - .0C031 761+«Y+10 + ,00001 109+«0
.. 2670 _ U O 3250 LET 41 = XxJ1 . S
2680 IF x>3 THEN 2770 3260 w0Tu 356420
2690 3270 i I
2700 ' POLYWUMIAL APPROX,» 0<=Xx<=3, 3280 * POLYWuUNIAL APPROX, X>3,
2710 LET Y=x/3, 3290 LET Y35,/X e
2720 LET JU = 1 = 2,24999 97*xYt2 + 1,26562 08*Y14 3300 * F1 = F1 IN NBS BOOK
2730 LET Jg = J0 - ,31638 66*Y16 + Q4444 79%vtg 3310 LET F1 = 79788 456 + ,00000 156%Y
2740 LET JJ = JO - ,0C394 44=Y210 + .00021 00«0 3320 LET F1 = F1 + 01659 667+xyt2 + 00017 105+«v*3
2750 Gc0T0 2910 3330 LET F1 = F1 = 00249 511«vt6 + ,00113 653+Yt5 -
2760 3340 LeT F1 = F1 - ,C002C 033xv16
2770 ' POLYNUMIAL APPROX, X>3. 3350 * T¢ = THETA1 IN N3§ BOOK e -
2780 LET ¥Y=5,/X 3360 LET T2 = X = 2.35619 449 + ,12499 6124Y
2790 ' F = F_IN NBS 800K o 03370  Lel 7¢ = T2 + .0CONS5 650+vt2 - ,00637 8794Y13
2800 LeT F = 79788 456 - ,00000 077+=y 3380 LET T¢ = T2 + ,0C074 3648+vt4 + 00079 824#Y1S
2810 LET F = F =~ ,00552 740+Y12 - ,00009_512~Yt3 B 3390 LET Te = T2 = .0C029 166%Y16 e R
2820 LET F = F ¢+ 00137 237+«Yt4 - ,00072 80S5#vt5 3400 LET J1 = (1,/SQROXDI*F1xC0S(T2)
2830  LeT F = F ¢+ .00014 476*Y16 S 3410 . . - [ — I
2840 * TS5 = THETA IN NBS 800K 3420 LET Fry = 41
2850 LET T3 = X = ,78539 816 - 04166 397*Y 3430 FNEnD
2860 LeT T3 = T3 - _0C003 954+vt2 + ,00262 573*y*3 3440 END
2870 _ LET T35 = T3 - ,00054 125+Yt4 _~- ,00029 333+«y¢s5 3450 e e . S
2880 LET T35 = T3 + _0CO13 558+Yt6 3460 SUB "STMP s X1,X2,FNF,AG,ALELR,T,TO,TI
2890 . . LET Jy = (1,./SQRUX))I%FeCOSCT3) . 36470 ' *%« SUBPROGRAM: SIMPSON'S RULE INTEGRATION #*«« _
2900 3480
__ 2910 LET FEN] = 40 3490 ' SIMPSUN'S RULE FORMULA FROM:
2920 FNEnv 3500 * NUMERICAL CALCULUS
R930 L 3510 ' WILLLAM MILNE, 1949
2940 DEF FNJC(X) 3520
-1 L « B 3530 * awkandkesdr SYMBOL TABLE #snhansdssn
2960 ' **« FUNCTION SUBPROGRAM: J1(X)han 3540 ‘ A3 SIMPSON APPROXIMATION FOR PREVIOUS TRIAL
__ 2970 - 3550 * Ab SIMPSON APPROXIMAT RR
2980 ' POLYNOMIAL APPROXIMATIONS FROM: 3560 ' FNF FUNCTION SUBPROGRAM FOR INTEGRAND
_.29%0 ' HANDBOOK OF MATHEMATICAL FUNCTIONS, 3570 ‘ H INTERVAL WIDTH




43

3580 ¢ 1 COUNTER

3590 . N . ___2%N = NUMBER OF INTERVALS .
3600 ' $1 PARTIAL SUM OF THE 0DD TERMS

3610 4 s$2 PARTIAL SUM OF THE EVEN TERMS

3620 ¢ X VARIABLE OF INTEGRATION

3630 ' X2 UPPER BOUND OF INTEGRATION

3640 ' x1 LOWER BOUND OF INTEGRATION

3650 KA AR A AR S A R AR KRR R RN R NN IR R Rk RN o .
3660

3670 1F X22x1 THEN 3720

368C PRINT "SUBPROGRANM SIMP: XMAXIMUM MUST BE > XMIN"

3690 PrINT "XNMIN="JX1,"XMAX=";X2

3700 sTuP

3710 . o X B o R

3720 ' OANLITLALIZE OLD APPROXIMATION

3730 Lel Ajsy

3740 ' IWTLALIZE TO 1CO INTERVALS

3750 Lel W = 50

3760 ' CALUULATE INTERVAL #IDTH

3770 LeT H=(h2=-X1)/(2N) .

3780 * INITIALIZE PARTIAL SUMS

379C Lel 31=52=0

3800 ' CALUULATE PARTIAL SUMS

3810 cel x=x1

3820 fUR 1=y TO N

3830 LeT S2=S2+FNF(ALE,R,T,T0,T1,X) B
3840 Lel A=sX+2xH

3850 NexT 1

3860 LET X=414H

3870 FUK [=1 TO N

3880 LeT 3T1=ST+FNFCALELR,T,T0,T1,X)

3890 oLel x=x+#2+*H ~

350N WEXT &

3910 ' CALCULATE NEW APPROXIMATION

3920 LeT ARezA«(baST1+24S2~FNFCALE,R,T,T0,T1,X1)~FNFC(ALELR,THTO,T1,x2))/3
3930

3940 1F Ao>(a3=-A4)<=1_E-6 THEN 4050

3950 e . _ L _

3960 * PREFARE TO TRY AGAIN

3970

3980 LET A3=AL

3990 LET $2=51+82

4000 el >1=0

4010 LET nN=2*N e o . .
4020 LET Ha(X2-X1)/(2+N)

4030 w0TU 3800 N
4040

4050 SUBEWD B e A
4060

4070 sus PERROR" sNoN1,N241V s FNVIFNWIALELRITOLT1oN7,RB8,LP,P,EGLHT .
4080 RESETHI

4090 INPUTH1: N3 . . __ _‘DISCARD FIRST LINE_ _  _  __
4100 INPUT#1: N3 *DISCARD SECOND LINE

4110 INPUTH1: N3 _____ ____"NUMBER OF DATA POINTS e
4120 ITwPuT#I T2,W2 *TIME, DEFORMATION

4130 LET T2 = 12260 ‘TIME IN SECOQNDS

4140 LET we = W2+,.3048 *DEFORMATION IN METERS

4150 LET T3 = T2/N7 *NONDIMENS IONALIZE TIME

W60

S CALL "sTMP™

0 N1,FNV,12,A,E,R,T3,T0,T1

Su

4170 CALL ">IMP”": O,N2,FNW,13,A,EsR,T3,T70,T71 .
4180 LET w3 = 1 + 12 + 13 *COMPUTE NONDIMENSIONAL DEFORMAT ION
4190 LET W3 = W3/(3.14159+A«R8+L92/P) ‘'DIMENSIONALIZE IT

4200 LET €2 = (W3 -~ w2) "COMPUTE ERROR

4210 LeT To = O . . _“INITIALIZE TIME SUM FOR NORMALIZATION
4220 LET §2 =0 VINITIALIZE TRAPEZOIDAL AREA SUM
4230 FOR I = 170 N3 -1

4240 INPUTHT :T4,Wé *NEXT TIME, DEFORMATION PAIR

4250 LET 14;; T4*6C S

4260 LET wh = W4+,3048 ) :

4270 LeT T5 = T4/N7 ) 7

4280 CALL "SIMP"™: CoN1,FNVLI2,A,EsR,TS,LT0,T1

4290 CALL "SIMP"; CoN2/FNW,13,A,EsR,T5,T0,T1 . N
4300 LET w5 = 11 + 12 + 13

4310 LET wS = WS/ (3.14159*A*RB*L9T2/P) -

4320 LET td = (W5-wdk) 'NEXT ERROR

4330 LET 6 = T4 ~ T2 + 76 "INCREMENT TIME SUM

4340 IF ce*E4 > 0 THEN 4370 "CURVES DON'T CROSS => TRAP

4350 LET 52 = S2 + ,5%(T4 ~ T2)x(E214 + E4T4)/(E212 + E4t2)

4360 Guly 4380

4370 LEf 52 = S2 + 5%(T&4& - T2)*(E4t?2 + E212) ‘INCREMENT TRAP. AREA
4380 Lel e = ES 'NEW BECOMES OLD

4390 LET T2 = T4 'NEW BECOMES OLD

4400 werT |

6410 Lel o = §2/76 'NORMALIZE SUM

4420 Ltef to = SQR(ES)

4430 SUBENU
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