

The viscoelastic deflection of an infinite floating ice plate subjected to a circular load

U	ncl	assified
0	110	assincu

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)					
REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
CRREL Report 78-5					
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED			
THE VISCOELASTIC DEFLECTION OF AN INFI	NITE FLOATING				
ICE PLATE SUBJECTED TO A CIRCULAR LOAD)				
		6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(#)			
Shunsuke Takagi					
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK			
U.S. Army Cold Regions Research and Engineering	Laboratory	AREA & WORK UNIT NUMBERS			
Hanover, New Hampshire 03755	·····,	DA Project 4A161102A124			
		Task AT, Work Unit 001			
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE			
Office Chief of Facilities Engineering		April 1978			
Washington DC 20314		13. NUMBER OF PAGES 34			
14. MONITORING AGENCY NAME & ADDRESS(if different	from Controlling Office)	15. SECURITY CLASS. (of this report)			
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report)					
Approved for public release; distribution unlimited.					
17. DISTRIBUTION STATEMENT (of the abstract entered i	n Block 20, If different from	n Report)			
	<u></u>				
18. SUPPLEMENTARY NOTES					
19. KEY WORDS (Continue on reverse side if necessary and	identify by block number)				
Bessel functions					
Numerical integration					
Viscoelasticity					
Viscoulasticity					
20. ABSTRACT (Continue on reverse side if necessary and	identify by block number)				
We solved the viscoelastic deflection of an infinite fl	oating ice plate subjecte	d to a circular load, assuming the			
Maxwell-Voigt type four-element model. We developed an effective method of numerical integration of the solution					
integrals, of which each integrand contains a produc	t of Bessel functions ext	tending to infinity. We fitted the			
theoretical curve to the field data, but the material of	constants thus found var	ied with time and location.			

PREFACE

This report was prepared by Dr. Shunsuke Takagi, Research Physical Scientist, Physical Sciences Branch, Research Division, U.S. Army Cold Regions Research and Engineering Laboratory.

The study was funded under DA Project 4A161102AT24, Research in Snow, Ice and Frozen Ground; Task A1, Properties of Cold Regions Materials; Work Unit 001, Properties of Snow and

Ice. The numerical computation was partly supported by the Ice Engineering Program, CRREL. The report was technically reviewed by Dr. D.E. Nevel, G. Frankenstein, and Dr. A. Assur of CRREL.

CRREL Report 78-5

The viscoelastic deflection of an infinite floating ice plate subjected to a circular load

Shunsuke Takagi

April 1978

Prepared for DIRECTORATE OF FACILITIES ENGINEERING DFFICE, CHIEF OF ENGINEERS By CORPS OF ENGINEERS, U.S. ARMY COLD REGIONS RESEARCH AND ENGINEERING LABORATORY HANOVER, NEW HAMPSHIRE

CONTENTS

	Page
Abstract	i
Preface	ii
Introduction	1
1. The problem	2
2. The solution	4
3. Method of numerical integration	7
4. Ramp/steady loading	8
5. Curve fitting to time lapse deflections	10
6. Asymptotic deflection	14
7. Deflection profiles	16
Acknowledgement	17
Literature cited	18
Appendix I. Analytical background	19
Appendix II. Computer programs, ramp time profiles and steady time profiles	25

ILLUSTRATIONS

Figure

1.	Maxwell-Voigt type four element model	1
2.	Definition of the ramp/steady loading	9
3.	Distributed load test by Frankenstein	11
4.	Concentrated load test by Frankenstein	11
5.	Comparison of the calculated curves and measured points of Frankenstein's con-	
	centrated load test	12
6.	Elements of TE	13
7.	The TE of Frankenstein's distributed load test	13
8.	The TE of Frankenstein's concentrated load test	14
9.	Graphs of asymptotic integral K in (6.4)	15
10.	Deflection profile	16
11.	Asymptotic deflection profile	17
12.	Contour of integrations (B.5) and (B.6)	20

TABLES

Table		
١.	Material constants found by using the time-lapse curves of Frankenstein's distributed	
	load test	12
11.	Material constants found by using the time-lapse curves of Frankenstein's con-	
	centrated load test	12
111.	Final time of the three tests	16

THE VISCOELASTIC DEFLECTION OF AN INFINITE FLOATING ICE PLATE SUBJECTED TO A CIRCULAR LOAD

Shunsuke Takagi

INTRODUCTION

Since ancient times floating ice plates have been used to cross rivers and lakes. During recent years traffic load on frozen rivers and lakes has greatly increased, and at the same time vehicles have become heavier. Aircraft landing and parking facilities also have added loads on these bodies of water. In addition, during the past several years, oil companies have started to use ice plates as drilling platforms. Thus, we now need to acquire a more detailed understanding of the creep of ice plates.

Figure 1. Maxwell-Voigt type four element model.

Formulation of the creep of a floating ice plate began after World War II with the intense development of the linear viscoelasticity theory. In 1947 Golushkevich (referred to by Kheysin¹⁰) presented an analysis assuming that ice behaves elastically for volumetric deformations and viscoelastically for deviatoric deformations. Kheysin¹⁰ used a general viscoelastic thin-plate theory to analyze the infinite floating ice plate. He used the Maxwell unit (Fig. 1) only, and considered only a concentrated load. Nevel¹¹ also used the Maxwell unit only, but considered a distributed load. He limited his numerical computation only to the center of the load.

William L. Ko, as reported by Garbaccio,^{4 5} used the Maxwell-Voigt type four-element model (Fig. 1), which is known to represent the creep of ice satisfactorily (Jellinek and Brill⁸). In addition to thin-plate theory, Ko used Reissner's plate theory, which includes the deflection due to vertical shear forces. Garbaccio⁵ numerically evaluated Ko's solution for specific values of material constants rather

than for nondimensional parameters. Garbaccio's numerical answers show that the discontinuity of the load distribution yields a strong influence on the values of deflection. It is reasonable to suspect that his numerical evaluation may contain some errors.

IAkunin⁶⁷ has solved the same problem as Ko, but he used only thin-plate theory. Unfortunately, only an abstract of IAkunin's work is available to western researchers.

Katona⁹ and Vaudrey and Katona¹⁷ solved the same problem with a finite-element viscoelastic computer program.

We solved this problem analytically by use of thin plate theory, and also developed an effective method of numerical integration of the solution integrals. However, the theoretical curves did not satisfactorily fit the field-test curves. It is now evident that a large scale laboratory test eliminating the variation due to natural conditions must be carried out and the theoretical assumptions must be tested.

1. THE PROBLEM

We shall consider the viscoelastic ice plate floating on water extending horizontally to infinity. We shall use the Maxwell-Voigt type four-element model (Fig. 1) to describe the viscoelastic deformation of ice.

Using the notation of Fig. 1, we can show that this model gives the stress-strain relationship which we show in an operator form,

$$\epsilon = \left[\frac{1}{E_1} + \frac{1}{\eta_1 \frac{\partial}{\partial t}} + \frac{1}{E_2 + \eta_2 \frac{\partial}{\partial t}}\right]\sigma$$
(1.1)

where t is time. To extend the one-dimensional relationship (1.1) to the three-dimensional relationship, we assume, as explained by Flügge,² that ϵ and σ are deviatoric and relate them by

$$\sigma = 2Ge$$

where G is the rigidity modulus relative to the three-dimensional deformation. Using (1.1), 2G is given as an operator

$$\frac{1}{2G} = \frac{1}{E_1} + \frac{1}{\eta_1 \frac{\partial}{\partial t}} + \frac{1}{E_2 + \eta_2 \frac{\partial}{\partial t}}$$
(1.2)

The differential equation describing the deflection w of an elastic plate on water is

$$D\nabla^4 w + \rho w = q \tag{1.3}$$

where ∇^4 is the biharmonic operator

$$\nabla^4 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)^2 \tag{1.4}$$

 ρ the density of water, q the load per unit area, D the flexural rigidity defined by

$$D = 2Gh^3 / [12(1-\nu)] \tag{1.5}$$

in which h is the thickness of the ice plate, and ν Poisson's ratio. Substituting 2G from (1.2) into (1.5), and D thus found into (1.3), we find the differential equation governing the viscoelastic deflection of a floating ice plate. We shall show this equation later in the nondimensional form.

We assume the load q to be a step loading applied at t = 0 and distributed uniformly over a circle of radius a with the center at origin. Then, letting r be the radial distance from origin

$$q = q_0 U(t) \quad \text{for } 0 \stackrel{\leq}{=} r < a$$

$$= 0 \qquad \text{for } a < r$$
(1.6)

where U(t) is the step function, and t the time. Our problem is axisymmetric, and the biharmonic operator ∇^4 reduces to

$$\nabla^4 = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r}\right)^2$$

We shall nondimensionalize our differential equation. We define the characteristic length ℓ by

$$\ell^4 = E_0 h^3 / [12\rho(1-\nu)] \tag{1.7}$$

where

$$\frac{1}{E_0} = \frac{1}{E_1} + \frac{1}{E_2} \,. \tag{1.8}$$

We have chosen E_0 , rather than E_1 or E_2 , to define ℓ , because E_0 is related to the secondary creep (Nevel¹²), which is the main interest in our field observation.

Let D_1 be defined by

 $D_1 = D/(\rho \ell^4).$ (1.9)

Use of (1.4) and (1.7) changes (1.9) to

$$D_1 = 2G/E_0. (1.10)$$

Substituting G in (1.2), (1.10) becomes

$$D_1 = 1 \left\{ \frac{E_0}{E_1} + \frac{E_0}{\eta_1 \frac{\partial}{\partial t}} + \frac{E_0}{E_2 + \eta_2 \frac{\partial}{\partial t}} \right\}.$$
(1.11)

We choose nondimensional time T

 $T = E_0 t/\eta_1 \tag{1.12}$

and a parameter au

$$\tau = \eta_1 E_2 / (\eta_2 E_0). \tag{1.13}$$

Then (1.11) becomes

$$D_{1} = 1 / \left\{ E + \frac{1}{\frac{\partial}{\partial T}} + \frac{\eta_{1}/\eta_{2}}{\tau + \frac{\partial}{\partial T}} \right\}$$
(1.14)

where

$$E = E_0 / E_1 . (1.15)$$

It is noted that

$$0 \leq E \leq 1. \tag{1.16}$$

Clearing the denominator, (1.14) becomes

.

$$D_{1} = \frac{\partial}{\partial T} \left(\frac{\partial}{\partial T} + \tau \right) \left\{ E \frac{\partial^{2}}{\partial T^{2}} + (1 + \tau) \frac{\partial}{\partial T} + \tau \right\}$$
(1.17)

where use is made of the relation

$$E\tau + \eta_1/\eta_2 = \tau$$

which can be proved by use of (1.13), (1.15), and (1.8). We define the nondimensional length R by

$$R = r/\mathfrak{L}. \tag{1.18}$$

We replace D in (1.3) with D in (1.9), and (1.3) becomes

$$D_1 \nabla_{\mathsf{R}}^4 w + w = q/\rho \tag{1.19}$$

where

$$\nabla_{\mathsf{R}}^{4} = \left(\frac{d^{2}}{dR^{2}} + \frac{1}{R}\frac{d}{dR}\right)^{2} \,. \tag{1.20}$$

With D_1 given by (1.17), (1.19) is the differential equation to be solved.

2. THE SOLUTION

We denote the Hankel transform of f(R) by $\tilde{f}(\beta)$

$$\widetilde{f}(\beta) = \int_{0}^{\infty} f(R) f_{0}(\beta R) R dR$$
(2.1)

and the two-sided Laplace transform (Van der Pol and Bremmer¹⁶) of g(T) by $\overline{g}(s)$

$$\overline{g}(s) = S \int_{-\infty}^{\infty} g(T) e^{-ST} dT.$$
(2.2)

We denote the inverse of (2.2) by

$$g(T) = L^{-1} [\bar{g}(S)].$$
(2.3)

Applying these two transforms, (1.19) becomes

$$\overline{D}_1 \ \beta^4 \ \widetilde{\overline{w}} + \widetilde{\overline{w}} = \ \widetilde{\overline{q}} / \rho$$

where

$$\overline{D}_{1} = \frac{S(S+\tau)}{ES^{2} + (1+\tau)S + \tau}$$
(2.4)

Applying the two transforms to q defined by (1.6), we get

$$(1/\rho)\widetilde{\overline{q}} = \left[P/(\pi A \rho \ell^2)\right] (1/\beta) f_1(\beta A)$$
(2.5)

where

$$P = \pi a^2 q \tag{2.6}$$

and

$$A = a/\varrho. \tag{2.7}$$

Thus the transformed solution is given by

$$\widetilde{\overline{w}} = \frac{P}{\pi A \rho \ell^2} \frac{1}{\beta (1 + \overline{D}_1 \beta^4)} \ f_1(\beta A).$$

Performing the Hankel inverse, we find

$$\overline{w} = \frac{P}{\pi A \rho \ell^2} \int_0^\infty \frac{1}{1 + \overline{D}_1 \beta^4} f_1(\beta A) f_0(\beta R) d\beta.$$
(2.8)

Performing the Laplace inverse, we find

$$w = \frac{P}{\pi A \rho \varrho^2} \int_0^\infty L^{-1} \left(\frac{1}{1 + \overline{D}_1 \beta^4} \right) f_1(\beta A) f_0(\beta R) d\beta.$$
(2.9)

To find $L^{-1} \left[1/(1 + \overline{D}_1 \beta^4) \right]$, we compute the partial fraction

$$\frac{1}{S} \frac{1}{1+\overline{D}_1\beta^4} = \frac{1}{S} + \frac{\beta^4 (\tau - \alpha_2)}{\sqrt{DESC}} \frac{1}{S+\alpha_2} - \frac{\beta^4 (\tau - \alpha_1)}{\sqrt{DESC}} \frac{1}{S+\alpha_1}$$

where $-\alpha_1$ and $-\alpha_2$ are the roots of the quadratic equation

$$(E + \beta^4) S^2 + (\tau \beta^4 + 1 + \tau) S + \tau = 0.$$
(2.10)

They are given by

where

$$DESC = (\tau \beta^4 + 1 + \tau)^2 - 4\tau (\beta^4 + E)$$
(2.12)

which transforms to

$$= [\tau (\beta^4 + 1) - 1]^2 + 4\tau (1 - E).$$
(2.13)

From (2.13), it is clear that

$$DESC > 0. \tag{2.14}$$

The roots α_1 and α_2 are therefore always real. Moreover, inspection of (2.11) and (2.12) shows that both α_1 and α_2 are always positive. Thus we find that

$$\mathcal{L}^{-1}\left(\frac{1}{1+\overline{D}_{1}\beta^{4}}\right) = 1 + \frac{\beta^{4}\left(\tau-\alpha_{2}\right)}{\sqrt{DESC}} e^{-\alpha_{2}T} - \frac{\beta^{4}\left(\tau-\alpha_{1}\right)}{\sqrt{DESC}} e^{-\alpha_{1}T} .$$

$$(2.15)$$

Substituting (2.15) into (2.9), the solution for w is found:

$$w = \frac{P}{\pi A \rho \ell^2} \int_0^\infty \left\{ 1 + \frac{\beta^4 (\tau - \alpha_2)}{\sqrt{DESC}} e^{-\alpha_2 T} - \frac{\beta^4 (\tau - \alpha_1)}{\sqrt{DESC}} e^{-\alpha_1 T} \right\} f_1(\beta A) f_0(\beta R) d\beta.$$
(2.16)

The radial and hoop stresses are given by

$$\sigma_{\rm r} = -\frac{6D}{h^2} \left(\frac{\partial^2 w}{\partial r^2} + \frac{\nu}{r} \frac{\partial w}{\partial r} \right)$$
$$\sigma_{\theta} = -\frac{6D}{h^2} \left(\frac{1}{r} \frac{\partial w}{\partial r} + \nu \frac{\partial^2 w}{\partial r^2} \right)$$

respectively. Changing D to D_1 by use of (1.9) and r to nondimensional R by use of (1.18), they become

$$\sigma_{\rm r} = -\frac{6\rho \ell^2}{h^2} D_1 \left(\frac{\partial^2 w}{\partial R^2} + \frac{\nu}{R} \frac{\partial w}{\partial R} \right)$$
$$\sigma_{\theta} = -\frac{6\rho \ell^2}{h^2} D_1 \left(\frac{1}{R} \frac{\partial w}{\partial R} + \nu \frac{\partial^2 w}{\partial R^2} \right)$$

where D_1 is the operator on T given by (1.17). The two-sided Laplace transform yields

$$\overline{\sigma}_{\rm r} = -\frac{6\rho\ell^2}{h^2} \left(\frac{\partial^2}{\partial R^2} + \frac{\nu}{R} \frac{\partial}{\partial R} \right) \overline{D_1 w}$$
(2.17)

$$\overline{\sigma}_{\theta} = -\frac{6\rho\ell^2}{h^2} \left(\frac{1}{R} \frac{\partial}{\partial R} + \nu \frac{\partial^2}{\partial R^2} \right) \overline{D_1 w}$$
(2.18)

where $\overline{D_1 w}$ is the Laplace transform of $D_1 w$.

Using (2.8) one gets

$$\overline{D_1w} = \frac{P}{\pi A\rho \ell^2} \int_0^\infty \frac{\overline{D}_1}{1+\overline{D}_1\beta^4} J_1(\beta A) J_0(\beta R) d\beta.$$

The Laplace inverse of this is

$$D_1 w = \frac{P}{\pi A \rho \ell^2} \int_0^\infty L^{-1} \left(\frac{\overline{D}_1}{1 + \overline{D}_1 \beta^4} \right) f_1(\beta A) f_0(\beta R) d\beta.$$

To find $L^{-1}[\overline{D}_1/(1 + \overline{D}_1 \beta^4)]$, we compute the partial fraction,

$$\frac{1}{S} \frac{\overline{D}_1}{1 + \overline{D}_1 \beta^4} = \frac{\tau - \alpha_1}{\sqrt{DESC}} \frac{1}{s + \alpha_1} - \frac{\tau - \alpha_2}{\sqrt{DESC}} \frac{1}{s + \alpha_2}$$

Thus we find

$$L^{-1}\left(\frac{\overline{D}_1}{1+\overline{D}_1\beta^4}\right) = \frac{\tau - \alpha_1}{\sqrt{DESC}} e^{-\alpha_1 T} - \frac{\tau - \alpha_2}{\sqrt{DESC}} e^{-\alpha_2 T}.$$

Thus the inverse of (2.17) is

$$\sigma_{\rm r} = \frac{6P}{\pi A h^2} \int_0^\infty J_1(\beta A) \left\{ J_0(\beta R) - \frac{1-\nu}{\beta R} J_1(\beta R) \right\} \frac{(\tau - \alpha_1) e^{-\alpha_1 T} - (\tau - \alpha_2) e^{-\alpha_2 T}}{\sqrt{DESC}} \beta^2 d\beta.$$
(2.19)

The inverse of (2.18) is

$$\sigma_{\theta} = \frac{6P}{\pi A h^2} \int_{0}^{\infty} J_1(\beta A) \left\{ \nu J_0(\beta R) + \frac{1-\nu}{\beta R} J_1(\beta R) \right\} \frac{(\tau - \alpha_1) e^{-\alpha_1 T} - (\tau - \alpha_2) e^{-\alpha_2 T}}{\sqrt{DESC}} \beta^2 d\beta. \quad (2.20)$$

Tabulation of σ_r and σ_{θ} becomes easier if linear combinations of (2.19) and (2.20) that do not contain ν are computed.

3. METHOD OF NUMERICAL INTEGRATION

It is impossible to analytically integrate the solution integrals (2.16), (2.19) and (2.20). (See App. 1.)

The direct numerical integration is inconvenient because of the slow convergence of the Bessel functions for large values of the independent variable β . We shall choose finite ranges of integration that give sufficiently close approximations. The essence of our method consists of the following integration procedure:

Consider the integral

$$I = \int_{0}^{\infty} \phi(\beta) J_{1}(\beta A) J_{0}(\beta R) d\beta$$
(3.1)

where the non-Bessel factor $\phi(\beta)$ is finite in the range of integration, and asymptotically

$$\phi(\beta) \sim a\beta^{-n} \tag{3.2}$$

in which a is constant. The value of n in our formulas in the previous section is ≥ 4 . The general case is discussed in Appendix I.

We will replace the infinite integral (3.1) with a finite integral. Given a large value N, we can estimate an upper bound of the absolute integral,

$$\int_{N}^{\infty} |\phi(\beta) J_{1}(\beta A) J_{0}(\beta R)| d\beta$$
(3.3)

called the absolute remainder, by substituting the asymptotic expansions of $\phi(\beta)$ and Bessel functions. We let the trigonometric functions in the latter equal one. Denoting the absolute remainder by $[Abs 1]_{N}^{\infty}$, we find

$$[Abs I]_{N}^{\infty} < [2a/(\pi\sqrt{aA})] (nN^{n})^{-1}.$$
(3.4)

Let ϵ be the error we can tolerate in our computation. In our actual computation, we chose

$$\epsilon = 10^{-5}$$
.

The value of N is evaluated by equating the right hand side of (3.4) to ϵ :

$$[2a/(\pi\sqrt{aA})] (nN^{n})^{-1} = \epsilon.$$
(3.5)

Then, integral I in (3.1) is approximated by

$$I \stackrel{:}{=} \int_{0}^{N} \phi(\beta) J_{1}(\beta A) J_{0}(\beta R) d\beta.$$
(3.6)

The value of N was small in most of our computation $[N \stackrel{\leq}{=} 10 \text{ except in (6.4)}]$, and our numerical scheme worked very effectively.

We list in the following the asymptotic expansions of the non-Bessel factors $\phi(\beta)$ contained in the integrands of our integral solutions (2.16), (2.19), and (2.20):

(3.7)

$$\begin{aligned} \alpha_1 &\sim \beta^{-4} \\ \alpha_2 &\sim \tau (1 + \beta^{-4}) \\ e^{-\alpha_1 T} &\sim 1 - T \beta^{-4} \\ e^{-\alpha_2 T} &\sim e^{-\tau T} \\ (\tau - \alpha_1) / \sqrt{DESC} &\sim \beta^{-4} - \beta^{-8} \\ (\tau - \alpha_2) / \sqrt{DESC} &\sim - (1 - E) \beta^{-8} . \end{aligned}$$

4. RAMP/STEADY LOADING

We used two load tests to fit our theoretical curves. One was the Sun Oil Corporation's (SUNOCO) data obtained during the winters of 1973-1974 and 1974-1975 at Resolute Bay, Northwest Territory (unpublished). The other was Frankenstein's data³ obtained on Portage Lake, Michigan, and the Garrison Dam Reservoir, North Dakota, on 20 March 1956 and 18 January 1957. Among these tests, we chose the ideal ramp/steady loading for our numerical computation. In this loading, as illustrated in Figure 2, the load P is increased initially at a constant rate \dot{P} and, after a certain time T_0 , kept constant at $P = \dot{P}T_0$. However, since SUNOCO does not allow the publication of their data, we cannot include their data in this paper.

We will derive the ramp/steady formulas by use of the step-loading formulas given in the previous section. However, since both SUNOCO and Frankenstein measured only deflection, we derive only the deflection formulas.

Define the influence function $w_0(T)$ by letting P = 1 in (2.16):

Figure 2. Definition of the ramp/steady loading.

$$w_0(T) = \frac{1}{\pi A \rho \ell^2} \int_0^\infty \left[1 + \frac{\beta^4 (\tau - \alpha_2)}{\sqrt{DESC}} e^{-\alpha_2 T} - \frac{\beta^4 (\tau - \alpha_1)}{\sqrt{DESC}} e^{-\alpha_1 T} \right] f_1(\beta A) f_0(\beta R) d\beta.$$
(4.1)

The deflection w(T) for $0 \leq T \leq T_0$ is given by

$$w(T) = \int_{0}^{T} w_{0} (T - \lambda) \dot{P} d\lambda$$
(4.2)

and for $T_0 \stackrel{\leq}{=} T$ by

$$= \int_{0}^{T_0} w_0 (T - \lambda) \dot{P} d\lambda$$
(4.3)

where $\dot{P} = P/T_0$. Substituting (4.1) into (4.2) and integrating with regard to λ , we get the deflection w(T) for $0 \leq T \leq T_0$:

$$w(T) = [\dot{P}/(\pi A \rho \ell^2)] (U_1 - U_2 + U_3)$$
(4.4)

where

$$U_{1} = \int_{0}^{N} \frac{1}{\alpha_{1}} \left(e^{-\alpha_{1}T} - 1 + \alpha_{1}T \right) f_{1}(\beta A) f_{0}(\beta R) d\beta$$
(4.5)

$$U_{2} = \int_{0}^{N} \left[\frac{\beta^{4} (\tau - \alpha_{1})}{\sqrt{DESC}} - 1 \right] \frac{1}{\alpha_{1}} (1 - e^{-\alpha_{1}T}) f_{1}(\beta A) f_{0}(\beta R) d\beta$$
(4.6)

$$U_{3} = \int_{0}^{N} \frac{\beta^{4} (\tau - \alpha_{2})}{\sqrt{DESC}} \frac{1}{\alpha_{2}} (1 - e^{-\alpha_{2}T}) f_{1}(\beta A) f_{0}(\beta R) d\beta.$$
(4.7)

The absolute remainders are as follows:

$$[Abs U_1]_{N}^{\infty} < [T^2/(4\pi\sqrt{AR})] N^{-4}$$
(4.8)

$$[Abs U_2]_{N}^{\infty} < [T/(2\pi\sqrt{AR})] N^{-4}$$

$$(4.9)$$

$$[Abs U_3]_{N}^{\infty} < [(1-E)/(2\pi\sqrt{AR})] \frac{1}{\tau} (1-e^{-\tau T}) N^{-4}.$$
(4.10)

Substituting (4.1) into (4.3) and integrating with regard to λ , we get the deflection w(T) for $T_0 \leq T$:

$$w(T) = [P/(\pi A \rho \ell^2)] (I_1 + I_2 + I_3)$$
(4.11)

where

$$I_{1} = \int_{0}^{N} \left\{ 1 - \frac{\beta^{4} (\tau - \alpha_{1})}{\sqrt{DESC}} \frac{1}{\alpha_{1} T_{0}} (e^{\alpha_{1} T_{0}} - 1) \right\} J_{1}(\beta A) J_{0}(\beta R) d\beta$$
(4.12)

$$I_{2} = \int_{0}^{N} \frac{\beta^{4}(\tau - \alpha_{2})}{\sqrt{DESC}} (1 - e^{-\alpha_{1}T}) \frac{1}{\alpha_{1}T_{0}} (e^{\alpha_{1}T_{0}} - 1) J_{1}(\beta A) J_{0}(\beta R) d\beta$$
(4.13)

$$I_{3} = \int_{0}^{N} \frac{\beta^{4} (\tau - \alpha_{2})}{\sqrt{DESC}} e^{-\alpha_{2}T} \frac{1}{\alpha_{2}T_{0}} (e^{\alpha_{2}T_{0}} - 1) J_{1}(\beta A) J_{0}(\beta R) d\beta.$$
(4.14)

The absolute remainders are as follows:

$$[Abs I_1]_{N}^{\infty} < (2\pi\sqrt{AR})^{-1} N^{-4}$$
(4.15)

$$[Abs I_2]_N^{\infty} < [T/(2\pi\sqrt{AR})] N^{-4}$$
(4.16)

$$[Abs I_3]_{N}^{\infty} < [(1-E)/(2\pi\sqrt{AR})][(e^{\tau T_0} - 1)/(\tau T_0)] e^{-\tau T} N^{-4}.$$
(4.17)

Computer programs for these formulas are shown in Appendix II.

5. CURVE FITTING TO TIME LAPSE DEFLECTIONS

Frankenstein³ placed a 12-ft-diameter tank on the ice and pumped the adjoining water into the tank. (We call this the distributed load test.) However, the temperature of the water in the tank obviously disturbed the ice temperature. He then tried a variation by placing a 17.3-in.-diameter concrete block under the 12-ft-diameter tank. (We call this the concentrated load test.). The water in the tank was, in this case, isolated from the ice and did not disturb the ice temperature.

The load-vs-time curves of these tests and the measured deflections are shown in Figures 3 and 4. "TANK" designates the deflection of the edge of the tank. "RODS" are the sites where the measurements were taken. The distances of the measurement sites from the center of the load are listed in Tables I and II.

The material constants found by the curve fitting are shown in Tables I and II. They vary with the location of the measurement.

To show the significance of the material constant variation with the measurement sites, we chose the material constants determined at rod 1 of Frankenstein's concentrated-load time-lapse curve, and computed the deflections at the other measurement sites. Figure 5 shows the comparison of the computed curves and the measured data. The left and right columns show the ramp and steady portions of the deflection curves, respectively. They are designated by (r) and (s) respectively.

To express the degree of curve fitting we devised the trapezoidal error (TE). In Figure 6, a, A and b, B show two pairs of measured and computed deflections at two consecutive times t_1 and t_2 ,

Figure 3. Distributed load test by Frankenstein (ref. 3, test 5).

Figure 4. Concentrated load test by Frankenstein (ref. 3, test 8).

Table I. Material constants found by using the time-lapse curves of Frankenstein's distributed load test (ref. 3, test 5).

	TANK	Rod 1	Rod 2	Rod 3
Distance	1.83 m	4.9 m	9.8 m	19.6 m
τ	20	20	26	5
E E ₀ (kg/m ²) η_1/E_0 (sec)	0.028 2.159×10 ⁸ 1.488×10 ⁶	0.014 3.729×10 ⁸ 1.469×10 ⁶	0.005 9.812×10 ⁸ 1.224×10 ⁶	0.02 3.925 ×10 ⁹ 2.448 ×10 ⁶
TE (ramp) (m) TE (flat) (m)	4.928×10 ⁻³ 3.048×10 ⁻³	2.780×10 ⁻³ 2.195×10 ⁻³	3.117×10 ⁻³ 3.882×10 ⁻³	1.0541×10 ⁻³ 1.393×10 ⁻³

Table II. Material constants found by using the time-lapse curves of Frankenstein's concentrated load test (ref. 3, test 8).

	TANK	Rod 1	Rod 2	Rod 3
Distance	0.22 m	4.9 m	9.8 m	19.6 m
τ	2	6.5	20	5
E	0.0005	0.007	0.05	0.1
$E_0(kg/m^2)$	1.766×10 ⁶	9.813×10 ⁷	6.869×10 ⁸	9.813×10 ¹¹
η_1/E_0 (sec)	2.815 ×10 ⁶	4.896×10 ⁵	1.101×10 ⁶	2.448×10 ⁶
TE (ramp) (m)	4.718×10 ⁻³	5.812 ×10 ⁻³	2.063×10 ⁻³	
TE (flat) (m)	4.727×10 ⁻³	2.730×10 ⁻³	2.884×10-4	2.750×10 ⁻³
		<u> </u>		

*Figure 5. Comparison of the calculated curves and measured points of Frankenstein's*³ *concentrated load test.*

Figure 6. Elements of TE.

Figure 7. The TE of Frankenstein's distributed load test (ref. 3, test 5).

respectively. We squared A-a and B-b and, in case of the upper figure where the errors are of the same sign, computed the area of the trapezoid of which the bases are $(A-a)^2$ and $(B-b)^2$ and the height $t_2 - t_1$. In case of the lower figure where the errors change sign, we calculated the sum of the areas of the two triangles of which the bases are $(A-a)^2$ and $(b-B)^2$ and the heights $t_0 - t_1$ and $t_2 - t_0$ respectively, where t_0 is the abscissa of the intersection. Denoting by S the area of such a figure, we defined TE by

$$TE = \sqrt{(\Sigma S)/T}$$
(5.1)

where the summation is over all the intervals and T the sum of the abscissa intervals.

The TE indicates a sort of absolute maximum error. Its unit is m. If the deflections are of ordinary magnitude, the TE of order 10^{-3} and 10^{-2} means a good and tolerable fit, respectively. If the deflections are very small, as in the case of rod 4, the smallness of the value of TE does not mean much. We did not list the computed values at rod 4 in Tables I and II.

We evaluated the TE for all the possible cases. They are shown in Figures 7 and 8. The abscissa is the distance from the center of the load. The measurement sites are noted on the abscissa axis. The circled points are those whose material constants are used to compute a set of TE. The sets of TE thus computed are connected with solid or broken lines and labeled with the appellations of the circled measurement sites.

Comparison of Figures 7 and 8 shows that the concentrated load test has smaller overall TE values than the distributed load test. However, we cannot recognize any significant effect of the temperature distribution due to the watertank temperature disturbance. Probably the cracks, whose appearances are noted in Figures 3 and 4 but are not considered in our formulation, were more detrimental

After the numerical computation was finished in 1976, Dr. Andrew Assur, an ice mechanics expert at CRREL, notified us that the variations of material constants in Tables I and II are in the

Figure 8. The TE of Frankenstein's concentrated load test (ref. 3, test 8).

range of reasonable values from the viewpoint of the nonlinear viscoelastic constants (Shumskij¹⁴). We tried in 1977 to reevaluate the material constants; we thought that, although the theoretical curve is formulated on the linear assumption, if we fit the theoretical curve in the narrow time interval and space span, we can find the material constants close to the incremental viscoelastic constants. However, this plan could not be executed because the distances between the measuring rods were too large.

6. ASYMPTOTIC DEFLECTION

We shall show in the following that only one material constant is contained in the asymptotic formulas. The curve fitting, therefore, must be carried out in the initial stage.

Referring to the asymptotic relationships in (3.7), we find that, when T is large, both the steploading formulation (2.16) and the ramp/steady loading formulation (4.11) reduce to

$$w = \left[P/(\pi A \rho \ell^2) \right] (K/A) \tag{6.1}$$

where

$$\frac{1}{A} K = \int_{0}^{\infty} (1 - e^{-T\beta^{-4}}) f_{1}(\beta A) f_{0}(\beta R) d\beta.$$
(6.2)

It is assumed in this derivation that $\tau > 0$, and that only large values of β are effective in the integration. Letting

$$\kappa = \beta A \tag{6.3}$$

(6.2) becomes

1

$$K = \int_{0}^{\infty} (1 - e^{-T_A x^{-4}}) f_1(x) f_0[(R/A)x] dx$$
(6.4)

where

$$T_{\rm A} = TA^4 \tag{6.5}$$

$$=\frac{ta^4}{h^3}\frac{12\rho(1-\nu)}{\eta_1}.$$
(6.6)

Thus, all the material constants are lumped into the second factor of (6.6). The stress formulas, although not mentioned here, can be similarly transformed.

As shown in Appendix I, (6.4) cannot be analytically integrated; it must be numerically integrated. To effect the numerical integration, the non-Bessel factor in (6.4) is so chosen that it becomes zero at $x = \infty$. The absolute remainder is estimated:

$$\left[Abs\ K\right]_{N}^{\infty} < \left[T_{A}\ \frac{1}{2\pi}\ \sqrt{\frac{A}{R}}\right]N^{-4}.$$
(6.7)

Graphs of integral K for the values of R/A = 0.2 and 2.0 are shown in Figure 9. When $T_A = \infty$, the non-Bessel factor becomes equal to one. At this limit, therefore, K = 1 when R < A, and K = 0 when R > A. As shown in the graphs, this limit is almost reached when $T_A > 1000$.

Exact integral K was formulated for the ramp/steady loading, and evaluated by use of a set of constants: $T_0 = 6 \times 10^3 \text{ sec}$, $\tau = 10$, E = 1/6, $\eta_1/E_0 = 6.12 \times 10^4 \text{ sec} = 17 \text{ hr}$, $E_0 = 7 \times 10^8 \text{ kg/m}^2$, $\nu = 0.5$, and A = 0.5. These constants give $\ell = 29.31 \text{ m}$ and $T_A = t(2.48 \times 10^{-3} \text{ day}^{-1})$. As shown in Figure 9, the asymptotic integral K is very close to the exact integral in the range $T_A > 0.1$. The above constants are the rough estimates used before starting the elaborate calculations.

They are not listed in the Tables. We did not use other sets of constants to evaluate the exact integral K. We expect that all the exact curves should show the similar coincidence with the asymptotic curve although with individual variations.

The values of T_A at the final time of the two tests are listed in Table III. These values are very small. However we experienced that the modification of some material constants was insensitive on the modification of the computed deflection values.

	in physical unit	in T _A unit
Frankenstein's distributed load test	420 min = 7 hr	2.67×10 ⁻⁴
concentrated load test	240 min = 4 hr	1.2×10 ⁻⁸

Table III. Final time of the three tests.

7. DEFLECTION PROFILES

We computed the deflection profiles of the concentrated load test (Frankenstein,³ test 8) at 12.7, 32.6, and 118.5 min by use of the material constants, $\tau = 10$, E = 0.02, $\eta_1/E = 7 \times 10^5$ sec, and $E_0 = 2 \times 10^8$ kg/m², as shown in Figure 10. These material constants are round numbers intermediate between the material constants at rod 1 and rod 2 in Table II. The three chosen times mentioned above are marked in Figure 4. The computed profiles are quite different from the measured profiles. We varied the material constants but could not find values that make the theoretical curve assume a similarity to the measured curve. It is our impression that the measured profiles do not belong to the family of curves that our analytical formula can describe. The measured and computed curves intersect between rod 1 and rod 2, indicating the reliability of our computation, as may be expected from the choice of the material constants.

Figure 10. Deflection profile. (Frankenstein's concentrated load test, ref. 3, test 8.)

Figure 11. Asymptotic deflection profile. (Theoretical continuation of Frankenstein's concentrated load test, ref. 3, test 8.)

At $t = \infty$, the integral K in (6.4) becomes

 $K = 1 \quad \text{for } 0 < r < a$ $= 0 \quad \text{for } 0 < a < r.$ (7.1)

The deflection w_{∞} at $t = \infty$ is

$$w_{\infty} = q/\rho$$
 for $0 < r < a$
= 0 for $0 < a < r$. (7.2)

Therefore, the water tank sinks theoretically to $w_{\infty} = 93.3$ m in the case of the concentrated load. However, the ice thickness h is 0.556 m. Our analytical formulas, therefore, become invalid beyond a certain elapsed time. (In the case of the distributed load test, $w_{\infty} = 1.350$ m and h = 0.597 m.)

Theoretical deflection profiles for large times are shown in Figure 11. At time infinity, our analytical deflection comes to the vertical line denoted by $t = \infty$. Because T_A 5.41×10⁻⁸×t (days) in the case of the concentrated load test, the largest time, 500 days, chosen for this calculation is still too short. However, the mode of approach to the ultimate $t = \infty$ curve is observable with the curves in Figure 11. [In the case of the distributed load test, $T_A = 1.98 \times 10^{-4} \times t$ (days).]

ACKNOWLEDGEMENT

When I was struggling to understand the analytical background, Dr. D. Freitag, Technical Director, CRREL, requested Dr. Noble, Director, Mathematical Research Center, University of Wisconsin, to help me resolve some difficulties. Dr. Noble's encouragement enabled me to start the numerical integration in this paper. He later held a session for me at MRC with the participation of Drs. R.A. Askey and W. Gautschi, members of MRC, for the further clarification of the analytical background.

This research was carried out with the close cooperation of Dr. D.E. Nevel, CRREL. Especially, he contributed the nondimensional formulation of (1.19).

We appreciate SUNOCO's permission for the use of their data, although we cannot include the data in this paper.

Numerical computation was carried out in 1976 and 1977 with the help of J. Bagger, student at Dartmouth College.

LITERATURE CITED

- 1. Dougall, J. (1903-04) An analytical theory of the equilibrium of an isotropic elastic plate. *Transaction of the Royal Society of Edinburgh*, vol. 41, Part I, no. 8, p. 129-228.
- 2. Flügge, W. (1967) Viscoelasticity. Blaisdell Pub. Co.
- Frankenstein, G.E. (1963) Load test data for lake ice sheets. CRREL Technical Report 89. (AD 414955).
- 4. Garbaccio, D.H. (1967) Creep of floating ice sheet. Naval Civil Engineering Laboratory, Port Hueneme, Calif., Report No. CR-67.025.
- Garbaccio, D.H. (1968) Creep of floating ice sheets computer calculations. Naval Civil Engineering Laboratory, Port Hueneme, Calif., Report No. CR-69014.
- IAkunin, A. Ye. (1968) K voprosu ob izgibe ledianogo prokrova s uchetom viazkokh svolstv l'da (Calculation of ice-cover bending allowing for viscous properties of ice). *Transactions, Novosibirskiy Institut Inzhenerov Zheleznodoroznogo Transporta*, vol. 79, p. 79-82. (Available as CRREL Draft Translation 425).
- 7. IAkunin, A. Ye (1970) Issledovaniye vliyaniya vremeni deystviya nagruzki na nesushchuyu sposobnost' ledyanogo pokrova (The investigation of the effect of the loading time on the bearing capacity of an ice cover). Novosibirskiy Institut Inzhenerov Zheleznodoroznogo Transporta, Speciality 01.022, Resistance of Materials and Structural Mechanics, p. 1-22.
- 8. Jellinek, H.H.G. and R. Brill (1956) Viscoelastic properties of ice. *Journal of Applied Physics*, vol. 27, p. 1198.
- Katona, M.G. (1974) Ice engineering: Viscoelastic finite element formulation. Naval Civil Engineering Laboratory, Port Hueneme, Calif., Technical Report R803.
- Kheysin, D. Ye. (1964) K zadache uprugo-plasticheskogo izgiba ledyanogo pokrova (On the problem of the elastic-plastic bending of an ice cover). Trudy Arkticheskogo i Antarkticheskogo Nauchno-Issledovatel' skgo Instituta, Tom. 267, p. 143.
- Nevel, D.E. (1966) Time-dependent deflection of a floating ice sheet. CRREL Research Report 196. (AD 638717).
- 12. Nevel, D.E. (1976) Creep theory for a floating ice sheet. CRREL Special Report 76-4. (AD A026122).
- 13. Nevel, D.E., Personal communication.
- Shumskij, P.A. (1974) Über das fliessgesetz in polykristallinem Eis. Polarforschung, vol. 44, no. 2, p. 105-116.
- 15. Titchmarsh, E.C. (1939) The theory of functions. Oxford University Press.
- 16. Van der Pol, B. and H. Bremmer (1959) Operational calculus based on the two-sided Laplace integral. Cambridge at the University Press.
- Vaudry, K.D. and M.G. Katona (1975) Viscoelastic finite element analysis of sea ice sheets. International Association of Hydraulic Research, Third International Symposium on Ice Problems, CRREL.
- 18. Watson, G.N. (1962) A treatise on the theory of Bessel functions. Cambridge at the University Press.
- 19. Wyman, M. (1950) Deflections of an infinite water. Canadian Journal of Research, vol. A28, p. 293.

APPENDIX I. ANALYTICAL BACKGROUND

A. The following theorem shows the condition under which the integral (3.1) becomes either discontinuous or continuous at R = A.

Theorem 1. The integral (3.1) is discontinuous or continuous at R = A when n in (3.2) is equal to or larger than zero, respectively.

Proof. We can rewrite (3.1) to a one-parameter integral

$$I(\alpha) = \int_{0}^{\infty} f(x, \alpha) \, dx \tag{A.1}$$

by letting $x = \beta A$, i.e. $\alpha = R/A$, where $f(x, \alpha)$ is continuous with regard to x and α . The condition that $I(\alpha)$ is a continuous function of α is that the integral (A.1) converges uniformly with respect to α (c.f. Titchmarch,¹⁵ p. 25). The integral (A.1) uniformly converges when n > 0, but does not when n = 0.

B. We shall consider in the following the integral (3.1) whose non-Bessel factor $\phi(\beta)$ is finite in the range of integration but asymptotically becomes zero in a more general form than in the specific form (3.2).

Let an asymptotic expansion of $\phi(\beta)$ be

$$\phi(\beta) \sim \sum_{n=0}^{m} \phi_n(\beta) . \tag{B.1}$$

Rewrite (3.1) as

$$I = I_0 + \sum_{n=0}^{m} K_n$$
 (B.2)

where

$$J_0 = \int_0^\infty \left\{ \phi(\beta) - \sum_{n=0}^m \phi_n(\beta) \right\} J_1(\beta A) J_0(\beta R) d\beta$$
(B.3)

and

$$\mathcal{K}_{n} = \int_{0}^{\infty} \phi_{n}(\beta) J_{1}(\beta A) J_{0}(\beta R) d\beta.$$
(B.4)

Figure 12. Contour of integrations (B.5) and (B.6).

We choose such an integer *m* that makes I_0 rapidly convergent. We choose such a function $\phi_n(\beta)$ that makes (B.4) analytically integrable. The following theorem is useful for the choice of $\phi_n(\beta)$.

Theorem 2. Let F(z) be an even function of the complex variable z = x + iy that becomes zero at $z = \infty$ and possesses only algebraic singularities (pole or branch points) on the upper half plane but no poles on the real axis. Then

$$\int_{0}^{\infty} F(x) f_{1}(ax) f_{0}(bx) dx$$

= $\frac{1}{a} F(0) + \frac{1}{2} \int_{-\infty}^{+\infty} F(z) H_{1}^{(1)}(az) f_{0}(bz) dz$ when $a > b > 0$ (B.5)

$$= \frac{1}{2} \int_{-\infty}^{+\infty} F(z) f_1(az) H_0^{(1)}(bz) dz \quad \text{when } 0 < a < b$$
(B.6)

where $\int_{-\infty}^{+\infty} dz$ means the integral along the contour in Figure 12, where radius ϵ is infinitesimal, and

the z-plane is cut along the negative real axis.

Proof. Consider the contour integrals

$$I(a > b) = \frac{1}{2} \int_{-\infty}^{+\infty} F(z) H(1)(az) f_0(bz) dz$$
 (i)

where a > b > 0, and

$$I(a < b) = \frac{1}{2} \int_{-\infty}^{+\infty} F(z) f_1(az) H_0^{(1)}(bz) dz$$
 (ii)

when 0 < a < b. Use of the asymptotic formulas show that $H_1^{(1)}(az) /_0(bz)$ and $J_1(az) H_0^{(1)}(bz)$ are zero on the infinitely large circle when a > b > 0 and 0 < a < b, respectively. Therefore we may consider only the contour along the real axis

$$I(a > b) = \frac{1}{2} \int_{-\infty}^{+\infty} F(z) H_{1}^{(1)}(az) J_{0}(bz) dz$$
 (iii)

$$I(a < b) = \frac{1}{2} \int_{-\infty}^{+\infty} F(z) f_1(az) H_0^{(1)}(bz) dz.$$
 (iv)

We divide the real axis in three parts: $-\infty \sim -\epsilon$, $-\epsilon \sim \epsilon$, and $\epsilon \sim \infty$. We let z = -x in the region $-\infty \sim -\epsilon$, and z = x in the region $\epsilon \sim \infty$, neglect the infinitesimal terms, and let

$$F(z) = F(0)$$

$$H_{1}^{(1)}(az) = -2i/(\pi az)$$

$$H_{0}^{(1)}(bz) = [2i/(bz)]\log(bz/2).$$

Then (iii) and (iv) become

$$I(a > b) = -\frac{1}{a} F(0) + \int_{0}^{\infty} F(x) J_{1}(ax) J_{0}(bx) dx$$
 (v)

$$I(a < b) = \int_{0}^{\infty} F(x) J_{1}(ax) J_{0}(bx) dx.$$
 (vi)

Equations (v) and (vi) prove (B.5) and (B.6), respectively.

C. The need of Theorem 2 appears frequently in the mathematical study of the problems of a floating ice plate and the problems of an elastic plate on an elastic foundation. A similar integral including only one Bessel function was proved by Dougal (ref. 1, p. 138 and 147) as early as in 1903.

When t = 0, our solution of the viscoelastic plate reduces to the solution of the elastic plate. The elastic solution thus found is composed of the following integrals:

$$M_{0} = \int_{0}^{\infty} \frac{1}{1+x^{4}} J_{1}(ax) J_{0}(bx) dx$$
$$M_{1} = \int_{0}^{\infty} \frac{x}{1+x^{4}} J_{1}(ax) J_{1}(bx) dx$$
$$M_{2} = \int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} J_{1}(ax) J_{0}(bx) dx$$

where $a = AE^{\frac{1}{4}}$ and $b = RE^{\frac{1}{4}}$. We can carry out these integrals by direct or indirect application of Theorem 2:

$$M_0 = ber b ker'a - bei b kei'a + a^{-1} \quad \text{when } b \leq a$$

$$= ber'a kerb - bei'a keib \quad \text{when } a \leq b$$

$$M_1 = -ber'b ker'a + bei'b kei'a \quad \text{when } b \leq a$$

$$= -ber'a ker'b + bei'a kei'b \quad \text{when } a \leq b$$

$$M_2 = beib ker'a + berb kei'a \quad \text{when } b \leq a$$

$$= bei'a kerb + ber'a keib \quad \text{when } a \leq b.$$

 M_0 and M_2 are found by directly applying the theorem. M_1 is found by differentiating M_0 with regard to *B*. Wyman¹⁹ derived M_0 by integrating a concentrated-load elastic-plate solution over the loading circle.

The continuity of M_0 and M_2 at a = b is obvious on the strength of Theorem 1. We shall show, however, a direct proof in the following. We shall prove that

$$ber x ker' x - bei x kei' x + x^{-1} = ber' x ker x - bei' x kei x$$
(C.1)

and

$$beix ker'x + berx kei'x = bei'x kerx + ber'x keix.$$
(C.2)

To prove this, note that

 $w_1(x) = berx + i beix$ (C.3)

and

$$w_2(x) = \ker x + i \ker x \tag{C.4}$$

are the solutions of the differential equation

$$\frac{d^2w}{dx^2} + \frac{1}{x}\frac{dw}{dx} - iw = 0.$$

This can be proved by decomposing the equation

$$\left(\frac{d^2}{dx^2} + \frac{1}{x} \frac{d}{dx}\right)^2 w + w = 0$$

of which (C.3) and (C.4) are the solutions. We can find that the Wronskian

$$\begin{vmatrix} w_{1}(x) & w_{2}(x) \\ w'_{1}(x) & w'_{2}(x) \end{vmatrix}$$

is equal to

$$= -x^{-1}$$
.

Thus we have the identity

$$\begin{vmatrix} \operatorname{ber} x + i \operatorname{bei} x & \operatorname{ker} x + i \operatorname{kei} x \\ \operatorname{ber}' x + i \operatorname{bei}' x & \operatorname{ker}' x + i \operatorname{kei}' x \end{vmatrix} = -\frac{1}{x}$$

of which the real part gives (C.1) and the imaginary part gives (C.2).

Theorem 2 can be extended in many ways. Nevel¹⁸ found that

$$\int_{0}^{\infty} F(x) dx = \frac{i}{\pi} \int_{-\infty}^{+\infty} F(z) \log z dz$$
(C.3)

for an odd function F(z) that does not have any pole on the real axis and vanishes at $z = \infty$.

D. It is impossible to apply Theorem 2 to the integrals of w in (2.16), σ_r in (2.19), and σ_{θ} in (2.20) for the following reason.

The function $\exp(-\alpha_2 T)$ has essential singularities at the roots of

$$\beta^4 + E = 0,$$

because

$$\lim \alpha_2 = \infty$$
$$\beta^4 \rightarrow - E.$$

The function $\exp(-\alpha_1 T)$ does not possess any essential singularities because the limit of

$$\alpha_1 = 2\tau / [\tau \beta^4 + 1 + \tau + \sqrt{(\tau \beta^4 + 1 + \tau)^2 - 4\tau (\beta^4 + E)}]$$

is finite. However, the real part of α_1 becomes negative, and $\exp(-\alpha_1 T)$ diverges, as $|\beta| \rightarrow \infty$ in a certain range of direction.

Theorem 2 does not apply to integral K in (6.4) because the point x = 0 is an essential singularity.

The only alternative we can find for the integration of (3.1) is the use of Barnes' integral method. It consists in substituting the integrals

$$J_{v}(x) = \frac{1}{2\pi i} \int_{-\infty i}^{\infty 1} \frac{\Gamma(-S)(\frac{1}{2}x)^{v+2S}}{\Gamma(v+S+1)} dS$$
(D.1)

$$\pi e^{\frac{1}{2}(\nu+1)\pi i} H_{\nu}^{(1)}(z) = \frac{1}{2\pi i} \int_{-c -\infty i}^{-c +\infty i} \Gamma(-\nu - S) \Gamma(-S) \left(-\frac{i}{2} z\right)^{\nu+2S} ds$$
(D.2)

for $f_v(x)$ and $H_v^{(1)}(z)$, respectively, where c is a real number satisfying c > R(v), z is complex, and x is real. We can usually exchange the order of integration to carry out the integration with regard to x or z. Then, we can carry out the rest of the integration in most cases by use of the theorem of residue. Only the forms (D.1) and (D.2) serve this purpose. The other Barnes' representations of $f_v(x)$ and $H_v^{(1)}(z)$ do not enable us to carry out the above two procedures.

However, as mentioned by Watson (ref. 18, p. 192), (D.1) does not hold true for $\nu = 0$, and (D.2) does not hold true when $\nu = 0$ and z is real. In these two cases, the integrands of (D.1) and (D.2) become proportional to s⁻¹ as s approaches i^{∞} as the limit on the imaginary axis. Therefore we cannot use Barnes' integral method to carry out our integrals.

APPENDIX II. COMPUTER PROGRAMS

Ramp Time Profiles

100	* NUMERICAL STUDY OF THE	VISCOELASTIC DEFORMATION
110	OF THE ICE PLATE UNDER	A CIRCULAR LOAD
120	' S. TAKAGI, 1976 (J. BA	GGER)
_ 130	ERAMP FORMULATION]	······································
140		
150	·····	
160	* ***************	** *** * * * * * *
	PLUTTING OF EXPERIM	ENTAL DATA
180	* ***************	* * * * * * * * * * * * *
1.90	· · · · · · · · · · · · · · · · · · ·	
200	THIS SECTION OF THE PR	OGRAM PLOTS THE FIELD DATA FROM
	GUENTHER FRANKENSTEIN'	S TESTS ON LAKE ICE SHEETS. THE
220	DEFORMATION OF THE ICE	FROM A CIRCULAR LOAD WAS MEASURED
230	UNDER VARIOUS CONDITIO	NS. THIS DATA IS COMPARED BELOW
240	WITH THE RAMP FORMULAT	ION OF THE VISCOELASTIC THEORY
250	FOR DEFORMATION.	and the second
260		
270		a set in the set of th
280	**************************************	
	A	DEFINED BELOW IN MAIN PROGRAM STMBOL LABLE
300	AY	PHYSICAL LOAD RADIUS
510		DATA FILE NAME
320	· E	DEFINED BELOW IN MAIN PROGRAM STMBOL FABLE
330	<u> </u>	EU EQUALION H.D.
340	ну	PHYSICAL ILE THICKNESS
	1	
300	L 9	
370	1 (V)2	NU - EDUATION 1 5
100	1 0	NON-DIMENSIONALIZED D-DOT CONSTION (3
	F	NUN-VIMENSIDNALIZEV P-VUI ENVALIVN 445
410	ГУ 1 р	DEFINED BEIGH IN MAIN PROGRAM SYMBOL TABLE
	· · · ·	PHO EQUATION 1 3
430	· 84	PHYSICAL PADIUS OF ORSERVATION
440	• T	NEFINEN REIGH IN MAIN PROCRAM SYMBOL TARIE
450	• Ť1	DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE
4 6 0	• 15	MAXIMUM NON-DIMENSIONAL TZED T
470		DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE
480	1 X5	MAXIMUM X-PLOT
490	· Y5	MAXIMUM Y-PLOT
500	* *****************	****
510		
520		
530	SET UP PLUTTER DETAILS	
540		
550	LIBRARY "PHYSLIB***: FLAB	<u>EL"</u>
560	LIBRARY "PLOTLIB***:TEK1	0
570	DIM C(600)	
580	DIM C\$(600)	
590	PRINT "INPUT FILE";	
600	INPUT AS	
610	FILE#1:A\$	
620	PRINT "XMAX";	
630	INPUT X5	
640	FRINT "YMAX";	
	INPUT YS	
660	CALL "PLABEL"&C(),0,X5,-	Y5,Y5,"TIME (SEC)"," W (METERS)",-1
010	LALL LUNNELL ILLIAUAUAX	200

680	
700 THPUL LEST STIE DATA	
700 710 INDUT#1, 00 H0 D0	
720 1 00 - R-00T	
730 ' HQ = ICE INICKNESS	
750 + 7 = 100 + 1000000000000000000000000000000	
750	
760 INPLIT #1. AV	
770 $^{\circ}$ A9 = PHYSICAL LOAD RADIUS	
780	
790 PARAMETERS (VARY TO FIT)	
800	
810 LET T1 = 10	
820 LET E = .U2	
830 LET N7 = 7. E+5	
840 LET to = 2. E+8	
850 ' T1 = TAU	
860 ' E = E	
870 ' N7 = N1/EU	
880 'E8 = נט	
890	· · · · · · · · · · · · · · · · · · ·
900 CONSTANTS (STANDARD)	
910	
920 LET Ro = 1000	"RHO
930 LET NO = .5	<u>"NU</u>
940 .	
950 CONVERT TO NONDIMENSIONALI	ZED FORM
960	
970 LEI LY = (E6*H9+3)/(12*R8*(1	-N8)) CHAR. LENGTH
980 LET LY # LYT(174)	
1000 LET K - K77L9	
1010 LET A - AY/LY 1010 LET A - BUANZ	
1020	
1030 PENT DIMENSIONALIZED EXPE	DIMENTAL DATA
1020 FLOT PINENSIUMALIZED EXPE	STUCALAE VALA
1050 INPUL#1:N1	
1060 FOR I = 1 TO N1	
1070 INPUT#1: TAM	
1080 CUNVERT TO MKS UNITS	
1090 LET T = T+60	
1100 LET # = W*.3048	
1110 CALL "MOVE": C() - T-W	
1120 CALL "LABEL": C() . C\$() ."+	·····
1130 NEXT 1	
1140 CALL "LIFT":C()	······
1150 LET T5 = T	SAVE MAXIMUM TIME
1160	
1170 * ******************	******
1180 * ***PLOITING OF THEORETICA	L CURVE***
1190 *******************	*****
1200	
1210 ' THIS SECTION OF THE PROGR	AM PLOTS THE THEORETICAL
1220 * CURVE FUR COMPARISON WITH	THE EXPERIMENTAL DATA.
1230	· · · · · · · · · · · · · · · · · · ·
1240	
1250 * **********************************	*****

1270 1280	. 1	
1280		ALPHA1 EQUATION 2.11
1200 1	A2	ALPHA2 EQUATION 2.11
	<u> </u>	
1270	-	
1300	EO	NORMALIZED IRRFEZUIDAL ERROR
1310 .	. FNA	ALPHAI(BETA)
1320 '	FNB	ALPHA2(BETA)
1330 *	FNI	10(x)
1340 '	EN.I	11(X)
1350	ENS	SOR(DESC) FOURTION 2.17
1340 1	500	THIS COAND AS US
1300	FNU	
1370 .	FNV	INTEGRAND OF UZ
1380 '	FNW	INTEGRAND OF US
1390 .	1	TIME COUNTER
1400 .	N	UPPER BOUND OF INTEGRATION EQUATION 4.8
1410 1	N 1	UPPER BOUND OF INTEGRATION EQUATION 4.9
1420 .	N 2	UPPER BOUND OF INTEGRATION FOUNTION 4.10
1430	<u>n</u> .	
1440 .	I	EADWITOW 1'15
1450	<u> </u>	TAU EQUATION 1.15
1460 '	U1	EQUATION 4.5
1470 *	u2	EQUATION 4.6
1480 *	U 3	FOUATION 4.7
1400		DECORMATION
1000 1		
1500 . ***		
1510		
1520		
1530 LET P	1 = \$,141593	and the second sec
1540		`
1550 ' CUM	PUTE UPPER BDUN	DS OF INTEGRATION
1540		
1670	5 # 7 5 / 10 /	"NONDINENSIONALIZE MAYIMUM TIME
1570 LET T	<u>)#T)/N/</u>	NONDIMENSIONALIZE MAXIMUM TIME
1570 LET T 1580 LET N	= ((15+2+1E5)/	<u>'NONDIMENSIONALIZE MAXIMUM TIME</u> (4+P1+SQR(A+R)))†(1/4)
1570 LET T 1580 LET N 1590 LET N	<u>2#T2/N/</u> # ((T5+2+1E5)/ 1 = ((T5+1E5)/(<u></u>
1570 LET T 1580 LET N 1590 LET N 1600 LET N	<u>>=T>/N/</u> = ((T5+2+1E5)/ 1 = ((T5+1E5)/(2 = (((1 - E)+1	<u>"NONDIMENSIONALIZE MAXIMUM FIME</u> (4+P1+SQR(A+R)))+(1/4) 2#P1+SQR(A+R)))+(1/4) E5)/(2+P1+SQR(A+R)+TI)+(1 - EXP(-T5+T1)))+(1/4)
1570 LET I 1580 LET N 1590 LET N 1600 LET N 1610	<u>>#T>/N/</u> = ((T5+2+1E5)/ 1 = ((T5+1E5)/(2 = (((1 - E)+1)))	
1570 LET I 1580 LET N 1590 LET N 1600 LET N 1610 1620 FOR I	<u>>#T2/N/</u> # ((T5+2+1E5)/(1 # ((T5+1E5)/(2 # (((1 - E)+1) #U T0 T5 STEP T	<u>"NONDIMENSIONALIZE MAXIMUM TIME</u> (4+P1+SQR(A+R)))+(1/4) 2+P1+SQR(A+R)))+(1/4) ES)/(2+P1+SQR(A+R)+T1)+(1 - EXP(-T5+T1)))+(1/4) S/20 *NONDIMENSIONAL TIME LOOP
1570 LET T 1580 LET N 1590 LET N 1600 LET N 1610 1620 FOR 1 1630	2#T2/N/ # ((T5+2+TE5)/ 1 # ((T5+1E5)/ 2 # (((1 - E)+1 #U TU T5 STEP T	
1570 LET T 1580 LET N 1590 LET N 1600 LET N 1610 1620 FOR L 1630	<u>>===>>/N/</u> = ((T5+1E5)/(2 = (((1 - E)+1) =U TU TS STEP T	(4+P1+SQR(A+R)))+(1)/4) 2+P1+SQR(A+R)))+(1)/4) 25)/(2+P1+SQR(A+R))+T1)+(1 - EXP(-T5+T1)))+(1)/4) 5/20 *NONDIMENSIONAL TIME LOOP
1570 LET T 1580 LET N 1590 LET N 1600 LET N 1610 1620 FOR 1 1630	$\frac{2 \pm 1 2/N/}{\pi} = ((15 + 2 + 1 \pm 5))/(1 + ((15 + 1 \pm 5))/(1 + 2 + 1 \pm 5))/(1 + 2 + 1 \pm 2 + 1 \pm 2 + 1 \pm 2 \pm$	
1570 LET I 1580 LET N 1590 LET N 1600 LET N 1610 1620 FOR I 1620 FOR I 1630 1640 LE 1650 CA	2#12/N/ = ((T5+2+1E5)/(1 = ((T5+1E5)/(2 = (((1 - E)+1) =U TO T5 STEP T T T=1 LL "SIMP": Ο,NA	
1570 LET T 1580 LET N 1590 LET N 1600 LET N 1610 I I 1620 FOR J 1630 I I 1640 LE I 1650 CA I 1660 CA I	>= 15/N/ = ((T5+2+1E5)/(1 ± ((T5+1E5)/(2 ± (((1 - E) + 1) ± ((1 - E) + 1) ± (1 - E) + 1) ± (1 - E) ±	
1570 LET I 1580 LET N 1590 LET N 1600 LET N 1610 1620 FOR I 1620 FOR I 1630 1640 LE 1640 LE 1650 CA 1660 CA 1670 CA 1670 CA	<pre>>= Lorstand States (Content of the states) / Content of the states) / Content of the states (Content of the states) / Con</pre>	
1570 LET I 1580 LET N 1590 LET N 1610 I I 1620 FOR I 1630 I I 1630 I I 1640 LE I 1650 CA I 1660 CA I 1670 CA I	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	
1570 LET I 1580 LET N 1590 LET N 1600 LET N 1610 I N 1620 FOR J 1630 L N 1640 L L 1650 CA L 1660 CA L 1670 CA L 1680 L L	>= 10/N/ = ((T5+2+1E5)/(1 = ((T5+1E5)/(2 = (((1 - E)+1)))))))))))))))))))))))))))))))))))	
1570 LET I 1580 LET N 1590 LET N 1610 LET N 1610 LET N 1620 FOR L 1630 LE N 1640 LE L 1650 CA L 1650 CA L 1660 CA L 1670 CA L 1680 L L 1690 LE L		
1570 LET N 1580 LET N 1590 LET N 1600 LET N 1610 1620 FOR 1630 LE N 1640 LE N 1660 CA N 1670 CA N 1690 LE N	>= 15/N/ = ((T5+2+1E5)/(1) = ((T5+2+1E5)/(2) = (((1) - E) + 1) = U TU TS STEP T T T=1 LL "SIMP": 0, N, L "SIMP": 0, N,	-NONDIMENSIONALIZE MAXIMUM TIME (4+P1+SQR(A+R)))+(1/4) 2+P1+SQR(A+R)))+(1/4) 25)/(2+P1+SQR(A+R)+T1)+(1 - EXP(-T5+T1)))+(1/4) 5/20 'NONDIMENSIONAL TIME LOOP FNU_U1_AAE_R_T_T1
1570 Let I 1580 Let N 1590 Let N 1600 Let N 1610 1620 FOR 1620 FOR 1 1630 1640 Let 1650 CA 1660 1660 CA 1660 1670 CA 1670 1670 Let 17700	y=1 > / N / = ((15+2+1E5) / = ((15+2+1E5) / 2 = (((1 - E) +1 = u to t5 STEP t T = 1 LL "SIMP": 0,N1 LL "SIMP": 0,N2 LL "SIMP": 0,N2 T = u1 - u2 + T = +N7 T == /(3, 14159 + C(3, 14159 + C(3, 14159 +	-NONDIMENSIONALIZE MAXIMUM TIME (4+P1+SQR(A+R))T(1/4) 2+P1+SQR(A+R))T(1/4) 2+P1+SQR(A+R))T(1/4) 5/20 S/20 'NONDIMENSIONAL TIME LOOP FNU_U1_AEE_R_TTT1
1570, LET I 1580, LET N 1590, LET N 1600, LET N 1610 1620, FOR L 1630 1630 1640 1650 1660 1660 1660 1660 1670 1680 1670 1690 1710 1720	>x = 2/N/ = ((T5+2+1E5)/(1) = ((T5+2+1E5)/(2) x = (((1) - E) + 1) x = U TU TS STEP T T T = 1 LL "SIMP": 0, N, LL "SIMP": 0, N, LL "SIMP": 0, N, LL "SIMP": 0, N, T T = 1 NMP": 0, N, LL "SIMP": 0, N, T T = 1 = N7 T = x = (3, 14159+ LL "LINE": C(), T	-NONDIMENSIONALIZE MAXIMUM TIME (4+P1+SQR(A+R)))+(1/4) 2+P1+SQR(A+R)))+(1/4) 2=P1+SQR(A+R)))+(1/4) 5/20 *NONDIMENSIONAL TIME LOOP *NONDIMENSIONAL TIME LOOP FNU_U1_AAE_R_T_T1
1570 Let N 1580 Let N 1590 Let N 1610 1610 1620 1630 Let N 1640 Let N 1650 CA 1650 1650 CA 1660 1660 CA 1670 1680 Let 1770 1720 CA 1720	<pre>>= 1.5/N/ = ((T5+2+1E5)/ = ((T5+2+1E5)/ 2 = (((1 - E)+1) == U TO T5 STEP T T T=1 LL "SIMP": O,N, LL "SIMP": O,N, LL "SIMP": O,N, T == U1 - U2 + T == +N? T == +N? T == =/(3, 14,159+ LL "LINE": C(),T</pre>	-NONDIMENSIONALIZE MAXIMUM TIME (4*P1*SQR(A*R)))†(1/4) ES)/(2*P1*SQR(A*R)))†(1/4) ES)/(2*P1*SQR(A*R))†(1)*(1 - EXP(-T5*T1)))†(1/4) S/20 'NONDIMENSIONAL TIME LOOP FNU,U1,A.E.,R,T.T1
1570, LET I 1580, LET N 1580, LET N 1590, LET N 1610 1620, FOR J 1630 1640 1650 1660 1660 1660 1660 1680 1690 1700 1720 1720 1740 1740	Y = J/N/ = ((T5+2+1E5)/(= ((T5+2+1E5)/(-NONDIMENSIONALIZE MAXIMUM_TIME (4+P1+SOR(A+R)))+(1/4) 2+P1+SOR(A+R)))+(1/4) 2+P1+SOR(A+R)))+(1/4) 5/20 *NONDIMENSIONAL TIME LOOP *NONDIMENSIONAL TIME LOOP FNU_U1_A_F_R_T_TT1
1570 Let N 1580 Let N 1590 Let N 1610 1610 1620 1630 Let N 1640 Let N 1650 CA 1650 1650 CA 1660 1660 CA 1670 1680 Let 1700 1720 CA 1720 1730 1730 1740	<pre>>= 1.5/N/ = ((T5+2+1E5)/ 1 = ((T5+2+1E5)/ 2 = (((1 - E)+1) =U TU T5 STEP T T T=1 LL "SIMP": 0,N, LL "SIMP": 0,N2 T = U1 - U2 + T T=1 +N7 T == +N7 T == =/ (3, 14159+ LL "LINE": C(),T I</pre>	-NONDIMENSIONALIZE HAXIHUM TIME (4*P1*SQR(A*R)))(1/4) ES)/(2*P1*SQR(A*R)))(1/4) ES)/(2*P1*SQR(A*R))T1)*(1 - EXP(-TS*T1)))(1/4) S/20 'NONDIMENSIONAL TIME LOOP FNU,U1,A,E,R,T,T1
1570, LET I 1580, LET N 1580, LET N 1590, LET N 1610 1610 1620, FOR J 1630 1640, LE 1650, CA 1660, LE 1660, LE 1660, LE 1660, LE 1660, LE 1700, LE 1720, CA 1720, CA 1720, CA 1720, CA 1720, CA 1720, LE 1720, CA 1740, NEXT 1760, PA	<pre>>= \(15+2+1E5)/(= ((15+2+1E5)/(2 = (((1 - E)+1 =) TO T5 STEP T T T=1 LL "SIMP": 0,N, LL "SIMP": 0,N2 LL "SIMP": 0,N2 T = = U1 - U2 + T T=T+N7 T ===/(3,14159+ LL "LINE": C(0)T I NT JITLE BLDCK</pre>	-NONDIMENSIONALIZE HAXIMUM_TIME (4+P1+SOR(A+R)))+(1/4) 2+P1+SOR(A+R)))+(1/4) 2+P1+SOR(A+R)))+(1/4) 5/20 *NONDIMENSIONAL TIME LOOP *NONDIMENSIONAL TIME LOOP FNU_U1_A_FE_R_T_T1
1570_LET_I 1580_LET_N 1580_LET_N 1590_LET_N 1610 1620_FOR_I 1630 1640 1650_CA 1650_CA 1650_CA 1650_CA 1650_CA 1660_CA 1670_LET_IA 1680_CA 1670_LET_IA 1720_CA 1730_T720_CA 1750_T760_PAL 1770_LET_IA 1770_LET_IA 1750_T750_PAL	>>>>> >>>>>>>>> = ((T5+2+1E5)/(= ((T5+2+1E5)/(2 = ((T5+2+1E5)/(= <td>-NONDIMENSIONALIZE HAXIHUM TIME (4*P1*SQR(A*R)))(1/4) ES)/(2*P1*SQR(A*R)))(1/4) ES)/(2*P1*SQR(A*R)))(1/4) EXP(-TS*T1)))(1/4) S/20 'NONDIMENSIONAL TIME LOOP FNU,U1,A,E,R,T,T1 </td>	-NONDIMENSIONALIZE HAXIHUM TIME (4*P1*SQR(A*R)))(1/4) ES)/(2*P1*SQR(A*R)))(1/4) ES)/(2*P1*SQR(A*R)))(1/4) EXP(-TS*T1)))(1/4) S/20 'NONDIMENSIONAL TIME LOOP FNU,U1,A,E,R,T,T1
1570, LET I 1580, LET N 1580, LET N 1590, LET N 1610 1610 1620, FOR J 1630 1640, LE 1650, CA 1660, LE 1660, LE 1660, LE 1660, LE 1670, LE 1700, LE 1720, CA 1730, LE 1740, NEXT 1770, LE 1770, CA	<pre>>= 1 > 1 / 1 / 2 + 1 E S) / 1 = ((T5+2+1ES) / (2 = (((1 - E) + 1 == U TU TS STEP T T T = 1 LL "SIMP": 0 / N / LL "SIMP": 0 / N / LL "SIMP": 0 / N / LL "SIMP": 0 / N / Z T = = U1 - U2 + 1 T = T + N / T = T + N / T = Z + 1 T = Z = / (3, 14159 + LL "LINE": C(3) T / Z = /</pre>	
1570.LET I 1580.LET N 1580.LET N 1600.LET N 1610 1620.FOR I 1630 1640 1650.CA 1650.CA 1650.CA 1650.CA 1650.CA 1660.CA 1670.CA 1680.CA 1770.LET I 1720.CA 1720.CA 1720.CA 1730.T20 1760.PH1 1750.T250.CAL 1780.CALL	<pre>>= 1.2/N/ = ((T5+2+1E5)/ = ((T5+2+1E5)/ 2 = (((1 - E)+1) =U TU T5 STEP T T T=1 LL "SIMP": 0,N, LL "SIMP": 0,N2 T = = U1 - U2 + T T=1 +N7 T == +17 T == +17T == +17T == +17 T == +17T == +17T == +17 T == +17T == +17T == +17T == +17T ==</pre>	-NONDIMENSIONALIZE HAXIHUM TIME (4*P1*SQR(A*R)))(1/4) ES)/(2*P1*SQR(A*R)))(1/4) ES)/(2*P1*SQR(A*R))T1)*(1 - EXP(-TS*T1)))(1/4) S/20 'NONDIMENSIONAL TIME LOOP FNU,U1,A,E,R,T,T1
1570, LET I 1580, LET N 1580, LET N 1590, LET N 1610 1610 1620, FOR J 1630 1640, LE 1650, CA 1660, LE 1660, LE 1660, LE 1660, LE 1670, LE 1700, LE 1700, LE 1720, CA 1730, T720, CA 1750, T740, NEXT 1770, T780, CALL 1770, PRIAR 1790, PRIAR	<pre>>= 1 = (15 + 2 + 1 = 5) / (= ((15 + 2 + 1 = 5) / (2 = (((1 - E) + 1 = U TU T5 STEP T T T = 1 L "SIMP": 0 - N = L "SIMP": 0 - N = L "SIMP": 0 - N = T T = 1 + N7 T T = 2 U - 1 - U2 + T T = 1 + N7 T T = 2 U - (3, 14 15 + L "L INE": C(3) T I NT IITLE BLOCK "FINISH": C(3) ""," SITE: "SITE: "</pre>	-NONDIMENSIONALIZE MAXIMUM_TIME (4+P1+SQR(A+R)))(1/4) ES)/(2+P1+SQR(A+R)))(1/4) ES)/(2+P1+SQR(A+R)))(1/4) EXP(-T5+T1)))(1/4) 5/20 'NONDIMENSIONAL TIME LOOP FNU_U1_A_E_R_T_T1
1570_LET_I 1580_LET_N 1580_LET_N 1590_LET_N 1610 1620_FOR_I 1630 1640 1650_CA 1650_CA 1650_CA 1660_CA 1670_CA 1680_LET_NCA 1690_LET_NCA 1690_LET_NCA 1700_LET_NCA 1720_CA 1730_T740_NEXT_ 1750_T750_CALL 1770_RALL 1780_CALL 1790_PRIAT	<pre>>= 1.5/N/ = ((T5+2+1E5)/ 1 = ((T5+2+1E5)/ 2 = (((1 - E)+1) =U TU T5 STEP T T T=1 LL "SIMP": 0,N, LL "SIMP": 0,N2 T = 1 U1 - U2 + T T=1 N7 T == N7 T == /(3, 14159+ LL "LINE": C(),T I NT IITLE BLDCK "FINISH": C() "","SITE ";</pre>	-NONDIMENSIONALIZE MAXIMUM_TIME (4*P1*SQR(A*R)))(1/4) ES)/(2*P1*SQR(A*R)))(1/4) ES)/(2*P1*SQR(A*R))T1)*(1 - EXP(-TS*T1)))(1/4) S/20 'NONDIMENSIONAL TIME LOOP FNU,U1,A,E,R,T,T1
1570, LET I 1580, LET N 1580, LET N 1590, LET N 1610 1620, FOR J 1630 1640, LE 1650, CA 1660, LE 1640, LE 1650, CA 1660, CA 1660, LE 1670, LE 1700, LE 1710, LE 1720, CA 1730, T740, NEXT 1770, T780, CALL 1790, PRIN 1810, PRIN	<pre>>= 1.2/N/ = ((T5+2+1E5)/(2 = (((1 - E)+1) == U TO T5 STEP T T T=1 LL "SIMP": 0,N, LL "SIMP": 0,N2 T == U1 - U2 + T T=T+N7 T == U1 - U2 + T T== (3, 14159+ LL "LINE": C(3) T I NT IITLE BLDCK "FINISH": C(2) ""," SITE "; "", "TAU: "; T1</pre>	

1840 PRINT "", "NORMALIZED TRAPEZOIDAL ERROR "; E6 1850 PRINT " 1870 ' FUNCTION DEFINITIONS AND SUBPROGRAMS 1880 1890 DEF FNACA, E.R. T.T. T.X. 1900 ALPHA1 LET FNA = (T1+X+4) + 1 + T1 - FNS(A,E,R,T,T1,X) 1910 1920 LET FNA = FNA/(2+(X+4 + E)) 1930 FNEND 1940 1950 DEF FNU(A, L, R, T, T) 1960 ALPHAC LET FIND = (T1+X+4) + 1 + T1 + FNS(A,E,R,T,T1,X) 1970 1980 LET FNU = FNB/(2+(X+4 + E)) 1990 FNEND 2000 2010 DEF FNS(A,E,R,T,T1,X) SGR(DESC) 2020 2030 LET Fils = ((T1+X+4) + 1 + T1)+2 - 4+T1+(X+4 + E) 2040 LET FAS = SQR(FNS) 2050 FNEND 2060 2070 DEF FNU(APERATATIAX) 2080 LET A1 = FNA(A,E,R,T,T) LET FNU = T - (1/A1)+(1 - EXP(-T+A1)) 2090 2100 LET FNU = FNU+FNJ(X+A)+FNI(X+R) 2110 FNENU 2120 2130 DEF FNV(ArtaRaTaT1,X) 2140 LET A1 = FNA(A+E+R+T+T1+X) 2150 LET FNY = (X+4) + (T1 - A1) / FNS (A, E, R, T, T1, X) - 1 2160 LET FNV = FNV+(1 - EXP(-A1+T))/A1 2170 LET Figs = FNV+FNJ(X+A)+FNI(X+R) 2180 FNEND 2190 2200 DEF FNW(A,E,R,T,T1,X) LET AC = FNB(A, E, R, T, T1, X) 2210 2220 LET FN# = (X+4) +(T1 - A2) /FNS (A+E+R+T+T+X) 2230 LET Fine = FNW+(1 - EXP(-A2+T))/A2 2240 LET FINW = FNW+FNJ(A+X)+FNI(X+R) 2250 FNEND 2260 2270 DEF FNI(A) 2280 . 2290 ***FUNCTION SUBPROGRAM: JO(X)*** 2300 2310 . PULYNOMIAL APPROXIMATIONS FROM: . 2320 HANDBOOK OF PATHEMATICAL FUNCTIONS, US DEPARTMENT OF COMMERCE, 1964 2330 2340 - ----(4.4.1, 9.4.3) 2350 -2360 2370 . ********* SYMBOL TABLE ******** 2380 . 10 JO(X) ZEROTH-ORDER BESSEL FUNCTION 2390 F F(X) IN NOS BOOK 2400 13 THETA(X) IN NBS BOOK 2410 . ARGUNENT X - 1-

• Y X/3. OR 3./X 2420 . 2430 2440 2450 2460 $IF X \ge 0$ THEN 2510 2470 PRINT "FUNCTION JO(X): ARGUMENT MUST BE >= 0" 2480 PRINT "X=";X 2490 STOP 2500 2510 IF X>3 THEN 2590 2520 2530 POLYNUMIAL APPROX O<=X<=3.</p> 2540 LET Y=X/3. LET JO = 1 - 2.24999 97+Y+2 + 1.26562 08+Y+4 2550 LET JU = JO - .31638 66+Y+6 + .04444 79+Y+8 2560 2570 6010 2730 2580 2590 POLYNUMIAL APPROX, X>3. 2600 LET Y=3./X F = F IN NBS BOOK 2610 2620 LET F = .79788 456 - .00000 077*Y LET F = F - .00552 740+Y+2 - .00009 512+Y+3 2630 LET F = F + .00137 237 + Y+4 - .00072 805 + Y+5 2640 2650 LET E = E + .00014 476 * Y = 62660 T3 = THETA IN NBS BOOK 2670 LET TS = X - .78539 816 - .04166 397*Y LET TS = T3 - .00003 954+Y+2 + .00262 573+Y+3 2680 LET T3 = T3 - .00054 125*Y+4 - .00029 333*Y+5 2690 27 2700 LET TS = T3 + .0C013 558+Y+6 2710 LET JU = (1./SQR(X)) * F * COS(T3)2720 2730 L<u>et fni = j0</u> 2740 FNEND 2750 2760 DEF FNJ(X) 2770 2780 * ***FUNCTION SUBPROGRAM: J1(X)*** 2790 2800 PULYNOMIAL APPROXIMATIONS FROM: 2810 HANDBOOK OF MATHEMATICAL FUNCTIONS, . 2820 US DEPARTMENT OF COMMERCE, 1964 (9.4.4. 9.4.6) 2830 2840 2850 2860 *** ****** SYMBOL TABLE ********* 2870 . J1 J1(X) FIRST-ORDER BESSEL FUNCTION • ... 2880 F 1 F1(X) IN NBS BOOK . T2 THETA1(X) IN NBS BOOK 2890 2900 X ARGUMENT . 2910 Y X/3. OR 3./X **** 2920 2930 2940 2950 1 F X >= 0 THEN 3COO PRINT "FUNCTION J1(X): ARGUMENT MUST BE >= 0" 2960 2970 PRINT "X*",X_____ 2980 STOP 2990

3000 1F x>5 THEN 3090 3010 PULYNUMIAL APPROX, OC=X<=3. 3020 3030 LET Y≖x/3. 3040 LET J1 = .5 - .56249 985*Y+2 + .21093 573*Y+4 LET J1 = J1 - .03954 289*Y+6 + .00443 319*Y+8 3050 3060 LET J1 = X+J13070 60TJ 5230 3080 30.90 PULYNUMIAL APPROX, X>3, 3100 LET Y=3./X 3110 • F1 ≠ F1 IN NBS BOOK 3120 LET F1 = .79788 456 + .00000 156*Y LET F1 = F1 + .01659 667*Y+2 + .00017 105*Y+3 3130 3140 LET F1 = F1 - .0C249 511*Y+4 + .00113 653*Y+5 LET F1 = F1 - .0020 033 * Y + 63150 1 12 = THETA1 IN NBS BOOK 3160 3170 LET TZ = X - 2.35619 449 + .12499 612+Y LET TZ = TZ + .0005 650+Y+2 - .00637 879+Y+3 3180 LET T2 = T2 + .0C074 348+Y+4 + .00079 824+Y+5 3190 3200 LET T2 = T2 - .00029 166*Y+6 3210 LET J1 = (1./SQR(X)) * F1 * COS(T2)3220 3230 LET FNJ = J1 3240 ENENU 3250 END 3260 3270 SUB "SIMP": X1, X2, ENF, A4, A, E, R, T, T1 **** SUBPROGRAM: SIMPSON'S RULE INTEGRATION *** 3280 3290 3300 * SIMPSON'S RULE FORMULA FROM: 3310 NUMERICAL CALCULUS * WILLIAM MILNE, 1949 3320 3330 334C ********** SYMBOL TABLE ********** . 3350 A 3 SIMPSON APPROXIMATION FOR PREVIOUS TRIAL . 3360 A 4 SIMPSON APPROXIMATION FOR CURRENT TRIAL . 3370 ENE FUNCTION SUBPROGRAM FOR INTEGRAND 3380 н INTERVAL WIDTH . 3390 I COUNTER . 3400 N 2*N = NUMBER OF INTERVALS . S 1 3410 PARTIAL SUM OF THE ODD TERMS 3420 . S 2 PARTIAL SUM OF THE EVEN TERMS . 3430 ____X___ VARIABLE OF INTEGRATION X2 UPPER BOUND OF INTEGRATION X1 LOWER BOUND OF INTEGRATION 3440 • 3450 X 1 3460 * ************************** 3470 3480 IF X2>x1 THEN 3530 3490 PRINT "SUBPROGRAM SIMP: XMAXIMUM MUST BE > XMIN" PRINT "XMIN=";X1,"XMAX=";X2 3500 3510 <u>s</u>TOP 3520 3530 INITIALIZE OLD APPROXIMATION 3540 LET AS=u 3550 ' INTIALIZE TO 100 INTERVALS 3560 LET N = 503570 ' CALCULATE INTERVAL WIDTH

	3580	LET H=(x2-x1)/(2*N)	4160	LF E2+E4 > 0 THEN 4190	CURVES DON'T CROSS => TRAP
	3590	INITIALIZE PARTIAL SUMS		$LEI S2 = S2 + _5 * (T4 - T2)$	2) + (E2+4 + E4+4)/(E2+2 + E4+2)
	3600	LET 51=52=0	4180	6010 4200	
	. 3610	CALCULATE PARTIAL SUMS	4190	$\frac{LET S2 = S2 + .5 * (T4 - T2)}{12}$) * (E4+2 + E2+2) *INCREMENT TRAP. AREA SUM
	3620		4200	LET E2 = E4	NEW BECOMES OLD
	3630	FUR 1=0 TO N	4210	$\underline{LET} = \underline{T2} = \underline{T4}$	NEW BECOMES OLD
	3640	LET $S2=S2+FNF(A_FE,R_FT,TTT,X)$	4220	NEXT I	
	3650	LET X=X+2+H	4230	LET Eo = S2/T6	NORMALIZE SUM
	3660	NEXT I	4240	LET EO = SQR(E6)	
	3670	LET X=X1+H	4250	SUBEND	
	3680	FOR I=1 TO N			
	3690	LET S1=S1+FNF(A,E,R,T,T)		······	
	3700	LET X=X+2+H			
	. 3710.	NEXT 1			
	3720	CALCULATE NEW APPROXIMATION			
	3730	LEI A4=H*(4*S1+2*S2-FNF(A/E/R/T/T1/X1)-FNF(A/E/R/T/T1/X2))/3			
	3740				
	3750	1F AHS(A3-A4)<=1.E-6 THEN 3850			
	3760				
	3770	PREPARE TO TRY AGAIN			
	3780				
	3790	1 FT AS=44			
	3800				····
	3910				
	2020				
	3020	LET $(N \rightarrow C + N)$ $(C + C + N) \rightarrow (C + N)$			
-	2020			· · · · · · · · · · · · · · · · · · ·	
	3040				
• •	3030	308 C NV			
8	2970	CHD # CDDDD # # N - N1 - N2 - ENH - ENV - ENH - A - E - D - T 1 - N7 - D8 - 1 0 - D - E4 - #1			
	30/0	SUD ERROR INFNIANCATNUTTNUTANEARAITANIAROLTATIONA			
	3080				
-	3890	INPUTAT: NS OISCARD FIRST LINE	<u> </u>		
	3900	INPUTAT: NS DISCARD SECOND LINE	,		
	3910	INPUTAT: NS NUMBER OF DATA PDINTS			
	3920	INPUTAT: T2,W2 TIME, DEFORMATION			
	3930	LET T2 = T2+6U • TIME IN SECONDS			
	3940	LET W2 = W2*.3048 DEFORMATION IN METERS			
-	3950	LET T3 = T2/N7 NONDIMENSIONALIZE TIME		****	
	3960	CALL "SIMP": USNSFNUSUIJASER, TSSTI			
	3970	CALL "SIMP": UNNIENVUZZAJERRISTI			
	3980	CALL "SIMP": U,NZ,FNW,US,A,E,R,TS,T1			
	3990	LET WS = U1 - U2 + US COMPUTE NONDIMENSIONAL DEFORMATION			• ·
	4000	LET WS = $W3/(3.14159*A*R8*L9*2/P)$ 'DIMENSIONALIZE IT			
_	4010	LET E2 = (W3 - W2) COMPUTE ERROR			
	4020	LET TO = 0 INITIALIZE TIME SUM FOR NORMALIZATIO) N		
	4030	LET \$2 = 0 'INITIALIZE TRAPEZOIDAL AREA SUM			
	4040	FOR I = 1 TO N3 - 1			
	4050	INPUT#1 :T4,W4 'NEXT TIME, DEFORMATION PAIR			
	4060	LET T4 = T4*6C			
_	4070	LEI = 44 + 3048			
	4080	LET IS = T4/N7			
	4090	CALL "SIMP": CONOFNUOU1000E0R075071			
	4100	CALL "SIMP": O,N1, FNV,U2,A,E,R,T5,T1			
	4110	CALL "SIMP": C+N2+FNW+U3+A+E+R+15+T1			
	4120	LET w5 = U1 - U2 + U3			
	4130	$LET w5 = W5/(3_14159 * A * R8 * L9 + 2/P)$			
	4140	LEI E4 = (W5-14) *NEXT ERROR			
	4150	LEF T6 = T4 - T2 + T6 INCREMENT TIME SUM			

Steady Time Profiles

100 ' NUMERICAL STUDY OF THE VISCOELASTIC DEFORMATION 110 ' OF THE ICE PLATE UNDER A CIRCULAR LOAD 120 * S. TAKAUL, 1976 (J. BAGGER) 130 * ERAMP FURMULATION -- STEADY STATE SOLUTION3 140 150 170 * ***PLUTTING OF EXPERIMENTAL DATA *** 190 200 THIS SECTION OF THE PROGRAM PLOTS THE FIELD DATA 210 " GUENTHER FRANKENSTEIN'S TESTS ON LAKE ICE SHEETS. THE 220 * DEFORMATION OF THE ICE FROM A CIRCULAR LOAD WAS MEASURED 230 'UNDER VARIOUS CONDITIONS, THIS DATA IS COMPARED BELOW 240 ' WITH THE STEADY-STATE FORMULATION OF THE VISCOELASTIC 250 ' THEURY FUR DEFORMATION. 260 270 280 * *** ******* SYMBOL TABLE********* 290 . ____A DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE 300 . AУ PHYSICAL LOAD RADIUS 310 * DATA FILE NAME AS 320 . E DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE 330 . έo ED -- EQUATION 1.8 340 . НY PHYSICAL ICF THICKNESS 350 COUNTER 360 . CHARACTERISTIC LENGTH ιv 370 . N1/F0 N 2 380 ' No NU -- EQUATION 1.5 390 . NON-DIMENSIONALIZED P-DOT -- EQUATION 4.3 μ 400 . Py PHYSICAL P-DOT 410 ' DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE 420 . RHO -- EQUATION 1.3 ג א ד ד נ 1 КЗ 430 ' PHYSICAL RADIUS OF OBSERVATION 440 . DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE 450 ' TIME OF CONSTANT LOAD 460 ' DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE 470 ' ED MAXIMUM NON-DIMENSIONALIZED T 480 . W DEFINED BELOW X5 MAXIMUM X-PLOT Y5 MAXIMUM Y-PLOT DEFINED BELOW IN MAIN PROGRAM SYMBOL TABLE 490 . 500 . 510 * ********** 520 530 540 ' SET UP PLUTTER DETAILS 550 560 LIBRARY "PHYSLIB *** : FLABEL" 570 LIBRARY "PLUTLIB***: TEK10" 580 DIM C(600) 600 PRINT "INPUT FILE"; 610 INPUT AS 620 FILE#1:A. 630 PRINT "XMAX"; 640 INPUT X5 650 PRINT "YMAX"; 660 INPUT Y5 670

680 ' INPUT TEST SITE DATA 690 700 INPUT #1: PY,H9,R9,T0 710 ' P9 = P-DUT 720 ' H9 = ICE THICKNESS $730 \cdot R9 = RAplus$ 740 ' TO = TIME WHEN LOAD BECOMES CONSTANT 750 _____ 760 INPUL#1: AY 770 ' A9 = PHYSICAL LOAD RADIUS 780 790 ' PARAMETERS (VARY TO FIT) 800 <u>810 LET T1 = 10</u> 820 LET E = .U2 830 LET N7 = 7.E+5 840 LET ED = 2. E+8 850 • T1 = TAU 860 ° E = E 870 ' N7 = N1/EU 880 · E8 = EU 890 900 CONSTANTS (STANDARD) 910 920 LET RO = 1600 ; **.** BHU 930 LET No = .5 940 950 CONVERT OF NONDIMENSIONALIZED FORM 960 970 LET Ly = (E0+H9+3)/(12+R8+(1-N8)) CHAR, LENGTH 980 LET LY = LY+(1/4) 990 LET R = RY/L9 1000 LET A = AY/L91010 LET P = PY * N71020 1030 * PLOT DIMENSIONALIZED EXPERIMENTAL DATA 1040 1050 CALL "PLADEL":C(), TC, X5, -Y5, Y5, "TIME (SEC)", W (METERS)", 1 1060 CALL "CUNNECT": C(), T0, 0, × 5,0 1070 1080 INPUT#1:11 1090 FOR i = 1 JO N11100 INPUTH1: TOW 1110 LEF I = T+60 1120 LET W = W*.3048 1130 CALL "MOVE": C() TOW 1140 CALL "LABEL": C() . C\$() . "+", 1,0,0 1150 NEXT 1 1160 CALL "LIFT":C() 1170 LET <u>TS = T</u>_______SAVE MAXIMUM TIME_____ 1180 1200 ' +++PLOTFING OF THEORETICAL CURVE*** 1220 1230 THIS SECTION OF THE PROGRAM PLOTS THE THEORETICAL 1240 ' CURVE FOR COMPARISON WITH THE EXPERIMENTAL DATA. 1250

1280 ' EQUATION 2.7 A EQUATION 2.7 ALPHA1 -- EQUATION 2.11 1290 ' A 1 1300 1 A2 ALPHA2 -- EQUATION 2.11 1310 ' EQUATION 1.15 F 1320 ' EALA ALPHA1(BETA) 1330 * ENB ALPHA2(BETA) 1340 ' 10(x) ENT 1350 1 FNJ .11(X) SQR(DESC) -- EQUATION 2.12 1360 ' ENS INTEGRAND OF 11 1370 ' ENU 1380 ' ENV INTEGRAND OF 12 1390 ' ENW INTEGRAND OF 13 TIME COUNTER 1400 ' 1 1410 ' UPPER BOUND OF INTEGRATION -- EQUATION 4.15 UPPER BOUND OF INTEGRATION -- EQUATION 4.16 1420 ' N1 UPPER BOUND OF INTEGRATION -- EQUATION 4.17 1430 ' N: 2 1440 ' R EQUATION 1.18 1450 ' EQUATION 1-12 т TAU -- EQUATION 1.13 1460 ' T 1 EQUATION 4.12 1470 11 1480 ' EQUATION 4.13 12 1490 ' EQUATION 4.14 13 1500 1 DEFORMATION ω. 1510 ********************** 1520 1530 1540 LET P1 = 3.141593 1550 1560 ' CUMPUTE UPPER BOUNDS OF INTEGRATION 1520 1580 LET TU=TU/N7 1590 LET TS=IS/N7 NONDIMENSIONALIZE MIN TIME NONDIMENSIONALIZE MAXIMUM TIME 1600 1610 LET N=(160/(2*P1*SGR(A*R)))+(1/4) 1620 IF FNA(A.E.R.T.TO.TI.N) <. 005/TO THEN 1650 1630 LET W=W+1 ____ 1640 GOTU 1620 1650 LET N1=(1E)*T5/(2*P1*SQR(A*k)))*(1/4) 1660 IF FNA(A, L. R. T. TO, T1.N1) <. 005/TO THEN 1690 1670 LET N1=N1+1 1680 GOTU 1660 1690 LET N2=(1E5*(EXP(T1+T0)-1)+(1-E)/(T1+T0+2+P1+SQR(A+R)))+(1/4) 1700 1710 CALL "SIMP": O.N.FNL/I1/A/E/R.T.TO.TI 1720 1730 FOR I = TU TO TS STEP (TS-TO)/20 *NONDIMENSIONAL TIME LOOP 1740 1750 LET I=1 CALL "SIMP": 0,N1,FNV,I2,A,E,R,T,T0,T1 CALL "SIMP": 0,N2,FNW,I3,A,E,R,T,T0,T1 1760 1770 1780 1790 LET W = 11 + 12 + 13 CONVERT TIME TO SECONDS 1800 LET T=T+N7 LET W=W/(3.14159*A*R8*L9+2/P) CONVERT DEFLECTION TO METERS 1810 DRAW THEORETICAL CURVE CALL "LINE": C() .T.W 1820 1830

1840 NEXT 1 1850 1860 ' PRINT TITLE BLOCK 1870 1880 CALL "FINISH":C() 1890 PRINT ""," SITE ";SEGS(AS,1,1);" TEST ";SEGS(AS,2,2);" POSITION ";SEGS(AS,3,LEN(AS)-1) 1900 PRINT 1910 PRINI "", "IAU: ";I1/"N1/E0: ";N7 1920 PRINI "", "E: ";E,"E0: ";E8 1930 CALL "ERKUR": N.N1.N2.11. FNV. FNW. A.E.R. TO.T1.N7. R8.L9.P.E6.#1 1940 PRINT "", "NORMALIZEC TRAPEZOIDAL ERROR "; E6 1950 PRINT " 1960 1970 ____ FUNCTION DEFINITIONS AND SUBPROGRAMS 1980 1990 DEF FNA(A, E, R, T, TO, I1, X) 2000 ALPHA1 2010 LEI FNA = (T1 * X * 4) + 1 + T1 - FNS(A = E = R = T = T0 = T1 = X) 2020 LET FWA = FNA/(2+(X+4 + E)) 2030 FNEND 2040 2050 DEF FNU(Art,R.T.TU.T1,X) 2060 ALPHAZ LET FND = (T1+X+4) + 1 + T1 + FNS(A,E,R,T,T0,T1,X) 2070 2080 LET F = FNB/(2*(x+4 + E))2090 FNEND 2100 211C DEF ENS(AFEFRET, TO, TI, X) 2120 · JGRIDESC) 2130 LET = ((T1*X*4) + 1 + T1)*2 - 4*T1*(X*4 + E)2140 LET FAIST = SUR (FNS) 2150 FALLING 2160 2170 DEF FNU(AFEFRATATOATIAX) 2180 $LET A1 = ENA(ArE_rR_rT_rT()rT_rX)$ 2190 LET FIND = $X + 4 + (T) = A1) / FNS(A_FE_FR_T_TO_T1_FX)$ 2200 LE A1 . LU > .005 THEN 2230 2210 LET. FNU = FNU*(1 + A1*TO/2) 2220 0010 224C 2230 LEI HAU = FNU*(EXP(A1*TU)-1)/(A1*TO) 2240 LET FIND = T() * (1 - FNU)2250 LET FNU = FNU*FNJ(X*A)*FNI(X*R) 2260 FNENU 2270 2280 DEF FNV(Art R.T.TO.T1.X) 2290 LET A1 = FNA(A, E, R, T, TO, T1, X) 2300 LET FAW = x + 4 + (T1 - A1)/FNS(A = C, R = T, T0, T1 = X)LET FIN = FNV*(1 - EXP(-A1*T))/A1 2310 2320 ∟LT FNV = FNV*(EXP(A1*TO) - 1) 2330 $L \underline{L} \underline{I} \underline{F}_{MM} = \underline{F}_{NM} \times \underline{F}_{NM} (X \times A) \times \underline{F}_{NM} (X \times R)$ 2340 FNENU 2350 2360 DEF Him (Art PROTOTO 11.x) 2370 LET AC = FNB(A/E/R/T/TO/T1/X) 2380 LET FINH = X + 4 + (T1 - A2) / FNS(A = R = T = T0 = T1 = X)2390 LET FINH = FNW*EXP(-A2*T)/A2 2400 LET FINW # FNW+(EXP(A2+TO) - 1) LLT Firm = FNW+FNJ(A+X)+ENI(X+R) 2410

34.30	fulfara
2420	FNENU
2440	DEF FNI(X)
2450	
2460	* ***FUNCTION SUBPROGRAM: JD(X)***
2470	
2480	POLYNOMIAL APPROXIMATIONS FROM:
2490.	HANDBOOK OF MATHEMATICAL FUNCTIONS
2500	US DEPARTMENT OF LUMMERCE, 1964
2520	
2530	
2540	* ******* SYMBOL TABLE *********
2550	JO JO(X) ZEROTH-ORDER BESSEL FUNCTION
2560	F F(X) IN NBS BOOK
2570	T 3 THETA (X) IN NBS BOOK
2580	X ARGUMENT
2590	• Y X/3. OR 3./X
2600	* *****************
2610	
2620	
2630	IF $x \ge 0$ THEN 2680
2040	PRINT "FUNCTION JUCK): ARGUMENT MUST BE >= 0" Doint diamity
2650	
2670	3101
2680	1F x>3 THEN 2770
2690	
2700	POLYNUMIAL APPROX, O<=X<=3.
2710	LET_Y=X/3.
2720	LET JU = $1 - 2.24999 97 * Y + 1.26562 08 * Y + 4$
2730	LET JU = JO31638 66 * Y + 6 +04444 79 * Y + 8
2740	LET $JJ = JD0C394 44*Y+10 + .00021 00*0$
2750	6010 2910
2700	
2780	FOLINGHAL REFROND AND
2790	F F F IN NBS BOOK
2800	LET F = .79788 45600000 077*Y
2810	LET F = F00552 740+Y+200009 512+Y+3
2820	LET F = F + .00137 237*Y+400072 805*Y+5
2830	L <u>⊨T F ∓ F + .00014 476*Y†6</u>
2840	* TS = THETA IN NBS BOOK
2850	LET IS = X78539 81604166 397 * Y
2860	LET TS = T3 = .0C003 954*Y+2 + .00262 573*Y+3
28/0	LET 15 = 1500054 125*Y+400029 333*Y+5
2000	LET IS - IS T $UUUIS SSOTTTO$
2000	<u>LEI VV + (I_/JUR(X//*F#LU3(I))</u>
2910	$i \in I \in I \cap$
2920	FNEND
2930	
2940	DEF FNJ(X)
2950	
2960	* ***FUNCTION SUBPROGRAM: J1(X)***
2970	
2980	POLYNOMIAL APPROXIMATIONS FROM:
2990	- HANDBOOK OF MATHEMATICAL FUNCTIONS,

3000	US DEPARTMENT OF	COMMERCE, 1964
3020	19-4-42 9-4-01	······································
3020		
3040	* ******* SYMB	
3050	1 J1 J1(X) F	TRST-ORDER BESSEL FUNCTION
3060	• F1 F1(X)	N NBS BOOK
3070	TZ THETAT	X) IN NBS BOOK
3080	X ARGUMEN	
3090	' Y X/3, OF	3./X
3100	*********	*****
3110		
3120		
3130	IF x >= 0 THEN 3180	
3140	PRINT "FUNCTION J1()	:): ARGUMENT MUST BE >= 0"
3150	PRINT "X=">X	
3160	STUP .	
3170		
3180	1F X>3 THEN 3280	
3190		
3200	PULYNOMIAL APPROX,	U<=x<=3.
3210		205. VA2 . 21007 F37. VA/
2220	LEI JI # .3 # .30245	7 903*172 + .21093 373*174
3230	LEI JI - JI - 00031	Z07*110 + .00443 319*110
3250	1 = 7 + 1 = 7 + 11	
3240		
3270	9010 3450	
3280	POLYMUNTAL APPEOX.	
3290	LET Y=5./X	~~~
3300	F1 = F1 IN NBS BOO	
3310	$L \in I = -79788 456$	+ _00000 156+Y
3320	LET F1 = F1 + .01659	667*Y+2 + _00017 105*Y+3
3330	LET F1 = F100249	511+Y+4 + .00113 653+Y+5
3340	$L \in T = F1 = .0002$	20 033 + Y+6
3350	* TZ = THETA1 IN N35	BOOK
3360	LET T2 = X - 2.35619	9 449 + .12499 612*Y
3370	LET TZ = T2 + .00005	650+Y+200637 879+Y+3
3380	LET T2 = T2 + .00074	348++++ .00079 824+++5
3390	Let $12 = 1200029$	166*Yt6
3400	LET J1 = (1./SQR(X))	* F1 * COS(T2)
3410		
3420	LET FNJ = J1	
3430	FNEND	······
3440	END	
3430	CUD VETMORAVI VO CHE A	
3400	1 the SUBBROCOANS	THE CONTRACT THE CONTROL AND
3470	SUBPRUGRAF :	SIMPSON'S RULE INTEGRATION ***
3400	I STARSONIS DULE FOR	
3500	* NUMERICAL CALCULU	
3510	WILLIAM MTINE, 19	2 10
3520	WICCING BILDED 17	
3530	* ********* SYMROL	TABLE ++++++++
3540	• A3	SIMPSON APPROXIMATION FOR PREVIOUS TRIAL
3550	• A4	SIMPSON APPROXIMATION FOR CURRENT TRIAL
3560	1 FNF	FUNCTION SUBPROGRAM FOR INTEGRAND
3570	н	INTERVAL WIDTH

3580	• <u>T</u>	COUNTER	4160 CALL "SIMP": OPNIZENVETZAZERZTJATOZTI
3590	• N	2*N = NUMBER OF INTERVALS	4170 CALL "SIMP": 0.N2+FNW+13+A+F+R+T3+T0+T1
3600	· · · ·	PARTIAL SUM OF THE ODD TERMS	4180 LET WS = 11 + 12 + 13 COMPLITE NONDIMENSIONAL DEFORMATION
3410	1 CD	DADTIAL SUM OF THE EVEN TEDMS	4190 FT w 5 = W3/(3, 14159 + 4 + R8 + 19+2/P) * DIMENSTONAL TZE TT
3010	32	MARTINE OF INTEGRATION	4200 (st s) = (43 = 42) (compute space
3020		VARIABLE OF INTEGRATION	
3630	×2	UPPER BOUND OF INTEGRATION	
3640	× 1	LOWER BOUND OF INTEGRATION	4220 LET 52 - U FINITIALIZE (RAPEZOIDAL AREA SUM
3650	* *****	******	4230 FOR I = 1 10 N3 - 1
3660			4240 INPUT#1 :T4,W4 *NEXT TIME, DEFORMATION PAIR
3670	1F X2>X1 THEN 3720		4250 LET $14 = 14 + 6C$
3680	PRINT "SUBPROGRAM SIMP:	: XMAXIMUM MUST BE > XMIN"	4260 Let w4 = W4*.3048
3690	PRINT "XMIN=";X1;"XMAX:	=";x2	4270 Let t5 = $T4/N7$
3700	STUP		4280 CALL "SIMP": C.N1, FNV, 12, A, E, R, T5, T0, T1
3710			4290 CALL "SIMP": CANZAFNWAI3AAAEARAT5AT0AT1
3720			4300 if $\mu 5 = 11 + 12 + 13$
3730	ANTITALILE DED ANTRO		4310 iff wS = $45/(3.14159 \star 4 \star 88 \star 19 + 279)$
3730		DUAL C	$4326 \qquad \text{IFT} = 445 = 145 = 145$
3740	INFIALIZE TO TOUTING	RVAL3	
3730			4350 Let $10 - 14 - 12 + 10$ intermediate in the SUM
3/60	' LALLULAIE INTERVAL W	LDTH	$4340 \qquad \text{if } c^2 = 4 \times 0 (\text{Rev} + 3)0 \qquad \text{turves } \text{DON'T} (\text{ROS} = 2 \text{ (Rev})$
3770	LET $H = (X2 - XT) / (2 + N)$	· · · · · · · · · · · · · · · · · · ·	$4350 \qquad \text{Let } 32 = 32 + .3 + (14 - 12) + (2214 + 2414) / (2212 + 2412)$
3780	INITIALIZE PARTIAL SI	JMS	4360 6010 4380
3790	LET S1=S2=0		4370 LET 52 = 52 + .5*(14 - 12)*(E472 + E272) *INCREMENT TRAP. AREA SUM
3800	CALCULATE PARTIAL SU!	1 S	4380 LEFEZ = E4 NEW BECOMES OLD
3810	L ビ ズ = X 1		4390 LET F2 = T4 INEW BECOMES OLD
3820	FUR 1=U TO N		4400 NEXT 1
3830	LET S2=S2+FNF(A,E,R.	, T, TO, T 1, X)	4410 LETED = S2/T6 NORMALIZE SUM
3840	1 = T		4420 LET EU = SUR(E6)
3850	NEXT I		4430 SUBENU
3860			
3870			
2000		T - T() - T 1 - Y)	
3000	LET ST#ST#FVFCAPEPA,		
2040	LEI X=X+Z*H	· · · ·	
3900	NEXT 1		
3910	· CALCULATE NEW APPROX.	LMAILON	
3920	LET A4=H*(4*S1+2*S2-FN)	$F(A \neq E \neq R \neq T \neq T$	
3930			
3940	1F AUS(A3-A4)<=1.E-6 TI	HEN 4050	
3950			
3960	* PREPARE TO TRY AGAIN		
3970			
3980	LET AS=A4		
3990	LET S2=51+52		
4000	LET 51=0		-
4010	1 ET N#2 + N		
4020	LET H=(X2-X1)/(2+N)	· · · · · · · · · · · · · · · · ·	
4020			
40.00	3010 3000	• • • •	-
4040	0110 E 10		
4020	20BEMD	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
4060			
4070	SUB "ERROR": N. N1. N2. I1. FN	VALANEARATUATTAN7AR8AL9APAE6AAT	
4080	RESET#1		
4090	INPUT#1: N3	DISCARD FIRST LINE	
4100	INPUT#1: N3	DISCARD SECOND LINE	
4110	INPUT#1: N3	NUMBER OF DATA POINTS	
4120	INPUTH1: T2,W2	'TIME, DEFORMATION	
4130	LET T2 = T2+60	TIME IN SECONDS	
4140	LET $w_{\ell} = w_{\ell}^{2} + .3048$	DEFORMATION IN METERS	
4150	$1 + T = T^2 / N^7$	NONDIMENSIONALIZE TIME	