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NOMENCLATURE  

	

c 	heat content  

D hydraulic conductivity of unsaturated water  

	

D 0 	soil constant introduced in (16) 

h thickness of the ice lens 

	

L 	latent heat  

ρ pressure 

q defined by (39) 

✓ defined by (39) 

S entropy 

	

T 	temperature 

	

t 	time 

	

υ (ξ) 	defined in (19) 

	

u 	= exp (βW), defined at (17) 

✓ volume 

✓ flux of water 

W degree of saturation by movable water  

	

w 	surcharge on the ice lens, i.e. frost-heaving pressure  

	

x 	space coordinate  

α thermal diffusivity 

	

a20 	thermal diffusivity of water-saturated soil  

	

β 	soil constant introduced in (16) 

	

O^() 	defined in (42) 

κ thermal conductivity 

	

κ 20 	thermal conductivity of water-saturated soil  

½ soil constant introduced in (40) 

µ constant introduced in (7) and formulated in (31) 

✓ soil constant introduced in (55) 

variable defined by (20) 

ρ density 

	

xs 	volume occupied by both soil particles and unmovable water in a unit volume of the  

soil mass  

Subscripts 

	

A 	air  

	

1 	in-situ freezing 

	

i 	ice  

	

S 	segregation freezing  

	

s 	soil 

	

w 	water  

	

1 	the first layer in Figure 3, i.e. the ice lens 

	

2 	the second layer in Figure 3, i.e. the unfrozen soil 
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SEGREGATION-FREEZING AS THE CAUSE OF 
SUCTION FORCE FOR ICE LENS FORMATION 

Shunsuke Takagi 

INTRODUCTION 

The most enigmatic problem in the theory of frost 

heaving is the generation of the suction force that 

draws pore water up to the freezing interface of a 

growing ice lens, increasing its thickness despite the 

pressure exerted by the overlying burden of the 

frozen soil and surface load (see cover for photograph 

of ice lens). Most of the current literature on frost 

heaving explains the suction by use of the Laplace 

equation in capillary theory, which gives the pressure 

difference across a curved meniscus boundary of two 

different materials. However, capillary theory is not 

yet proven to be valid on the freezing meniscus of 

pore water. 

In the case of a capillary tube containing air and 

water separated by a meniscus, the molecules com-

posing the meniscus are stationary, and the Laplace 

equation gives the pressure difference across the 

meniscus. The molecules composing a freezing menis-

cus, however, are constantly renewed; theory does 

not yet prove whether the Laplace equation is valid 

or not on such a meniscus. We have found experi-

mental evidence indicating that the Laplace equation 

is valid on a static ice/water meniscus where molecules 

are stationary, but not on a freezing meniscus where 

molecules are renewed. 

In their definitive theoretical work in this field, 

Everett and Haynes (1965) caution that their theory 

of ice stress derived by applying capillary theory on 

ice/water menisci may fail when kinematic effects 

predominate. Koopmans and Miller (1966) measured 

the capillary potential of the ice/water meniscus and 

showed that the resulting curve coincided with the 

soil moisture characteristics, if they substituted the 

ice/water interfacial tension with the air/water inter-

facial tension. They took 24 hours to get one point 

of data. Their experiment shows that capillary theory 

applies on the static ice/water interface. Penner (1967) 

and Sutherland and Gaskin (1973) showed that the 

pressure required to stop ice lens growth was larger 

than the pressure predicted by capillary theory. Their 

experiments were kinematic. We may interpret these 

studies as indicating that the freezing of pore water is 

not a static effect caused by the capillary pressure but 

is a kinematic effect caused by the simultaneous flows 

of heat and water. 

We have developed a concept suitable for describing 

the ice lens formation by using the theory of simul-

taneous flows of heat and water (Takagi 1959, 1963, 

1965, 1970, 1974, 1975, 1977), which is systematized 

and stated in this report. 

SEGREGATION FREEZING 

We shall introduce segregation freezing as the agent 

for creating suction force to draw water to the freezing 

front and exerting frost-heaving pressure to the over-

lying burden. 

Corte (1962) observed that ice growing upward can 

carry soil particles floating on the surface (Fig. 1). The 

explanation of the floating of a soil particle on a 

heaving ice surface is possible only by assuming that, 

between the surfaces of the particle and the ice, there 

exists a thin layer of unfrozen water whose molecules 

are constantly replenished during the heaving by the 

Figure 1. A particle floating 
on the heaving ice surface. 
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Figure 2. ice lens forming on the thin water layer.  

influx of water from the adjacent reservoir into the 

freezing front. In other words, we should recognize 

that, adsorbed or absorbed between the particle and  
the ice, there exists a heterogeneous layer of water  
whose "thickness" is maintained at a certain constant  
value during the freezing process. It should be stated,  
however, that theoretical physics cannot yet explain  
the water of this nature and we are quite ignorant of  
its properties. 

In Figures 1 and 2, soil particles are represented by 

 a rectangular shape, because the thickness of the  
heterogeneous layer is clearly shown in this form. In 

the case of an actual more complicated shape, the  
conceptual correction of "thickness" can be made 

easily.  
The freezing of a thin water layer generates suction  

that draws water, as shown in Figure 1, from the sur-

rounding reservoir. The freezing of water that gen-

erates suction will be called segregation freezing. In 

this case the heterogeneous water adsorbed or absorbed  
between the particle and the ice freezes. In contrast, 

the freezing of homogeneous free pore water will be 

called in-situ freezing. This freezing mechanism does 

not generate suction; i.e. the in-situ freezing front 

advances with the progress of the freezing.  

In in-situ freezing, the ice pressure and the water 

pressure may not necessarily be equal, but mechanical  
equilibrium is established between ice and water. Ice 

and water are also equithermal; i.e. they are in thermal  
equilibrium. Therefore, the equilibrium of in-situ 

freezing is twofold. In the case of segregation freezing,  
however, thermal equilibrium is established, but as 

shown below, mechanical equilibrium is not. Only one 

type of equilibrium is present in this case. 

The in-situ freezing temperature is determined by 

the condition that the three phases — ice, water, and  
vapor — are in thermodynamic equilibrium (Takagi  
1959). The segregation freezing temperature is deter-

mined, as shown in the following, by the two-phase 

equilibrium. 

Let us consider an ice lens resting on soil particles, 

as shown in Figure 2. If the uppermost part of the thin 

water layer freezes, water must be sucked in from the 

neighboring reservoir to recover the original thickness  
of the thin water layer. Then, if the soil particles stay  
at the same position during the freezing process, the  
surface DD rises by the thickness of the frozen portion. 

This is our explanation of frost heaving. According to  
our concept, therefore, an ice lens grows on soil parti-

cles. 

Stress in the thin water layer that sustains the weight  
of the ice lens plus any surcharge on it acts in the water  
layer as if the water were solid. However, to calculate  
the freezing temperature of the thin water layer, i.e.  
the segregation freezing temperature, the simpler  
thermodynamic state of the pore water underlying the  
ice meniscus BMA may be considered instead of the 

complicated thermodynamic state of the thin water  
layer under the flat ice surface ΑΒ, because we may  
assume they are equithermal. 

The pore water underlying the ice meniscus BMA 

and the ice lens overlying BMA are, in turn, equithermal,  
but not in mechanical equilibrium. The weight of the 

ice lens is not supported by the pore water, but by the 

thin water layers and the soil particles underlying the  
layers. The stress of the ice lens, therefore, is inde-

pendent of the pore water pressure. In soil mechanics 

terminology, the pore water pressure is neutral to 

mechanical effects, but the stresses of the thin water 

layers and the soil particles are effective. They belong  
to different categories in terms of mechanical effects  
(Terzaghi 1942).  

For simpler treatment we replace the ice stress with 

the ice pressure Ρ i . Then we can describe the thermo-

dynamic equilibrium between the ice lens and the pore 

water by use of a formula of classical thermodynamics:  

VW  dPW  —SW  dT = Vi  dΡ i  —S i  dT 

where V is the specific volume, S the specific entropy, 

Ρ the pressure, and Τ the temperature. The suffixes w 

and i refer to water and ice, respectively. Note that Ρ i  
and ΡW  may not necessarily be equal in this equation.  
(See Takagi (1965) for a treatment dealing with the  
tensorial ice stress.) 

The meaning of the variations denoted by the total  
differentials in this equation must be clarified. We 

choose the datum state (i.e. the starting point of the  
variation) to be the state of in-situ freezing. The tem-

perature at the datum state, therefore, is the in-situ  
freezing temperature Τ1 . We raise the pressure of the 

ice at the datum state by  

dPi  = w + ρ ih 
	

(2)  

(1)  

2 



where w is the surcharge overlying the ice lens, h the  

thickness of the ice lens, and p1  the density of ice.  

We do not change the pressure of the pore water:  

dPW  =  Ο.  

We assume that the soil column underlying the soil  

particles is incompressible, so that no disturbance can  

intrude into the system during the proposed pressure  

increase. During the process, we maintain the thermo-

dynamic equilibrium between the pore water and the  

ice lens by keeping (1) valid, but leave the tempera-

ture free to change. Note that w + ρ 1h is the surcharge  

on the ice at the freezing front, which may be inter-

preted, if frost heave actually takes place, to be the  

frost-heaving pressure.  

Thus we can reach the final stage of the formula- 

tion. We find Τ5  the segregation-freezing temperature  

Τ5  = Τ 1 [1 — (w + Ρ;η) I(P;L)) 	 (4 )  

by letting dT = Τ5  — Ti  and S i  = L/T1  in (1), where  

Τ1  is the in-situ freezing temperature and L the latent  

heat. Therefore, Τs  is always less than Τι , the differ-

ence being determined by the ice pressure increment,  

i.e. the frost-heaving pressure.  

If we consider that the stress in the ice lens is deter-

mined by the configuration of the ice surface, the  

stress is not necessarily uniform in the ice lens. The  

nonuniform stress caused by the capillary force is con-

sidered by Everett and Haynes (1965). The difference  

of the capillary forces between the top and bottom  

menisci is considered by Loch and Miller (1975) to  

explain the cause of the flow of ice molecules in the  

growing ice lens. However, the capillary force does  

not seem to be directly related to the crystal growth.  

In supercooled water, ice crystals grow with sharp  

edges (Hobbs 1974, Glen 1974) and frequently form  

dendrites. They grow against the chemical potential  

gradient in the solid; their growth rate is determined  

by the heat transfer and the availability of the growth  

material in the liquid. When the water temperature  

is very close to the ice temperature, however, ice grows  

into the water forming a smooth ice surface (Glen  

1974). The growth rate in this case is still determined,  

we believe, by the heat transfer and the availability of  

the growth material in the liquid, although we could  

not find any reference that clearly states this. The ice  

stress caused by the ice/water menisci does not seem  

to be a cause of crystal growth.  

We showed (Takagi 1965) that the ice stress given  

on the right-hand side of (2) is the normal stress com-

ponent in the vertical direction. This normal stress  

may be interpreted to be the overall representative  

value of the ice stress in the segregation freezing, in the  

same sense as the overall representative ice stress in the  

in-situ freezing is interpreted (Takagi 1959) to be  

atmospheric. Obviously, the stress of the ice forming  

inside a pore of soil is higher than atmospheric pressure  

by the amount of the capillary pressure caused by the  

curved ice surface. The formula of the in-situ freezing  

temperature, derived by assuming the ice pressure to be  

equal to atmospheric pressure is, however, confirmed  

experimentally (Schofield 1935, Williams 1964, Low et  

al. 1968). Atmospheric ice pressure, therefore, may be  

the overall representative value of the internal stress of  

the ice freezing in-situ, and choosing atmospheric pressure  

is probably a convenient way of avoiding the variability  

of the internal ice pressure in in-situ freezing. Choosing  

the ice stress expressed by the right-hand side of (2)  

in the formulation of the segregation freezing tempera-

ture should therefore be interpreted in the same sense  

as choosing the atmospheric ice pressure in the formula-

tion of the in-situ freezing temperature.  

ANALYSIS  

We shall use (4) of segregation freezing temperature  

as one of the boundary conditions of the simultaneous  

flows of heat and water to analyze the formation of a  

single ice lens. We shall make the physical system as  

simple as possible to keep the analysis feasible.  

We assume the unfrozen soil underlying the ice lens  

to be incompressible under the action of the surcharge  

and, moreover, under the action of the flows of heat  

and water. At present this assumption is needed be-

cause the currently available water flow equations do  

not include volume change caused by absorption and  

depletion of water. Also, we do not yet know the con-

stitutive equations of soils to describe the deformation  

due to surcharge and water content variations. Unifi-

cation of hydraulics and mechanics still seems to be a  

remote goal. The assumption of incompressibility  

obviates these difficulties. Furthermore, this assumption  

simplifies the analysis, because the segregation freezing  

front overlying an incompressible unfrozen soil layer  

stays at the initial level until in-situ freezing replaces the  

ongoing segregation freezing.  

In this system the freezing front starts to descend  

when in-situ freezing begins. The selection rule, stating  

which of the two processes should start, emerges at the  

end of the analysis.  

We assume that segregation freezing takes place at the  

ground surface. Then, we may not consider the compli-

cated flow of unfrozen water in the frozen region. In  

fact, we are going to analyze the frost needle formation  

on the ground surface.  

(3)  

3  



Surcharge w 

κ = -h(t) 

Ice lens 	 h(t)  

χ =0  

According to the present theory, frost needles grow  

on soil particles. Pore water between soil particles may  

or may not freeze, because Τs  < T ; . In this analysis,  

we disregard the individuality of the frost needles (as  

seen on the cover) and suppose that the ice lens forma-

tion and heat and water flows are uniform in the hori-

zontal direction. In other words, we suppose that the  

flows are one-dimensional in the vertical direction. The  

aim of this analysis is not the formulation of actuality  

but the clarifying of the implication of our assumptions.  

We will analyze only for the limit of t -' 0. For  

t -> 0, we can linearize the highly nonlinear equations  

of simultaneous flows of heat and water, and can solve  

them analytically.  

Before entering into the details of the analysis, it is  

appropriate to give an overview of the analysis.  

First, we shall solve the heat conduction in the  

nascent ice layer by Portnov's (1962) method, of which  

the essence is given in Appendix A. The boundary  

temperature conditions are the step-change air tem-

perature TA  at the upper side of the ice lens ΑΑ in  

Figure 3, where x = -h(t) and the segregation freezing  

temperature Τ5  at its lower side SS, where x = 0. This  

solution enables us to express the temperature gradient  

at SS as a function of TA  and Τ5 .  

Second, we shall solve the unsaturated water flow in  

the unfrozen region; i.e. we shall determine the water  

content W(x,t). The boundary condition at x = 0 is  

that the water content at x = 0 suddenly drops to a  

certain unknown value W(0,0) at the outset of the ice  

lens formation. We assign an arbitrary number W(0,0)  

to the boundary value at x = 0 and t = 0. The initial  

condition is that W(x,0) = constant for 0 < x < oo.  

The boundary condition at x = .0 is that W(°o,t) =  

constant. These two constants must obviously be  

equal to each other. The solution of this problem en-

ables us to calculate the flux of water entering the  

freezing front. All this water becomes ice to form frost  

needles; thus, we can calculate the ice lens growth rate  

dh/dt.  

Third, we shall solve the equation of the double  

heat transfer, convected by the water flow and con-

ducted through the soil mass, by using the segregation  

freezing temperature given by (4) as one of the  

boundary conditions. We evaluate the thermal con-

ductivity and heat content in the duplicate heat trans-

fer equation by use of the water content distribution  

W(x,t) found above. The solution of the duplicate  

heat transfer enables us to calculate the temperature  

gradient at the segregation freezing front as a function  

of the surcharge w and the boundary water content  

value W(0,0).  

Unfrozen soil 

Χ 

Figure 3. Analysis of ice lens formation.  

Finally, we shall use the energy balance equations  

at the segregation freezing front. We substitute the ice  

lens growth rate dh/dt and the two temperature gradient  

equations previously formulated at both sides of the 

freezing front into the energy balance equation. Then,  

we can find surcharge w, i.e. the frost-heaving pressure,  

in terms of the air temperature TA  and the boundary  

water content value W(0,0). 

The selection rule is given by the expression of w. 

If the frost-heaving pressure w is zero or positive, 

segregation-freezing begins. If the frost-heaving pres-

sure is negative, in-situ freezing begins. Soil data in  

this calculation were collected from many sources, and  

the soils were not incompressible; however, the result 

is deemed reasonable. 

Heat conduction in the nascent ice layer  
The ice lens is lifted as a whole at the rate of dh/dt. 

Applying the theory of heat conduction in a moving  

medium (Carslaw and Jaeger 1959), we have the dif-

ferential equation of the temperature T t  of the growing  

ice lens: 

dh aT t 	a 2 Tt  
dt  ax  

	

αx2  

where α ;  is the thermal diffusivity of ice. Let 

z = x + h(t) 

and then (5) becomes 

a 2  Τ 1  
= α ; 

 az2 
	 , 

where 0 < z 	h(t). The solution of this problem by 

using Portnov's (1962) method is shown in Appendix 

A.  

a  τ 1  
at  (5)  

a  Τ1  
at  

4  



To consider the limit of t -+ 0, we take only the first 

(i.e. n = 0) terms in (A6) and (Α8) in Appendix A, and 

approximate them by 

Τ1  (x, t) = σ+ b erfc i x  ^ ) 1 
 2 a^t J 

and  

h(t) = 2µ'/α, t , 	 ( 7 )  

where σ, b, and µ are unknown constants. To deter-

mine σ and b, we use the conditions: 

Τ1  (0,t) = TS 	 ( 8 ) 

and  

Τ1 (- h(t),t) =  TA,  

where ΤΑ  is the air temperature on the ice/air inter-

face ΑΑ. Considering that  

water exists in the pore, and D(W) is the hydraulic 

conductivity of unsaturated water flow as a function  

of W. We believe the degree of saturation is more con-

venient for mathematical analysis than the water con-

tent conventionally used in soil engineering. The cross-

effect of the temperature gradient on the water flow  

may not be included in (14), because our interest is in 

the flow of liquid water, not in the flow of water vapor  

(Philip and DeVries, 1957). A question, "What will 

happen if air is unavailable to the frost-heaving system?"  

is discussed in Appendix Β. 
The flux v(x,t) of liquid water is given as 

v(x,t) = (1 —  χ5 )  Ο( W) (aw/ax) 	 (15) 

where χs  is the volume occupied by both soil particles 

and unmovable water in a unit volume of the soil mass.  

The volume of movable water in the unit volume is 

(1 — χ 5 )W. We have formulated v(x,t) in (15) to be 

positive in the upward direction. 

We assume the diffusion coefficient D(W) in (14), 

following Gardner (1958a, 1959), to be 

(6)  

(9)  

h(0) = 0, 	 (10) 	 D(W) = D0  exp(β W) 	 (16)  

we denote the value of Τs  at h = 0 by 	 where D 0  and β are constants. However, this form of  

D(W) is inadequate, because it does not become constant  

Τ5 (0) = T1  (1 — w/(Π i L)). 	 (11) 	in the neighborhood of W = 1 as required by Darcy flow  

(i.e. the water flow saturating pores). A few years after  

Thus we have 	 the analysis presented here was finished, we found  

another formula (Gardner 1958b) that satisfies this re- 

_ Τs (0) — ΤΑ  erfc µ 	
'12' 

	This analysis was not revised, however, be- 

erfµ 	 ) 	cause we believe that this defect in our data of water con- 

tent is tolerable, as will be shown in the numerical  

and 	 analysis section. A more realistic analysis should be  

attempted when the rigid soil frost-heaving test will be- 
_ ΤΑ  — Τ5 (0) 	 come available. 

b 	
erfµ 	 (13) 	Use of u defined by  

The constant µ will be given at the end of the next  

section.  

Water flow in the unfrozen soil  
We express the one-dimensional flow of unsaturated  

water with the following equation (Miller and Klute  

1967):  

aw - a  [ο( w)  awl 
āt - χ̂ 	όχ  

(14) 

where W(x,t) is the degree of saturation by the movable  

pore water such that W = 1 when the pore is saturated  

with the movable water and W = 0 when no movable  

u = exp(β W) 	 (17 ) 

simplifies eq 14, where D(W) is given by (16), to 

L L  =  υ  α?υ  
DO  at 	ax2  

In view of Portnov's (1962) formulation (App. A), 

we may assume u(x,t) to be in the following form: 

u(x,t) = Σ (Dpt)"/2  Un ()  
n=0  

(18)  

(19)  

5 



where ξ is defined by  

= χ/f2oο t  

and U^( ξ) is a function of ξ only. To discuss the limit  

t --> 0, we need only the first term:  

u(x,t) =  U0 ().  

Then (18) becomes  

ξ 
dξ 

 + Uο 

 

of ξ. Repeating the analytical continuation as many  

times as necessary, one can find the value U 0 (σο),  
which, however, in general is different from the given  

value of U0 (ο). One renews U^(0) and repeats the  

same procedure until U 0 (00) agrees with the given value.  

Thus, the Scott and Hanks method enables us to express  

Up(0) numerically in terms of U 0 (0). In this way we  

can find the numerical solution of υ0 (ξ) involving  

W(0,0) as a parameter.  

We may approximate v(x,t) by substituting ψ 0 (ξ) in  

(25) for W in (15); thus, we find  

(2ο)  

(21)  

d
2-0.  (22)  

v(x,t) _ 
\/Ζ5;-  (1  -  χs)  dU0 1 

 

ν 	dξ ^  
( 29 )  

Use of a single independent variable demands that the  

boundary condition atx = ° at time t > 0 and the 
	

by use of (26). The balance of mass at the freezing  

initial condition in the region 0 < x < 	reduce to 
	

front x = 0 is given by 

a single condition:  

U0 (οο) = exp(β W—) 
	

(23) 
	

Π.  9 
= P W  v(0,t). 
	 (30)  

where Wm  is a constant such that 
	

Use of (29) in (30) yields the differential equation of 

h(t), which on integration with the initial condition  

W(0,0) < W ,  < 1. 	 (24) 	h(0) = 0 yieldsµ introduced in (7): 

We determine the boundary value U 0 (0) as follows.  

Use of (19) in (17) shows us that W(x,t) can be ex-

pressed with a series similar to (19). For the limit of  
t -> 0, taking only the first term, W(x,t) may be  

approximated by  

W(x,t) 
 

where ψ 0 () is related to U0 (ξ) by 

υ0() = exp(βψψο(ξΡ)).  

Because ψ 0  (ξ) is continuous, it must satisfy  

W(0,0) = ,/ 0 (0).  

Thus we get  

U0 (0)  = exp(β W( 0 ,0 ))• 	 ( 28)  

To solve (22) with the boundary conditions (23) and  

(28), we used Scott and Hank's (1962) method. Assuming  

an arbitrary value of U'0  (0) and given U0  (0) and  

one can compute the higher derivatives υ )(0)  
(n ? 2) by use of (22). Thus, one can formulate a  

Taylor series in the neighborhood of = 0. If the  

convergence deteriorates as ξ increases, one can  

analytically continue the Taylor series to a new series  

that better converges in a new range of larger values  

2µ 	= (1 — XS) 
Ρω 	β ο 	Up(0). 

ι 
(31)  

Heat transfer in the unfrozen soil  

We shall formulate the equation of the double 

heat transfer, convected by the water flow and con- 

ducted through the soil mass. The heat content c 2  per 

unit volume of unfrozen soil mass is 

c2  =  c W (1 —  χ)  + ε 5  χ5  

where cs  is the heat content per unit volume of soil  

particles including unmovable water, and c N, the heat  

content per unit volume of water. Let T2 (x, t) be the  

temperature of the unfrozen soil mass. The convective  

heat flow formulated by  

Q = ε ω  Τ2  ν 	 (33)  

is positive upward because the flux v(x,t), defined by  

(15), is positive upward. The conductive heat flow R  
is given by  

R = — κ 2  a Τ2 /aχ 	 (34)  

2  

where κ 2  is the thermal conductivity of the soil mass. 

Because x is positive downward, R is positive down-

ward. The duplicate heat transfer is formulated by  

(25)  

(26)  

(27)  

(32)  
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a(c2  τ2 )/at = aQ/ax  — aR/ate. 	 (35)  

Το simplify (35), we derive the relation 

ace /at = '„ av/ax 
	

(36)  

by differentiating (32) with regard to t and using (14)  

and (15) on the assumption that c s  x = constant, i.e.  

that soil particles including unmovable water do not  

move. Substituting (33) and (34) into (35) and using  

(36), we find  

aΤ2 	a ΤΖ  = a Γ  αΤΖ  
ι2  at — εω 

ν  αχ 	αχ 1 κ 2  αχ ). 
	(37)  

It may be verified that the equation of the triple 

heat transfer (Philip and DeVries 1957, and DeVries  

1958), containing convection by water vapor, con-

vection by liquid water, and conduction through the 

soil mass, reduces to (37) when the former is simplified 

on the assumption that the flow of water vapor is  

negligible.  

Equation (37) of the duplicate heat transfer includes  

the effect of the water flow v on the temperature 

gradient, but (14) of the unsaturated water flow does  

not include the reciprocal relationship, i.e. the effect 

of the temperature gradient on the water flow. The  

validity of Dnsager's reciprocal relationship (DeGroot  

and Mazur 1962) is not claimed in this paper; nor does 

this relationship hold in the theory by Philip and 

DeVries (1957) and DeVries (1958). The neglect of 

the relationship seems to be natural, although not yet  

proven, in the simultaneous flows of heat and water  

through soil, because heat can penetrate soil particles  

but water cannot — a condition that is not considered  

in theoretical physics for proving Onsager's relation-

ship.  

We cast (32) into a form convenient to the heat  

flow analysis  

ε2  = cN, q (1 —r+rW) 	 (38) 

by introducing two constants q and r through the fol-

lowing two equations.  

qr =  Ι — χ  

(39) 

4( 1  —r) _ cs  χ5/c ω .  

The constant qc expresses the heat contained in the  

water-saturated soil mass. To prove this, note that the  

sum of the two equations in (39) yields the relation 

qc = cw  ( 1  — Xs ) + cs  χ5  

whose right-hand side is the one found by letting  

W = 1 in the right-hand side of (32). The constant r  
is in the range 0 < r < 1, because dividing the first  

equation of (39) with the one at the top of this column  

shows that r = c^,(1 — χs )/[cω (1 — χs ) +cs  χs ].  

We used Kersten's (1949) equation 

Κ 2  = Κ20 (1 + λ0 log W) 	 (40)  

to express the thermal conductivity κ 2  of unsaturated 

soil. The constant κ20  is the thermal conductivity for 

the saturated condition (W = 1), given by 

κ20 =  c  Ρ '.  9α20  (41)  

where α20  is the thermal diffusivity of the saturated 

soil. The constant λ0  is a soil constant. 

In view of Portnov's formulation (App. A), we may 

assume T(x,t) to be in the following form: 

^  

Τ2(χ, t) _  Σ  (ρ0 t) '12Θ^(ξ)  
π=0  

where we have introduced a function e n  of ξ only. 

Taking the lowest term of t, we approximate Τ2 (x,t)  
with  

Τ2 (χ, t)  

Substituting Τ2  from (43), v from (29), c 2  from (38),  

and κ 2  from (40), (37) transforms to 

α2ο d2^0 	α2ο λ d^ 	+  [F() 	
log 

 W0()  

DO  d2 	̂
 DO  1 + λ log  W0  ()j 

	

χ ξο 	0 (44)  

where we have defined  

()) 1  —
χ5 

 dυ0 (1 —r+r W0 ())+ 1 0 	+ βq dξ  F()— 	1+ λ log Wo(ξ)  

The boundary condition at x = 0 is  

Ορ (0) = Τ5 (0).  

(42)  

(43)  

(45)  

(46)  
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Τ00  — Τ5 (0 )  
O0  (0) —  

(1 + λ log Wo (0)) f G(η ) dη  
ο  

(50) 

2 
(52) 

The boundary condition at x = φΡ and the initial con-

dition for 0 < x < φΡ reduces to a single condition  

Τ;  

p L̂L
ω = (54) 

Οο (φ) = Τ(Ο).  

Equation 44 integrates to  

(47) 

κ  ι  erf 2  (T I  — T  Α ) — c
ω ^ω 	4α2ο  

πα ; 	µ 	 2D o  f G(η) dη  
fl 

κ ί 

 

(Τ0,.  - Τ 1 )-ρµ-.Ι&  

0ρ(ξ) = 0ό (0)(1 + λ log ωο (0)) f G(η) dη  +  
ο  

+ Τ5 (0) 	(48)  

where O^(0) is the yet unknown value of dΘ0 (ξ)/dξ  
at ξ = 0, and G(n) is defined by  

G(η) _ Ι + λ log Wo  (η) 
 eXp [— 

Do  f F(ξ) dξ j . (49)  

The boundary condition (46) is satisfied by (48). The  

boundary condition (47) is satisfied if 0'(0) is chosen  

to be  

, 

 

Energy balance at the segregation-freezing front  

The balance of energy at the segregation freezing  

front is described by 

K i \ óx' /Q 
- 

(κ2) ο \ ā  2 / 0  = ^ i  ár 
where (κ 2 ) 0  is the value of κ 2  found from (40) by let-

ting W = W(0,0). Notations (VT )  /3x) 0  and (αΤ2 /aχ) 0 
 are values of aΤ 1  /αχ and αΤ2 /αχ at x = 0. For the  

limit of t --> Owe find 

Τs(0 ) — ΤΑ 	1  

erf µ 
 

-µ 
  	 cw ρω 9' α20  

πα ;  erf µ 
2D o  f G(η) dη 

ο  

by substituting (52) and (53) for the temperature gradi-

ents in (51), (7) for h(t), and (11) for T5 (0) in (52). In 

this equation µ is a function of W(0,0) that can be found  

by expressing U^(0) in (31) as a function of W(0,0), 

which we have derived by use of Scott and Hanks' 

method; Τ ;  is also a function of W(0,0) as given in (55)  

below. 

Equation (54) gives the selection rule. If the right-

hand side of (54) is zero or positive, segregation freezing  

starts. If it is negative, segregation freezing cannot start  

but, instead, in-situ freezing begins. 

Numerical computation  

The only experiment on segregation freezing in-

cluding the measurement of unsaturated water flow is,  

to our knowledge, Hoekstra's (1966, 1967). The soil 

he used was Fairbanks silt, which does not satisfy the  

assumption of rigid pores; therefore (4) of Τ5  may not 

be exact for this soil. The water flow was unsaturated,  

the initial W being equal to 0.82; therefore (16) may be  

used for D(W). Although his soil column was of finite 

length, we may use his data in our analysis, because we  

consider only the limit of t -+ 0. The porosity was 

0.36 and therefore χs  = 0.64. We determined the 

specific density ρs  of the soil by equating ρ s χs  to the 

dry density, which was 1670 kg/m 3 . 

Low et al. (1968) observed almost complete linearity 

between T ;  and W for a Wyoming Na-bentonite nearly  

saturated with water. Assuming that this relationship  

is valid even for other soils, we formulated 

«20  

(51) 

(αΤt 1_  
\  ax  ll  

from (6) by use of (13), and  Τ1  = Το — ν (1 — W) (55) 

Θ(Ο) 	 (53) 
^ Τ2 	1  
āx/ ο  /2D 0 t  

from (43) by use of (50). Thus, we can express w in 

terms of parameters W(0,0), Τ00 , and ΤΑ as  

where Τ0  = 273.15 K and v is a soil constant. We 

chose v = 0.140, referring to Keune and Hoekstra 

(1967). 

Kersten's (1949) data of the thermal conductivity of 

Fairbanks silt gave λo = 0.892 and κ 2 0 = 1.6039 W/m K.  
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Figure 4. Frost-heaving pressure w as function 

of ΤΑ  and W(0,0). 

Table I. Temperatures and degree of saturation for  
needle ice formation.  

W(O,O) 	ΤΑ( C) 	ΤΙ  = Τ5  (° C) 

0.4 —0.193 —0.084 

0.5 —0.156 —0.07 

0.6 —0.115 —0.056 

0.7 —0.0732 -0.042 

0.8 —0.0347 —0.028 

0.82 —0.0279 —0.025 

The specific heat of the dry soil given by him was 

795 J/kg K; therefore, Cs  is given by c 5   = 795 

Using (39) we find q = 0.6853 and r = 0.5370.  
Values of D0  and '3  determined by Hoekstra's (1966, 

1967) data were D^ = 2.92 χ 10-9  m 2 /s and βΡ = 2.88. 
The method of determination of these values is not 

mentioned here, because special knowledge of un-

saturated water flow was used for their determination  
as mentioned by us (1970). The values of D 0  and β 

 were reasonable as compared with other soils. 

Numerical computation was performed keeping 

 T„ = 5° C constant and varying  ΤΑ  and W(0,0). The  
relation between w and ΤΑ  is shown in Figure 4 with 

W(0,0) as a parameter. The ice lens that forms when  
w = 0, i.e. under atmospheric pressure, is usually 

called needle ice. Under this condition, Τ5  is equal to 

Τ1 , which may be computed from (55) by using W(0,0) 

for W. The values thus found are shown in Table 1 and  
Figure 4.  

Although we have used the simplifying assumption  
of rigid pores and collected the input data from a  
variety of sources, the results shown in Figure 4 and  
Table I are reasonable when compared with observa-

tions in the laboratory and in nature.  
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APPENDIX A  
Essence of Portnov's method  

Portnoy (1962) presented an interesting idea for  
handling the moving boundary heat conduction  

problems. Jackson (1964) extended it and showed  
several examples. However, their presentations are  

still complicated. In the following a simple formula-

tion of Portnov's idea is presented.  
It is well-known that a solution of the heat con-

duction equation  
a7  

at 	αχ2  

in the infinite region, - 	< x < ^,  is 

T  (x't) 	2 παt 
f exp  ( ( 

4αt  )2 ) Φ(ξ) dξ 	(Al) 

where ψ(x) represents the initial temperature distribu-

tion. Use of (Al) enables one to find the solution in 

the moving boundary region 0 < x < h(t).  
Let φ(x) = ψ 1  (x) in 0 < x < 	and φ(x) 

02(x) in -°° < x < 0. Assuming that Φ 1 (x) and 

Φ2 (x) are analytic in their respective regions, let  

Φ 1  (χ) = Σ φ (n)  χn 

η=0 	ι  

Φ2 (χ) = Σ Φ4" )  χ".  
n=0  

Then, one can integrate (Al) to  

where /(")erfαx is the n-time repeated integral of erfcx,  

which may be expressed in the form of a single integral:  

/(")erfcx = ^  Γ (υ - χ)"  e-^' 2  du.  
π ✓ 	η ι  

(A3) 

To find (A2), let ξ - x = 2u'/2 ΐ  in the region 

0 < ξ <  ον  and x - ξ = 2u'/Ζ in the region 

- οο  < ξ < 0. Then use of (A3) easily yields (A2). 

The customary notation /erfcx is rejected here in 

favor of i(' )erfcx, because  i"  in the functional nota-

tion can be confused with ( 	). 

The formula changing the negative argument of  

Ι( ')erfc(-x) to the positive argument of /(n)erfcx 

(c.f. formula 7.2.11 of Gautschi 1964) simplifies to 

(- 1)" /(")erfcx + /(")erfc(- x) - 	1  	Εη  (x), (Α4) 
2' 1 n!  

when the polynomial Ε (x), defined by 

Ε (x)  =  e2 ('2 
 

dx 2  

= i -"Η^ (ix)  

is introduced, where H n  (x) is the Hermite polynomial  

and i = ‚/ΙΙ  Using (A4), one can transform (A2) to  

contain positive arguments only:  

Τ(χ t) 	
ς-^  (2ν'2)'   ^ Φ η)  ε ( 	 + χ  

' = Σ  η =0 	 2 

(A5) 

T(x, t ) = 
  

Σ n! 
 η=0 	 1 	 \ 	f 

+ (- 1
2  )

!  (1) _ ψ^n)) /(")erfc 1
2)

Ι 
 

(A6)  

+ φ4") (- 1)" /(")erfc ( ^) f  (A2) 
2 	/  

Equation (A6) shows that the temperature functions 

for x = 0 and x = h(t) are  

11  



T(0,t) = Σ an t"^2  

n =0  

T(h(t),t) = Σ b n t" Ι2 .  
n=0  

Therefore, (A6) can express the temperature in the 

growing ice lens, if h(t) is a power series of ‚ιΤ:  

h(t) = Σ h n t"! 2 . 

n=1  

The series must begin with 	because t'1'' is in the  

arguments of functions Εn  (x/(2 ιt )) and 

/(n)erfc(x/(2 ^t )). Bell's formula (Bell 1934, Riordan 

1946, 1949) which gives the nth derivative of a func-

tion f(q(x)), may be used to express αn  and b in  

(A7) in terms of the derivatives of Εn  (h(t)/(2 at ))  
and /(")erfc (h(t)/(2ν' ϊ )) and arbitrary constants  

Ο cn i and ψV"i.  

APPENDIX B  

Frost-heaving without air available  

We can theoretically prove that segregation freezing  

cannot start in a rigid soil whose pores are saturated  

with de-aired water. 

To prove this, we may assume that the flow is one-

dimensional. The equation of continuity, div V = 0, re-

duces in one-dimensional flow to au/ax = 0, where V is  

the velocity vector, v the vertical component, and x the  

vertical coordinate. Therefore, v is a function of t only.  
Portnov's formulation shows that ice thickness h for  

an initial small period is proportional to '/ϊ . Sub-

stitution of this result into (30) of the balance of  

mass at the freezing front indicates that v for the  

initial small period must be proportional to t' ^Z. In  

other words, initial velocity is infinite throughout  

the entire domain, 0 ? x > οο. Under this initial  

condition, the problem of water flow cannot be solved  

and, therefore, segregation freezing cannot start.  

We showed experimentally (Takagi 1974) that this  

theoretical conclusion with regard to rigid soils does  

not necessarily hold true with regard to deformable  

soils. However, the mechanics of water flow in de-

formable soils is not readily understandable.  

(A7)  

(A8)  
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