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ANALYSIS OF RIVER WAVE TYPES 

Michael G. Ferrick 

INTRODUCTION 

Long-period waves in rivers are a consequence of 
unsteady flow, which may occur as a result of hydro­
electric power generation or flow control at a dam, 
the breach of a dam, the formation or release of an 
ice jam, or rainfall/runoff processes. River waves 
have flow depths that are several orders of magni­
tude smaller than their wavelengths, so they are 
classified as shallow-water waves. The study of river 
waves is complicated by the hydraulic properties of 
rivers and the time scales of the wave motion, which 
range over several orders of magnitude. Natural riv­
ers vary greatly in size and in discharge. Impounded 
rivers are both wider and deeper than they were in 
their natural state, and they have diverse hydraulic 
properties. Flood waves in large river systems de­
velop over several days, while those in some small 
rivers can form in several minutes. Flow control and 
hydroelectric turbine gates may be adjusted rapidly, 
creating abrupt flow waves both upstream in the 
reservoir and downstream in the tailwater river. Be­
cause of this diversity, general physical insights re­
garding river waves are elusive. 

Observations indicate that river waves are a pri­
mary cause of river ice cover breakup. Therefore, 
a theory describing the interactions between a river 
wave and the ice cover would have great practical 
importance. When a river becomes covered with ice, 
frictional energy dissipation increases, but the effect 
of this increased friction on river wave behavior has 
not been established. This understanding is a pre­
requisite to the development of theories of ice cover 
stability in the presence of river waves. 

The Saint-Venant equations of continuity and 
momentum are generally used to describe unsteady 

flow in rivers. Within this basic model, river waves 
may be classified as dynamic, gravity, diffusion, or 
kinematic waves, corresponding to different forms 
of the momentum equation. Dynamic waves are de­
scribed by retaining all terms of the momentum equa­
tion. As is typical of shallow-water waves, dynamic 
river waves have a celerity that is related to the water 
depth. The momentum equation for gravity waves 
ignores the effects of bed slope and viscous energy 
losses; graVity waves propagate at the dynamic wave 
celerity and their flows are dominated by inertia. 
Diffusion and kinematic waves are at the opposite 
extreme. The diffusion wave momentum equation 
ignores inertia, and the kinematic wave equation ig­
nores both inertia and the pressure gradient caused 
by varying flow depths over distance. Both of these 
wave types travel at a celerity governed by the fric­
tional resistance of the river bed. This celerity is re­
lated to the velocity of the flow and is significantly 
slower than the dynamic wave celerity. Diffusion 
and kinematic wave propagation requires the move­
ment of a large quantity of water. In this paper 
these waves are frequently grouped together and are 
called bulk waves. 

Our present understanding of the relationships 
between various river wave types is based on linear 
stability theory (Ponce and Simons 1977, Menendez 
and Norscini 1982). This linear theory provides use­
ful, but largely qualitative, inSights into the behavior 
of each wave type, and the transitions between wave 
types are not considered: waves of a given type in­
clude or exclude specific terms or processes in the 
momentum balance. The concept of step changes 
between river wave types is not reasonable. There 



must be cases that are intermediate between wave 
types, suggesting the need for a treatment of wave 
transitions. Wave types are identified either by us­
ing the linear theory or by comparing magnitudes 
of normalized terms of the dynamic wave momen­
tum equation (Henderson 1963, Woolhiser and 
Liggett 1967), and then applying judgment to in­
terpret the results. 

The object of this paper is a) to develop a quanti­
tative method for identifying river wave types and 
b) to clarify the relationships between wave types. 
The analysis is based on the principle that the bal­
ance between friction and inertia determines river 
wave behavior. The Saint-Venant equations are 
combined to form a system equation. Written in 
dimensionless form, the system equation provides 
scaling parameters that quantify the magnitudes of 
all terms in the equation and indicate the relative 
importance of friction, inertia, and pressure gradient 
effects on a wave. By interpreting the scaling param­
eters probabilistically, additional data can be incorpo­
rated into the analysis to account for the variable 
physical characteristics of a river and a wave. This 
more general interpretation provides an improved 
estimate of the friction/inertia balance, insigh t into 
the continuous nature of transitions between wave 
types, and a measure of the reliability of wave type 
assessments near a transition. Finally, we identify 
the scaling parameter ranges that correspond to each 
wave type and transition with data from case studies. 
These case studies encompass a wide range of river 
and wave conditions, attesting to the general utility 
of the approach. 

BACKGROUND 

Courant and Friedrichs (1948) noted the analogy 
between nonlinear wave motion in gases and in shal­
low water, and they developed the mathematics to 
treat first-order, quaSi-linear hyperbolic flow equa­
tions for functions of two independent variables. 
Continuity of all functions and all required deriva­
tives of these functions was assumed. Stoker (1957) 
applied this theory to the study of river flow waves, 
providing the mathematical and conceptual basis for 
our present understanding of river waves. Following 
Stoker, we consider an idealized river with a wide 
rectangular prismatic channel and no local inflow. 
The Saint-Venant equations of mass conservation 
and momentum balance are then written 

ay + v ay + y av = 0 
at ax ax (1) 

2 

where y the flow depth (m) 
v = the flow velocity (m/s) 
g acceleration due to gravity (m/S2) 

So the river bed slope 
Sf the energy gradient of the flow 
x = the longitudinal distance (m) 

time (s). 

Stoker transformed eq 1 and 2 into their character­
istic form: 

(3) 

dx 
along dt = v + c, 

and 

(4) 

dx 
along - = v - c 

dt ' 

where c = -Jgy dermes the shallow-water surface 
wave celerity and kl and k2 are constants. The solu­
tions of dx/dt = v ± c yield two distinct sets of curves 
in the x-t plane, called characteristics. The inverse 
slopes of these curves define the dynamic wave celer­
ity, that is, the speed of shallow-water waves in a 
flOwing stream. The dynamic wave celerity is inde­
pendent of the river bed and energy slopes, and ap­
pears to be the only wave speed contained in the 
governing equations. 

The momentum equation describing a gravity 
wave is obtained from eq 2 by omitting the river 
bed slope and energy gradient terms. The theory of 
characteristics can also be applied for these waves, 
and. the resulting equations are simplified forms of 
eq 3 and 4: 

v + 2c = kl 
dx 

along dt v + c, 

dx 
along - = v - c 

dt ' 

(5) 

(6) 

Waves described by eq 5 and 6 have been termed 
"simple" waves. Gravity waves are undamped and 
propagate at the dynamic wave celerity. 



The diffusion wave momentum equation is ob­
tained by neglecting the inertia terms [av/at, v(av/ 
ax)] in eq 2~ Differentiating both this momentum 
equation and eq 1 with respect to x, and differen­
tiating the momentum equation with respect to t, 
yields three equations that are combined with eq 1 
to eliminate derivatives of the depth. The Chezy 
equation, with dimensionless conveyance coefficient 
C. assumed constant, is used to describe the energy 
slope. Performing these operations yields 

(7) 

where 

5 gC; RSo gC; Ry 
cd = - v - andD =---

2 v 2v 

Equation 7 is an advective-diffusion equation with 
R the hydraulic radius of the channel. If we retain 
the wide-channel assumption, the hydraulic radius 
is equivalent to y/k, where k = 1 for open water con­
ditions and k = 2 if the channel is covered with ice. 

The kinematic wave momentum equation is ob­
tained by omitting the inertia and the derivative of 
depth with distance (ay/ax) terms in eq 2. Then, 
proceeding as with diffusion waves yields the well­
known kinematic wave equation 

(8) 

where 

3 
ck ="2 v. 

The important distinction between the bulk waves 
is that diffusion waves attenuate, while kinematic 
waves do not. 

Comparing eq 3 through 8, we find that the equa­
tion for river wave celerity changes with the form of 
the momentum equation that is used. The celerities 
of diffusion and kinematic waves are both related to 
the velocity of the flow. The celerities of these bulk 
waves are typically much smaller than the dynamic 
wave celerity and are generally lumped together and 
termed the kinematic wave celerity. 

Stoker (1957) argued that because the equations 
describing dynamic waves are more general, imper­
ceptible dynamic waves, or "forerunners," must 
occur simultaneously when the primary wave is kine-
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matico This concept of an ever-present role for dy­
namic waves in river flow mechanics is widely accept­
ed. Therefore, river wave studies based upon "sim­
plified" gravity, diffusion, and kinematic wave equa­
tions are perceived as inherently ~ess accurate than 
those using the more complete dynamic wave equa­
tions. 

The governing equations for each wave type are 
nonlinear, and the geometry of natural channels is 
highly variable. These conditions generally require 
that numerical solutions be used to describe river 
waves. The algorithms typically chosen to solve the 
dynamic wave equations in applications use first- or 
second-order accurate difference approximations 
and coarse numerical meshes. The solutions obtained 
with these models therefore include significant errors, 
due to truncation and discretization, that cause nu­
merical diffusion and dispersion of the solution. 
When the effects of certain physical processes are 
small relative to other processes, the terms of the 
governing equation have widely different magnitudes. 
Equations of this type are termed "stiff," and are 
difficult to solve numerically. Woolhiser and Liggett 
(1967) reported numerical difficulties that resulted 
from modeling predominantly kinematic waves using 
dynamic wave characteristic equations. The stability 
of explicit numerical methods depends on the dy­
namic wave celerity, even for cases where the inertia 
terms are negligible. When stability problems occur, 
the cure is often achieved by increasing numerical 
diffusion in the algorithm, further degrading the ac­
curacy of the solution. Taken together, these con­
siderations imply that more complete equations may 
not yield more accurate river wave simulations. 

The problems associated with universal application 
of the dynamic wave equations suggest the alternative 
approach of using physical insight to identify an ap­
propriate wave type. However, wave types cannot at 
present be identified with a known degree of certain­
ty. For example, Cunge et al. (1980) stated that 
rapidly varying river flows require the use of the dy­
namic wave equations, but Ferrick et al. (1984) 
studied a large number of instantaneous flow releases 
in two rivers and found that in all cases the inertia of 
the flow was negligible. The logic linking rapid flow 
variation with inertia is clear but insufficient to en­
sure dynamic wave behavior. The converse example 
is that slowly developing, long-period floods behave 
as kinematic waves. A more quantitative representa­
tion of the roles of friction and inertia would make 
it possible to characterize and identify river wave 
types. 



ANALYSIS 

River waves propagating at the dynamic and kine­
matic wave celerities are generally observed in differ­
ent situations. In impounded rivers, where depth is 
much greater than wave amplitude, observed wave 
celerities are those of dynamic waves (Ferrick and 
Waldrop 1977, Ferrick 1979), but wave propagation 
observed in free-flowing rivers is more commonly at 
the kinematic wave celerity (Ferrick et al. 1984). 
These observations suggest that it may be possible 
to distinguish between bulk and dynamic waves 
simply by measuring and classifying wave celerity. 

We might also reason that river waves are shallow­
water waves of extremely long wavelength. A depth 
parameter nondimensionalized by wavelength, which 
follows from the simple harmonic small-amplitude 
wave theory of ocean gravity waves, differentiates 
between deep-water and shallow-water conditions. 
Extending these ocean wave classification ideas to 
rivers, in light of typical wavelength differences be­
tween rapidly and gradually varying flows, suggests 
tha t a dimensionless depth or a dimensionless wave­
length may be indicative of wave type. 

A connection between the form of the momen­
tum equation and the physical characteristics of a 
river and wave would provide a means to identify 
wave type and would clarify the relationships be­
tween waves. Each of the river-wave types that have 
been identified is described by equations that are 
subsets of the Saint-Venant equations. To consider 
the behavior of solutions of this equation system, we 
will assume that the functions describing depth and 
velocity possess continuous second derivatives and 
that the river bed slope is constant. Then, differen­
tiating eq 1 and 2 with respect to distance x, differ­
entiating eq 2 with respect to time t, and combining 
these three equations with eq 1 and 2 to eliminate 
the depth derivative terms yields a system equation: 

+ ( 2~) av + [~R2 _ 2gSo C;K at L-; 

av av av + 3 (- + v -)] - = 0 
at ax ax 

(9) 

in which the Chezy equation with constant C* is 
again used to describe the energy slope. The second­
order terms in eq 9 follow from the inertia and pres­
sure gradient terms in eq 2. The quasi-linear fIrst­
order terms result from the energy or friction slope 
and the bed slope terms, and the nonlinear fIrst-order 
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terms are due to inertia. This system equation has 
the form 

av av 
= f (v, ax ' at ,x, t) . (10) 

The second-order terms in second-order differential 
equations are generally of principal significance. As 
B2 - A C is greater than zero, eq 9 is hyperbolic with 
a pair of characteristic curves (Hildebrand 1962) de­
fmed by 

4X2 4x 
A t::;-) - 2B ~~) + C = 0 . dt dt 

(11) 

Solving eq 11 for dx/dt again yields the dynamic 
wave celerity v ± c as the inverse slope of the charac­
teristics. 

The assumption implicit in the development of 
eq 3 and 4 is that all the processes represented in eq 
2 are of comparable magnitude. However, from the 
perspective of the system equation, the behavior of 
a river wave must depend on the relative contribu­
tions of inertia, friction, and pressure. When inertia 
is signiflcant, dynamic waves are of primary impor­
tance in river flow mechanics, as indicated by eq 3 
and 4. The role of dynamic waves diminishes with 
the relative importance of inertia. Bulk wave be­
havior indicates that the second-order terms of eq 9 
are dominated by the quasi-linear first-order terms; 
that is, friction dominates inertia. 

An evaluation of the relative magnitudes of the 
terms in eq 9 and a basis for interpreting these re­
sults would provide a quantitative measure of the 
importance of each process in the momentum bal­
ance and would indicate the wave type. Writing eq 
9 in dimensionless form permits an assessment of 
these relative magnitudes. Introducing parameters 
vo, Yo' ax, and ~t, which are in some sense charac­
teristic of the flow and wave motion, we rewrite eq 
9 in terms of dimensionless variables v* = v /vo' y* = 
y/Yo'x* = x/ax, and t* = t/~t as 

v* av* 5 V*2 av* 
+F1"*-a *+Fc (-2*-S)-a * y t y x 

av* av*) av* = 0 
+ 3 Cr (at* + Cr v* ax* ax* (12) 



where 

S 

To proceed, we must define the physical scaling 
variables vo'Yo, Ax, and t:J and evaluate So and C*. 
Mean velocity and depth characterize the flow and 
provide velocity and depth scales v 0 and Yo' The 
length scale that is important in the development of 
river waves is related to the wavelength. With mean 
flow depth as the depth scale, the comparable length 
scaling parameter Ax is the half-wavelength, and 
kAx/yo appearing in parameters FI and Fe is a di­
mensionless wavelength. The effect of friction on a 
wave is cumulative over the propagation distance. 
At distances less than a wavelength from the point 
of wave origin, Ax is taken as half the wave propaga­
tion distance. flt is the time required for the wave 
to travel distance Ax. Therefore, Ax/ flt is the mea­
sured wave celerity em' These three variables are 
evaluated with information from a pair of gauging 
stations. To obtain measured wave celerity, the river 
distance between the gauges is divided by the elapsed 
time between the wave arrivals. Wavelength is then 
obtained by mUltiplying wave celerity by the mean 
time for wave passage at the gauges. As the Chezy 
conveyance coefficient is depth-dependent, the most 
representative value of C* for a reach is obtained 
from steady-flow stage measurements near the mean 
of the expected range. Finally, So is evaluated as the 
mean bed slope of the river reach. 

The fundamental dimensionless parameters of eq 
12 are the Courant number Cr , the Froude number 
Fo' a friction parameter FI , and the slope ratio S. 
Froude number F 0 represents a ratio of speeds, com­
paring the characteristic flow velocity to the surface 
wave celerity evaluated at the characteristic flow 
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depth. With few exceptions, the range of Froude 
numbers for rivers is between 0 and 2, most com­
monly between 0 and 1. Slope ratio S compares the 
river bed slope to the energy gradient of the flow 
evaluated at the characteristic depth, velocity, and 
channel conveyance. For free-flowing rivers the 
value of the slope ratio is approximately 1. It is 
higher for reservoirs, where the presence of back­
water significantly reduces the energy gradient. 

The magnitudes of the terms in eq 12 directly re­
flect the importance of the physical processes they 
represent. The behavior of solutions of eq 12 can be 
assessed by considering Cr and FI together with Fe 
and DI , forming a group of dimensionless scaling 
parameters. Courant number Cr is composed of a 
characteristic flow velocity and length and time 
scales that are characteristic of the wave motion; it 
is the ratio of characteristic flow velOcity to measured 
wave celerity, limiting the range of possible values to 
between 0 and 1. All terms in eq 12 except a2 v*/ 
at*2 are functions of the Courant number. The 
terms having the Courant number as their dimen­
sionless scaling parameter follow from the inertia 
terms of eq 2. The scaling parameter representing 
the largest inertia term cannot be larger than 3 and 
typically is about 1. 

The effects of friction and bed slope on river flow 
are represented by the first-order terms with coeffi­
cients FI and Fe' The values of these scaling param­
eters relative to 1 characterize the importance of 
friction in the momentum balance and, therefore, 
define the boundaries and govern the transitions be­
tween bulk, dynamic, and gravity wave types. Fe is 
related to the kinematic flow number obtained by 
Woolhiser and Liggett (1967) from a direct normali­
zation of eq 2. Both measured wave celerity and di­
mensionless wavelength are components of FI and Fe' 
though neither alone is adequate to characterize fric­
tion. The magnitudes of the friction parameters vary 
linearly with dimensionless wavelength. The meas­
ured wave celerity is a component of the Courant 
number. Bulk flow cases, where the flow velocity 
approaches the wave celerity, correspond to a large 
Courant number and increased relative magnitudes 
of the friction parameters. For the opposite condi­
tion of small flow velocity relative to measured wave 
celerity, the friction parameter magnitudes decrease 
due to their dependence on the Courant number, in­
dicating a reduced role of friction relative to other 
processes. The other basic component of FI and Fe 
is the dimensionless channel conveyance, which ac­
counts for differences in the rate 'of energy dissipa­
tion between different river and flow situations. 

Fe is presented in Figure 1 as a function of the 



Figure 1. Friction scaling parameter F c as a func­
tion of Courant number for a range of dimension­
less wavelengths and a typical dimensionless chan­
nel conveyance. 

Courant number for a range of dimensionless wave­
lengths and an assumed dimensionless channel con­
veyance of about 9. Larger values of channel con­
veyance displace the band of curves to the right, 
corresponding to smaller F c ' with the converse true 
for smaller conveyances. Courant numbers greater 
than 0.4 and dimensionless wavelengths greater than 
4000 are typical in natural rivers. For these condi­
tionsFc is greater than 10, indicating at least an or­
der-of~magnitude dominance of friction over inertia. 
In reseIVoirs, wavelengths can be short due to hydro­
power operations. and flow occurs at greater depths 
and smaller velocities than in free-flowing rivers. 
This combination of conditions yields a small Cour­
ant number, large channel conveyance, and small di­
mensionless wavelength, and F c for reservoir waves 
can be significantly less than 1. When an ice cover 
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Figure 2. Scaling parameter DI as a function 
of Courant number for a range of Froude 
numbers. 

is present, the dimensionless wavelength of a given 
wave and the relative magnitudes of the friction 
parameters increase. 

The magnitude of scaling parameter DI indicates 
the im portance of pressure gradient effects on the 
wave. DI represents the square of the ratio of the 
Courant number to the Froude number, and can be 
physically interpreted as the square of the ratio of 
the surface wave to the measured wave celerity. 
Figure 2 presents DI as a function of Courant num­
ber for a range of Froude numbers. A value of DI = 
1 indicates that the measured wave celerity is equal 
to the surface wave celerity at the mean flow depth. 
When DI is significantly greater than 1, measured 
wave celerity is much smaller than the correspond­
ing dynamic wave celerity, generally favoring bulk 
wave behavior. 

When the friction parameters are much greater 
than 1, river flow waves exhibit bulk wave behavior 
and, to a good approximation, eq 12 becomes 



(13) 

where 

a nondimensional form of eq 7. The diffusion and 
kinematic wave equations are contained within the 
Saint-Venant system equation. For high-friction 
flow conditions, the bulk wave portion of the system 
equation is dominant, and the apparent wave celer­
ity is that of a bulk wave. The bulk flow waves de­
scribed by eq 13 are independent of the characteris­
tic equations 3 and 4. 

The bulk wave Courant number is generally great­
er than 0.5, as the flow velocity is only slightly less 
than the wave celerity. The magnitude of D relative 
to 1 indicates the importance of wave diffusion rela­
tive to advection. D for bulk river waves is generally 
less than 1, indicating that the waves are advection­
dominated. With friction dominating inertia and ad­
vection dominating diffusion, the equations describ­
ing bulk waves have evolved from a second-order hy­
perbolic system to a dominantly hyperbolic first­
order system. When So ~ Sfo' the dimensionless 
diffusion coefficient D varies inversely with the prod­
uct of bed slope and non dimensional wavelength. 

D is presented in Figure 3 as a function of dimension­
less wavelength for a range of Froude numbers and a 
dimensionless channel conveyance of about 9. 

Dynamic wave behavior is indicated when the mag­
nitude of one or both of the friction parameters is on 
the order of 1. As friction and inertia both make im­
portant contributions to the momentum balance, dy­
namic wave behavior is an intermediate condition be­
tween bulk wave and frictionless gravity wave behav­
ior. Dynamic wave behavior occurs over a wide range 
of conditions, and wave subtypes can be identified 
that correspond to varying magnitudes of the Cour­
ant number and friction parameters. 

At the transition from bulk to dynamic waves, 
friction is quite,great. The magnitudes of Fe and Cr 

are both on the order of 1 , and all terms of eq 12 are 
significant, defining the "complete equation" case. 
Fe on the order of 1 and Cr < < 1 dermes the "tran­
sition" case, where the flow velocity is small relative 
to observed wave speed and the contribution of 
friction is smaller than in the complete equation case. 
The small Courant number indicates that transition 
waves do not retain significant bulk wave character. 
The mathematical description is also simpler, as many 
of the terms of eq 12, including the nonlinear first­
order terms, are negligible. As friction is reduced fur­
ther, Fe and Cr are « 1, and FI is reduced to the 
order of 1. Negligible Fe indicates the lack of influ­
ence of the channel bed slope on the flow. These 
conditions are representative of flow in reservoirs. 

Figure 3. Dimensionless diffusion coefficient of bulk waves as a func­
tion of dimensionless wavelength for a range of Froude numbers and 
a typical dimensionless channel conveyance. 

7 



The dimensional system equation for the "reservoir" 
case is 

where 

v 
"/=C2 R' 

* 

(14) 

the familiar telegraph equation or equation of a 
damped vibration. Assuming that c and "/ are con­
stants, eq 14 has solutions of the form 

v = e-"Yt eik[x ± c .J 1 - 'Y2 /(k
2 c 2

) tJ (15) 

where k is an arbitrary nonzero constant. The resis­
tance term ov/ot of eq 14 follows from the FI term 
of eq 12; it provides exponential wave attenuation 
and retards wave celerity, separating the behavior of 
reservoir dynamic waves from that of gravity waves. 
The amplitude decay of reservoir waves is directly 
proportional to the magnitude of F1, indicating a 
gradual transition between wave types. 

Gravity wave behavior with dominant inertia oc­
curs when friction is negligible: FI and F;; « 1. 
Gravity waves, like bulk and dynamic waves, have 
subtypes, each of which is undamped due to the 
absence of friction. The "wave equation" case oc-

F1 , Fe »1 I Bulk waves 
I 

I 
I 

I River waves I ForFe=O(11i l 
I I Dynamic waves I 

Fr ,Fe« 1 i Gravity waves I 

curs when Cy « 1. The system equation for this 
case is the classical wave equation, obtained from 
eq 14 by setting "/ = O. Physically, this condition is 
approximated by a smooth, deep forebay of a hydro­
power station in which the flow velocity is small rel­
ative to the surface wave speed. The "simple wave" 
case occurs when the Courant number is on the or­
der of 1. The method of characteristics provides a 
convenient formulation (eq 5, 6) for constructing 
solutions for this case. Positive disturbances upstream 
generate waves with converging characteristics, lead­
ing to wave steepening and shock formation. Wave 
propagation over small distances in a smooth chan­
nel may be adequately represented as a simple wave, 
but, as shown in Figure 1, friction increases with 
the Courant number eq 12, limiting the applicability 
of these equations. 

The scaling parameter magnitudes determine 
wave behavior and type. The structure for under­
standing river wave behavior developed from our 
analysis is depicted in Figure 4, where the progres­
sion of wave subtypes is presented in a natural order. 
Only one dimensionless parameter changes in mag­
nitude between two adjacent wave subtypes, tend­
ing from friction-dominated kinematic waves to 
frictionless gravity waves. The continuous depend­
ence of the scaling parameters on the scaling variables 
indicates gradual transitions between wave types and 
subtypes. 

0«1 I Kinematic I 
I waves 

0=0(1) I Diffusion I 
I waves 

Cr , Fe = 0 (I) I Complete eqn.! 
I case 

Cr « I, Fe=O(lU Transition ~ 
I case 

Cr,Fe« I I Reservoir I I case 

Cr«1 J Wove eqn. I I case 

Cr=O(I) I Simple wove I 
I case 

Figure 4. River wave structure obtained from the analysis of the Saint- Venant 
equations. 
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Probabilistic scaling parameters 
Our analysis of the equations governing river 

waves provides a structure with which to consider 
wave behavior. Choosing representative scaling var­
iables Vo ,Yo, Ax, f:,.t, C*, and So, we obtain quanti­
tative estimates of the dimensionless scaling parame­
tersF1,Fc ' Cp andD1• For cases sufficiently removed 
from the transitions between wave types, these in­
tuitive, deterministic parameters may provide suffi­
cient information to understand wave dynamics. 
However, assuming representative or mean scaling 
variables provides no information about the effects 
on the wave of the physical variability of the river. 
It could be argued that single-valued variables cannot 
meaningfully represent natural rivers, which have 
significant geometric variability. An example of this 
problem is attempting to characterize reservoir depth 
by a mean of 6 m, when depth varies between 2 m 
upstream and 15m downstream. Further insight 
concerning the transitions between river wave types 
requires a more complete description of the scaling 
parameters than is provided by estimates of their 
mean values. A practical modeling requirement that 
has not been addressed is how to assess the confidence 
of wave type interpretation when scaling parameters 
fall near a transition. 

We will now consider the more general case where 
scaling variables are continuous, possessing a mean 
and a distribution. By treating these physical quan­
tities as random variables, probabilistic concepts can 
be applied. As functions of random variables, the 
scaling parameters are themselves random variables. 
Rosenblueth (1975) developed a method for estimat­
ing the first and second moments and minimum val­
ues of a function of random variables, given the first 
two or three moments of each variable and correla­
tion coefficients for each pair of random variables. 
The estimate obtained of the mean value of the func­
tion is equivalent to a second-order Taylor series ap­
proximation, and the estimate of the coefficient of 
variation is a first-order approximation. The method 
is algebraic, replacing the distribution of each random 
variable by point estimates and not requiring the com­
putation of derivatives. 

Before proceeding, the Rosenblueth method for 
a function of two correlated random variables will 
be described in detail. The coefficient of variation 
of a random variable x is defined as 

(16) 

where Sx is the standard deviation of x and xis the 
mean. The correIa tion coefficient of random vari­
ables x 1 and Xl is defmed as 

9 

(17) 

where COV(XI ,Xl) is the covariance. A correlation 
coefficient of magnitude 1 indicates a perfect linear 
correlation between the variables, while a coefficient 
of 0 indicates uncorrelated variables. The scaling 
variable ranges corresponding to the propagation of 
a river wave through a reach are relatively small. 
Numerical experiments have shown that if the rela­
tionship between random variables over a limited 
range can be written as 

(18) 

then the magnitude of p will be approximately 1. 
In general, sufficient data will not be available to 

describe the precise nature of the distribution of 
each scaling variable. Therefore, for simpliCity we 
will assume that these distributions are symmetric 
about the mean value. The point estimates repre­
senting the distribution of a scaling variable are then 

p =p = l+p 
++ -- 4 

(19) 

These point estimates sum to 1 and, in the case of 
uncorrelated random variables, are each~. The 
point estimates provide weighting factors for evalu­
ating the function at points a standard deviation 
from the mean of each random variable: 

Y++ = Y(XI + Sx 
1 

,Xl + Sx ), 
2 

Y+ =Y(Xl+Sx ,Xl - Sx ), 
- 1 :z 

(20) 
Y _+ = Y(Xl - Sx 

1 
,X2 + Sx ), 

:z 

Y __ =Y(Xl-S
X1 

,Xl -Sx:z). 

Then, the expected values or moments of the func­
tion can be obtained: 

(21) 

The expected value or mean of Y is found by setting 
n = 1. The variance of Y is readily compu ted as 

(22) 



Table 1. Application of Rosenblueth (197 S) method to 
Liard River da ta. 

Input: Vo = 0.72 mis, VVo = 0.25, C = 1.4 mis, Vc = 0.20 

Output: y = Cr = 0.5357(++), 0.8036(+-),0.3214(-+),0.4821(--) 

p = 0.6 

E[Cr ] 0.520 

V[Cr ] 0.0127 

VCr 0.216 

Rosenblueth (1975) discussed the generalization of 
this technique to functions of any number of ran­
dom variables. 

A sample calculation using Rosenblueth's proce­
dure to obtain parameters describing the Courant 
number distribution for data from the Liard River 
(Parkinson 1981, 1982) is given in Table 1. The 
coefficients of variation chosen for wave celerity 
bound most of the observed values within one stan­
dard deviation of the mean. Because the mean flow 
velocity is a computed value, a relatively large coef­
ficient of variation for velocity was assumed. Flow 
velocity and wave celerity for bulk flow waves can 
be related by an equation of the form of eq 18 and 
p ~ 1. However, to examine the sensitivity of the 
compu tation to the correlation coefficient, results 
are given in Table 1 for three different p values. 
With increasing p the mean Courant number decreas­
es only slightly, but the variance and coefficient of 
variation decrease significantly. Estimates of the 
maximum and minimum values of the Courant num­
ber distribution should be greater than Cr +_ and less 
than Cr _+ ' respectively. 

Given a function of random variables, Rosen­
blueth's method provides an improved estimate of 
the mean and estimates of scatter about the mean 
and the limits of the distribution. The mean, stan­
dard deviation, and limits of a random variable unique­
ly specify a {3 distribution. Harr (1977) gives the 
general expression for this distribution as 

_ 1 (y-a)a (b-y) (3 
f(y) - (b-a)B( a+ 1, (3+ 1) b-a b-a 

where 

(Y-a)2 (1 -) (1 -) a=-2- -y - +y 
Sy 

a+l 
(3 = --- - (a+2) , 

y 

(23) 
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P = 0.8 P = 1.0 

0.514 0.509 

0.0067 0.0007 

0.159 0.053 

and 

__ ~y-a) y--
b-a 

where a and b are the minimum and maximum val­
ues of y, respectively, and B is a beta function. 
When a and {3 have the same sign, the {3 distribution 
is unimodal and bell-shaped. The coefficients of 
skewness and kurtosis of the {3 distribution can be 
readily obtained. With this distribution the proba­
bility of y in a given range can be determined. 

To incorporate the effects of the physical varia­
bility of the river on the wave, we will use the Ros­
enblueth method and obtain a corresponding {3 dis­
tribution of the friction scaling parameters. This 
procedure allows further investigation of the bulk/ 
dynamic and dynamic/gravity wave transitions and 
provides a reliability estimate for wave type deter­
mination when the friction parameter mean is near 
a transition. 

Case studies 
The river wave structure that has been developed 

depends on parameter magnitudes that are large or 
small relative to 1 or are on the order of 1. We will 
now use experience from case studies to define more 
precisely the parameter ranges corresponding to each 
wave type and transition. We will also classify a num­
ber of diverse river wave cases and consider changing 
wave behavior over distance to test the usefulness 
and practicality of our analysis. 

Individual case studies and physical variables rep­
resentative of each river and wave are presented in 
Table 2, as well as the first-order Taylor series ap­
proximations of the mean values of the scaling param­
eters-that is, the parameter evaluated at the mean 
values of all scaling variables. Estimated Manning's 
roughness and river bed slope values are designated 
in the table with an e. For free-flowing rivers where 
measured velocities were unavailable, the Chezy 



equation with the characteristic depth, river bed 
slope, and conveyance was used to obtain a comput­
ed mean characteristic velocity, which is designated 
with a c. The mean velocity for reservoirs was com­
puted using the continuity equation from the mean 
discharge, channel width, and characteristic depth. 

Bulk flow waves occur when the friction parame­
ters are sufficiently large relative to 1. Because the 
Courant number is by definition less than 1, Fe is 
always smaller than FI and is the natural parameter 
to define the boundary between bulk and dynamic 
waves. Parkinson (l981, 1982) studies the river 
waves that initiated ice-cover breakup on the Liard 
and Mackenzie Rivers. These waves had long peri­
ods, characteristic of spring flood waves in large 
river systems. The bulk wave behavior that occurred 
is reflected in the large friction parameter magnitudes 
for these cases. Large values of Fe also correspond 
to data from open-water and flow-over-the-ice con­
ditions in a free-flowing reach of the Ottauquechee 
River (Ferrick and Lemieux 1983), again indicating 
bulk wave behavior. Ferrick (l980) numerically 
modeled rapidly varied flow waves from laboratory 
studies of dam breaches at the Waterways Experi­
ment Station. A wave release to a previously dry 
channel, corresponding to a mean Fe value of 11, 
was precisely simulated using a bulk wave numerical 
model. In addition, Ferrick et al. (l984) found that 
rapidly varied flow waves in the Hiwassee and Clinch 
Rivers, with a minimum mean Fe value of 12, behaved 
as bulk waves. 

According to these observations, Fe greater than 
about 10 indicates bulk wave behavior. The system 
equation terms that are more than an order of mag­
nitude smaller than the other terms are apparently 
negligible. With this guideline we can approximate 
the transitions between wave types and subtypes as 
corresponding to scaling parameter magnitudes 
greater than 10 (» 1) and less than 0.1 «< 1). Be­
cause the scaling parameters representing a given 
river reach and wave are continuous, however, any 
single-valued defmition of a transition is inadequate. 
The governing equations used for analysis change 
between bulk, dynamic, and gravity wave conditions, 
and these transitions will be considered in detail. 

All of the bulk wave cases have mean Courant 
numbers greater than 0.5 (Table 2), a necessary but 
apparently not sufficient condition for the occur­
rence of bulk waves. Table 2 also confums that large 
dimensionless wavelengths favor but do not guaran­
tee bulk wave behavior. The wave diffusion present 
in all cases was sufficient to prevent the formation 
of a shock wave or depth discontinuity at the wave 
front. However, as the magnitude of D approaches 
0" the probability of wave steepening and shock 
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formation increases. Only in the Clinch River was 
wave diffusion sufficient to produce significant 
wave peak attenuation. These observations support 
the order-of-magnitude approximation for locating 
the transition between the bulk wave sUbtypes. Mean 
dimensionless diffusion coefficients less than about 
0.1 indicate kinematic waves, and diffusion waves 
occur when D is larger. 

The case studies from Table 2 that bracket the 
bulk/dynamic wave transition Fe = 10 are waves 
having a I-hr period on the Clinch River and a short­
period wave on the Ottauquechee River that occurred 
immediately following ice cover breakup (moving 
ice). In this discussion we refer to these cases as 
simply Clinch River and Ottauquechee River. The 
extensive documentation available from the Clinch 
River study allows well-supported estimates of the 
coefficien t of varia tion for the scaling variables. 
These values were chosen so that the majority of the 
data fall within one standard deviation of the mean, 
and essentially all data are within three standard 
deviations of the mean. With less data available 
from the Ottauquechee River, we assume for pur­
poses of comparison that the coefficients of varia­
tion equal those from the Clinch River. The coeffi­
cients of variation of velocity, wave celerity, wave­
length, and hydraulic depth were taken as 0.15, and 
as 0.20 for channel conveyance. For both cases, 
correlation coefficients for velOcity/depth, convey­
ance/ depth, velocity/celerity, and wavelength/ celer­
ity were specified. Observed bulk wave celerity on 
the Clinch River indicates a velocity/wavelength 
correlation. The rela tively high wave celerity on the 
Ottauquechee River indicates dynamic wave effects, 
and wave celerity/depth and wavelength/depth cor­
relations. The correlated variables for river flow are 
related analytically in the form of eq 18, and there­
fore correlation coefficients of 1 were assumed. 

With these input data, Rosenblueth's method 
yields the mean, coefficient of variation, and mini­
mum and maximum Fe values presented in Table 3. 
Table 3 also includes parameters of the (3-distribution 
fit to Fe and probabilities of Fe in selected ranges for 
each case. We note that the second-order estimates 
of the mean for each case are Significantly larger 
than the first-order estimates in Table 2. The rela­
tively large coefficients of varia tion of Fe indicate 
that these distributions have significant spread. The 
(3 distributions representing the Fe distributions for 
the Clinch and Ottauquechee Rivers (Fig. 5) extend 
a significant distance on either side of the approxi­
mate transition, Fe = 10. Therefore, a fmite proba­
bility exists that bulk or dynamic wave behavior will 
occur in each case. This fact implies that point esti­
mates of Fe falling near a transition are of limited 



Table 2. Case studies of river waves. 

k~ 

S t 
Y /k V tt 

Y 
0 c 

~ 
0 

ave t 
C2 0 0 m 0 

(xl03 ) 
n 

(m/s) (m/s) (x 10-2 ) 
F C F 0 F 

Case ave * (m) (km) llt 0 r I I c 

WES Flume 5.0 0.009 0.125 
dry 330 0.02 0.58 1 • 1 1105 63 1.3 0.53 20 0.17 11 0.016 
wet 530 0.08 1.4 2.3 545 16 1.6 0.61 3.5 0.15 2.1 

CRREL Flume 
open 0.10 0.0044 2400 0.09 0.37 0.9 0.110 1205 12 0.39 0.41 0.41 1 • 1 0.17 

0.37 0.0079 740 0.09 0.34 12 0.36 0.38 1.2 1 • 1 0.46 
1.56 0.010 460 0.08 0.52 14 0.59 0.58 3.4 0.97 2.0 - Ice 0.10 0.015 200 0.09 0.38 1 • 1 

N 
0.130 1205 14 0.38 0.35 5.0 0.85 1.8 

0.37 0.014 220 0.08 0.40 16 0.40 0.36 5.2 0.81 1.9 
1.56 0.014 210 0.07 0.47 19 0.47 0.43 7.5 0.84 3.2 

Hiwassee River 5.1 0.066 23 1.0 1.1 c 1.4 0.35 0.79 5.1 
1 hr 2.5 30m 25 170 130 0.038 
3 hr 7.6 90m 76 510 400 0.013 

C I Inch River 0.36 0.026 150 1.0 0.73c 1.0 0.23 0.73 10 
1 hr 1.8 30m 18 17 12 0.81 
2 hr 3.6 60m 36 34 25 0.40 

LI ard River 0.33 0.04 79 2.0 O.72c 1.4 180 36h 900 0.11 0.51 1100 21 560 0.037 
ice covered 

Mackenz Ie 0.12 0.03 160 3.0 0.76c 1.4 360 72h 1200 0.10 0.54 790 29 430 0.068 
River 
Ice covered 

Ohio River 0.095 0.03 
220 7.6 1.3c 7.5c 54 120m 71 0.15 0.17 11 1.3 1.9 
230 9.0 1.4c 5.6c 200 600m 220 0.15 0.25 47 2.8 12 0.24 



OttauQuechee 
River 3.1 

open 0.04 35 0.18 0.44c 0.55 2.0 60m 110 0.33 0.80 500 5.9 400 0.015 
flow over ice 0.04 49 0.47 0.84c 0.88 16 300m 340 0.39 0.95 1300 5.9 1200 0.005 
fragmented 0.03e 110 0.90 0.55c 4.0 1.6 400s 18 0.13 0.14 4.4 1.2 0.62 

cover 1 
fragmented 0.03e 120 1.2 0.54c 3.2 1.3 400s 11 0.11 0.17 3.0 2.4 0.51 

cover 2 
moving ice O.oSe 50 1.9 1.3c 2.8 1. 7 600s 9 0.30 0.46 16 2.3 7.4 

St. Lawrence 0.04e 0.03 180 4.5 0.6 8.2 0.064 0.073 1.3 
River 
fee covered 

2 hr 30 60m 67 5.3 0.39 
6 hr 89 180m 200 16 1.2 

Old HI ckory 0.032 190 6.5 0.14 7.3 0.018 0.019 1.2 
Reservoir 

I-' 2 hr 26 60m 40 0.80 0.015 
w 

4 hr 52 120m 80 1.6 0.030 
Pine Fa II s 0.02Se 

Reservoir 
Ice covered 
upstream 210 2.1 0.40 2.0 7.2 60m 34 0.063 0.20 6.5 9.9 1.3 

portion 
downstream 280 4.9 0.17 3.9 14 60m 29 0.017 0.044 0.91 6.3 0.040 

portion 
Wheeler 0.028 240 5.9 0.20 6.7 0.026 0.030 1.3 

Reservoir 
2 hr 24 60m 41 1.0 0.030 
4 hr 48 120m 81 2.0 0.060 

t-e = estlmated MannJng's roughness and rJver bed slope va lues. 
ttc = Olezy equatJon used, wJth characterJstJc depth, rJver bed slope, a nd convey a nee. 



Table 3. Bulk/dynamic wave transition. 

Case f3 PfFc<8] PfFc<10] PfFc<12] 

Clinch River 15.1 0.477 3.0 50 0.838 4.30 0.17 0.28 0.39 

Ottauquechee 8.75 0.375 2.0 
River 

30 1.97 8.35 0.46 0.68 0.84 

0.14 

0.12 I' 
I \ 
I \ 

0.10 I \Ottauquechee River 

I \ 
I \ 

0.08 I \ 
I \ 
I \ 

0.06 
I 
I 

0.04 I 
I 
I 

0.02 I 
I 
I 

0 40 

Fe 

Figure 5. Probability distributions of friction scaling parameter 
Fe representing case studies of the Clinch River and the Ottau­
quechee River. 

value as indicators of wave type, and emphasizes 
that the transitions between wave types in rivers are 
continuous. If we consider the transition range 
8:5.Pc :5.12, the ratio ofprobabilities, R1 , of bulk­
to-dynamic wave behavior for Pc outside this range is 

P[Fe > 12] 
Rl = P[Pc < 8] (24) 

Values of Rl near 1 do not identify wave type, but 
progressively larger deviations from 1 indicate wave 
type with increasing reliability. In our case, R 1 

(Clinch) = 3.6 andRl (Ottauquechee) = 0.35, indi­
cating probable bulk wave behavior and probable dy­
namic wave effects, respectively. The diagnosis of 
Clinch River bulk wave behavior is strongly support­
ed by modeling results (Ferrick et al. 1984). 

Dynamic waves span a range of the friction param­
eters of abou t two orders of magnitude. The scaling 
parameter bounds that identify complete-equation 
dynamic waves are roughly defmed as Fe < 10 and 
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G- > 0.1. In these relatively high friction cases, 
where dynamic waves typically result from some 
rapidly varying initial condition, frictional effects 
can eventually restore bulk wave behavior. Down­
stream-propaga ting waves follOwing a dam breach 
or the sudden release of an ice jam are examples of 
such cases. Stoker (1957) simulated the propagation 
of the front of a hypothetical, rapidly varying, large­
amplitude flood wave on the Ohio River using the 
dynamic wave equations. At the upstream boundary 
he imposed a 1.5-m/hr rise in the water level for a 
4-hr period between initial and final steady-flow 
conditions. The magnitudes of the friction parame­
ters and the Courant number for 2 hr after the initi­
ation of the wave (Table 2) indicate Significant iner­
tia. However, average scaling variables representative 
of the first 10 hr of the simulation yield mean fric­
tion parameters in the bulk wave range. Mean scal­
ing variables representing the latter part of this time 
period produce even larger friction parameter magni­
tudes and a mean Courant number greater than 0.5. 



Stoker stated that prior to his work more gradual 
flood waves recorded on the Ohio River had been 
successfully described with bulk wave models, as 
would be expected based on our analysis. 

The other complete-equation dynamic wave 
cases given in Table 2 are predominantly rapidly 
varying flow waves with small dimensionless wave­
lengths. This group of cases includes a laboratory 
dam breach release to a channel with a significant 
base flow (WES flume-wet), laboratory studies (Fer­
rick 1984) of the effects of bed slope and ice cover 
upon a sequence of flow waves (CRREL flume), 
and three waves on the Ottauquechee River immedi­
ately prior to and during ice cover breakup. The 
laboratory flume cases each had bulk measured wave 
speeds, but because of very smooth channels the 
friction parameters fall in the dynamic wave range. 
At break-up the Ottauquechee study reach was 
ponded to a large depth relative to wave amplitude. 
The channel conveyance at the breakup was much 
smaller than in the laboratory studies, but the meas­
ured river wave celerities approached those of dy­
namic waves and are reflected in small Courant num­
bers. The upstream half of ice-covered Pine Falls 
reservoir (Kartha 1976) is a complete-equation dy­
namic wave case that did not involve a short-period 
flow wave. However, a large channel conveyance 
and a low flow velocity relative to measured wave 
celerity compensate for a relatively large dimension­
less wavelength. 

The Courant number for the transition dynamic 
wave case is smaller than that for the complete equa­
tion case, and the friction parameter Fe is also gener­
ally smaller. The dimensionless scaling parameter 
bounds that identify transition dynamic waves are 
roughly defined as Fe > 0.1 and Cr < 0.1. Waves of 
2-hr and 6-hr durations in the ice-covered St. Lawr­
ence River between Lake Ontario and Cardinal, 
Ontario (Yapa 1983), are examples of transition-case 
dynamic waves. The observed wave celerity was that 
of a dynamic wave and was much greater than the 
flow velocity. 

The reservoir dynamic wave case is characterized 
by a small flow velocity relative to measured wave 
speed and relatively small frictional effects. This 
case is roughly defined by dimensionless parameters 
Fe and Cr < 0.1. In Table 2 waves from hydroelec­
tric power generation in Old Hickory Reservoir on 
the Cumberland River (Ferrick 1979), in the down­
stream half of Pine Falls Reservoir on the Winnipeg 
River (Kartha 1976), and in Wheeler Reservoir on 
the Tennessee River (Ferrick and Waldrop 1977) are 
reservoir waves. Wave propagation in the upstream 
portion of the Old Hickory and Wheeler Reservoirs 
is subject to larger frictional effects than farther 
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downstream and, if analyzed separately, would be 
classified as a higher-friction dynamiC wave type. 
For each of these cases friction remains important, 
as velocity decay to 10% of the original amplitUde 
occurs within a 4- to 6-hr period (eq 15). 

The case studies compiled in Table 2 do not in­
clude a case that falls in the gravity wave range. The 
reservoir dynamic waves are the smallest friction 
cases available, with estimated mean FJ values of 
about 1 from the Old Hickory, Pine Falls, and 
Wheeler Reservoir data. We will use the 2-hr wave 
period data from Wheeler Reservoir to consider the 
dynamic/gravity wave transition. A treatment of 
this boundary consistent with that used for the 
bulk/ dynamic wave transition provides values of FJ 
between 0.083 and 0.125 as the transition range. 
Table 4 presents wave amplitude decay times of 
2-hr period waves on Wheeler Reservoir for FJ as 
computed and bounding the transition. The actual 
conditions are far removed from the transition. 

The scaling variables presented in Table 2 for 
Wheeler Reservoir are mean values for the complete 
reservoir. These values, repeated in Table 5 along 
with estimated coefficients of variation, provide in­
put for the Rosenblueth method. Wheeler is a typi­
cal reservoir in that dramatic changes in depth and 
flow velocity occur over its length, reflected in large 
coefficients of variation. If we partition the reser­
voir and consider the 40-km reach farthest down­
stream, this physical variability is greatly reduced. 
All coefficients of varia tion are reduced by roughly 
a factor of 2, which, for purposes of comparison, 

Table 4. Wave amplitude decay time (hr). 

0.9 
0.5 
0.1 

0.2 
1.4 
4.6 

1.7 
11 
37 

2.5 
17 
55 

Table 5. Input data for Rosenblueth's method. 

Wheeler Reservoir Wheeler Reservoir 
(complete) (downstream) 

Variable x Vx x Vx 

yo(m) 5.9 0.25 8.0 0.125 

vo(m/s) 0.2 1.0 0.1 0.5 

c. 15.5 0.02 15.5 0.01 

cm(m/s) 6.7 0.15 8.5 0.075 

~(m) 24,000 0.15 31,000 0.075 



Table 6. Dynamic/gravity wave transition. 

Case FI VFI FImin FImax Q (3 P[FI<O.083 ] P[FI<O.100] P[FI<O.125 ] 

Wheeler Reservoir 0.65 0.457 0.0 3.8 2.8 17.5 0.0017 0.0033 0.0070 

Wheeler Reservoir 0.35 0.268 0.0 1.0 7.7 15.4 0.0001 0.0005 0.0025 
(downstream) 
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Figure 6. Probability distributions of friction scaling parame­
ter F I representing case studies of Wheeler Reservoir and the 
downstream portion of Wheeler Reservoir. 

we assume is exactly the case. In addition, the mean 
flow depth in the lower portion of the reservoir is 
grea ter and the velocity is smaller than values repre­
senting the complete reservoir, moving FI toward 
the dynamic/gravity wave transition. These data are 
also given in Table 5. The correlation coefficients 
used in the method were identical to those for dy­
namic waves in the Ottauquechee River. 

Presented in Table 6 are parameters of the FI 
distribution for both cases from the Rosenblueth 
method, parameters describing a ~-distribu tion fit 
to FI, and probabilities bounding and within the dy­
namic/gravity wave transition. The second-order 
estimate of the mean for the complete reservoir is a 
third smaller than the first-order estimate given in 
Table 2. The mean FI of the downstream portion 
is about one-half the value for the complete reser­
voir, with a significantly smaller coefficient of varia­
tion. The ratio 

P[FI > 0.125] 
P[FJ < 0.083] , 

(25) 
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where a large value of R z relative to 1 indicates dy­
namic wave behavior and an R z value much less 
than 1 indicates gravity wave behavior, reveals that 
neither case approaches the wave transition. The 
pronounced difference in spread between the FI 
distributions and the small probability that F I is 
less than 0.1 can be readily seen with a plot of these 
distributions (Fig. 6). These results demonstrate 
that river waves in reservoirs may resemble gravity 
waves over small distances, but waves propagating 
more than a few wavelengths are significantly af­
fected by friction. 

CONCLUSIONS 

The Saint-Venant system equation, formed by 
combining the continuity and momentum equations, 
contains a pair of wave celerities. The dynamic 
wave celerity is associated with the second-order 
terms, which are due to inertia and the pressure 
gradient, and the kinematic wave celerity is associ-



ated with the first-order terms, which are due to bed 
slope and friction. River wave behavior is controlled 
by the balance between friction and inertia. The 
non dimensional scaling parameters of the Saint­
Venant system equation can be used to quantify 
this balance. The dimensionless parameters define 
a spectrum of river waves, with continuous transi­
tions between wave types and subtypes. Dynamic, 
gravity, diffusion, and kinematic waves correspond 
to specific scaling parameter ranges of this spectrum. 
Bulk waves occur when the friction terms of the 
system equation dominate the inertia terms. Dynam­
ic waves occur when the second-order inertia terms 
of the system equation are significant. Because fric­
tion in rivers is generally important, there are few 
cases where the inertia terms dominate the friction 
terms and river waves behave as gravity waves. 

The parameter range corresponding to each wave 
type and transition was defined using data from 
case studies, allowing direct application of the scal­
ing parameters for identification of wave type. The 
capability to identify wave type is necessary to the 
construction of appropriate mathematical models of 
river flow. Changes in wave behavior with propaga­
tion distance for rapidly varying initial flow condi­
tions and changes resulting from the presence of an 
ice cover can be addressed quantitatively using the 
scaling parameters. Interpreting the scaling parame­
ters as random variables supplies the generality need­
ed to consider waves in rivers with significant physi­
cal property ranges and provides a measure of the 
reliability of wave type assessments near a transition. 
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