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Vector Analysis of Ice Fabric Data 

MICHAEL G. FERRICK AND KERRAN J. CLAI~rEY 

INTRODUCTION reduces, by one, the dimension of the hemisphere and of 
any plane or line. An orientation diagram may indicate 
a random or a patterned structure, depending on the 
dominant features of the diagram. A random fabric 
refers to a homogeneous distribution of the plotted 
points and represents an isotropic material. In this 
configuration there is an equal probability of finding 
points in equal area elements anywhere on the net. In 
contrast, the most significant feature of an anisotropic 
material is the preferred orientation indicated by the 
grouping of points on the net. A "girdle" corresponds to 
data that are distributed along a great circle of the net, 
indicating a preferred planar orientation of the c-axes. 
The pole of this great circle is termed the girdle axis. An 
area of highly concentrated data points (point maxi-
mum) indicates a linear preferred orientation of the 
crystals in the fabric. The statistical significance of the 
orientation diagram increases if the main features 
(maxima/girdles) are reproducible in different compa- 

Environmental conditions at the time of ice forma-
tion largely determine its structure. Ice crystals are 
uniaxial, and the optic axis corresponds to the c-axis. 
Random c-axis orientation is commonly observed near 
the top surface of newly formed sea ice in the Arctic. 
Once a coverhas formed, the ice structure is characterized 
by long vertical columns that extend downward in the 
growth direction of the ice sheet, a result of quiescent, 
unidirectional growth. Under these conditions a selec-
tive growth process occurs, and the c-axes of the crys-
tals become primarily oriented in the horizontal plane of 
the ice sheet (Weeks and Ackley 1982). In the presence 
of a predominant current direction, strong c-axis align-
rent develops in the direction of the current with 
generally decreasing scatter as ice thickness increases 
(Weeks and Gow 1978), and this ice structure causes 
anisotropic material behavior in all directions. Uniaxial 
compression data on first-year sea ice (Richter-Menge 
et al. 1987, Wang 1979) have indicated a strong depen-
dence of peak compressive strength on c-axis alignment 
and on the angle between an applied load and the 
dominant c-axis direction. Therefore, to interpret data 
from mechanical property tests we must define the 

rable samples from the same homogeneous body. 

relative orientation and alignment of the ice fabric. 

Pearson (1901) used statistical arguments to develop 
the equation of a line or plane that provides the closest 
fit to points in space when all variables contain error. 
The solution depends on knowledge of the means, 
standard deviations, and correlations of the variables. A 
significant result was that the plane of best fit contains 
the line of best fit. Watson (1966) presented a matrix of 
sums of direction cosines of vectors representing crystal 
orientation in a Cartesian coordinate system. The rea-
soning presented was that the greatest moment of inertia 
of the points would be about the eigenvector corre-
sponding to the minimum eigenvalue of the matrix. 
Mardis (1972) used the same reasoning to obtain this 
matrix and interpret the results. Both Watson and Mardia 
propose distributions for the data on the sphere, and 
develop statistical analyses based on these assump-
tions. Diggle and Fisher (1985) describe a program that 
computes these eigenvalues and eigenvectors and quan-
titatively contours spherical data. The analysis of ice 

The techniques used in the analysis of ice fabrics 
were originally developed in structural petrology (see, 
for example, Fairbairn 1949, Knopf and Ingerson 1938, 
Turner and Weiss 1963). Crystal orientation measure-
rents usually involve optical measurements of the c-
axis orientations. Langway (1958) describes techniques 
for obtaining ice crystal c-axis orientation data using a 
Rigsby universal stage. One orientation measurement is 
made for each ice crystal in a sample, and these data are 
plottedon a Schmidtequal area net (Fig. 1) thatrepresents 
a hemisphere of unit radius. The points on the net 
compose an orientation diagram that depicts the relative 
spatial concentration of the data, and this representation 



fabric diagrams has been largely visual, frequently 
basedon approximate dataconcentration contours drawn 
on the net. However, Herron and Langway (1982) ap-
plied the eigenvalue/eigenvector method of Mardis 
(1972) to study various fabric types, including small cir-
cle girdles and multi-maxima patterns. The results were 
interpreted qualitatively, and it was not clear whether any 

and a best line and plane. The eigenvalue problem that 
results is the same as that obtained by Pearson, Watson 
and Mardis. We identify an implicit assumption in this 
method of equal measurement uncertainty in each coor-
dinate at all points on the sphere. Normalized eigenval-
ues provide quantitative measures of physical distance 
of the data from the plane and line, specifying the 
directional characteristics of the c-axes of crystals in a 
sample. Mean angular measures of variability are also 
developed. The development clearly indicates the fab-
rics that are well-described by the eigenvalue/eigenvec-
for method, and provides a framework for developing 
related methods that may be useful for quantifying other 
fabric types. We demonstrate the capabilities of the 
analysis on data sets representing several samples of 

fabrics could be quantitatively assessed with this method. 
In this report we seek a plane through the origin that 

minimizes the sum of the squared normal distances 
from the data, and obtain the dominant c-axis orients-
tion in this plane. Beginning with the ice orientation 
data, a detailed derivation from simple geometric argu-
rents is developed, yielding least-squares equations 
that minimize the orthogonal distance between the data 
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Figure 1. Schmidt equal area net.  
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first-year sea ice. The data and the results of the analysis 
are viewed on special Schmidt nets that represent data 
hemispheres defined by the best plane and the predomi-
nant basal plane, in addition to the xy-plane. 

circle planes passing through the y-axis with the unit  
sphere. These arcs are meridians of the net that corre- 

BACKGROUND 

spond to inclination angles between —90° and +90°,  
representing the angle between the lower half of the yz-
plane and the plane of the arc. The labels on the x-axis  
correspond to polar or equatorial crystal orientation  
with right or left tilt. The set of arcs that cross the y-axis  
are parallels of the net, and represent the intersection of  
planes parallel to the xz-plane with the sphere. The points  
of intersection of these arcs with the perimeter of the net  
represent the azimuth angle, and the notation on the net  
is in degrees of angle. Additional details that are needed  
for plotting crystal orientation data on the Schmidt net  
are given by Langway (1958).  

Measurement of the c-axis orientation of an ice 
crystal with a Rigsby universal stage provides an azi-
muth angle, an inclination angle, the direction of in-
clination as right or left, and the type of measurement as 
polar or equatorial. From these data we will obtain a pair 
of angles that define the orientation. The azimuth angle 
measures the rotation of the crystal about the z-axis that  
places the c-axis in the xz-plane. The zero azimuth can  
be chosen arbitrarily, depending on the requirements of 
the analysis. With the c-axis in the xz-plane, the inclina-
tion angle is the angle of tilt with the x-axis. An inclina-
tion angle of zero is defined as the angle where the c-axis 
of the crystal is parallel to the x-axis. It is found by 
rotating the crystal about the y-axis either to the right 
(clockwise) or the left (counterclockwise). The optic 
axis of a crystal can be aligned parallel to the z-axis, 
termed a polar measurement, or parallel to thex-axis, an 
equatorial measurement. The inclination angle measured 
with the Rigsby stage must be corrected for the optical 
error caused by the difference in the refractive indices 
of air and ice. The relationship between the co πected in-
clination, 1, and the measured inclination, I m, depends 
on the measurement type and can be expressed (Kamb 
1962) as 

DATA TRANSFORMATION TO CARTESIAN  
COORDINATES  

Our analysis represents the c-axis of each ice crystal  
as a unit vector from the origin of a three-dimensional  
coordinate system in the half-space below the xy-plane,  
yielding an array of points on the surface of a hemi-
sphere of unit radius. In this section we obtain three-
dimensional Cartesian coordinates on the unit hemi-
sphere (Fig. 2) for each crystal. The initial step in  
finding these Cartesian coordinates is to represent each  
point in spherical coordinates ( ρ,θ,φ). Because each  
crystal is represented by a unit vector, the radius ρ = 1  
for all the data. The angle 8, measured from the positive 
x-axis, is positive in the counterclockwise direction, and 
can be obtained from the measured azimuth Az as 

1. 04 Im ; equatorial ; polar-right, equatorial-left 

+ 180 ° ; polar-left, equatorial-right 
l  (2) 

— (1) Az )  

1 Ι sinl 11 sin Im) ; polar 
31 where Az is in degrees. Measurements made from the 

negative x-axis are adjusted by 180 °  in eq 2. 
Taken together, the azimuth and inclination mea-

surements define the orientation of the optic axis of an 
ice crystal in three-dimensional space. The line repre-
senting each crystal in the sample is plotted through the 
origin of a sphere of unit radius. Each of these lines 
intersects the surface of the sphere at one point in each 
hemisphere. The surface of the lower hemisphere is 
traditionally represented in two dimensions with the 
Schmidt net (Fig. 1). The Schmidt net is also known as 
the equal-area net because a unit area in any position on 
the net corresponds to a unit area on the hemisphere. The 
crystal orientation data plotted on this net depict the 
relative spatial concentration of the measured data. The 
Schmidt net is composed of two sets of arcs. The set that 
crosses the x-axis represents the intersection of great 

The angle φ is measured from the positive z-axis. The 
inclination angle was measured from the negative z-axis 
for polar crystals and from the xy-plane for equatorial 
crystals, and φ is determined as 

0 =1180 —1;polar (3) 
1 90° + 1 ; equatorial 

With the spherical coordinates specified, the equiva-
lent Cartesian coordinates are obtained directly as 

x = ρ sin* cosθ 
y = ρ sinφ sinO (4) 
z = ρ cosφ 

3  
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Figure 2. Sketch of unit vectors 1,2,..., 
tations of ice crystals in a sample. The hemisphere, z <_ 0, is shown by  con-

vention.  

m,...N representing the c-axis orien- 

MEASUREMENT ERRORS AND 
DATA FITTING 

effect of measurement errors on the uncertainty in x, y,  
and z is variable. An error in θ only affects x and y . The  
resulting uncertainty in each coordinate is periodic,  
depending on 8, and out of phase with the other. The  

amplitude of these errors approaches zero near the pole  

and a maximum at the equator. Errors in φ affect all three  
Cartesian coordinates. The uncertainty in z is larger near  

the equator and smaller near the pole than the larger of  

x and y. Uncertainties in x and y resulting from errors in  
φ again vary individually with θ, displaying maximum  
amplitudes near the pole and approaching zero near the  

The relative uncertainties in x, y, and z caused by 
measurement error must be understood in order to 
identify an appropriate method for fitting the ice fabric 
data. Langway (1958) lists several sources of error in 
the measurement of c-axis orientation, and indicates 
that the errors in aximuth and inclination should each be 
less than 5°. Taking the errors inAz andl as random and 
of comparable magnitude, we observe from eq 2 and 3 
that the same statement holds for errors in Θ and φ. For 
an error of β in these angles we have from eq 4 that 

equator. 

x = sin(φ ± β) cos(8 ± β) 

Classical least-squares methods require a dependent 
variable, but the coordinates of each c-axis are all 
independent. Reed (1989) presented a method for fit-
ting a line to points in the plane when both coordinates 
of these points are independent and uncertain due to 
measurement error. The method allows the errors in the 
fit to be weighted according to the relative uncertainties 
in the measurement of x and y. The measurement errors 
discussed above could be considered by extending this 
method to three dimensions. However, we note for 
small β that cosβ = cos2β = 1 and sinβ 0, indicating that 
errors in x, y, and z resulting from measurement errors 
are relatively small. As a first approximation we will 
choose equal weighting in each direction at every point, 
and the best fit line and plane will minimize the perpen-
dicular distances from the data. 

y = sin(φ ± β) sin(8 ± β) (5) 
z = cos(φ ± β) 

Expanding eq 5 and grouping terms according to the 
error we obtain 

x sinφ cοsθ cos2β + sinβ (A cosβ + B sing) 
sinφ sinθ cos2β + sinβ (C cosβ + D sinβ) (6) 
cοsφ 

y 
cosβ + sinβ (E) z 

where A, B, C, D, E are composed of sines and cosines 
οf φ and θ. The relationships given in eq 4 are contained 
in eq 6, but they have been modified by errors of β. The 
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DETERMINATION OF THE BEST PLANE 
BY ORTHOGONAL LEAST -SQUARES 

used to fit the plane should be much larger than 3. For  

a data point m located at (xm,ym,zm) we can evaluate  
F(Xm,Ym,Zm  c 1 ,c2 ,c3) = Fm  with eq 8 as 

The unit vectors representing the c-axis orientation 
of each crystal in a sample have a common point at the 
origin of the unit sphere. The problem we consider in  

this section is to find the plane of best fit to fabric data 
that contains the origin, and to provide quantitative 
measures of the quality of the fit. The form of the  

equation of a plane through the origin is 

Fm  = c i xm  + c2ym  + c3zm (10)  

The unit vector representing the c-axis of the mth crys-
tal (Fig. 3) is  

u m  = xm  i 1  + Yr i 2 + Ζmi 3 = (1 mi 1 +  

02mi2+ Φ3mi3 = jmij (11)  
f(x,y,z) = Ax + By + Cz = 0 (7) 

We choose the function F(x,y,z; c  1 ,c2,c3) with this same 
form and depending linearly on parameters c 1 , c2 , c3  as 

The vector W m  is the projection of um  onto n, rep-
resenting the normal vector from the plane to the point  

(xm,ym,Ζ )  

F(x,y,Ζ; c1, c2, c3) = c ιφΡ ι + c2φΡ2 + c3φΡ3 =  Σ
3

c1=0  Wm  = (Um  •n)n (12) 

= 1 
(8) where (um  • n) is a scalar product between unit vectors.  

Throughout this development the notation (—) over a  
vector indicates that it does not have unit length. The 
normal distance d from point m to the plane is  

where (1 =x, 02  =y,  φ3  =z are a specified set of mutually 
orthogonal functions and the c i  are unknowns to be 
determined. The pole of a plane is the point P of inter-
section with the hemisphere of a line n οrmαl to the plane 
through the origin. The unit normal n to the plane of best  

fit to the data has the form 

m 

dm = (um • n) = clxrn + c2ym + c3zm (13)  

and we observe that  

n = c1 ii + c2i2+ c3i3= cjij (9) Ι W m Ι <_ 1 (14)  

where i 1 , i2  and i3  are unit vectors in the x, y and z 
directions, respectively, and repeated indices indicate 

Wm = dm n  
The sign of dm  distinguishes distances on opposite sides  

summation, of the plane.  
A unit vector in 3-dimensional space represents each The orthogonal projection of um  in the best fit plane 

is represented by the vector v m, and crystal in a sample, and the total number of crystals N 

Best Fit / Basal Plane 
n/c  
^ 

8m  
Wm (Xm,ym,Zm)  

u m  
r 

α m  

( m ,Yr ,Z m )  

Figure 3. Sketcho ft  he unit vector Um  representing the mth crystal man ice sample and  
its projections _yr onto the best-fit plane or the basal plane, and Wm  onto n or c the  
unit normal vector to the corresponding plane. The angles between u and the best  m 

(plane, line) are (αm , δm), respectively.  
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"rn = um — wm - x  m1 ; + y ml 2 + Zml 3 = Φ jmi j (15) where is the Kronecker delta. We observe from eq 13 
that dm = C•k  Φkm,  and differentiation of this equation  
yields This vector joins the origin and the point x m, ym, Zr, the 

z ) in the plane. The orthogonal projection of (x m  ,ym  , m 
vector v m  is unique and the best approximation of urn  in 
the plane. An equivalent statement is that the closest  

adm 
==  Φ km δjk = 0 jm (22)  

point in the plane t ο (xm,yzm ) is gym ,  ym, zm . From eq 
15 we can determine x m, y m, Zr  as 

Inserting eq 17, 21 and 22 into eq 20 we obtain the  
normal equations as  

xm = xm - dmci (d im  — dmci) (dmδlj + c iΦjm )) =00   
Ym = ym - dmc2 for m = 1,2,..., N (16) 
Zr  = Zm - dmc3 or expanding and rearranging as  

or 
Φ im= ψ im - dιnci for  i 1,2,3 (17) φji„dm( 1- cit+ φ im Φjmc;=dmcj (23)  

where φim  and m  represent elements of N-dimensional Finally, because n is a unit vector and i is a summation  
index, (1 — C? ) = 0 and eq 23 becomes vectors φ ;  and φ ; , respectively. 

We want to choose the c i  values that specify the plane 
through the origin with normal distances Id ml between 
the points representing theNcrystals in a sample and the 
plane that are as small as possible. The N-vector d = (d 1 , 

(24) Ο im Φjm  = dm  cj 

In eq 24 we observe that dm2  = λ, a constant, y ielding 
 an eigenvalue problem, d2 , ..., dN )Τ represents the individual normal distances 

from the data to the plane, where T indicates the trans-
pose. Minimum normal distance to the plane is equiva-
lent to maximum length of v m, the projection of um  onto  
the plane. We will seek a least-squares fit and define E 
as a function of the unknown coefficients  

Ac = λc (25)  

where each term a;j of the 3 x 3 symmetric matrix A is  

% 0im0jm = Φ i • φj (26)  

Σ  Σ  Φ  m (18) 
N 3 _ 

E(c1, c2, c3) ν m 2 = The eigenvalue λ is the sum of the squared normal 
distances of the data from the corresponding plane. 
Equation 25 in homogeneous form, 

m =  Ι m = 11 _  Ι 

Because we consider data projected onto a plane, the 
hemisphere in which the data appearsi s arbitrary. The 
sum of the squares of the lengths of _v m  will be maxi-
mized and the sum of the squared distances from the 
plane d will be minimized where the gradient of E  

(A — λi) c= 0, (27)  

indicates that nontrivial solutions exist if and only if  
m 

vanishes det(A — λI) = 0 (28)  

VΕ(4, c2,c3)  =0 (19) The determinant given in eq 28 yields a cubic equation  
called the characteristic polynomial  

with c; * indicating coefficients of the plane of best fit.  

We now perform the differentiation indicated in eq λ3  + ρλ2  + qλ + r = 0 (29)  
19 with respect to cj , where each choice ofj   yields a scalar 
equation of the form Following Beyer (1987) we obtain the solution as 

(20) m cos β - ρ/3 
acj 

= 2^im im  = 0 

λ= m cοs(β -2 π/3) - ρ/3  (30)  
From eq 17 we obtain m cοs ( β - 4 π/3 )  - ρΡ/3 

(21) where aim = 
acj 

— +  Ci a
acj β _ (1/3) cοs-1 Μ 

6  



m = 2'/-α/3 basis in three-dimensional space. Each eigenvector 
represents the unit normal to a plane, and the corre-
sponding eigenvalue gives the sum of the squared 
normal deviations of the data from that plane. The 
minimum eigenvalue defines the plane of best least-
squares fit to the data, and the higher eigenvalues are 
associated with the remaining mutually orthogonal 
planes through the origin. With the origin fixed, the 
eigenvectorbasis represents a coordinate system that is 

a= (1/3) (3q- ρ2 ) 

b = (1/27) (2ρ3  - 9ρq+ 27r) 

As p, q, and r are real, the eigenvalues will be real and 
distinct if 

b2 + —‚3< 0 (31) 
4 27 

The spectral theorem (Shields 1968) states that be-
cause Α is a real symmetric matrix it is similar to a 
diagonal matrix Β composed of the eigenvalues ofA, and 
therefore the eigenvalues ofA are real. Similar matrices 
have the same trace and the same determinant. The trace 
of a matrix is the sum of the elements on the principal 
diagonal. The elements a11 ,  α22 and a33  of matrix Α 
represent the sum of the squares of the distances be-
tween the data and the three planes defined by the 
coordinate axes. As each crystal is represented by a unit 
vector, 

rotated relative to the coordinate axes. 
The eigenvectors written in columns form the matrix 

Ρ. The elements of Ρ are the direction cosines between 
each eigenvector and the coordinate axes. The angle α ;^  
between the eigenvector ν and the axis i i  is ^ 

cc;j = cos  1  (vi  • i; ) = cos-1  (ρ ii ) (35)  

Because the columns of Ρ are orthonormal, Ρ is an or-
thogonal matrix, P-1  = Ό Τ is also orthogonal, and det Ρ  
= ± 1. Matrices Α and Β are related through Ρ as  

tr(A) = Σ
3 

ai; = N = tr(B) = Σ
3

bii Σ  λ; (32) Α = ΡΒΡΤ (36)  
=1 i=  1 i=1 

indicating that the sum of the eigenvalues is N, the total 
number of crystals in the sample. The determinants ofA 
and Β are the product of the eigenvalues. The eigen-
values ofA are nonnegative ifA is positive semidefinite, 
that is,TAx >- 0 for any x. Large diagonal elements 
relative to those off the main diagonal are characteristic 
of a positive semidefinite matrix. Since the eigenvalues 
represent sums of squared distances,  λ  > 0 and matrix 

representing a singular value decomposition of A. The 
diagonal elements of  Β  are the singular values σ;  as well 
as the eigenvalues ofA. With singular values ordered by 
their magnitude in the same way as the eigenvalues, the 
condition number of matrix Α of full rank is 

cond (A) = - 

1 
(37) 

3 - 1  _ 
Α is positive semi-definite. We will designate the eigen- Condition numbers »1 indicate that Α is nearly sin- 
values in increasing order according to magnitude as λ  1 

<  λ ,  and define normalized eigenvalues as 
gular. 

λ. = ^i (33) 

The sum of the squared normal distances between  

the data and the best plane, given by λ 1 , provides a 
measure of the planar structure of an ice sample. Values 

N of λ 1  or λ approaching zero indicate an increas- 1 

The normalized eigenvalues give the mean squared 
normal distance between the points on the unit sphere 
defined by the c-axis vector of the individual crystals 
and the plane normal to the corresponding eigenvector. 
These eigenvalues provide a measure of the fit that is 
equivalent to the variance in classical dependent van- 

ingly planar ice structure. If λ 1  = 0, then cond(A) =  
and the data are perfectly planar. A visual representa-
tion of the error is obtained from the angle a between m 

an individual crystal and its projection in the best plane 
(Fig. 3), 

αm  = Ιπ/2 - cos-1  (um  • n) 
able least-squares methods. (38) 

Eigenvectors of a real symmetric matrix correspond-
ingtodifferenteigenvaluesareorthogonal,and because 
the eigenvalues are real, the eigenvectors can be taken 
lobe real. The vector v is an eigenvector forA belonging 
to the eigenvalue λ if 

The absolute value in eq 38 is needed if the angle 
between u and n is greater than π/2. The average an- m 

gular deviation a between the data and the best plane is 
a parameter we term the planar spread that can be  
readily determined and understood:  

Αν=λν and v#0 (34) 

The lengths of these eigenvectors are arbitrary, and we 
normalize them to unit length to obtain an orthonormal 

ā  = 1 Σ αm 
N  

(39)  
N m = 1  

7  



A small planar spread indicates a small mean angle 
between the crystals in a sample and the plane. 

n = 1 («1 i 1  + , i 2 — i3) 
 

(c ) 1/2 
2  + ^• 2  + 1 

(45)  

DEVELOPMENT OF DEPENDENT 
VARIABLE LEAST-SQUARES SOLUTIONS 

The normal distances between the data and the plane  
represented by n can then be determined using eq 13 as  

^^__(u 	n
)) (CΙΧ rn ++ cC22))Ι'mm — zΖ rnm)) 

ous section to obtain a set of classical dependent van-
able least-squares solutions to the problem of fitting a 
plane to three-dimensional data. This standard method 
seeks a minimum error in the dependent variable and is 
more commonly available than the orthogonal method, 
but the results are sensitive to the choice of dependent 
variable. Arbitrarily selecting z as the dependent van-
able, we rewrite eq 8 as 

22 c 1  + c2  + 1 )  
1/2 (46) 

for in 1,2, ... , N  

z = F(x,y) = c 1 Φ1  + c2 Φ2 (40) 

The sum of the squared normal distances given in eq 46 
is the same measure as the minimum eigenvalue ob-
tamed in the previous section. The planes that minimize 
the squared x-deviations and squared y-deviations are 
obtained by interchanging the roles of i , φ2  and r  
above, and repeating the analysis. 

where 1 = x and φ2  = y. The coefficients c 1  and c2  are 
chosen so that the deviations d m  are as small as possible, 

ALIGNMENT OF THE C-AXES  
d = rm  —  F(Xm, Ym  c1, c2) , m (41)  

in which r is Zr,  the z-value of the mth point, and m 

An area of highly concentrated c-axis data on the 
Schmidt net indicates a linear preferred orientation of 
the ice crystals of a sample, and suggests the need to 
determine the predominant optic axis orientation of the 
fabric. We will locate this linear orientation by follow-
ing a development parallel to that used to determine the 
best plane. The unit vector c represents the unknown 
preferred c-axis orientation of the crystals in a sample,   
and is expressed as  

F(xm ,ym ;c  1 ,c2) is the corresponding z-value in the plane 
of best fit. Again, the vector d contains all the deviations 
d and we seek a least-squares fit to the data with m , 

E (c1, c2) _ Σ  [rm — F (xm, ym; c1, 

Ν 2 (42) 
c2)] 

m=1 

Taking the gradient of E and setting it to zero yields the  
normal equations c = cl i1 + c2 i2 + c 3  i3 (47)  

Ε [rm — F (xm, ym; cl, 

N 

c2)10 φ im = 	 i = 1,2 where the primes distinguish these coefficients from 
those of the unit vector n given in eq 10. The plane  
through the origin that is normal to c represents the  
predominant basal plane orientation of the crystals in  
the sample and is described by  

m= 1 
(43) 

or 
dT • Φi  =0 

indicating that the vector of deviations is normal to each 
vector Φi . Now, inserting eq 40 and rewriting the normal 
equations in vector form we obtain a pair of linear 
equations: 

F ,y, z; c °  c2'  c x / cx + c2y + c3z = 0 1 (48) 3  

[
ΦΤ • Φ ii ej  = rT • φ i 1 1,2 (44) 

As before, the unit vector U m  represents the mth crystal 
orientation and intersects the unit hemisphere at 
(xm,ym ,Zm). In order to take advantage of the detail 
given in the previous development, the vector projec-
tions οf u onto the plane and its normal vector are again  

V m  and W m, respectively. Then, with c replacing n and  

a different normal plane, Figure 3 represents our present  
The vector normal to the plane that minimizes the 

sum of the squared z-distances with the data is 
condition.  

n = C l  i 1 + c2 i2 - i3 When searching for the best planew  e sought to 
minimize the squared normal distance Ιwm Ι. However, 
the closest representation of u by the unit vector c or in the form of a unit vector, m 
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Best  
Plane  

C  

r, 

Figure 4. Unit vector c representing the linear preferred c-axis orientation of the  
ice fabric, and the long axis of the columnar crystals of an ice sample are  
represented by  n. The unit vectors n and s provide the predominant orientation  
of the basal plane of the sample. A unit vector σ represents the direction of load  
application on the sample, σ is the projection of this vector onto the basal plane,  

σ is the angle between the applied load and c, and  σ  is the angle between the  

load and n.  

requires that we maximize the sum of the squares of the 
lengths of w m. The predominant basal plane orientation 
is then the plane of maximum squared normal error with 
the data. Each step in the previous development applies 

Linear spread between these vectors is always <_ 90°.  

If δm  obtained with eq 49 is > 90°, δ is replaced by its  m 
supplement. The average angle δ between the data and  
ε is  

except that c ;  is replaced by 4  Note that the matrix A 
δ =  L δm 

1 
N  

given in eq 26 is unchanged because it depends only on 
the coefficients of the intersections of the individual 
unit vectors um  with the unit hemisphere. Therefore, we 
are solving the same eigenvalue problem as before. The 
eigenvectors obtained in eq 34 are orthogonal, and ε is 
contained in the best plane. Kass (1989) has shown for 
the general case that spaces of closest fit are nested. 
Every p-dimensional subspace of closest fit lies in one 
of dimensionp + 1. The third eigenvector s together with 
c form the plane of best fit to the c-axes, ands and n form 
the predominant basal plane (Fig. 4). The direction 
cosines of the angles between the preferred linear o ń en-
tation and the coordinate axes are given in matrix P, and 

N  m  = 1  
(50)  

The parameter δ is termed the linear spread, and a small 
δ indicates that the angles between the preferred orien- 
tation and the data are also small.  

As a group, the eigenvalues provide measures of the  

structure of the ice sample. An eigenvalue of zero  
occurs if the data are 2-dimensional, and a pair of zero  

eigenvalues represent 1-dimensional data. More gener-
ally, small  λ'1  λ2  together with large λ occurs with  3 

aligned data, and small λ'1  with significantly larger λ 
and λ indicates planar data. If in addition to small λ' , 
λ2 	 λ33  the crystal orientations distribute symmetri

1 

the angles can be obtained from eq 35. cally about a great circle of the sphere. With  λ'1  = λ2  
λ3 every set of orthonormal vectors will serve as the 

eigenvectors. The data are maximally dispersed with 
The mean squared normal distance between the data 

and the vectorc is λ'1 + λ2 or 1— λ3. Again using angles 
to visualize error, the angle δ between an individual m respect to lines and planes, and the material is isotropic. 
(crystal) vector and its projection onto c (Fig. 3) is ob- If the c-axes in a given sample are sufficiently 

aligned, the mechanical properties of the ice will be 
affected. If σ is a unit vector in the direction of an 
applied force, the angle σ between the force and the 

tamed as 

δm  = cos 1  (um  • e) (49) 
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dominant c-axis direction is origin is the pole vector. It intersects the unit hemi- 
sphere at the pole point P with coordinates (x p,υρ,Ζ) or  

σ, = cos  1  (σ • c) (51) (c 1 ,c2 ,c3  ). Inverting eq 4 we obtain the spherical coor-
dinates of this point as  

and the complement of σ is the angle between the load  
and the basal plane (Fig. 4). For a columnar ice sample 
n gives the predominant direction of crystal elongation  
and growth. The angle σZ  between the load and the 
vector n is obtained as 

φ cos-1  (c3) (56)  

Θ = taπ 1 
(

c

) 

σ  = cos 1  (σ • n) (52) 
There are two values of θ in the range 0° <_ θ < 360° that 
have the same tangent. If the value ofx = c 1  is negative, 
Θ falls in the 2nd or 3rd quadrant and the calculated 
angle is adjusted by adding 180°. Again, the polar co-
ordinate r on the net is obtained from eq 53, and the 
Cartesian coordinates of the pole on the net are found 
from eq 54. The determination of the Schmidt net 
coordinates of ε, representing the intersection of the 
preferred linear orientation and the unit hemisphere, 
follows the same procedure as for the pole vector with 
(c 1 ,c2 ,c3) in eq 56 replaced by (c '1 ,c'2,c'3). The intercept 
of the linear orientation vector must fall on that of the 

SCHMIDT NET REPRESENTATIONS 

The results of the analysis of an ice sample are 
presented together with the data on the Schmidt net. The 
initial step in finding the Cartesian net coordinates is to 
obtain polar coordinates (r, θ) on the net for each point, 
The polar angle θ on the net is the same as the spherical 
angle Θ given in eq 2. The spherical angle φ given in eq 
3 is used to find the radial coordinate. The supplement 
of φ, measured from the negative z-axis, has the same 
sine as φ, and the distance from the origin of the Schmidt 
net r is (Knopf and Ingerson 1938) 

great circle of best planar fit. 

r = (2α)sin(φ/2) (53) 

During field ice coring and thin section preparation,  

a sample intended as horizontal may deviate by an angle  

of several degrees. Sea ice with horizontal c-axis align-
ment will then be represented by a best plane at this  

angle. The linear dimensions on the periphery of the  

Schmidt net are distorted, and it is difficult to judge  

normal distances between the data in this region and the  

trace of the best plane. Points that appear near the  

perimeter and directly across the net from each other  

represent crystals with close planar alignment. For  
these reasons it is frequently advantageous to view the  

data on Schmidt nets drawn on alternative planes.  

Viewing the data on a Schmidt net drawn in the best fit  

plane with n vertical eliminates sample preparation er-
ror for horizontally aligned sea ice. The great circle of  

the best plane falls on the perimeter of the net and the  

pole of this plane appears at the origin. With ε vertical  
the plane of the Schmidt net is the predominant basal  
plane of the sample, and the data are transformed from  

the perimeter to the middle of the net. The great circle  

of the plane of best fit then must pass through the origin. 
Accurate visual assessments of the linear and planar 
preferred orientations of the sample are possible on this 
net because of minimal distortion of linear distance near 
the origin. With these planes for mapping, the impor-
tance of net distortion, sample preparation, and mea-
surement accuracy are minimizedby providing optimal 

where a = 0.70711R, and R is the radius of the net. The 
equivalent Cartesian coordinates are then obtained di-
rectly as 

x = r cosΘ 
(54) 

y  = r sinθ 

Planes that pass through the origin intersect the unit 
sphere as a great circle. The part of the great circle of the 
best fit plane belοw the xy-plane is drawn on the Schmidt 
net. With p = 1, eq 4 is substituted into eq 8 and solved 
for φ to obtain 

Φ tari 1 —C3 (55) 
c1 cοsΘ + c2 sinθ 

where θ is incremented in arbitrary steps from ίY to 360°. 
The requirement of z <_ 0 in eq 4 identifies the points of 
intersection in the lower hemisphere. We obtain polar 
coordinates on the net from these spherical coordinates, 
and then eq 54 yields a discrete representation in Carte-
sign coordinates of the great circle on the net. Experi-
ence indicates that 0.5° increments of Θ yield a smooth 

views of the crystal fabric. 

curve on the net. 

Unit vectors in the Cartesian coordinate directions 
were used in eq 11 to obtain a unit vector representing 
each crystal in a sample. These unit vectors are related 
to an orthogonal coordinate system of eigenvectors The unit normal n to the plane of best fit from the 
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Figure S. Relationship between the Cartesian and eigenvector coordinate systems for visualizing alternate  
Schmidt net representations of ice fabric data.  

( ί '1 ,  1 2 , i by the matrix P as thogonal analysis. In all cases this approach provided a  

lower bound to the normal error of the dependent  
variable methods. The individual samples are desig-
nated by the dependent variable analysis with mean  

normal error closest to that of the orthogonal analysis.  

The dashed lines connecting the mean normal errors for  
the dependent variable solutions are erratic. Different  
dependent variable choices produced dramatically dif-
ferent planes with widely varying normal errors. The  
coordinate axis most nearly normal to the plane of the  
data provided the lowest mean error. Diminishing mean  
normal error generally corresponds to diminishing pla-
nar spread. However, the minimizations of these two  
parameters are not equivalent, explaining the lack of  
perfect agreement between the trends plotted in Figure  
6. The mean normal errors for most of these cases are  
less than 0.1, corresponding to planar spreads of less  
than 12°. These results indicate that these samples have  

= pili i (57) 

This relationship is depicted in Figure 5 with eigenvec-
tors n c and s as the (primed) unit eigenvectors. The ,, 
relationship between a general vector in the Cartesian 
system and its transform in the eigenvector system is 
(Hildebrand 1965) 

u ,, ;  = P-1  um  = PT  um (58) 

and P is termed the transformation matrix. Because P is 
orthogonal, transformations using P are orthogonal, 
Orthogonal transformations maintain length and pre-
serve angle, and can be interpreted as a combination of 
rotations and reflections. The order of the eigenvector 
placement in P determines the transformation, and ei-
ther n or c is made vertical, planar fabrics.  

APPLICATIONS 

The same cases were also analyzed for preferred  
alignment of the c-axes. Mean squared normal distance  
between the data and the best vector c is 1 - λ3 . The 
maximum normalized eigenvalue and the linear spread 
are displayed in Figure 7. Values of λ3 that exceed 0.9 
correspond to linear spreads of less than 15°. Linear 
spread is larger than planar spread because it represents 
angles with a particular line in the plane, while planar 
spread represents angles with the plane itself. Compar-
ing Figures 6 and 7 we observe that increasingly planar 

We analyzed the ice fabric of many samples of first-
year sea ice taken from the Beaufort Sea. Both orthogo-
nal and dependent variable least-squares analyses were 
used and compared. These cases are presented in Figure 
6 in an arbitrary order from highest to lowest mean 
normal error of the best plane obtained from the or- 

11  



1o°  

1 ‚' 
Í % 

11 Dependent 
, Π enendent (y) Dependent (x)  (z) 

11  

I  

ι o  
^ 

I 
ι Ι 

' 

a \ 	I}ii1, Í 
1 , 	/ 

\ 
1 I  

10 2 

 60 
I 

/ V''  \
I 

'7 
1

\ 

0- 4  
20  

10 3 ΙΟ  
8  
6  
4  

2  

10  4 
Ζ 	

Χ 	Ζ 	Ζ 	Ζ 	Y 	Ζ 	X y2  2 	9  2 	Ζ 	y3  y4  2 	9 	Ζ .0 2 ,0 y5 Υ6 Ζ 11 9 5 Υ7 2 11 x6 Z  0 2 12 z  
1

1234 52 63 78 94 

Case  

Figure 6. Mean squared normal error for several sea ice samples from orthogonal and x-, y- and z-

dependent variable least-squares analyses. Planar spread from the best plane is given for these same 

cases. The cases are arranged arbitrarily according to λι  of the orthogonal analysis and named in 

sequence according to the best dependent-variable solution. 
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sea ice fabrics do not necessarily correspond to the 
degree of preferred alignment. 

Schmidt net plots of the data representing cases z 1  ‚  z p 
and z ιΡ  are presented in Figure 8, and parameters devel-
oped from these data are given in Table 1. Included on  

each net are the intersections with the hemisphere of the  

plane of best fit, the pole P of this plane, and the vector  
c of best linear fit. As required, the best line is always  

contained in the best plane. In case Ζ 1  the normalized  
eigenvalues are approximately equal, the planar and  

linear spreads are large, and the matrix A is nonsingular.  

These conditions indicate that the data are uniformly  
distirbuted over the surface of the sphere. Cases z óΡι  and  
z1  1  are very different from z 1 , but are similar to each  
other. For this group of samples  λ  is smallest for z 11,  

• 
• 

. 
1 

c indicating that these data are the most closely,  repre- 
sented by a plane. Sample zó has the smallest λ2  value 
together with a small λ1  and is the most linear case in 
this group. The distribution of data indicated by the 
eigenvalues is confirmed by the angles that quantify the 
planar and linear spreads ā  and δ, respectively, for each  
sample. The matrix A is nearly singular in the latter two  
cases as  λ  = 0 and the condition number is large. 1 

—^-° 

A group of samples taken in close proximity and 
from the same vertical position in the ice sheet should 
have similar structure. Together the individual and 
collective analyses of these samples provide quantita-
tive measures of comparison that indicate the sample 
size needed to represent the ice fabric at that location. 
Three samples designated z j,  z ó, zó were taken from 
an ice core at 1.3 m from the surface. The Schmidt net 
plots of both the data and the computed fits are pre-
sented in Figure 8 for z and in Figure 9 for the other 
samples and the composite data. Each of these cases has 
nearly the same planar structure, pole and linear struc-
ture. This similarity is quantified by the eigenvalues, 
planar spreads and linear spreads given in Table 1. 

All the Schmidt nets presented above have been 
standard, depicting the lowerhemisphere on then-plane. 
Alternative Schmidt nets are obtained for the hemi-
spheres below the best fit and predominant basal planes 
using eq 57 and a P matrix with different eigenvector 
placement in each case. As a result of these transforma-
tions the position of the data on the net shifts, correcting 
for sample preparation error and allowing a visual 
assessment of the distances from the points to the best 
line and plane. Figure 10 gives the n and the alternative 
nets for sample z p . The data are near the perimeter of 
the net in the standard ay-plot. The net in the best plane 
corrects the sample preparation error and displays a  

balanced distribution of data on opposite sides of the 
net. The net in the basal plane depicts the points as a  

single group near the center of the net where linear  

distance is accurately represented and the linear and 

Figure 8. Schmidt net plots of cases z1  zfTο and z11  
 including the intersections with the hemisphere of the 

best plane, the pole P of this plane, and the best vector 
c.  
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P  

Figure 9. Schmidt net plots of cases z 10M, z 10Β and 
composite case z 10  including the intersections with the 
hemisphere of the best plane, the pole P of this plane, 
and the best vector c. 

Figure 10. Schmidt net plots of case z l0  in the standard  
xy plane with the z-axis vertical, in the best plane with  

n vertical, and in the predominant basal plane with c  
vertical.  
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Table 1. Normalized eigenvalues and condition number of matrix A, and planar and linear  
spread of the data for selected cases. The type of the distribution is interpreted from these  
parameters.  

α δ Type of 
Case N λ1 λ2 λ3 (deg) (deg) Cond(A) distribution 

Ζ 1 90 0.2940 0.3510 0.355 29.3 56.4 1.21 Uniform  

77 0.00235 0.0755 0.922 2.3 13.5 392 Planar/linear  

44 0.00452 0.0417 0.954 3.2 10.4 211 Linear/planar  

22 0.00073 0.0863 0.913 1.4 14.2 1250 Planar/linear  

2 ο 23 0.00140 0.0813 0.917 1.8 14.9 653 Planar/linear  

Ζ 10 89 0.00359 0.0638 0.933 2.7 12.5 260 Planar/linear  

planar fits can be readily evaluated and compared to 
other samples. 

rely on the implicit assumption of equal measurement 
error in all coordinate directions at all points on the unit 
sphere. We find that this assumption is a first approxi-
mation for optical data obtained with the universal 

CONCLUSIONS stage. 

A quantitative characterization of ice fabrics is critical 
for understanding the mechanical properties of sea ice, 
but was not previously available. An orthogonal least-
squares analysis of uniaxial crystal orientation data was 
developed from geometric arguments with unit vectors 
representing individual crystal orientations. Minimi-
zation of the perpendicular distances with a best line or 
plane provided an eigenvalue problem that was identical 
to that obtained by other investigators using different 
methods. Nοrmalizedeigenvalues give the mean squared 
normal distance of the data from the line or plane, and 
corresponding eigenvectors provide the dominant c-
axis, planar, and basal plane orientations, and the di-
rection of columnar crystal elongation. The preferred c-
axis orientation is always contained in the plane of best 
fit. The method is the basis of a relatively simple 
algorithm for computer analysis of large volumes of 

Normalized eigenvalues give the mean squared nor-
mal distance between the data on the unit sphere and the 
plane through the origin normal to the corresponding  

eigenvector. This measure of the planar fit to data is  

equivalent to the variance in classical dependent van-
able least-squares methods. The majority of the sea ice 
samples studied had planar fabrics, and several had 
aligned fabrics, characterized by mean squared normal 
distances of less than 0.1 with the data. These relative 
distances are well represented by the angular measures 
of linear and planar spread; however, the distance and 
angular error measures are not equivalent. For these 
samples increasingly planar orientations of the c-axes 
do not correspond to increasingly linear fabrics. 

orientation data. 

The normalized eigenvalues allow quantitative corn-
pań sons between samples, and of composite data repre-
senting a collection of several samples. Proximate 
samples from the same vertical position in the ice sheet 
had nearly identical structure. This similarity, quanti-
fied by the computed eigenvalues and eigenvectors, 
was displayedon Schmidt nets forthe individual samples 
and the composite. The capability to view the data and 
the analytical results on Schmidt nets in the planes 
defined by the eigenvectors was developed, providing 
information to improve the interpretation of the data 
and the fits by minimizing the importance of sample 
preparation, net distortion, and measurement accuracy 

The formulation of a least-squares method greatly 
influences the results. This observation was demon-
strated for many samples of first-year sea ice by com-
paring the mean squared normal distance of the data 
with planes obtained using the classical dependent 
variable least-squares approaches and the orthogonal 
method. The dependent-variable solutions produced 
dramatically different planes of best fit with erratic and 
widely varying normal errors. The error approached the 
minimum given by the orthogonal method when the 
dependent variable direction was almost normal to the 
best plane. Orthogonal least-squares and other analo-
gnus methods producing the eigenvalue problem all 

limitations. 
The eigenvalue/eigenvector analysis has been ap-

plied to fabrics displaying other patterns, including 
multi-maxima and small circle girdles. Fitting these 
data with a best line or plane yields results that can only 
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be qualitatively interpreted. However, when a fabric 
displays several point maxima it may be possible to ob-
jectively subdivide the data. The best line for each sub-
set would quantify the orientation and alignment of the 
corresponding point maximum. The intersection of 
cones with orientation diagrams were drawn by Kohnen 
and Gow (1979) to bound small circle girdle fabrics. A 
small circle girdle fabric could be assessed quantita-
tively by finding a circular cone with its axis defined by 
the best line and its apex at the origin. The surface of the 
cone would be located to minimize the sum of the 
squared distances with the data, and variability mea-
sures could again be defined in terms of distance and 
angle. 

Kohnen, H. and A.J. Gow (1979) Ultrasonic velocity 
investigations of crystal anisotropy in deep ice cores 
from Antarctica, USA Cold Regions Research and 
Engineering Laboratory, CRREL Report 79-10. 
Langway, C.C., Jr. (1958) Ice fabrics and the universal 
stage, U.S. Army Snow, Ice and Permafrost Research 
Establishment Tech. Report 62, available from 
USACRREL, 16 pp. 
Mardis, K.V. (1972) Statistics of Directional Data, 
Academic Press, New York, pp. 212-286. 
Pearson, K. (1901) On lines and planes of closest fit to 
systems of points in space, Phi/os. Mag. 6th Ser., Vol. 
2(11), pp. 559-572. 
Reed, B.C. (1989) Linear least-squares fits with errors 
in both coordinates, American Journal of Physics, Vol. 

LITERATURE CITED 
57(7), pp. 642-646.  
Richter-Menge, J.A., G.F.N. Cox and N.M. Perron 

 (1987) Mechanical properties of multi-year sea ice, 
'Phase I: Ice structure analysis, USA Cold Regions 
Research and Engineering Laboratory, CRREL Report 

Beyer, W.H. (1987) Handbook of Mathematical Sci-
ences, 6th Edition, CRC Press, Inc., Boca Raton, FL. 
Diggle, P.J. and N.I. Fisher (1985) Sphere: A con-
touring program for spherical data, Computers & Geo- 

87-3. 
Shields, P.C. (1968)Elementa ιyLinear Αlgebra, Worth 

sciences, Vol. 11(6), pp. 725-766. Publishers, Inc., New York. 
Fairbairn, H.W. (1949) Structural Petrology of De-: 
formed Rocks, Addison-Wesley Publishing Company, 

Turner, F.J. and L.E. Weiss (1963) Structural 
AnalysisofMetamorphicTectonites,McGraw-Hill Book 

Inc., Cambridge, MA. Company, Inc., New York. 
Herron, S.L. and C.C. Langway, Jr. (1982) A corn-
pań son of ice fabrics and textures at Camp Century, 
Greenland and Byrd Station, Antarctica, Annals of 

Wang, Υ.S. (1979) Crystallographic studies and strength 
tests of field ice in the Alaskan Beaufort Sea, POAC 79, 
In Proceedings of the Fifth International Conference on 
Port and Ocean Engineering under Arctic Conditions. Glaciology, Vol. 3, pp. 118-124. 

Hildebrand, F.B. (1965) Methods of Applied Math- 
ematics, 2nd Edition, Prentice-Hall, Englewood Cliffs, 

Vol. 1, pp. 651-665. 
Watson, G.S. (1966) The statistics of orientation data, 
Journal of Geology, Vol. 74(5), pp. 786-797. NJ. 

Kamb, W.B. (1962) Refraction corrections for univer- 
sal stage measurements I. Uniaxial crystals, The 
American Mineralogist, Vol. 47, March—April, pp. 227— 

Weeks, W.F. and S.F. Ackley (1982) The growth, 
structure and properties of sea ice, USA Cold Regions 
Research and Engineering Laboratory, CRREL Mono- 

245. graph 82-1. 
Kass, S. (1989) Spaces of closest fit, Linear Algebra Weeks, W.F. and A.J. Gow (1978) Preferred crystal 

orientations along the margins of the Arctic Ocean, 
Journal of Geophysical Research, Vol. 84, pp. 5105-  
5121. 

and Its Applications, Vol. 117, pp. 93-97. 
Knopf, E.B. and E. Ingerson (1938) Structural Pe-
trology, Geological Society of America Memoir 6. 

*U. S. GOVERNMENT PRINTING OFFICE: 1992--600-063--42067  

17  



REPORT DOCUMENTATION PAGE Form App roved  

OMB No. 0704-0188  

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 

Püblic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and  

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,  

including suggestion for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,  

VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.  

March 1992  
4. TITLE AND SUBTITLE 

Vector Analysis of Ice Fabric Data 

6. AUTHORS 

Michael G. Feick and Kerran J. Claffey 

5. FUNDING NUMBERS  

PE: 6.11.02Α 
PR: 4Α 161102ΑΤ24 
TA: SS 
WU: 001 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Cold Regions Research and Engineering Laboratory 
72 Lyme Road 
Hanover, N.H. 03755-1290 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

CRREL Report 92-1 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

Office of the Chief of Engineers 
Washington, D.C. 20314 

11. SUPPLEMENTARY NOTES  

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

Available from NTIS, Springfield, Virginia 22161. 

12b. DISTRIBUTION CODE  

17. SECURITY CLASSIFICATION 

13. ABSTRACT (Maximum 200 words)  

The mechanical properties of ice are strongly affected by crystal texture and c-axis alignment. In this report we develop 
a general quantitative method for analysis of uniaxial crystal orientation data. These data are represented as unit vectors from 
the origin with endpoints on the surface of a unit sphere. An orthogonal least-squares error measure is used to develop 
equations that define the closest plane and line through the data. The resulting eigenvalue problem is identical to that obtained 
by other investigators using different methods. However, we identify an implicit assumption in the method, and observe that 
the error measure represents physical distance and quantifies the goodness-of-fit of the idealized structures to the data. For 
comparison, a parallel development is presented of classical dependent-variable least squares. A method is developed to 
transform the data and the results for viewing on Schmidt nets drawn in the best plane and the predominant basal plane of 
a sample, in addition to the standard xy-plane. Applications of the analysis to sea ice samples include both numerical and 
Schmidt net presentations of results. 

14. SUBJECT TERMS 

c-axis orientation Orthogonal least-squares 
Schmidt nets 

Sea ice 
Crystal fabric analysis 

OF REPORT 
18. SECURITY CLASSIFICATION 

OF THIS PAGE 
19. SECURITY CLASSIFICATION 

OF ABSTRACT  
20. LIMITATION OF ABSTRACT  

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL  
NSN 7540-01 -280-5500 Standard Form 298 (Rev. 2-89)  

Prescribed by ANSI Std. Ζ39-18  
298-102  

16. PRICE CODE  


	PREFACE
	INTRODUCTION
	BACKGROUND
	DATA TRANSFORMATION TO CARTESIANCOORDINATES
	MEASUREMENT ERRORS AND DATA FITTING
	DETERMINATION OF THE BEST PLANE BY ORTHOGONAL LEAST-SQUARES
	DEVELOPMENT OF DEPENDENT VARIABLE LEAST-SQUARES SOLUTIONS
	ALIGNMENT OF THE C-AXES
	SCHMIDT NET REPRESENTATIONS
	APPLICATIONS
	CONCLUSIONS
	LITERATURE CITED
	REPORT DOCUMENTATION PAGE



