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TURBULENT HEAT TRANSFER IN  
LARGE ASPECT CHANNELS  

F.D. Haynes and G.D. Ashton  

INTRODUCTION 

Turbulent heat transfer in round tubes has been 

studied extensively and correlations between heat 

transfer and flow rate are well established.  

Turbulent heat transfer in rectangular channel  

geometries has been studied comparatively less.  

This study was motivated by the authors' interest 
in heat transfer from a river to its ice cover; the 

cross-section geometry of the river is better 

specified by an aspect ratio BID where B is the 

channel width and D is the flow depth. This 

report presents new data for a closed channel flow  

with BID = 10 and compares these data with the  
earlier data of Ashton (1971) and Hsu (1973). The 

data from the present study agree reasonably well  

with the predicted data of Petukhov and Popov 
(1963). 

EXPERIMENTS 

The experiments were conducted in a rectangular  

channel with width B = 0.254 m and flow depth D 
= 0.0254 m. A schematic of the apparatus is shown  

in Figure 1 and a cross-section schematic in Figure  

2. The lower boundary of the apparatus was steel  

and enclosed a flow of trichloroethylene (TCE) 
circulated below the water channel at an inlet  
temperature of about -28 °C. The flow depth for 

the refrigerant was 0.0254 m. The top and sides  

of the water channel were constructed of wood and 
the entire channel section was insulated with ure-

thane and fiberglass. The test section was 3.66 m  
long. At the inlet, a 4000-W immersion heater was  

controlled by a thermostat to allow control of the 

water temperature. The bulk temperature of the 

water flow was from about 3 °C to 7 °C. Water flow  

rates were from 0.64 x 10 -3  to 4.5 x 10 -3  m 3  5-1  
with corresponding mean flow velocities from 0.1 

to 0.7 m s. Temperatures of the water, wall, and  

refrigerant were measured at three stations. The 

distance from entry to the first station was 1.676 m. 

Based on the results of Hatton and Quarmby (1963),  

the first station was well beyond the distance at  

which entry effects are significant. The distance  
between stations was 0.9144 m. After flow ad-

justments were made, the system was allowed to 

stabilize for about 30 minutes before temperature 
data were collected. 

Four thermistors, each calibrated at the water-

ice triple point, were positioned (see Fig. 2) at each 

of the three stations and the thermistor signals were  

read with a Keithley Model 172 Digital Multimeter  

in a forward-reverse-forward sequence. Based on  

signal ranges used and manufacturer's specifications,  

absolute temperatures were determined to about 

0.01 °C and differential resolutions to about 

0.005°C. The heat transfer rate was determined  

from measurements of the decrease in temperature 
of the flow between measuring stations with the 

heat flux assumed to be only from the flow to 
the bottom steel plate. This last assumption was  

verified by order-of-magnitude calculations. The 
experiments were also conducted at wall tempera-

tures above 0°C so that no ice formed on the wall. 

RESULTS 

A total of 27 tests were conducted. The results 
are summarized in Table 1 in terms of the Prandtl  

number, Pr, Reynolds number, Re, and Nusselt 
number, Nu, defined, respectively, by 

Νυ -  QDh  

k(  Τοο Τ0 )  

where U is the mean flow velocity, q is the heat flux 

from the flow to the wall, and Τ°°-Τp is the differ-

ence between the bulk water temperature T °°  and 

the wall temperature Τ0 . µ, p, k, and Cp  are the  

dynamic viscosity, density, thermal conductivity, and 

specific heat capacity of the water and were  

Re  =_ 
UDhp 

ρ 
	µ 
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Figure 1. Apparatus schematic.  
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Figure 2. Cross-section schematic of apparatus. 

Table 1. Summary of experimental results.  

Test 
Too 

( °C) Pr Re Νu  Test  
Τοο  

( °C)  Pr Re  Νω  

1 5.75 11.12 10380 137 15 5.51 11.34 15070 256  
2 4.80 11.47 12820 159 16 5.23 11.30 16050 216  
3 4.51 11.58 15020 186 17 9.08 9.90 3490 103  
4 4.48 11.59 17250 224 18 4.62 11.6ύ  3020 84  

5 7.14 10.60 5055 104 19 3.67 11.97 4055 83  

6 6.08 11.01 6945 117 20 3.50 12.05 4290 104  

7 5.32 11.28 8070 137 21 3.16 12.20 4745 92  

8 5.74 11.14 9270 129 22 2.98 12.28 5580 114  

9 5.51 11.22 9270 189 23 3.15 12.20 11960 193  

10 4.74 11.50 10910 174 24 3.06 12.26 16290 253  

11 4.65 11.52 11565 142 25 3.41 12.11 18550 249  

12 4.56 11.56 12220 207 26 4.02 11.81 20360 262  

13 4.42 11.61 13325 236 27 6.63 10.80 22360 289  

14 4.95 11.42 14765 225  
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Table 2. Summary of experimental results of  
Ashton (1971) and Hsu (1973)  

Ashton (1971)  

Test  
Νο  

Bulk water 
temperature °C Rex  1Ο  Pr Νυχ 10 2  

1  2.36  7.31  12.60 6.93  
2  2.90  6.91  12.34 6.83  
3  0.98  6.40  13.23 6.56  
4  2.32  8.83  12.60 7.87  
5  1.71  8.77  12.88 8.59  
6  0.65  8.45  13.39 7.89  
7  0.43  8.43  13.49 9.04  
8  0.24  8.32  13.59 8.16  
9  0.25  10.61  13.58 8.99  

10  0.25  5.57  13.58 7.09  
11  0.30  17.60  13.56 14.53  
12  1.03  3.41  13.21 3.47  
13  0.40  11.89  13.52 10.27  
14  1.00  4.51  13.23 4.67  

Hsu (1973)  

1  0.29  17.97  13.57 14.40  
2  0.29  17.97  13.57 15.83  
3  1.00  2.14  13.23 2.42  
4  2.00  2.14  12.75 2.47  
5  0.43  8.56  13.49 8.13  
6  0.15  8.56  13.62 7.09  
7  0.87  3.57  13.28 3.72  
8  1.41  2.85  13.04 3.16  
9  0.27  19.24  13.57 14.14  

10  0.40  3.57  13.52 3.75  
11  0.93  1.069  13.26 1.33  
12  0.41  9.98  13,52 8.43  

evaluated at the bulk, or mixed flow temperature.  

The hydraulic diameter D h  is defined in the conven-
tional way by D h  = 4Α /P where Α is the cross-section  
area of the flow and P is the wetted perimeter. For  
the present experiments, D h  = 1.818 D. All of the  
present experiments were in a narrow range of Prandtl  
number 9.90 < Pr < 12.28 with a representative Pr  
for most of the data of Pr 11.8  

Ashton (1971) and later Hsu (1973) investigated  

turbulent heat transfer at the bottom of an open  

channel flow in a flume 0.61 m wide and 12.2 m  

long; most experiments were conducted with a 0.15-m  
flow depth. They froze an ice slab onto the bottom  
of the flume and measured the heat flux by cal-
culating the change in thickness of the ice at the  
center of the channel and well downstream from the  

inlet. Their test results are given in Table 2. In their  
experiments, D h  = 2.667 D0  where D0  is the flow  
depth. In their experiments, the range of Prandtl  

number was quite small (12.34 < Pr < 13.62) with  

a representative value of Pr 13.3.  

DATA INTERPRETATION  

All the data are plotted in Figure 3 as a function of  

Re and Nu. Three of Hsu's data points overlap the  

data of the present study. For comparison, two  

analytical predictions are also plotted in Figure 3.  
The formula of Petukhov and Popov (1963) corre-
lates turbulent heat transfer in round tubes quite  
well (t6%) for a wide range of Re and Pr [see, e.g.,  

Karlekar and Desmond (1977, p. 351)] ; it underpre- 

dicts the Hsu (1973) and Ashton (1971) data by about  

15%, and the data of the present study by about 35%.  

The formula of Petukhov and Popov (1963) is  

3  
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Figure 3. Heat transfer as a function of Reynolds number. 

-0.015 for the Prandtl numbers of the present data 

(1) 
	 sets, so that the Shibani-Ozisik formula becomes 

Νυ = 12+0.03  Re0865 pr0.33 	 (6)  

Νυ = 	(f/8) Re Pr  

1.ο7+12.7 (f/8) 112 
 (pr2 / 3 -1) 

where f has been calculated using the Filonenko  
equation [see Karlekar and Desmond (1977, p. 352)]  

f = [1.82 log 10  Re-1.64] -2 	 (2) 

We also note that the Petukhov-Popov formula yields  

Nusselt numbers somewhat greater (-'20%) than the  

commonly used Dittus-Boelter equation or the Col-
burn equation in the range of Reynolds numbers of  

the Hsu and Ashton data sets.  
Shibani and Ozisik (1977) presented an analytical  

solution for turbulent heat transfer between parallel  

plates with top and bottom cooling and correlated  
their analytical predictions in the range 0.1 < Pr <  

104  and 104  < Re < 106  by  

Nu = 12+0.03 Re a l  Pr a2 	 (3)  

where  

Equation 6 is also presented in Figure 3 and is seen  

to overpredict the Nusselt number by about 50%.  

Several reasons are offered for the differences 

between the data and the predictions. First, it is  

difficult to achieve the idealized flow conditions 
implicit in the analyses. In particular, we suspect  
the steel plate had some roughness in the present 

experiments and in the Reynolds range of these 
experiments this could well have contributed to a  

higher Nusselt number. Second, the aspect ratio B/D h  
varied from 1.5 for the Ashton-Hsu data sets to 5.4 
for the present study, while the Petukhov-Popov for-
mula is applicable to a round cross section roughly  

equivalent to a BjDh = 1 and the Shibani.Ozisik  

formula is applicable to a B/Dh 
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