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CDF Characterization for Beneficial Reuse 

of Dredged Material — Establishing 
Precedents Based on a Case Study 

by Trudy Estes and Joan Clarke 
 

PURPOSE: This technical note describes the process of analyzing data collected from a con-
fined disposal facility (CDF), with four fundamental objectives: 

 To identify the most useful data analysis tools, and the best application of them 

 To illustrate how a structured and sequential evaluation of data can maximize the amount 
of information obtained 

 To evaluate whether the collected data adequately answered the logistical and technical 
questions posed by the characterization effort 

 To provide the foundation for a practical sampling and characterization template for 
CDFs 

In this case, various methods of analyzing and interpreting the data were applied in order to 
assess the abundance of the desired fraction (sand); the contaminant levels in the sand and resi-
dual fractions; the uncertainty of the parameters measured; and the overall adequacy of the char-
acterization effort. 

BACKGROUND: Upland disposal capacity for dredged material is diminishing in many U.S. 
Army Corps of Engineers districts, resulting in the deferral of navigation dredging in some areas. 
There are many site-specific limitations to the construction or the expansion of CDFs, including 
high waterfront land values, cost of construction, siting conflicts, and foundation strength 
limitations. Removal of dredged material from CDFs for beneficial use appears to offer the best 
potential for sustaining existing CDF capacity. There has been no baseline established, however, 
regarding the intensity of sampling necessary to adequately characterize materials in a CDF for 
this purpose, nor has there been any guidance developed to establish evaluation parameters for 
assessing feasibility and benefit. 

Sediment characterization customarily includes determination of physical properties and conta-
minant analysis. However, for the purposes of material recovery, additional characterization may 
be needed in order to evaluate sub-fractions of the material, identify treatment or processing 
needs, and to ensure with a reasonable level of certainty that material specifications, including 
applicable regulatory criteria, will be met. Due to the fact that chemical characterization and field 
sampling — particularly coring — are very expensive, the ultimate goal of this document is to 
develop a strategy for targeted sampling, compositing, and data analysis that will optimize 
sampling effort, reduce characterization uncertainty, and minimize cost. 
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APPROACH: Adequate characterization of a CDF for beneficial reuse of material requires suf-
ficient sampling to determine with a reasonable degree of certainty that: 

 the amount and distribution of the desired material within the CDF is known; 

 all contaminants of concern (COCs) that are present have been identified; 

 the concentrations and distribution of the COCs within the CDF and within the sediment 
fractions are known; 

 areas or fractions with potential COC exceedances of regulatory criteria have been 
identified; and 

 beneficial use material specifications can be met in the target material. 

Before gathering data, one should know how the data will be used to answer the questions at 
hand. The following are the sequential steps likely to be employed in order to develop a sam-
pling plan and to structure the data analysis for the purposes of characterizing material in a CDF: 

 Identify a beneficial use (BU) or alternative placement for recovered material 

 Determinate material specifications and applicable environmental criteria for the identi-
fied BU 

 Review anecdotal and site data; identify data gaps/needs 

 Identify level of acceptable uncertainty 

 Evaluate variability of existing data and estimate number of samples required to generate 
needed data 

 Develop a sampling plan for the site 

 Characterize the material in keeping with data objectives, including: 

o physical properties 

o contaminant levels 

o engineering properties 

Once a preliminary data set has been obtained the data will be used to: 

 evaluate suitability of material based on BU specifications and environmental 
regulations; 

 evaluate adequacy of the data and sampling based on uncertainty and data objectives; 

 identify excavation boundaries within the CDF; 

 estimate volume of recoverable material; 

 estimate volume and character of residual materials; 

 calculate net capacity gained; and 

 calculate cost benefit taking into account facility life cycle, recovery and processing 
costs, and any material value. 
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If the uncertainty of the estimated parameters is too great to determine material suitability with 
confidence, a larger data set may be necessary. In that case, additional sampling would need to 
be conducted, data sets would be combined if appropriate, and parameter estimation would be 
repeated. There are issues related to combining data sets that must be considered, including the 
potential introduction of bias. The complexities of these and other sampling issues are beyond 
the scope of this document, but are discussed in more detail in a follow-on technical note (Clarke 
et al. in review). 

This technical note will focus primarily on tests that may be used to characterize the materials in 
the CDF for the purposes of evaluating material suitability, feasibility of recovery, and statistical 
methods that may be used to assess the level of uncertainty associated with the data. Available 
data from the Chicago Area CDF will be used to describe the physical and chemical characteri-
zation of the CDF and to evaluate the adequacy of sampling based on the requirements described 
above. The data analysis methods presented will illustrate the association and evaluation of data 
uncertainty with sample size for a real-world case. The Chicago Area CDF was selected based on 
the availability of data; the use of these data and the results of data analysis for this technical 
note do not represent a final or official opinion of U.S. Army Corps of Engineers (USACE) on 
the quality or potential uses of material stored in the CDF. In addition, criteria comparisons were 
made to illustrate the potential use of various data analysis methods, and do not represent a 
rigorous evaluation or official regulatory determination regarding the suitability of the material 
for any intended uses. 

DATA SET: In 2006, sediment samples were collected from the Chicago Area CDF, located 
immediately south of the mouth of the Calumet River at Lake Michigan in Illinois. The study 
objective was “to assess the feasibility of mining and processing material from the Chicago Area 
CDF for beneficial purposes, and to collect geotechnical data for use in CDF expansion designs” 
(USACE 2006). Core samples were taken at nine terrestrial sites (01-09) and three pond sites 
(P1-P3) within the CDF (Figure 1). Core samples were examined in the field and in the absence 
of significant stratification, composited over the length of the core. The terrestrial sites were 
areas known or thought to contain a substantial amount of coarse material based on surface ele-
vation, surficial materials, and historical discharge points. The pond sites were selected with the 
intent of potentially ruling out this area for coarse material recovery, given that materials in areas 
furthest from the dredge discharge are typically predominantly fine-grained. 

All samples were analyzed for grain size distribution and organic matter (including total organic 
carbon, soot, and oil and grease). Seven of the terrestrial cores were also analyzed for chemical 
contaminants of concern, with two objectives: 

 To evaluate the extent to which contaminants might limit beneficial use of the sand or 
impact the regulatory classification of the fines 

 To exploit the correspondence of contaminant concentrations with physical properties of 
the sediments, such that contaminant concentrations could be estimated in samples for 
which only physical properties were measured (as a cost savings measure) 
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Figure 1. Aerial view of Chicago Area CDF showing sample locations. Values indicated in the figure are 
percent sand. (Location G3 was not sampled.) 
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Contaminants analyzed included 12 metals, 17 polynuclear aromatic hydrocarbons (PAHs), and 
seven polychlorinated biphenyl (PCB) Aroclor mixtures. Sediment cores from two additional 
locations (G1-G2) were collected for analysis of geotechnical parameters only1. General parame-
ters measured at each sample location are given in Table 1. 

Table 1. Chicago Area CDF data set. 

Step  Sample Location 
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Property 01 02 03 04 05 06 07 08 09 P1 P2 P3 G1 G2

Specific gravity O,C,F1 O,C,F O,C,F O,C,F O,C,F O,C,F O,C,F O,C,F O,C,F       

Total organic 
carbon 

O,C,F O,C,F O,C,F O,C,F O,C,F O,C,F O,C,F O,C,F O,C,F       

Total solids O,C,F O,C,F O,C,F O,C,F O,C,F O,C,F O,C,F O,C,F O,C,F       

Grain size 
distribution 

O O O O O O O O O O O O    

Bulk density O O O O O O O O O       

Dry density O O O O O O O O O       

Total 
combustible 
organics 

O O O O O O O O O O O O    

Void ratio O O O O O O O O O       

Water content O O O O O O O O O    O O 

Total porosity O O O O O O O O O       

Geotechnical2 O O O O O O O O O    O O 
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 Contaminant   

PAHs O,C,F  O,C,F O,C,F  O,C,F O,C,F O,C,F O,C,F       

PCBs O,C,F  O,C,F O,C,F  O,C,F O,C,F O,C,F O,C,F       

Metals O,C,F  O,C,F O,C,F  O,C,F O,C,F O,C,F O,C,F       

Metals - TCLP C   C C   C C C C           

1 O = Original (bulk sediment), C = Coarse fraction, F = Fine fraction (C and F size fractions obtained by wet sieving at 75 um cut 
point.) Properties correlated to density fractions (typically above and below specific gravity 2.1) may also be useful in determining 
appropriate separation unit operations and evaluating potential separation efficiency. 
2 Atterberg limits, Q-test, R-test, consolidation test. 

 

Grain size distribution was measured on sediment core samples collected from locations 01 
through 09 and P1 through P3. Contrary to expectations, the highest percentages of coarse 
material2 occurred in pond samples P2 and P3, and terrestrial samples 08 and 09, and ranged 
from 44 percent to 62 percent. Sampling locations at the northern end of the CDF had lower 
amounts of coarse material, ranging from 20 percent at location 03 to 36 percent at location 04. 
Percent sand is superimposed at each location in Figure 1. 

METHODS: The tests and procedures used to obtain and interpret data for the stepwise analysis 
outlined above are described in the following section. The specific procedures employed are 

                                                 
1 “Geotechnical measurements” included: Atterberg limits, Q-test, R-test, water content, and consolidation tests. 
2 Defined as sand + gravel retained on a #200 sieve. 
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summarized in Table 2 and the procedures and outcomes further described and illustrated with 
the available data throughout the remainder of this technical note. Data analyses and graphs were 
prepared using SAS (© SAS Institute Inc. 2003), SigmaPlot (© SPSS Inc. 2001), Department of 
Defense Groundwater Modeling System (http://www.xmswiki.com/xms/GMS:GMS), U.S. Envi-
ronmental Protection Agency (USEPA) ProUCL (http://www.epa.gov/esd/tsc/software.htm), and 
Primer 6 (© PRIMER-E Ltd. 2006). 

SAMPLING: There are various approaches to establishing a sampling grid, ranging from those 
statistically based to those based on practical experience. A summary of current guidance on 
sampling and compositing to reduce variability can be found in Clarke et al. (in review). 
Available funding is generally an over-riding limitation to the amount of sampling that is done, 
as it was in the Chicago Area CDF case. Coring to depth is quite expensive (several thousand 
dollars per core, although with some economy of scale as core numbers increase). Several 
approaches to selecting sampling locations for BU characterization of relatively uncontaminated 
material are outlined in Olin-Estes (2000). These approaches are based on judgmental, random, 
or systematic methods for selecting sample locations, or some combination thereof. In practice, 
while random samples may be selected in order to maintain statistical validity of the data, usually 
some level of judgment is involved, whether in determining the area within which samples will 
be randomly selected, or in outright selection of sample locations. The number of samples is also 
generally determined based on judgment and budget, with the provision that additional sampling 
may be needed if the data are not sufficiently definitive for the specific project requirements. 
Determining the sufficiency of the data often becomes a largely judgmental process in itself. 
This technical note is intended to provide a more quantitative, yet practical, approach to eval-
uating the sufficiency of a data set, coupling simple data and criteria comparisons with statistical 
tools for evaluating uncertainty. 

In the case of the Chicago Area CDF, sample locations were selected based on a priori know-
ledge of placement history, observation of surficial materials, topography and water levels on the 
site, and budget. Vertical compositing intervals were specified (for the geotechnical samples 
only) based on observed material properties of the core, such that a three-dimensional picture of 
the in-situ material might be obtained. Sample locations were limited, but the area is relatively 
small (43 acres). Evaluating this data set will be a useful exercise, not only to illustrate the proto-
col proposed in this technical note, but also to determine whether further sampling is needed at 
this site, and to increase the efficiency of CDF characterization in subsequent efforts. 

ASSESSING THE PHYSICAL PROPERTIES OF THE MATERIAL: Customarily, analysis 
of the homogenized bulk sediment is the only analysis that is performed. Certainly, this provides 
valuable information regarding the aggregate material. However, where the objective is to 
recover a given fraction of the sediment, such as sand, then additional testing is needed to 
characterize adequately the target fraction and the residuals. Two types of fractionation can 
readily be done — size fractionation and density fractionation — and each offers slightly 
different information valuable to the process. Size fractionation typically involves wet sieving at 
a specified cut size and then characterizing the size fractions. From this data, the suitability of the 
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Table 2. Analyses conducted on Chicago CDF data. 
 Input Data Fraction Test/Analysis Purpose 

Physical 
Characterization 

All measured physical 
properties 

Bulk, 
coarse, 
fine, P1-P3, 
G1-G2 

Summary statistics Establish gross character of the material; com-
parison to material specifications 

Organic content Bulk, 
coarse, fine 

Box plots Illustrate general distribution of different carbon 
phases 

Grain size distribution Bulk, P1-P3 Surface and contour plots, 
isopach maps 

Visual representations of grain size, sample 
similarity; potentially useful in establishing 
excavation boundaries Ternary diagram 

Grain size and organic 
content 

Bulk, P1-P3 Ordination plot Multivariate graphical illustration of samples with 
similar grain size and organic content 

Chemical 
Characterization 

Contaminant 
concentrations 

Bulk, 
Coarse, 
fine 

Box plots Location of contaminants, median concentration, 
interquartile ranges, outlier identification 

Q-Q plots Graphical illustration of normality of the data, for 
distribution-dependent statistical procedures like 
sample size calculations 

Ordination plot Multivariate graphical illustration of concentra-
tions by location, grouping locations with similar 
concentration levels 

Location plots, moving 
averages 

Visual aids to identifying general distribution of 
materials and contaminants 

Histogram Graphical illustration of data distribution, for 
distribution-dependent statistical procedures like 
sample size calculations 

Summary statistics Establish gross character of the material; com-
parison to regulatory criteria 

Contaminant concentra-
tions vs organic content 

Bulk, 
coarse, fine 

Correlation analysis1 Determine the relationship between chemical 
analytes and different carbon phases 

Metal leachate concen-
trations vs organic 
content 

Coarse Correlation analysis1 Identify carbon phases associated with poten-
tially mobile chemical contaminants 

Contaminant concentra-
tions vs organic content 
(untransformed and/or 
log-transformed) 

Bulk, 
Coarse, 
fine 

Linear regression (simple 
and/or multiple) 

Determine whether carbon phases can be used 
to predict contaminant concentrations in sam-
ples not analyzed for contaminants 

Entropy regression 
(multiple) 

Alternate regression procedure where linear 
regression is unsuccessful in estimating conta-
minant levels associated with different carbon 
phases 

Uncertainty 
Analysis 

Contaminant 
concentrations 

Bulk, 
coarse, fine 

Estimates of variability 
(variance, standard devia-
tion, coefficient of varia-
tion, confidence limits on 
the mean) 

Calculation of sample size required to determine 
contaminant levels at a given confidence level, 
for comparison to regulatory criteria 

Distribution generation 
(Monte Carlo analysis, 
bootstrap methods) 

Data distribution is synthetically generated on 
the basis of available data for quantification of 
sample variability. For determination of sample 
number requirements/evaluating adequacy of 
sampling conducted.2 

Sample size vs. relative 
error plots 

Reflects CI around the mean as a function of 
sample size and relative error and compares the 
CI to applicable regulatory criteria 

1 Spearman’s (non-parametric) or Pearson’s (parametric) coefficients may be used as appropriate, based on normality of the data 
2 Distribution generation was evaluated as part of this effort. However, simulation is complex, requires specialized software, and does not 
provide as direct an estimate of sample size as the standard sample size formulas. 
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target fraction for the intended use can be determined and any contaminant-related issues identi-
fied. Density separation involves the use of heavy media1 to separate the mineral and organic 
fractions, which are then characterized in the same manner as the size fractions or bulk sediment. 
The data obtained from the density separation provides valuable information with respect to 
contaminated phases that may carry over into the target fraction due to particle size similarities, 
and also information with respect to the type of separation that will be required to remove them. 
For example, a coarse organic phase, such as coal fragments, is likely to have high associated 
contaminant concentrations and may be of a size that will report with the sand in a simple 
screening process. A separation exploiting differences in particle density may then be required in 
order to fully remove that phase from the target fraction. In some cases, a portion of the target 
fraction has to be sacrificed as well in order to more fully remove the contaminated phases. 

The use of density separation for contaminant distribution evaluation is relatively new and not 
widely practiced. Sieving is a common practice, however, and most labs will be able to provide 
this service with some oversight regarding sample handling to minimize contaminant losses. For 
this reason, only the size fractions from the Chicago CDF materials were analyzed, though addi-
tional samples were archived for possible evaluation of density fractions. 

Fractionation. Core samples from locations 01, 03, 04, 06, 07, 08, and 09 were separated into 
fine and coarse fractions (passing and not passing a #200 sieve, respectively). The original sam-
ples (bulk sediment) and the coarse-grained and fine-grained fractions were each analyzed for 
chemical parameters (metals, PAHs, PCB Aroclors, and organic matter). Potential for leaching of 
metals from the coarse fraction was also evaluated using the toxicity characteristic leaching pro-
cedure (TCLP). 

Measurement of carbon phases. Organic matter in the sediment fractions comprises sev-
eral different phases including amorphous (recently biogenic) organic carbon (OC), condensed 
carbon phases (soot), and oil and grease. Total organic carbon (TOC), oil and grease (O&G), and 
soot are measured directly. TOC was measured using Method SW-846 9060; soot using 
Gustafsson et al. (1997), a modification of the acidification and combustion procedure used for 
TOC analysis; and O&G by ASTM D1664. OC concentrations are taken to be the TOC not 
represented by soot and OG concentrations. These three phases significantly influence the rela-
tive degree of contamination present in different size fractions, as well as the associated mobility 
of those contaminants. Clay minerals, having charged surfaces and, in some cases, accessible 
interlayers where small organic molecules can adsorb, may contribute to the apparent particulate 
organic content. The physical properties of the organic phases, in part, determine the feasibility 
of separating them from the target sediment fraction, and the processes required to accomplish 
this. The issue is complicated by the fact that carbon phases may not exist entirely as discrete 
particles but rather as coatings on other sediment particles. Although this is a relatively new 
approach to characterizing material, its value in terms of understanding contaminant distributions 
in sediments and in evaluating the feasibility of producing a clean target fraction has been dem-
onstrated. Simple measurement of TOC alone may not be sufficient to make these 
determinations. 

                                                 
1 Heavy media: high density liquid diluted to an intermediate density to achieve separation of materials of selected 
particle density. 
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Summary statistics. Summary statistics for grain size, organic matter phases, and selected 
physical parameters are provided in Table 3 for the original bulk sediment and the coarse and 
fine fractions (where applicable). 

Table 3. Summary statistics. 

  
TOC 
(%) 

O&G 
(%) 

Soot 
(%) 

Clay 
(%) 

Gravel 
(%) 

Sand 
(%) 

Silt 
(%) 

Specific 
Gravity 

Bulk 
Density 
(g/cm3) 

Dry 
Density 
(g/cm3) 

Total 
Porosity 
(%) 

Total 
Solids 
(%) 

Void 
Ratio 

Water 
Content 
(%) 

Fraction: Bulk Sediment a 

n 12 12 12 12 12 12 12 15 12 16 12 12 12 14 

Mean 5.57 0.38 1.49 26.13 2.23 32.77 38.88 2.72 1.84 1.33 50.98 72.67 1.04 27.43 

Std. 
Dev. 

2.18 0.26 1.16 6.30 3.34 11.64 10.01 0.04 0.06 0.10 3.65 3.96 0.14 3.74 

CV 0.39 0.70 0.78 0.24 1.50 0.36 0.26 0.02 0.03 0.07 0.07 0.05 0.14 0.14 

Min 3.20 0.14 0.44 14.90 0.00 20.20 23.00 2.61 1.73 1.15 46.90 66.00 1.00 19.00 

Q1 3.95 0.18 0.69 21.65 0.20 23.60 29.40 2.72 1.80 1.26 47.60 70.00 1.00 26.00 

Median 5.35 0.31 1.05 26.35 0.95 30.05 39.30 2.73 1.82 1.34 50.50 73.00 1.00 27.00 

Q3 6.65 0.47 1.75 29.90 3.10 37.60 48.10 2.76 1.88 1.41 53.45 74.50 1.00 30.00 

Max 11.00 1.00 4.40 37.70 11.70 58.50 52.30 2.77 1.95 1.49 58.40 81.00 1.50 34.00 

Fraction: Coarse 

n 7 7 7         7   

Mean 9.26 0.09 3.94         76.71   

Std. 
Dev. 

5.87 0.04 4.14         1.89   

CV 0.63 0.46 1.05         0.02   

Min 4.70 0.04 0.97         74.00   

Q1 5.20 0.05 1.00         75.00   

Median 7.30 0.09 3.00         77.00   

Q3 13.00 0.13 3.60         77.00   

Max 21.00 0.16 13.00         80.00   

Fraction: Fine 

n 7 7 7         7   

Mean 5.94 0.25 1.38         65.71   

Std. 
Dev. 

1.37 0.18 0.59         4.57   

CV 0.23 0.71 0.43         0.07   

Min 4.50 0.11 0.46         58.00   

Q1 4.80 0.11 0.97         61.00   

Median 5.10 0.20 1.40         68.00   

Q3 7.40 0.46 1.50         68.00   

Max 7.80 0.56 2.40         71.00   

a Includes original bulk sediment for locations 01-09, pond locations P1-P3, and all core sections for locations G1 and G2  
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Box plots. Box plots of the sample data distribution for TOC, OC, soot, and O&G measured in 
the fine and coarse sediment fractions are shown in Figure 2. Organic matter phases were 
expressed as mass for statistical comparison between the fine and coarse fractions, and as percent 
of total (individual phase) mass reporting to each fraction in the box plots (for similarity of scale 
and visual clarity). OC and O&G mass were significantly higher in the fine fraction than in the 
coarse fraction, while soot and TOC mass did not differ significantly between the fractions. 

Figure 2. Box plots of sediment organic matter from seven sampled locations. Data for the coarse and 
fine fractions were expressed as percent of total organic mass in both fractions combined. 
Each box represents the interquartile range (25th to 75th percentiles) with the bar inside as 
the median. 

Ternary diagram. There are many different ways of plotting both physical and chemical data. 
Each method provides a different insight into the information contained in the data. Use of histo-
grams, univariate relative location maps, quantile-quantile (Q-Q) plots, scatterplots and other 
data analysis tools can reveal similarities and trends between groups of one or two variables, as 
detailed in multiple references on applied geostatistics (e.g., Isaaks and Srivastava 1989). The 
ternary plot of particle size (Figure 3) provides a slightly different and more complete, three-
parameter representation of sample grain size distributions relative to each other than does the 
plan view and the summary tables. Similarity of locations with respect to their grain size distri-
butions is indicated by proximity within the plot. 
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Figure 3. Ternary diagram of Chicago Area CDF sediment particle size composition. White circles are 
terrestrial, locations and orange circles are pond locations. Both were analyzed for grain size 
but not contaminants. Blue circles are terrestrial locations analyzed for grain size and conta-
minants. To determine percentages, read from a sample location diagonally down to the left to 
the % Sand + Gravel axis, diagonally up to the left to the % Clay axis, and horizontally to the 
right to the % Silt axis. As an example, blue lines indicate axis values for location 03 (20% 
sand & gravel, 52% silt, and 28% clay). 

Contour plots/isopach maps. Contour plots of sand distribution in the CDF were generated 
using percent sand and sediment thickness data from the twelve sampled locations. In Figure 4, 
estimated percent sand contours were superimposed over the CDF map. Figure 5 displays sand 
isopachs, or contours showing estimated sand volume beneath any square foot of surface area. 
Both plots required the inclusion of artificial data points along the west margin of the CDF 
because these areas were not sampled. The contour plots were prepared using the Department of 
Defense Groundwater Modeling System developed by ERDC and other federal government 
partners as a graphical interface to construct stratigraphic conceptual models. 
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Figure 4. Simple contours of percent sand conditioned on 12 sample locations (01-09 and P1-P3). Data 
on the west margin are synthetic low estimates (20 percent to 30 percent, with higher values 
at points west of the peak at P3). These control points along the western boundary are neces-
sary to suppress extreme extrapolation and generate reasonable contours. 
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Figure 5. Sand isopach map providing areal estimates of the sand volume (cubic feet) beneath any 
square foot of surface area. Values are calculated by multiplying percent sand by the local 
sediment thickness placed in the CDF facility. In the absence of data, sediment at the west 
margin was assumed to be two feet thick and containing 20-30 percent sand (as in Figure 4); 
again, these synthetic control points are needed to generate reasonable contours by sup-
pressing extrapolation artifacts. 

Ordination plot. To determine the similarity among sampling locations based on physical 
parameters, data for grain size and organic matter (OC, soot, O&G) from the original fraction 
were included in a multivariate statistical analysis known as non-metric multi-dimensional scal-
ing (MDS) (Clarke and Warwick 2001). MDS can be used to construct a two-dimensional map 
or representation of sample locations based on their statistical similarity to each other, 
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determined using either a similarity index or a distance measure. The resulting map, called an 
ordination plot, provides a visual display of how “close” (similar) the locations are to each other 
based on measured values of the multiple parameters included in the analysis rather than on geo-
graphic distance, as in a conventional map. Because the MDS similarities among locations are 
relative, the axes of the ordination plot are shown without scales (hence, “non-metric”), and the 
plot can be inverted or rotated in any direction. To show groups of similar locations, cluster 
analysis results are superimposed on the plot as rings of increasing size corresponding to 
increasing values of the distance measure. 

The ordination plot for locations 01-09 and P1-P3 is shown in Figure 6. The size of the bubbles 
in Figure 6 is proportional to percent sand at each location; colors also indicate ranges of percent 
sand. Locations cluster into five groups: P3 and 08; P2 and 09; 06 and 07; 01, P1 and 03; and 04, 
05 and 02. The first two groups form a larger cluster corresponding to locations near the central 
and southern part of the CDF. This appears to be the area with the most sand. The remaining 
three groups also form a larger cluster corresponding to locations in the northern part of the 
CDF. Note that each of the pond samples falls into a different group, negating the pre-sampling 
assertion that these locations would be predominantly fine. This may be a result of the site 
geometry in this case, where flow away from the discharge points was constrained by the 
opposing bank of the CDF. 

Figure 6. Ordination plot showing similarity of sample locations based on grain size and organic matter 
analyses for the bulk sediment. The size of the sample circles is proportional to percent sand 
at each location. Surrounding rings are superimposed from cluster analysis and indicate clus-
ters of increasingly similar locations as rings become smaller. 

The location similarities easily observed in the ordination plot can also be discerned in the ter-
nary plot (Figure 3), which is based only on grain size, thus indicating that differences in organic 
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matter composition among locations are generally slight and do little to distinguish one location 
from another in this case. 

Theoretically, the ordination plot, in conjunction with contour plots, may be useful in establish-
ing preliminary excavation boundaries. In this case, the results obtained with the ordination plot 
seem intuitive, however, and would probably have been reached on the basis of the preceding 
information. The ordination plot remains a tool that is relatively easy to utilize and that may be 
more useful in analysis of larger sets of data where comparisons of multiple site parameters are 
not as readily made. The tool may be particularly valuable nonetheless, even for small data sets, 
in discriminating between sample sites on the basis of chemical concentrations, since there are 
typically many more parameters to be compared. 

Comparison to material specifications. The physical properties would normally also be 
compared to the desired properties in the target fraction to determine whether the material will be 
suitable without amendment or processing. For example, sand recovered for beach nourishment 
will typically have a limitation on the percent fines it can contain. Because separation processes 
are not 100 percent efficient, some of the desired fraction may have to be sacrificed in order to 
meet such specifications, or additional cleaning steps may be required in order to remove unde-
sirable phases. If the engineering properties are not compatible with the material specifications, 
amendment with other materials may be required. For the Chicago Area CDF, no material speci-
fications have been determined as yet. 

CHEMICAL CHARACTERIZATION 

Sample selection. Physical properties are generally less costly to determine than contaminant 
concentrations, and are often measured in all samples, while chemical analysis is sometimes per-
formed only on a selected subset deemed to be representative based on location, type of material, 
or other information. At the Chicago Area CDF, the number of samples taken for chemical anal-
ysis was largely determined by budgetary constraints. Seven of the 14 samples taken were 
selected for chemical analysis (locations 01, 02, 04, 06, 07, 08, and 09). These samples reflected 
a cross section of the CDF, and were located so that the results might be used to infer concentra-
tions expected in nearby samples that were not analyzed for chemical contaminants. In general, 
further sampling and analysis may be necessary if the initial sampling results are inadequate to 
fully characterize the materials in the entire CDF with the necessary level of confidence. The 
need for additional sampling will be evaluated further through comparison to criteria and the 
uncertainty analysis. 

Contaminant concentration summary statistics. All metals and PAHs included in the 
chemical analyses were detected in at least some of the CDF samples. Nine of 12 metals and all 
PAHs, except acenaphthylene and dibenzo(a,h)anthracene, were detected in all sediment fractions 
from all seven locations. PCBs were analyzed as seven Aroclor mixtures, but only Aroclors 1242 
and 1254 were detected in any samples. Total PCB was therefore calculated as the sum of these 
two Aroclors. Nondetects are handled a variety of ways depending upon the objectives of the anal-
ysis. In this case, for computation of descriptive statistics, nondetects were assigned values equal to 
half of the reporting limit. This assumption is consistent with instructions for evaluating com-
pliance with remediation objectives in Illinois Environmental Protection Agency (1997). However, 
other approaches may be more appropriate, given that remediation and beneficial use objectives are 
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not entirely consistent. This was not a crucial issue for the purposes of this analysis, but methods of 
evaluating data sets that do not require assumptions regarding the nondetects are available (Clarke 
et al. in review). Descriptive statistics for the COCs, grain size categories, and organic matter mea-
surements in each sediment fraction are given in Tables 3 and 4. 

Table 4. Descriptive statistics for contaminants in Chicago Area CDF sediment samples.

Analyte 
Class Contaminant 

Sediment 
Fraction Mean 

Upper 95% 
Confidence 
Limit  

Standard 
Deviation 

CV 
(%) 

Relative 
Error (% of 
Mean) N 

Number 
of Non-
detects 

Metal, 
mg/Kg 

Arsenic Coarse 7.29 9.74 3.35 46 40 7 0 

Fine 14.26 17.56 4.49 32 27 7 0 

Original 13.90 16.84 4.00 29 25 7 0 

Barium Coarse 36.74 53.15 22.34 61 53 7 0 

Fine 58.04 72.64 19.88 34 30 7 0 

Original 55.77 64.82 12.32 22 19 7 0 

Beryllium Coarse 0.38 0.50 0.17 45 39 7 0 

Fine 0.68 0.82 0.19 28 24 7 0 

Original 0.69 0.83 0.19 28 24 7 0 

Cadmium Coarse 0.45 0.63 0.25 55 48 7 0 

Fine 2.01 2.93 1.26 62 54 7 0 

Original 1.67 2.32 0.89 54 47 7 0 

Chromium Coarse 18.13 22.34 5.74 32 28 7 0 

Fine 52.90 67.52 19.90 38 33 7 0 

Original 47.83 60.35 17.05 36 31 7 0 

Chromium, Hexavalent Coarse 0.91 1.51 0.81 89 77 7 3 

Fine 0.45 0.59 0.19 41 35 7 6 

Original 0.62 1.04 0.58 95 83 7 5 

Copper Coarse 28.73 35.55 9.29 32 28 7 0 

Fine 72.23 92.5 27.61 38 33 7 0 

Original 67.34 83.3 21.73 32 28 7 0 

Lead Coarse 70.09 102.3 43.79 62 54 7 0 

Fine 195.96 272.1 103.63 53 46 7 0 

Original 175.01 232.4 78.09 45 39 7 0 

Mercury Coarse 0.17 0.28 0.15 93 81 7 0 

Fine 0.29 0.49 0.28 98 85 7 0 

Original 0.26 0.42 0.22 83 72 7 0 

Nickel Coarse 19.19 23.97 6.52 34 30 7 0 

Fine 38.47 47.18 11.86 31 27 7 0 

Original 34.36 43.96 13.07 38 33 7 0 

Selenium Coarse 0.39 0.57 0.24 60 52 7 6 

Fine 0.69 0.92 0.32 46 40 7 2 

Original 1.02 1.41 0.54 53 46 7 7 

Silver Coarse 1.22 3.29 2.81 230 200 7 4 

Fine 1.30 2.72 1.94 149 130 7 0 

Original 1.25 2.70 1.98 159 139 7 4 

(Continued)
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Table 4. (continued) 

Analyte 
Class Contaminant 

Sediment 
Fraction Mean 

Upper 95% 
Confidence 
Limit  

Standard 
Deviation 

CV 
(%) 

Relative 
Error (% of 
Mean) N 

Number 
of Non-
detects 

Metal 
TCLP, 
µg/L 

Arsenic, TCLP Coarse 7.54 8.41 1.18 16 14 7 0 

Barium, TCLP Coarse 452.43 531.3 107.33 24 21 7 0 

Beryllium, TCLP Coarse 0.57 0.74 0.24 41 36 7 1 

Cadmium, TCLP Coarse 1.19 1.78 0.81 68 59 7 2 

Chromium, TCLP Coarse 2.00 2.74 1.00 50 44 7 1 

Copper, TCLP Coarse 2.28 3.32 1.42 62 54 7 6 

Lead, TCLP Coarse 152.30 301.5 203.12 133 116 7 0 

Mercury, TCLP Coarse 0.02   0.00 0 0 7 4 

Nickel, TCLP Coarse 85.73 102.0 22.20 26 23 7 0 

Selenium, TCLP Coarse 3.59   0.00 0 0 7 7 

Silver, TCLP Coarse 1.04   0.00 0 0 7 7 

Zinc, TCLP Coarse 880.00 1179 407.77 46 40 7 0 

PAH, 
mg/Kg 

2-Methylnaphthalene Coarse 0.54 0.68 0.20 37 32 7 0 

Fine 0.44 0.71 0.37 85 74 7 0 

Original 0.61 1.20 0.79 130 113 7 0 

Acenaphthene Coarse 0.70 0.94 0.33 47 41 7 0 

Fine 0.40 0.55 0.20 50 44 7 0 

Original 0.47 0.79 0.44 93 81 7 0 

Acenaphthylene Coarse 0.26 0.32 0.08 33 29 7 0 

Fine 0.12 0.15 0.04 32 27 7 1 

Original 0.16 0.24 0.11 71 61 7 1 

Anthracene Coarse 0.93 1.29 0.49 53 46 7 0 

Fine 0.37 0.49 0.16 44 38 7 0 

Original 0.49 0.68 0.26 53 46 7 0 

Benzo(a)anthracene Coarse 1.95 2.72 1.05 54 47 7 0 

Fine 0.75 0.94 0.26 34 30 7 0 

Original 1.23 1.75 0.72 58 51 7 0 

Benzo(a)pyrene Coarse 1.81 2.51 0.95 53 46 7 0 

Fine 0.62 0.83 0.29 48 41 7 0 

Original 0.98 1.41 0.59 60 52 7 0 

Benzo(b)fluoranthene Coarse 2.18 3.10 1.25 57 50 7 0 

Fine 0.94 1.20 0.35 38 33 7 0 

Original 1.33 1.88 0.75 56 49 7 0 

Benzo(k)fluoranthene Coarse 0.93 1.38 0.62 67 58 7 0 

Fine 0.25 0.33 0.11 46 40 7 0 

Original 0.39 0.59 0.26 66 58 7 0 

Benzo(g,h,i)perylene Coarse 1.05 1.50 0.62 59 51 7 0 

Fine 0.35 0.45 0.15 42 37 7 0 

Original 0.53 0.74 0.29 56 49 7 0 

Chrysene Coarse 2.30 3.18 1.20 52 45 7 0 

Fine 0.79 1.06 0.38 48 42 7 0 

Original 1.28 1.90 0.84 66 57 7 0 

Dibenzo(a,h)anthracene Coarse 0.47 0.60 0.19 40 35 7 0 

Fine 0.16 0.23 0.09 52 46 7 2 

Original 0.26 0.37 0.15 56 49 7 0 

(Continued)
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Table 4. (concluded) 

Analyte 
Class Contaminant 

Sediment 
Fraction Mean 

Upper 95% 
Confidence 
Limit  

Standard 
Deviation 

CV 
(%) 

Relative 
Error (% of 
Mean) N 

Number 
of Non-
detects 

PAH, 
mg/Kg 

Fluoranthene Coarse 3.46 4.77 1.78 52 45 7 0 

Fine 1.48 1.84 0.48 32 28 7 0 

Original 2.09 2.85 1.03 49 43 7 0 

Fluorene Coarse 0.78 1.20 0.57 74 64 7 0 

Fine 0.47 0.60 0.17 37 32 7 0 

Original 0.57 0.81 0.32 57 49 7 0 

Indeno(1,2,3-cd)pyrene Coarse 1.12 1.58 0.63 56 49 7 0 

Fine 0.41 0.52 0.16 39 34 7 0 

Original 0.66 0.87 0.29 44 38 7 0 

Naphthalene Coarse 2.79 7.07 5.84 210 182 7 0 

Fine 4.16 11.24 9.64 232 202 7 0 

Original 6.68 18.77 16.46 246 214 7 0 

Phenanthrene Coarse 3.51 5.33 2.47 70 61 7 0 

Fine 1.48 2.16 0.93 63 55 7 0 

Original 2.34 3.66 1.80 77 67 7 0 

Pyrene Coarse 3.51 4.94 1.96 56 49 7 0 

Fine 1.65 2.16 0.70 42 37 7 0 

Original 2.19 3.23 1.42 65 56 7 0 

PCB, 
mg/Kg 

Aroclor 1242 Coarse 0.65 1.13 0.66 101 87 7 0 

Fine 0.85 1.50 0.88 103 90 7 1 

Original 1.47 2.66 1.62 110 95 7 1 

Aroclor 1254 Coarse 0.27 0.39 0.17 61 53 7 0 

Fine 0.27 0.39 0.17 62 54 7 1 

Original 0.23 0.40 0.23 103 90 7 2 

Total PCB Coarse 0.92 1.48 0.75 82 71 7 0 

Fine 1.12 1.88 1.03 91 80 7 1 

Original 1.70 3.02 1.80 106 92 7 2 

 

Box plots provide a visual comparison of contaminant levels in the different sediment frac-
tions, reflecting the interquartile range (25th to 75th percentiles) and the median. For example, 
median PAH concentrations were consistently higher in the coarse fraction (Figures 7 and 8), 
indicating that further evaluation of the composition of that fraction will be necessary if the con-
centrations are high enough to be problematic with respect to the intended BU placement and the 
applicable criteria. In only one sample did PAH concentrations tend to be higher in the fines 
(location 08). The elevated PAHs in the coarse fraction may be attributable to the presence of 
soot, which occurred in higher concentrations in the coarse fraction than in the fine fraction (Fig-
ure 2). Contaminant relationships with organic phases should be explored through correlation 
and regression analysis, in order to identify appropriate unit operations for separation. In some 
cases (including the case study), however, correlations can be difficult to establish. Where con-
taminant concentrations present an impediment to BU, physical testing may then be required to 
empirically establish a contaminant reduction approach. 
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Figure 7. Box plots of PAH concentrations in bulk sediment (Original) and Fine and Coarse sediment 
fractions. B[k]F, benzo(k)fluoranthene; B[ghi]P, benzo(g,h,i)perylene; Anth, anthracene; Naph, 
naphthalene; Ace, acenaphthene; Fle, fluoranthene; 2MeNa, 2-methyl naphthalene; Db[ah]An, 
dibenzo(a,h)anthracene; Acy, acenaphthylene. 
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Figure 8. Box plots of PAH concentrations in bulk sediment (Original) and Fine and Coarse sediment 
fractions. Phe, phenanthrene; Pyr, pyrene; Fla, fluoranthene; B[b]F, benzo(b)fluoranthene; 
Chr, chrysene; B[a]A, benzo(a)anthracene; B[a]P, benzo(a)pyrene; I[123cd]P, indeno(1,2,3-
cd)pyrene. 

Ordination plots. These plots were generated for chemistry data, using an entire class of con-
taminants (e.g., metals or PAHs) in a MDS analysis. Figure 9 illustrates a typical result obtained 
for the metals, and Figure 10 displays a typical result obtained for the PAHs. Groupings vary 
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slightly, but for metals, the one sample consistently found to fall outside all of the sample groups 
was location 09, and for PAHs, location 06. These plots can also be used to display the relative 
concentrations of any contaminant included in the MDS, for example chromium in the metals 
MDS (Figure 9) and acenaphthylene in the PAH MDS (Figure 10). 

Figure 9. Ordination plot generated using MDS analysis showing similarity of metals concentrations (for 
all metals) in coarse fraction from different sample locations. Bubble sizes indicate relative 
concentrations of chromium (mg/Kg). 

Figure 10. Ordination plot generated using MDS analysis showing similarity of PAH concentrations (for all 
PAHs) in coarse fraction from different sample locations. Bubble sizes indicate relative 
concentrations of acenaphthylene (μg/Kg). A square root data transform was employed to 
improve clarity of the plot. 
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Q-Q plots, histograms and other tests of distribution. The frequency distribution of the 
data (e.g., normal, lognormal or non-normal) will determine the statistical tools and models 
appropriate for a particular data set. Distribution assumptions about the data can be evaluated 
using methods such as Shapiro-Wilk’s test for normality, histograms, and quantile-quantile 
(Q-Q) plots. Such methods can be valuable in the selection of the most appropriate measures of 
central tendency (e.g., mean or median), confidence intervals (e.g., normal, lognormal, gamma, 
or nonparametric), and possible data transformations (e.g., logarithms) for use in subsequent sta-
tistical analyses. 

Figure 11 shows the histograms for three PAHs, with likely distributional curves. The distribu-
tional curves are seen to be skewed, suggesting that the data for these PAHs follow a lognormal 
or gamma distribution rather than the symmetrical normal distribution. 

Figure 11. Histogram for the PAHs fluoranthene, phenanthrene, and pyrene (all sediment fractions). 

Q-Q plots display the ordered data observations against the theoretical quantiles of the distribu-
tion of interest, and often include the regression line relating the two. If the data are distributed 
as hypothesized, the data points will plot close to the regression line. The distributions of all 
contaminants were evaluated using Q-Q plots, and an example is given in Figure 12, showing the 
normal Q-Q plots for fluoranthene, phenanthrene, and pyrene. The ordered observations do not 
plot close to the regression lines, especially at the extremes of the data range, suggesting again 
that these data are not normally distributed. 
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Figure 12. Normal distribution Q-Q plots for the PAHs fluoranthene, phenanthrene, and pyrene (in all 
sediment fractions). 

Similarly, a lognormal Q-Q plot (the ordered logarithms of the data observations plotted against 
the theoretical normal quantiles) could be developed to verify the assumption of lognormality. 
Figure 13 displays Q-Q plots for the same three PAHs after the data have been transformed using 
base 10 logarithms. The central values as well as the tails of the transformed data plot closer to 
the standard normal regression lines than do the untransformed data (Figure 12), suggesting a 
good fit to the lognormal distribution. 

Analyses of association and prediction. Correlation analysis can be used to evaluate the 
strength of the association between chemical concentrations and physical properties such as car-
bon phases. Theoretically, where the association is somewhat consistent, regression analysis can 
enable estimation of contaminant concentrations in samples where contaminants were not meas-
ured, based on the corresponding physical properties. In this way, it may be possible to obtain 
more information regarding the material in the CDF at lower cost. 

Correlation analysis. Spearman’s rank correlation analysis was performed in order to eval-
uate the relationship between chemical analytes and carbon phases (TOC, OC, O&G, soot) in the 
sediment. Rank correlation is nonparametric and does not require assumptions about the shape of 
the data distributions. Only a few significant correlations (P < 0.01) were observed; all were 
positive, indicating increasing contaminant concentration with increasing amounts of organic 
matter) (Table 5). This result is as expected for hydrophobic organic contaminants, which have a 
high affinity for carbon phases; similar trends are sometimes observed for metals. Figure 14 
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illustrates the relationship of soot with barium and benzo(a)pyrene in the different sediment 
fractions. 

Figure 13. Lognormal distribution Q-Q plots for the PAHs fluoranthene, phenanthrene, and pyrene (in all 
sediment fractions). 

Table 5. Significant Correlations of Analytes with Sorptive Phases (Spearman’s ρ; 
P<0.01; n=7) 

 

Fraction 

Coarse Fine Original 

O&G 
 Arsenic Nickel 

Nickel 

TOC  Beryllium Lead 

Soot 

 Barium  

Chromium 

Benzo(a)pyrene 

Benzo(k)fluoranthene 

Fluoranthene 

OC Chromium, TCLP   
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Figure 14. Scatter plot showing the relationship of percent soot with the PAH benzo(a)pyrene and metal 
barium in each sediment fraction. Spearman’s correlation coefficients (ρ) are given for the sig-
nificant correlations, which occurred only in the fine fraction (solid triangle symbols). 

TCLP results are often, though not necessarily appropriately1, used to assess whether environ-
mentally unacceptable releases would occur as a result of leaching from the dredged material in 
the upland environment. In the Chicago Area CDF, TCLP testing was done only on the coarse 
sediment fraction, since that is the fraction targeted for recovery and beneficial use. Previous 
sorption studies suggest that sorption to hard carbon phases, such as soot, may be largely irre-
versible, while sorption to more amorphous phases, such as OC, is reversible under favorable 
conditions. Kan et al. (1998) observed that there was a component of irreversible sorption for 
each of three sediments studied and proposed a two-phase sorption model to describe reversible 
and irreversible components. Related research has focused on the existence of organic matter 
domains. Young, amorphous organic material demonstrates different sorption properties than 
more condensed or glassy forms such as soot, which has high specificity for organic contami-
nants (Karapanagioti et al. 2000, Kan et al. 1998). 

Correlation of the TCLP concentrations and organic matter phases was evaluated to assess the 
significance of this factor in the Chicago Area CDF sediments. The only significant TCLP 

                                                 
1 The TCLP test was designed to reflect conditions present in a municipal landfill; test conditions are not 
representative of the typical beneficial use placement. Extractions are conducted using either a sodium acetate buffer 
solution at pH 4.93 or an acetic acid solution at pH 2.88, depending on the alkalinity of the waste. A variety of 
leaching tests have subsequently been developed, such as the DIWET, RAINWET (ERS 2005) and SLRP (Price and 
Skogerboe 2000), that may provide more representative results for beneficial use of dredged material.  
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correlation observed was chromium with OC. The data (seven samples) show that the concentra-
tion of TCLP Cr increases with the concentration of OC, which would appear to suggest higher 
mobility for OC-associated Cr. However, the geochemistry behind this trend is unclear and there 
is some uncertainty associated with the data, as one of the seven samples was below and two 
were near the reporting limit. 

Observed concentrations in the separate fractions may be helpful in inferring what processes are 
responsible for contaminant levels in the target fraction. In this case, concentrations of all metals 
except barium, hexavalent chromium, mercury, and silver were significantly higher in the fine 
and/or the original sediment fractions than in the coarse fraction1. The coarse fraction had signi-
ficantly higher concentrations of most PAHs than the fine fraction, however. These two observa-
tions suggest that carryover of fines into the coarse fraction could be responsible for metals con-
centration in the sand, but that this would not fully explain the higher concentrations of PAHs in 
the sand. PCBs did not differ significantly among the sediment fractions, suggesting that the 
associated phases are distributed throughout the different grain sizes. 

Simple linear regression analysis. To determine whether concentrations of any of the 
identified sorptive phases (soot, O&G, and OC) could be used to predict the concentrations of 
COCs in un-analyzed samples, simple linear regression analyses were performed on both 
untransformed and log10-transformed concentration data using the familiar ordinary least squares 
(OLS) method. Most OLS regressions were either nonsignificant (P ≥ 0.05), or were severely 
affected by influence points2 or outliers due to small sample size. Among the few significant 
regressions, the best example is the regression of arsenic on O&G shown in Figure 15. Although 
there is considerable scatter, all data points fall within the regression 95 percent confidence 
limits for prediction of individual values (dashed lines). The potential utility of this analysis is 
illustrated by superimposing two different criteria that might be applied to dredged material 
being considered for beneficial use. 

Multiple regression analysis. In practice, the single paired variable analysis is usually too 
simplistic to adequately represent the physical model, where sorption occurs in competition with 
multiple contaminants and multiple phases, and the results are not reliably predictive. A multiva-
riate approach may be more successful and more accurate in quantifying the desired relation-
ships. Multiple regression analysis, for example, examines the contribution of two or more pre-
dictor variables. OLS multiple regressions were done for organics and metals using O&G, soot, 
and OC as predictor variables, but these were significant predictors for only a very few 
contaminants. 

Entropy is another multivariate procedure that can produce more meaningful results than OLS 
regressions in some cases. Entropy fits linear regression models by taking prior assumptions 
about the parameters and errors to obtain parameter estimates. Estimates obtained by this method 
are biased, but regression mean squared error terms are expected to be smaller than those 
obtained from traditional regression methods. The method is reported to be more robust than 
conventional OLS regression for data sets where some distributional assumptions are violated, as 
when: outliers are present, predictor variables in the model are highly correlated, there are fewer 

                                                 
1 Analysis of variance and Tukey’s HSD means comparison test, P < 0.05 
2 Influence points are observations that unduly influence the slope of the regression line. 
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observations than parameters to estimate, or parameter estimates obtained from more traditional 
methods are counterintuitive (Personal communication SAS Technical Support August 04, 
2004). For example, parameter coefficients can be constrained to positive values using Entropy. 
Entropy procedures are used to solve economics problems where the desired parameter cannot be 
measured, and only non-experimental observational data are available (Golan et al. 1996). This is 
essentially analogous to the problem of estimating phase-specific concentrations when the phases 
cannot be effectively separated for direct measurement of contaminant concentration (Estes 
2005). The fractionation data sets are also good candidates for this procedure as they evidence 
some non-normality, collinearity, and instability of variance. Additionally, conventional regres-
sion methods produced negative coefficients having no physical significance. 

Figure 15. Linear regression of arsenic on percent oil and grease (by weight) for all sediment fractions 
combined. Diagonal solid and dashed lines indicate regression line and 95 percent confidence 
limits for prediction of individual values. Illinois and Indiana remediation objectives for arsenic 
in soil are also shown. 

To improve the predictive ability of the regression model (both OLS and Entropy), it can be use-
ful to reduce the full model by eliminating poor quality data points, including outliers and data 
whose values are uncertain (nondetects). Contaminant outliers were identified through an initial 
run of the Entropy model. For each contaminant, the predicted values obtained using Entropy 
were regressed by simple OLS against the observed concentrations, and the studentized resi-
duals1 were calculated. Since approximately 95 percent of studentized residuals will lie within 
the bounds (-2, 2) (Draper and Smith 1981), observations with studentized residuals > |2| were 

                                                 
1 A studentized (or standardized) residual is the residual (the difference between observed and predicted values) 
divided by its standard error; this puts the residuals for different variables on a similar scale. 
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considered to be outliers and were removed from the data set prior to the final multiple regres-
sion analyses. Predictor variables for the multiple regressions included soot, OC, and O&G, in a 
no-intercept model for all sediment fractions combined. A no-intercept model was employed in 
order to assign all the variability of the contaminant concentrations to the sorptive phases, rather 
than to the intercept (analogous to an unknown cause). This method has been found to be more 
successful in analysis of fractionation data than use of an unconstrained model. Outliers among 
the predictor variables were identified using Dixon’s test (Barnett and Lewis 1984) and were also 
removed prior to the reduced model regression analyses. 

The coefficients of determination (R2) calculated in the SAS Entropy and OLS regression models 
are not directly comparable. Therefore, the predicted contaminant concentrations obtained from 
each model were regressed against the actual observed concentrations using simple OLS to 
obtain comparable R2 for evaluation of the competing models. In a perfect model, all predicted 
concentrations would be identical to their respective observed concentrations and R2 would equal 
1. Removal of nondetects and outliers improved the predictive ability of both OLS and Entropy 
regression models for all contaminants (Figure 16), resulting in higher R2 as compared to the full 
OLS model. An extreme example, hexavalent chromium, is displayed in Figure 17. The data for 
hexavalent chromium included 14 nondetects and one outlier; eliminating these observations 
resulted in substantial improvement in predictive ability. For most contaminants, the OLS 
reduced model ultimately provided a slightly better fit than the Entropy reduced model 
(Figure 16). It is also clear that the sorptive phases soot, OC, and O&G were poor predictors of 
PAH concentrations in the CDF sediment samples. This was an unexpected result that was not 
fully explained by the data analysis conducted. A number of factors may have contributed to this. 
There is not a clear delineation between amorphous organic carbon (OC) and soot, for example. 
The soot measurement procedure is based on an arbitrary combustion temperature believed to 
remove most of the less condensed carbon phases from a sample. Pre-treating a sample at a dif-
ferent temperature would produce different measurements of soot and OC, which might have an 
impact on the resulting correlation analysis. Potentially there is some overlap of soot and OC 
measurements. Further, the sorptive phases may or may not exist as discrete phases. Contaminant 
association with a given phase might then be limited by layering of the phases on other particu-
lates, or on each other. Each soil and sediment is different, and it seems likely that the physical 
model is therefore different in each. Analytical limitations may have also contributed to poor 
correlations. There is potentially some overlap of O&G and PCBs measurement, for example, 
since some PCBs exist as an oily phase. Lastly, small sample size may have been a factor, but 
typically some association can be seen even with small samples, so this does not fully explain the 
lack of correlation here. 

UNCERTAINTY ANALYSIS is simply the quantification of variability in the parameters of 
interest. Quantification of variability is typically employed in the comparison of contaminant 
levels with applicable regulatory criteria, and is a necessary first step in the determination of 
sample size needed to estimate mean parameter values at a given level of confidence, or within a 
given margin of error. 
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Figure 16. Box plots of R2 for three multiple regression models of observed vs predicted analyte concen-
tration values: OLS full (Model 1), OLS reduced (Model 2), and Entropy reduced (Model 3). 
Reduced models have outliers and nondetects removed. Boxes show the 25th, 50th, and 75th 
percentiles of R2 while the whiskers indicate 5th and 95th percentiles (given sufficient number 
of analytes in a contaminant class). 

Estimates of variability. Analyte uncertainty encompasses both the variability in the quanti-
tative analysis of the analytes, and uncertainty surrounding their spatial distribution within the 
CDF. Analytical variability is assessed using standard quality assurance/quality control measures 
such as laboratory replicates. Spatial distribution uncertainty is addressed initially in the devel-
opment of the sampling plan, utilizing available information to inform sample site selection and 
compositing. Before selecting a location and initiating the compositing of samples, known fac-
tors such as sediment depth and differences between sediment grain size and organic matter 
should be considered. Spatial variation in such factors can be used as the basis for stratification 
in a sampling plan, resulting in concentration of samples in areas of greater economic interest 
(e.g., sandy areas), and leading to more efficient estimates of desired parameters than might be 
obtained from simple, randomized sampling. Following sample collection and analysis, the spa-
tial variation and uncertainty of the analytes of interest is quantified using measures such as 
variance, standard deviation, coefficient of variation (CV), and confidence limits. These tools 
can be used to assess the sufficiency of the data set in characterizing the CDF and the materials 
for their intended purpose. 
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Figure 17. Comparison of predicted and observed concentrations of hexavalent chromium resulting from 
three multiple regression models using sorptive phases (soot, OC, and O&G) as predictor 
variables. Open symbols are nondetects, filled symbols are detected concentrations, and the 
black symbol is a contaminant outlier. 

Standard deviation and CV for the CDF sediment analytes are shown in Tables 3 and 4. CV 
expresses the ratio of the standard deviation to the mean, with high values reflecting high varia-
bility in the results and low values reflecting little variability. For the Chicago CDF samples (all 
sediment fractions), CV ranged from 18 to 105 percent for organic phases, 24 to 150 percent for 
grain size fractions, 2 to 14 percent for other physical parameters, 22 to 230 percent for metals, 
16 to 133 percent for TCLP metals, 32 to 246 percent for PAHs, and 61 to 110 percent for PCBs. 

Eleven percent of analytes had CVs greater than 100 percent; only naphthalene and silver had 
CVs greater than 200 percent. Analytes with high CVs had highly variable concentrations in all 
three sediment fractions. Besides reflecting data variability, high CVs are often indicative of 
outliers. An example can be seen in Figure 18 where the coarse fraction soot concentration for 
location 01 is 13 percent, clearly an outlier, and the corresponding CV for coarse fraction soot is 
105 percent. While outlier removal is commonplace for improving the predictive function of 
regression models, it may be undesirable in other types of data analysis, such as comparison with 
other treatments or with criteria. In all situations, the data should first be examined to determine 
whether analytical or transcription errors may have occurred. If no inconsistencies in the results 
or procedures can be identified, the outlier may reflect a fairly random, but real, condition. 
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Figure 18. Impact of outlier on OLS regression of acenaphthylene vs. percent soot (for all sediment frac-
tions combined). 

Calculation of sample size. Estimates of variability can be used to calculate the approximate 
number of samples needed to detect a specified difference from numerical criteria. Using the 
general formula from Appendix D of the Inland Testing Manual (USEPA and USACE 1998) 
where n is the number of samples and d the difference from a fixed criterion value: 
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In Equation 1, z is the standard normal deviate or z-score corresponding to a selected confidence 
probability 1-α and desired power 1-β, and s2 is the sample variance. The final term of the equa-
tion (0.5z2

1-α) is a correction factor for small sample size and the use of the sample variance in 
place of the unknown population variance.1 Equation 1 is appropriate when a one-tailed compari-
son is needed, as when the objective is to demonstrate whether a parameter mean is less than 
some criterion. For a two-tailed comparison (e.g., where it is necessary to demonstrate that the 
mean of a parameter does not differ from some specified value), one would use a z-score 
reflecting a confidence probability of 1-α/2. 

To calculate the sample size needed to determine a mean within a measure of error at a given 
level of confidence 1-α, when no comparisons with criteria are needed, a simpler formula may be 
used: 

                                                 
1 A slightly more accurate formula uses Student’s t instead of z and does not require a correction factor, but does 
require iterative solution. 
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where CV is expressed as percent and d is the relative error expressed as percent of the mean. 

Table 4 gives the relative error for contaminants measured in each fraction, obtained by rear-
ranging Equation 2 to solve for d when n was the actual sample size used in the Chicago Area 
CDF characterization study. Assuming a normal distribution and 95 percent confidence level, 
relative errors ranged from zero to 214 percent of the mean and correlated closely with the CV. 
High CVs and high relative errors can be considered an indication of inadequate sampling. 

Figure 19 displays the approximate minimum required sample size, plotted against the observed 
CVs, using relative errors of 10, 25, 50 and 100 percent of the mean analyte concentration as d in 
Equation 2. If the acceptable relative error is high, for example, 100 percent of the mean, the 
minimum required sample size will be ten or less for all but the most variable analytes (those 
with CVs of 150 percent or more). Conversely, if extremely small relative error (10 percent) is 
desired, sample sizes quickly run into the hundreds or even thousands as analyte concentration 
variability increases. 

Figure 19. Minimum sample size required to estimate the mean analyte concentration with relative errors 
of 10, 25, 50, or 100 percent of the mean, plotted as a function of CV. Normal distribution and 
95 percent confidence level assumed. 

Comparison to criteria. Several remediation objective criteria were applied to the analysis of 
COC concentrations in the original Chicago Area CDF study (USACE 2006). These included the 
Illinois Environmental Protection Agency’s Tiered Approach to Corrective Action Objectives 
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(IEPA TACO) Tier I soil remediation objectives for residential properties, and the Indiana 
Department of Environmental Management Risk Integrated System of Closure (IDEM RISC) 
residential closure levels. Metals were also compared to IEPA TACO Concentrations of Inor-
ganic Chemicals in Background Soils for Counties within Metropolitan Statistical Areas, and 
PAHs were compared to available background values from the City of Chicago Department of 
Environment. Although designed for other uses, the Illinois and Indiana systems for evaluation 
of remediation objectives provide a set of guidelines that are potentially applicable for beneficial 
uses of dredged material. Failure to meet appropriately selected criteria indicates that further 
analysis may be needed in order to demonstrate material suitability for a given use. 

For the purposes of illustration, the values for TACO, background, and RISC criteria are given in 
Table 6, and for each fraction are compared to the COC mean and upper 95 percent confidence 
limit of the mean. In addition, the number of sample locations at which TACO or RISC criteria 
were exceeded was noted, except where background concentrations exceeded either TACO or 
RISC1. In that case, the number of sample locations exceeding background was noted. Selected 
criteria are indicated with bold text in Table 6. 

In the coarse fraction, the mean exceeded the selected criteria for one metal TCLP (lead), for six 
PAHs, and for total PCBs. Also in the coarse fraction, the upper confidence limit of the mean 
exceeded the selected criteria for lead and for TCLP nickel. Mean values exceeding selected cri-
teria are indicated in bold in Table 6. Shaded cells indicate the upper 95 percent confidence limit 
of the mean exceeded the selective criterion, but the mean did not. 

Whether or not the use of mean concentrations is appropriate in the evaluation of regulatory 
compliance and environmental exposure will be site specific. Regulatory requirements, planned 
beneficial use placement, potential for exposure or contaminant migration, and the degree of 
mixing that may be expected to occur when material is processed are all variables that might be 
considered. Where mean concentrations have been determined to be representative and appropri-
ate to the evaluation, the relative uncertainty of the mean is likely to be important to the decision-
making process. It may be desirable, for example, to demonstrate that the upper 95 percent con-
fidence limit of the mean (UCL95) is below the selected criterion, and this will impact the num-
ber of samples needed in the data set. 

The sample size needed to obtain a confidence interval of a certain width, given the observed 
variability, can be estimated using Equation 1; in this case, d is the difference between the mean 
concentration and the criterion. Figure 20 illustrates the PAH indeno(1,2,3-cd)pyrene as an 
example. An approximate confidence interval for the mean at a given relative error can be cal-
culated as the mean plus or minus the relative error (expressed as a decimal fraction) times the 
mean; these are represented by the black vertical bars in Figure 20 referenced to the right axis. 
As the acceptable relative error (horizontal axis) increases, the size of the confidence interval 
also increases and the required sample size (blue squares assuming normal distribution or green 
triangles assuming lognormal distribution, referenced to the left axis) decreases. Sample size in 
 

                                                 
1 Both IDEM and IEPA recognize it is unreasonable for states to require concentrations to be below background, and 
both remediation programs include site-specific approaches to establish background when these concentrations 
exceed the risk-based criteria (Personal communication with Richard Saichek, August 27, 2009). 
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Table 6. Comparison of Chicago Area CDF contaminant concentration results with available 
remediation criteria. Selected criterion and mean values exceeding selected criterion are in bold, 
shaded boxes indicate that 95% UCL exceeds the selected criterion (lower of TACO or RISC; or 
background if background > TACO or RISC). Individual exceedances refer to the number of 
locations exceeding the selected criterion. 

Analyte 
Class Contaminant 

Remediation Criteria 

Fraction 

Coarse Fine Original 

IEPA 
TACO Background

IDEM 
RISC 

Mean 
Result

No. of 
Individual 
Exceedances

Mean 
Result

No. of 
Individual 
Exceedances 

Mean 
Result

No. of 
Individual 
Exceedances

Metal, 
mg/Kg 

Arsenic 13 13 3.9 7.29 1 14.26 4 13.90 3 

Barium 5500 110 1600 36.74 0 58.04 0 55.77 0 

Beryllium 160 0.59 63 0.38 0 0.68 0 0.69 0 

Cadmium 78 0.6 7.5 0.45 0 2.01 0 1.67 0 

Chromium 230 16.2 38 18.13 0 52.90 5 47.83 5 

Chromium, hexavalent 230  38 0.91 0 0.45 0 0.62 0 

Copper 2900 19.6 920 28.73 0 72.23 0 67.34 0 

Lead 400 36 81 70.09 2 195.96 6 175.01 6 

Mercury 10 0.06 2.1 0.17 0 0.29 0 0.26 0 

Nickel 1600 18 950 19.19 0 38.47 0 34.36 0 

Selenium 390 0.48 5.2 0.39 0 0.69 0 1.02 0 

Silver 390 0.55 31 1.22 0 1.30 0 1.25 0 

Metal 
TCLP, 
µg/L 

Arsenic, TCLP 50    7.54 0     

Barium, TCLP 2000   452.43 0     

Beryllium, TCLP 4   0.57 0     

Cadmium, TCLP 5   1.19 0     

Chromium, TCLP 100   2.00 0     

Copper, TCLP 650   2.28 0     

Lead, TCLP 7.5   152.30 7     

Mercury, TCLP 2   0.02 0     

Nickel, TCLP 100   85.73 2     

Selenium, TCLP 50   3.59 0     

Silver, TCLP 50   1.04 0     

Zinc, TCLP 5000    880.00 0     

PAH, 
mg/Kg 

2-Methylnaphthalene    3.1 0.54 0 0.44 0 0.61 0 

Acenaphthene 570  130 0.70 0 0.40 0 0.47 0 

Acenaphthylene    18 0.26 0 0.12 0 0.16 0 

Anthracene 12000  51 0.93 0 0.37 0 0.49 0 

Benzo(a)anthracene 0.9 1.1 5 1.95 5 0.75 0 1.23 4 

Benzo(a)pyrene 0.09 1.3 0.5 1.81 5 0.62 0 0.98 2 

Benzo(b)fluoranthene 0.9 1.5 5 2.18 4 0.94 0 1.33 3 

Benzo(k)fluoranthene 9 1 39 0.93 0 0.25 0 0.39 0 

Benzo(g,h,i)perylene    1.05 0 0.35 0 0.53 0 

Chrysene 88 1.1 25 2.30 0 0.79 0 1.28 0 

Dibenzo(a,h)anthracene 0.09 0.2 0.5 0.47 7 0.16 3 0.26 3 

Fluoranthene 3100  880 3.46 0 1.48 0 2.09 0 

Fluorene 560  170 0.78 0 0.47 0 0.57 0 

Indeno(1,2,3-cd)pyrene 0.9 0.86 3.1 1.12 4 0.41 0 0.66 2 

Naphthalene 12  0.7 2.79 2 4.16 3 6.68 2 

Phenanthrene    13 3.51 0 1.48 0 2.34 0 

Pyrene 2300  570 3.51 0 1.65 0 2.19 0 

PCB, 
mg/Kg 

Total PCB 1  1.8 0.92 2 1.12 3 1.70 3 
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this example drops below ten as relative error increases above 45 percent of the mean. The actual 
CDF bulk sediment sample mean and 95 percent confidence interval for indeno(1,2,3-cd)pyrene 
are shown as the large blue circle corresponding to 0.66 on the right axis and relative error of 
38 percent on the horizontal axis. Although the sample mean is less than the IEPA TACO (red 
dashed line on the graph), the UCL95 slightly exceeds the TACO. Reading toward the left, the 
approximate upper confidence limit calculated from Equation 1 does not exceed the TACO at a 
point corresponding to relative error of approximately 35 percent of the mean, shown by the ver-
tical dotted reference line. The vertical reference line intersects with the normal distribution 
sample size line at a sample size of 15 (solid blue square). Thus, given the observed mean and 
variance and assuming normally distributed data, at least 15 samples would be required to 
demonstrate that the UCL95 does not exceed the remediation criterion. If the data were lognor-
mally distributed, the necessary sample size would be 10 (solid green triangle). 

Figure 20. Comparison of sample mean and 95 percent confidence interval (blue circle and error bars) 
for indeno(1,2,3-cd)pyrene in bulk sediment to IEPA TACO remediation criterion. Calculated 
minimum sample size assuming normal distribution (blue squares) and lognormal distribution 
(green triangles) referenced to left axis, and approximate normal confidence intervals (black 
vertical bars referenced to right axis), are shown as a function of increasing relative error. 
Solid square and triangle indicate minimum sample sizes that would be required to demon-
strate that the UCL95 does not exceed the TACO, assuming normal or lognormal distributions, 
respectively. 

Another permutation of the analysis reflected in Figure 20 would be the consideration of the 
maximum value of the data set. Some regulations will require that there be no exceedances of a 
given criterion, as demonstrated by the maximum observed sample value. This could potentially 
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be addressed using an upper tolerance limit, e.g., the 95 percent upper confidence limit of the 
95th percentile of the sample distribution. 

The median1 calculated minimum sample size for each of the classes of analytes is plotted 
against relative error in Figure 21, assuming normally distributed data. PCBs would require the 
largest sample sizes, reflecting a relatively high variability in this group. PAHs as a group also 
have slightly larger sample size requirements than the metals, organic matter phases, and sedi-
ment grain size categories. Median sample sizes for all groups are ten or less when the accepta-
ble relative error is at least 70 percent of the mean. 

Figure 21. Calculated median sample size for all classes of analytes in all sediment fractions plotted as a 
function of increasing relative error for assumed normally distributed data. 

This type of uncertainty analysis may be applied to existing data prior to sampling, in order to 
estimate the number of samples required, and after sampling to confirm the adequacy of the data 
set. If the data fail to meet data quality objectives, additional sampling may be considered. 

DATA LIMITATIONS: Data limitations need to be considered for their effect on the accuracy 
of the CDF characterization and their contribution to uncertainty of the analyses and conclusions. 

                                                 
1 The distribution of calculated sample sizes tends to be skewed, with several low sample sizes and a few extremely 
high sample sizes within a class of analytes. Although the maximum sample size would be conservative and 
seemingly desirable, it would likely also result in a prohibitively large sample number requirement. The median 
calculated sample sizes were therefore employed for the purposes of this comparison. 
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Small sample size and variability. Conclusions drawn from the analysis of data from the 
Chicago Area CDF are limited primarily by small sample size and by the high variability of 
many analytes. COCs and organic matter were analyzed from only seven locations, and grain 
size from 12 locations. Coefficients of variation were over 200 percent for naphthalene (all frac-
tions) and silver (coarse fraction), and over 100 percent for gravel, soot, silver, lead (TCLP), 
2-methylnaphthalene, and the PCB Aroclors in various sediment fractions. The combination of 
small sample size and high variability makes it difficult to use surrogate analytes, such as organic 
carbon measures, to predict concentrations of associated contaminants. 

Distribution assumptions. An additional limitation inherent in the attempt to determine 
minimum sample size for achieving a specified relative error, or for comparison with remedia-
tion objectives, is the necessity of assuming a statistical data distribution. In this technical note, 
the normal distribution was generally assumed for simplicity and ease of illustration. However, 
normality is not necessarily a realistic assumption for environmental data. For this data set, 
goodness of fit to normal and lognormal distributions was statistically assessed using the 
Shapiro-Wilk’s test for 44 COCs and organic matter phases in all sediment fractions. Distribu-
tional lack of fit was considered significant for P values < 0.05. Of the 44 analytes, 15 passed the 
test for normality, 39 passed for lognormality, 13 fit both distributions, and three did not signifi-
cantly fit either distribution. When ProUCL was used to calculate 95 percent upper confidence 
limits for COCs in each of the three sediment fractions, ProUCL recommended nonparametric or 
gamma distribution-based confidence limits for 43 percent of the COCs and normal confidence 
limits for the remainder. 

Nondetects. Nondetects (NDs) were reported in the contaminant concentration data for three 
metals (plus four additional metals in the TCLP analyses), two PAHs, and all Aroclors. Con-
forming to published Illinois EPA guidance for compliance with remediation objectives 
(TACOs), NDs were assigned values equal to half of the reported detection limit prior to data 
analysis. However, most experts in environmental data analysis no longer recommend substitu-
tion of detection limit-based values for NDs in analysis of censored data sets (e.g., Helsel 2005; 
USEPA 2007). A variety of statistical methods can be used instead for computation of summary 
statistics, comparison of groups, determination of association, or evaluation of trend. These 
methods utilize the entire data set, including the NDs. Depending upon the software package 
used, the ND may be set equal to the RL (as a placeholder value) but also coded as ND, and this 
factors into the algorithm that is then utilized in estimating parameters for the data set. ProUCL, 
for example, provides appropriate methods for both censored and uncensored data for calculation 
of summary statistics and UCL95s, hypothesis testing, goodness of fit to various statistical dis-
tributions, tests for outliers, and estimation of background threshold values. Nonparametric tests 
circumvent substitution of RL-dependent values by employing the order of the observations, 
rather than their values. When some of the RLs are greater than some of the detected values, 
however, a simple nonparametric test cannot be used. In this case, appropriate censored data 
methods can be used to estimate values for NDs to permit standard statistical tests. 

SUMMARY: The procedures and analyses in this technical note illustrate methods useful for 
characterizing a CDF for potential beneficial reuse. The process will typically include physical 
characterization to determine grain size, organic matter content, and spatial distribution of the 
desired material. Chemical characterization will also be performed to assess the presence, 
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concentrations, and spatial distribution of contaminants of concern, and to compare COC levels 
with applicable remediation criteria. Lastly, uncertainty analysis will be completed to determine 
whether sampling was sufficient for adequate characterization. 

The initial challenge in the CDF characterization process is determining the number and location 
of samples needed for analysis of physical and chemical parameters. A determination of sample 
size requires estimates of parameter variability and decisions regarding what levels of 
uncertainty (margins of error) and statistical confidence are acceptable. If previously collected 
data are available for the materials in the CDF (typically, this will be data obtained on in-situ 
sediments, prior to dredging), these may provide standard deviations for use in sample size 
estimation. Although the number of samples should not be determined solely by budget, the 
sample size equations can be rearranged to calculate what margin of error can be expected for 
estimation of mean COC concentration given a specified sample size, variability estimate, and 
confidence level. 

In the Chicago Area CDF characterization, COCs were analyzed from a very limited number of 
locations. Twelve grain-size samples allowed for the construction of a ternary diagram and the 
plotting of sand contours and isopachs on a map of the CDF. In practice, reliable determination 
of analyte spatial distribution may require collection of a much larger number of samples at reg-
ular intervals on a grid and the application of geostatistical techniques such as kriging. At least 
some samples should be taken around the perimeter of the facility to provide information 
regarding boundary conditions and facilitate development of more accurate contour plots and 
isopachs. However, if enough is known about the facility to make intuitive assumptions about 
material thicknesses at the facility boundaries, it may not be necessary to sample the entire peri-
meter. Additional samples in areas of particular interest (zones of expected high sand content, in 
this case) may be more important, particularly if sampling resources are limiting. 

Concentrations of many of the COCs were quite variable, with relative errors (d in Eq. 2) ranging 
from 14 to 200 percent of the mean for metals, 29 to 182 percent for PAHs, and 53 to 87 percent 
for PCBs. Given the observed variability of the coarse sediment fraction data, to estimate mean 
COC concentration with a 30 percent relative error for the most variable COCs would require as 
many as 506 samples for silver, 420 samples for naphthalene, and 171 samples for TCLP lead. The 
median sample sizes needed to estimate mean COC concentration with a 30 percent relative error 
would be 33 for metals, 20 for TCLP metals, 29 for PAHs, and 65 for PCBs. Sample sizes to 
estimate mean COC concentrations with 100 percent relative error would range from two to 47. 

Sediment organic carbon phases were less variable than some of the COCs, with relative errors 
ranging from 40 to 92 percent of the mean. It may be possible to use organic phase concentra-
tions as surrogate measures for the prediction of at least some COCs, especially if historic data 
are available and reasonable predictive equations can be developed. If historic data and organic 
phase predictive equations give strong evidence that a class of contaminants (PCBs, for example) 
is not present in concentrations of concern, it may be possible to achieve cost savings by elimi-
nating that class of contaminants from future analyses (such as in analysis of confirmatory sam-
ples taken during excavation). In the Chicago Area CDF, predictive equations developed based 
on organic phase data did provide reasonable estimates of certain metals and PCBs, but only 
after nondetects and outliers were identified and removed. 
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CONCLUSIONS: Clearly, the use of a combination of statistical and graphical data evaluation 
tools can provide useful insights into the character and variability of materials within a CDF. 
Some of the measures presented here will have greater utility for larger data sets, due to the fact 
that sample comparisons are more difficult to make by simple observation; ordination plots are a 
good example of this. It was apparent from the applied case study that unusual site geometry 
may make a priori estimation of material deposition more difficult, as settling and flow of 
hydraulically placed material is affected. The evaluation also illustrated the importance of 
obtaining samples from each side of the site in order to appropriately constrain both 2- and 
3-dimensional models with site specific data. If sufficient a priori information regarding material 
thickness at the site boundaries exists, however, then resources may be better focused on addi-
tional sampling in areas of particular interest. 

Where possible, uncertainty analysis should be applied before sampling as well as after, in order 
to better ensure that the data set obtained will, and does, meet data quality objectives. More in-
depth information regarding development of a sampling plan designed to reduce uncertainty is 
described in the companion document to this technical note (Clarke et al. in review). 

A concurrent laboratory effort is being conducted to evaluate the impact of sediment sample 
extraction size on data variability. Results of that effort will be synthesized into a summary doc-
ument incorporating the lessons learned from the bench testing, data analysis and literature 
search. 
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