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Executive Summary 

Streambank stabilization affects many of the structural characteristics and 
functions of a stream.  These impacts can be viewed as either adverse or 
beneficial, depending upon the perspective of the individual assigning values to 
the system.  The prevailing philosophy in ecosystem management is that physical 
alterations of the structure and character of an ecosystem are most significant if 
they also impact process-based functions.  A series of 15 river and riparian 
functions are presented in five categories, against which the impacts of riprap 
stabilization treatments are assessed. 

Among the general categories, erosion control measures are most likely to 
impact morphological evolution, sediment processes, and habitat.  They are least 
likely to impact the stream’s hydrologic character and the chemical processes and 
pathways. Of the 15 specific functions, stream evolution, riparian succession, 
sedimentation processes, habitat, and biological community processes are most 
likely to be impacted.  

Riprap is a material consisting of graded stone.  The stone source may vary, 
but is typically blasted, grizzled, and screened at a quarry.  This material can be 
used in a variety of ways to stabilize streambanks.  Distinctions among various 
bank stabilization measures can be made on the basis of 1) how they work, 2) the 
materials used, 3) their geometry and position in the landscape, and (in some 
cases), 4) the character of stream system to which they are applied.  Stabilization 
measures in four basic categories were evaluated for the likely impact to the basic 
functions.  

Relative to the other categories of stabilization alternatives, energy reduction 
measures, which include a variety of techniques to lower the energy gradient of 
the stream, have the greatest potential impacts.  Intermittent flow deflection 
structures that extend outward from the bank and force the higher velocities 
streamward generally have the least overall potential impact.  Slope stabilization 
and armor measures, which include placing stone along the bank parallel to the 
flow, have intermediate impact potential.   

Functions most likely to be impacted by stabilization measures include stream 
evolution processes, riparian succession, sedimentation processes, habitat, and 
biological community interactions.  Those least likely to be impacted include the 
functions related to hydrologic balance and chemical and biological processes.  
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The nature and significance of the impacts depend upon the specific measure 
employed, and the characteristics of the stream system on which it is used. 

Many of the impacts associated with erosion control measures are 
independent of the material used to accomplish the erosion control.  Most of the 
impacts associated with an armor structure, for example, are the same regardless 
of whether the armor material is riprap, concrete, vegetation, or a synthetic 
product.  Material-related impacts are generally associated with the habitat 
characteristics of the structure, and the influence of the structure on riparian 
vegetation. 

The impacts associated with the use of riprap can be minimized by 
modification of structures used to provide for erosion control.  When used as an 
armor material, riprap impacts can be minimized by reducing the height of the 
protection, by increasing the slope of the embankment, and by sizing the riprap in 
order to afford adequate habitat within the aquatic environment.  Planting the 
interstices of a riprap revetment with woody vegetation can also reduce impacts.  
Similar modifications can be employed to minimize the impacts associated with 
riprap used as toe protection in a slope stabilization project. 

Measures to reduce the impacts associated with flow deflection structures 
incorporating riprap include carefully locating the structures so as to minimize 
impacts to the riparian corridor, and modifying the structure design in order to 
generate desired habitat characteristics within the aquatic environment.  Structure 
designs that result in diverse conditions or that restore or generate necessary 
habitat can have generally positive impacts.  Some research suggests that the size 
and gradation of stone for both flow deflection and armor structures can be 
adjusted to reduce impacts. 

Most impacts caused by energy reduction structures are related to the height 
of the structure.  High structures significantly decrease the energy and water 
surface slope, induce sediment deposition upstream and scour downstream, and 
can present a barrier to the migration of aquatic organisms.  These impacts can be 
minimized by replacing single structures with a series of low-head structures, and 
by incorporating structural modifications to improve sediment continuity and fish 
passage. 

 



Chapter 1     Overview 1 

1 Overview 

Riprap (graded stone or crushed rock) is the most common material used in 
the stabilization of streambanks and shorelines.  The continued use of this 
material as fill has been challenged in many locations by resource agencies due to 
concern for potential environmental impacts.  Moratoriums on the use of riprap 
have been established or are being pursued by the National Marine Fisheries 
Service (NMFS), the U.S. Fish and Wildlife Service (USF&WS), and several 
State Environmental Quality offices.  U.S. Army Corps of Engineer Districts 
currently invest considerable manpower interacting with applicants and resource 
agencies on this issue.  These efforts are hampered by a number of factors 
including inconsistencies in the literature, differences among ecosystems, 
conflicting agency missions and directives, and insufficient knowledge.  Lacking a 
sound procedure for the objective evaluation of potential impacts and given the 
ambiguous nature of the literature on the matter, decisions are often clouded by 
biased judgment. 

To address this problem, research was initiated under the Wetlands 
Regulatory Assistance Program (WRAP) to develop guidelines for the evaluation 
of the environmental impacts and benefits of riprap.  The first step in this research 
was the formulation of an annotated bibliography of related publications that 
could serve as a basis for regional and site-specific evaluations, and that 
characterizes the current state of knowledge on this subject.   

This document presents the results of the literature review.  Citations are 
presented in the following sections, with an annotation summarizing the study 
findings.  Each citation is appended with one or more category numbers that 
indicate the major thrust of the reference, based on the following: 

1. Methods of construction/engineering aspects. 

2. General impact considerations. 

3. Salmonid-specific impacts. 

4. Salmonid habitat/life requisites. 
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5. Evaluation of riprap pros and cons. 

6. Assessment methods for riprap and riverine habitat. 

7. Case studies/literature review. 
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2 Impacts of Riprap 

Riprap, or graded stone, has been used in a variety of ways to prevent 
streambank erosion in the United States for more than a century.  Most of this 
work was unregulated and was executed prior to the recognition of the potential 
environmental impacts of such activities.  Consequently, thousands of miles of 
stream have been stabilized with riprap, and it is clear that the nation’s waters 
have been impacted. 

Despite the pervasive and historic use of riprap for stabilizing streambanks, 
relatively little is known about the impacts of such activities.  This is due in part to 
the narrow focus of previous impact studies, but is also attributable to the 
complexities of stream and riparian ecosystems.  The interrelationships among the 
physical, chemical, biological, and socio/economic characteristics of these systems 
are not well understood, so a full accounting of potential impacts from fill projects 
involving riprap is yet to be formulated.  However, public interest reviews and 
compliance with the guidelines for projects using riprap as fill require an objective 
and thorough investigation of impacts. 

Summary of the Literature 

The annotated bibliography to this report contains 103 citations addressing the 
impacts of riprap placed in a stream environment.  A majority of these 
publications deal with the impacts of riprap upon habitat for fish species and, 
more specifically, for certain life stages of salmonids.  Despite the limited focus of 
these previous efforts, there is no consensus on the impacts of riprap upon habitat 
for fish and other aquatic organisms, and the existing publications present 
conflicting evidence of the nature and degree of impacts.   

Table 1 summarizes the findings presented in the literature with respect to the 
impacts of riprap upon aquatic organisms.  Roughly an equivalent number of 
“adverse,” “beneficial,” and “no” impacts are cited by the studies.  The impacts 
cited for coldwater fisheries are predominantly adverse, whereas impacts for 
warmwater organisms are overwhelmingly beneficial.  Although a number of 
variables are involved, this general trend appears to be related to the character of 
the habitat afforded by the riprap relative to the habitat it replaces and the other 
habitat in nearby reaches.  In most of the warmwater systems studied, coarse hard 
substrate was very limited, so the addition of riprap provided a habitat niche that 
was rapidly exploited by a number of species.  In contrast, most of the coldwater 
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systems studied had abundant hard substrate, and the riprap replaced some other 
habitat type (e.g. cut banks, overhanging vegetation, etc.) that may have been 
limited. 

Table 1 
Impacts of Riprap Upon Aquatic Organisms Cited in the Literature 

Impact 
Species/Life stage Adverse None Benefit Reference 

 X  California Department of Fish and Game (1983) 
X   Beamer and Henderson (1998) 
X   Michny and Deibel (1986) 
X   U.S. Fish and Wildlife Service (1992) 

Juvenile Chinook Salmon 

X   Roper and Scarnecchia (1994) 
Yearling Chinook Salmon  X  Ward et al. (1994) 
Winter-Run Chinook Salmon X   Ecos, Inc. (1991) 

X   Beamer and Henderson (1998) Coho Salmon 
  X House and Boehne (1986) 

X   Knudsen and Dilley (1987) Juvenile Coho Salmon 
  X Shirvell (1990) 

Salmonid Habitat  X  Harvey and Watson (1988) 
Juvenile Salmonid   X Lister et al. (1995) 

(Continued) 

Table 1 (Concluded) 
Impact 

Species/Life stage Adverse None Benefit Reference 
X   http://swr.ucsd.edu/fmd/citguide.htm  Salmon 
X   Buer et al. (1989) 
X   Roper and Scarnecchia (1994) 
 X  Ward et al. (1994) 

X   Knudsen and Dilley (1987) 
  X Shirvell (1990) 

Juvenile Steelhead Trout 

 X  Hamilton (1989) 
Juvenile Brown Trout X   Shuler, Nehring, and Fausch (1994) 
Adult Brown Trout X   Shuler, Nehring, and Fausch (1994) 

 X  Beamer and Henderson (1998) Rainbow Trout 
 X  Meyer and Griffith (1997) 

Juvenile Cutthroat Trout X   Knudsen and Dilley (1987) 
Caddisflies   X Dardeau, Killgore, and Miller (1995) 
Midges   X Dardeau, Killgore, and Miller (1995) 
Mussels   X Dardeau, Killgore, and Miller (1995) 
Lithophils   X Dardeau, Killgore, and Miller (1995) 
Sturgeon   X Dardeau, Killgore, and Miller (1995) 
Paddlefish   X Dardeau, Killgore, and Miller (1995) 
Striped bass   X Dardeau, Killgore, and Miller (1995) 
Walleye   X Dardeau, Killgore, and Miller (1995) 
Blue Sucker   X Dardeau, Killgore, and Miller (1995) 
Flathead Catfish   X Dardeau, Killgore, and Miller (1995) 
Blue Catfish   X Dardeau, Killgore, and Miller (1995) 
Bluegill   X Dardeau, Killgore, and Miller (1995) 
Brook Silverside   X Dardeau, Killgore, and Miller (1995) 
Freshwater Drum   X Dardeau, Killgore, and Miller (1995) 
Larval Fishes X   Li, Schreck, and Tubb (1984) 

 

Several inconsistencies are evident in the literature.  For example, of six 
authors studying the impacts of riprap upon juvenile steelhead trout, two 
concluded the impacts were adverse, two that they were beneficial, and two 
deemed the riprap to have no material impact upon habitat.  Similarly inconsistent 
findings are evident for a number of the species studied.  The different 
conclusions are likely attributable to several factors: 
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a. Differences in the physical character of the systems studied. 

b. Differences in the study methods employed. 

c. Differences in seasons studied. 

d. Different preferences of life stages or subpopulations. 

e. Influence from other species. 

f. Bias. 

g. Different size or configuration of the riprap. 

h. Differences in the scale of the projects. 

i. Different project ages. 

Each of these factors influences the overall impact of riprap upon habitat for 
aquatic organisms, so study results tend to be highly empirical and should be 
extrapolated to other situations only with care.  A thorough investigation of 
potential impacts from proposed riprap projects should include an assessment of 
the impacts cited in the literature, but must also include many factors in addition 
to the habitat impacts.  Foremost among these are the potential impacts of the 
proposed work upon the processes and conditions that create and maintain the 
habitat, and that characterize the ecosystem.   

Impacts Based Upon Function  

Although their specific characteristics vary both spatially and temporally, all 
rivers support common functions – the physical, chemical, and biological 
components and processes that interact to form and maintain streams and riparian 
zones.  The basic functions that rivers support have been divided into five 
categories: 

a. Evolution through morphologic processes. 

b. Maintenance of hydrologic balance. 

c. Continuity of sediment processes. 

d. Provision of habitat. 

e. Maintenance of chemical processes and pathways. 

Within each of these categories, three key functions have been identified 
(Table 2). It is important to note that not all functions will be of equal importance 
in every river, so interpretation of this framework will be required for each 
situation.  In addition, other equally important functions may be identified for 
certain situations. 
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Table 2 
Summary of Primary Functions 
Morphologic 
Evolution Hydrologic Balance Sediment Continuity Habitat Provision 

Chemical Process & 
Pathways 

Stream Evolution 
Processes 

Surface Water Storage 
Processes 
(short & long-term) 

Full Sedimentation 
Processes 

Biological 
Communities and 
Processes 

Water and Soil 
Quality Processes 

Energy Processes Surface/Subsurface Water 
Exchange Processes 

Substrate and 
Structural Processes 

Necessary Habitats 
for all Life Cycles 

Chemical Processes 
and Nutrient Cycles 

Riparian 
Succession 

Hydrodynamic Character Quality and Quantity 
of Sediments 

Trophic Structures and 
Pathways 

Landscape Pathways 
and Processes 

The conditions and character of each river system, reach, site, or riparian 
corridor are a consequence of these functions, so the potential impacts to each 
should be evaluated when reviewing permit applications.  It is helpful to 
determine which functions are currently limiting, are functioning inappropriately, 
or are acting as stressors, etc. to the system, because an impact may be either 
adverse or desirable, depending upon whether the change results in the 
degradation or the restoration of necessary functions or conditions.  In evaluating 
relevant functions, it is also important to remain cognizant of the interrelated 
nature of the functions, namely that several functions have similar indicators and 
direct measures, and impacts to one are not necessarily independent of all others. 

Streambank stabilization affects many of the structural characteristics and 
functions of a stream. The basic purpose of any stabilization project is to 
interrupt erosion processes where they are deemed to conflict with social needs 
or ecological requirements.  These efforts also interrupt or affect other processes 
and alter the physical environment.  Because of the strong interrelations among 
the structural components and functions of a stream/riparian system, a number of 
secondary and tertiary impacts are associated with bank stabilization measures. 

Knowledge of the direct and ancillary impacts of stabilization can be used, 
for example, to select measures and develop a design that restores or enhances 
the structure or function of a degraded ecosystem.  For example, erosion that 
results in the widening of a stream reach to the degree that sediment continuity, 
bed sediment character, and local hydrodynamics are adversely impacted can be 
compensated by stabilization measures that narrow the reach width to one that 
provides for the proper functioning of these conditions.  If the stabilization 
measure also restores critical riparian and aquatic habitat, so much the better.  
But the selected measure may still impact other important processes such as 
channel evolution, riparian succession, and landscape pathways.  

Few alterations to the structure or function of the environment are universally 
adverse or universally beneficial.  Most measures benefit some components of 
the ecosystem at the expense of others.  Thus, regulatory decisions must seek to 
optimize upon the likely outcomes by maximizing benefits and minimizing 
adverse impacts.  This may involve “weighting” the functions, or considering 
them in the context of both short- and long-term impact. 
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The following sections present an overview of likely impacts from common 
bank stabilization practices.  These impacts are based on the review of the 
materials summarized in the attached bibliography, along with extensive written 
works reviewed by the author and his experiences in research, design, 
construction, and monitoring thousands of bank stabilization structures. In this 
report, the term “impact” denotes a measurable change, without regard for the 
significance or value of the change.  These changes or impacts are, by nature, 
very site-dependent; thus, generalizations provided herein may run contrary to 
some observations. 

Stabilization measures composed of riprap are divided into four basic 
categories for presentation in this report.  Armor techniques include the 
placement of riprap along the bank face to prevent erosion due to the shear force 
of the flowing water.  Flow deflection structures extend outward from the bank, 
normal or angled to the flow, and function by forcing the higher velocity flows away 
from the bank for some distance downstream.  Slope stabilization measures include 
placing large stone sections at the toe of the bank slope to resist translational or 
rotational failures.  Energy reduction measures include a wide array of techniques 
that reduce the energy gradient of the stream and, thus, its ability to induce erosion. 

Impacts on morphologic evolution 

Morphologic evolution refers to the natural changes in stream characteristics, 
energy processes, and riparian succession that occur in healthy stream and 
riparian ecosystems.  Stream lateral migration and riparian succession are 
necessary processes in maintaining appropriate energy levels in a system.  They 
also promote diversity and ecological vigor by initiating change, which is 
important to long-term adaptation of ecosystems.  Energy flow, predominately in 
the form of organic carbon, is governed by thermodynamics and aquatic chemical 
equilibrium.  The ability of a stream to convert energy between its potential and 
kinetic forms through changes in physical features, hydraulic characteristics, and 
sediment transport processes is important in creating complex habitats generating 
heat for biochemical reactions, and reoxygenating flows.  Stream and riparian 
management activities often impact this energy gradient.  Impacts on 
morphologic evolution are summarized in Table 3. 
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Table 3 
Impacts on Morphologic Evolution 

Category Impacts 

General The only applicable generalization of the impacts of bank stabilization on 
morphological evolution through a project reach is that all stabilization measures 
are intended to prevent or reduce lateral stream migration.  The extent to which 
this migration is reduced relative to “normal” bank migration for a particular 
system defines the degree of this impact. 

Armor 
Techniques 

In addition to preventing lateral migration (a form of channel evolution), armor 
techniques typically impact riparian succession processes.  On systems with a 
high sediment load and where the slope of the revetment face is gentle, 
sediments may deposit in the interstices of the riprap and some succession 
processes may proceed, but these may differ substantially from those that would 
occur in the absence of the revetment.  Armor layers of riprap seldom have a 
significant impact upon energy processes. 

Deflection 
Techniques 

Deflection techniques generally have more limited effects than armor structures 
upon succession processes because the bank between the structures is largely 
unaffected.  However, sediment deposition between structures may lead to the 
establishment of uncharacteristic riparian complexes.  Deflection structures, 
depending upon their size, can reduce or localize the kinetic energy in a system, 
leading to other related impacts. 

Slope 
Stabilization 
Techniques 

Slope stabilization techniques, in general, have impacts similar to those for 
armor techniques.  They reduce channel evolution through migration, and can 
reduce most riparian succession processes unless they incorporate vegetation 
as a component of the slope stabilization.  Even in that instance, large woody 
debris recruitment may be limited if the stabilization measure persists for a long 
period of time.  Energy impacts are typically minor. 

Energy 
Reduction 
Techniques 

Energy reduction techniques generally reduce velocity, shear stress and stream 
power, converting kinetic energy to potential energy.  Their impacts upon riparian 
succession processes and channel migration can be less significant than the 
impacts associated with other stabilization techniques, but energy reduction 
through the use of dams and weirs can significantly impact these functions as 
well. 

 

Impacts on hydrologic balance 

Stabilization practices can alter the hydrologic balance of a river reach in 
several ways.  Examples include (1) increased storage by changing the resistance 
characteristics (either form or friction) of the reach or by altering the channel 
geometry (slope or cross section); (2) modifying surface/subsurface water 
exchange by creating a barrier to flow; and (3) modifying the hydrodynamic 
character by altering flow fields or through the creation of backwater conditions. 
These changes can be direct (e.g., adding a weir to change channel slope), or 
indirect (e.g., structures that may cause a sorting of bed materials, resulting in a 
coarser surface fraction with higher resistance).  Variables that influence 
stabilization impacts upon hydrologic balance include 1) the materials (affect 
resistance, turbulence and porosity), 2) structure geometry and location (affect 
slope, degree of expansion or contraction, flow convergence or separation, and 
secondary currents), and 3) structure type.  Impacts on hydrologic balance are 
summarized in Table 4.  
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Table 4 
Impacts on Hydrologic Balance 

Category Impacts 

General No generalization can be made on the impacts of bank stabilization using riprap 
on the hydrologic balance of a stream reach. 

Armor 
Techniques 

Riprap armor, in general, has little local or cumulative effect on water storage or 
exchange processes, and its impact upon hydrodynamics is generally associated 
with change in resistance.  Exceptions may occur when the measure requires an 
alteration to the channel cross-sectional area. Impacts from resistance or cross 
section changes can be readily quantified through the application of the de Saint 
Venant Equations and resistance techniques.  Expansions and contractions of 
less than 10 percent generally result in negligible impacts.  Impacts from 
changes to resistance, which depend on the magnitude and length of the 
change, are greatest for streams with a width/depth ratio less than 20. 

Deflection 
Techniques 

Deflectors, which create form roughness and reduce the cross-sectional area of 
the channel, have the potential to increase water surface elevations, generate 
local scour, concentrate flows and generate backwater due to form roughness, 
impacting hydrodynamics and storage.  Unfortunately, techniques to quantify 
these impacts are generally lacking.  The impacts depend on the flow condition, 
character of the channel, and geometry of the deflector.  Any deflector field that 
reduces channel width by more than 15 percent or cross section area more than 
10 percent should be carefully reviewed.  

Slope 
Stabilization 
Techniques 

The impacts from slope stabilization techniques upon storage, water exchange, 
and hydrodynamics are similar to those for armoring techniques.  Slope 
stabilization often employs vegetation, which can increase resistance relative to 
riprap. 

Energy 
Reduction 
Techniques 

Energy reduction techniques reduce kinetic energy, which is usually converted to 
potential energy in the form of increased water surface elevation.  This increases 
storage, and generally reduces velocities in the backwater zone.  During low-flow 
periods, the exchange of water between the surface and shallow groundwater 
may increase.  Methods to quantify impacts to water surface elevations and 
velocities are straightforward, and generally consist of backwater analyses.  
Techniques to predict the impacts upon exchange can be complex, but this issue 
is typically of concern only for dams and very large weir structures.  

 

Impacts on sediments 

All stabilization structures and measures impact sedimentation processes. 
They reduce or eliminate sediment yield and tend to generate local scour, usually 
at the toe or immediately downstream.  Sediment sorting and armoring tends to 
increase in stabilized reaches. Measures can affect local transport capacity by 
affecting resistance or channel geometry.  The primary variables that influence 
sedimentation processes are the sediment yield, sediment characteristics, and the 
effects of the stabilization measure on velocity, stream power, and shear stress.  
Algorithms for computing erosion, deposition, and scour are often inaccurate and 
of limited value in assessing the true impacts and localized nature of these 
processes associated with bank stabilization.  Impacts on sediments are 
summarized in Table 5.  
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Table 5 
Impacts on Sediments 

Category Impacts 

General All bank stabilization measures at least temporarily change sediment yield 
characteristics of a channel.  Most cause local scour and many induce sediment 
deposition.  These impacts tend to be temporary, though their results may persist 
for long periods of time, particularly in streams with armored beds and few 
tributaries.   

Armor 
Techniques 

Armoring techniques generally reduce local bank erosion but induce local scour. 
 Scour usually occurs at the toe of the armor structure and extends into the 
stream about two to three times the scour depth.  Algorithms to compute scour 
and sorting are notoriously poor, but provide some means of estimating the 
magnitude of the impacts.   Armor techniques that use materials with high 
resistance values can also induce local sediment deposition, usually on and 
within the armor material. 

Deflection 
Techniques 

Flow deflection structures reduce sediment yield from the protected bank, and 
also alter the flow field, which, in turn, generates zones where both scour and 
deposition occur in close proximity.  The overall impact on scour, deposition, and 
sediment movement varies greatly with the channel conditions and structure 
configuration, and the impacts of these structures on sediment processes and 
character require case-specific analyses.   

Slope 
Stabilization 
Techniques 

The impacts of slope stabilization measures on sediment processes and 
character are generally the same as those for armor techniques, and the 
differences are generally associated with different resistance values.   

Energy 
Reduction 
Techniques 

Techniques used to reduce energy within a stream have a significant impact on 
sediment transport, scour, and deposition. Grade control measures create 
backwater, increasing upstream depth and reducing velocity.  Sediment transport 
capacity is reduced, and upstream stream reaches often have finer bed materials 
than those found in adjacent reaches, while substrates in downstream scour 
pools are generally coarser.  Secondary channels blocked with chute closures may 
become backwater zones or wetlands, trapping fine sediments during flood events. 
 Flows in the main channel may deepen, with a corresponding coarsening of the 
bed material and corresponding increase in sediment transport.   

 

Impacts on habitat 

All stabilization measures affect the local habitat conditions in a reach.  
Riprap provides a substrate that generally differs from the parent material of the 
channel boundary, so offers a different habitat condition.  In addition, the 
stabilization structure may alter the channel geometry, flow field, riparian 
vegetation conditions, or a host of other habitat elements.  The net effect of these 
changes varies by species, life stage, season, flow condition, age, and the extent of 
coverage or structure size.  Riprap can create preferential habitat for some 
organisms at the expense of others, and can upset one or more entire guilds or 
trophic levels in the system.  Impacts on habitat are summarized in Table 6. The 
literature identified in the annotated bibliography presents a more detailed 
discussion of specific habitat impacts.   
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Table 6 
Impacts on Habitat Provision 

Category Impacts 

General Bank stabilization measures directly affect habitat by altering the character of the 
substrate and riparian/aquatic associations.  Indirect impacts are usually related 
to alterations in the flow field, shifts in population dynamics, and pathway 
modifications. 

Armor 
Techniques 

Armor techniques utilizing riprap favor species that use interstitial voids of the 
rocks for shelter or cover. This can, in turn, result in population shifts, changes in 
predation, and other biological community impacts.  The addition of riprap usually 
results in an increase in macroinvertebrate biomass and density.  Most 
revetments result in a reduction of streamside vegetation, so riparian flora and 
fauna are often adversely impacted. 

Deflection 
Techniques 

Deflection techniques generally have only limited effects on habitat for riparian 
flora and fauna, and the interstices of the stone are not generally used to the 
same degree as are those in revetments.  Macroinvertebrate colonization is 
comparable to that for stone in armor layers.  The predominant influence of 
deflection structures on habitat is related to the diverse patterns of scour and 
deposition located near the deflector fields.  

Slope 
Stabilization 
Techniques 

The habitat impacts associated with slope stabilization techniques are similar to 
those for revetments, except that those measures that include vegetation as a 
key component of the slope stabilization generally have lower impacts on riparian 
flora and fauna than do revetments. Migration reduction may eliminate island 
habitats. 

Energy 
Reduction 
Techniques 

Energy reduction techniques can significantly affect habitat.  Weir structures 
generate backwater conditions that alter the flow field, promote fine sediment 
deposition, increase flow depth, increase the wetted perimeter of the channel, 
and alter the adjacent riparian community composition.  Immediately downstream 
of these structures, deep but concentrated scour holes typically form, creating 
habitat niches with deep pools and coarse substrates. Organisms often 
concentrate in these areas – leading to increased stress and competition.  Other 
energy reduction measures such as channel blocks can accelerate 
sedimentation processes and eliminate backwater rearing areas. 

 

Impacts on chemical and biological processes 

Stream channels and their associated riparian zones help maintain soil and 
water quality and support important chemical processes and nutrient cycles 
necessary to perpetuate the long-term health of the physical and biological 
properties of these areas.  Stream and riparian systems occupy unique landscape 
positions that are critical to the survival of many plant and animal species, and 
provide longitudinal connectivity that allows for biotic and abiotic energy 
pathways that link ecological processes and communities.  They can also serve as 
important barriers, and buffers to plant and animal migration.  Finally, these 
ecologically diverse areas often provide critical source and sink areas for 
maintaining population equilibrium of some plant and animal species, especially 
during large-scale disturbances that affect large portions of habitat.  Stabilization 
measures generally affect these functions only indirectly.  Impacts on chemical 
processes and pathways are summarized in Table 7.  
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Table 7 
Impacts on Chemical Processes and Pathways 

Category Impacts 

General No generalizations can be made regarding the impacts of riprap upon soil and 
water quality, nutrient cycling, and the provision of pathways. 

Armor 
Techniques 

Revetments constructed of riprap generally have only minor impacts upon water 
quality.  Long reaches of continuous riprap armor can increase stream 
temperatures due to solar radiation, and can diminish nutrient loading because 
of the elimination of riparian vegetation, but these impacts are likewise generally 
minor.  Large amounts of limestone used as riprap can raise the pH of a stream, 
but such increases are also generally very slight.  Revetments do, however, often 
serve as a barrier between the aquatic and terrestrial ecosystem, restricting 
biotic movement between these zones and potentially increasing predation. 

Deflection 
Techniques 

Flow deflection structures constructed of riprap generally have no influence upon 
soil quality or nutrient dynamics.  When placed in a configuration that results in 
the formation of a deep thalweg, however, they can alter the low-flow pathway 
along the stream channel and can serve to reduce temperatures in the stream 
because of the increased depth and velocity.  

Slope 
Stabilization 
Techniques 

The impacts of slope stabilization measures upon chemical processes and 
pathways are essentially the same as those for an armor layer, except nutrient 
dynamics are less affected in slope stabilization projects when vegetation is used 
to stabilize the upper slopes. 

Energy 
Reduction 
Techniques 

Energy reduction techniques such as weirs, closures, and vanes can impact 
several important chemical processes and pathways.  Because these measures 
often decrease velocity, the potential for elevated stream temperatures and 
reduced oxygen levels exists, particularly for low gradient systems.  Increases in 
surface area and wetted perimeter provide more soil/water and air/water contact, 
so chemical processes that occur at these interfaces often increase.  Weir 
structures often present a barrier to biotic movement along the channel, and can 
affect the formation and breakup of ice cover. 
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3 Avoidance and 
Minimization of Impacts 

Numerous large- and small-scale negative ecological impacts are associated 
with riprap bank stabilization structures, and construction of structures may cause 
severe damage to riparian and instream habitats.  Alternatives to stabilization with 
structures using riprap may be available, and should be evaluated.  Design 
features can often be incorporated into riprap structures that will minimize the 
impacts to the functions listed in the previous section, and steps may be taken to 
minimize impacts from construction. 

Despite all evidence to the contrary, the perception persists that ecologically 
healthy streams and riparian corridors are stable.  In truth, dynamic processes such 
as erosion, deposition, flooding, and drought occur in healthy streams, and are 
critical for maintaining pathways and establishing new habitats.  Even in pristine 
systems, it is common to find that 10 to 50 percent of the banks are actively 
eroding, and the process of erosion is important to the ecological health of most 
systems (Figure 1).  Thus, the first consideration in any permit application review 
involving the use of riprap should be the necessity of providing any erosion 
control. 

Most streambank stabilization efforts are intended to protect infrastructure or 
other important investments, and deference must be given to these concerns when 
weighing public interest. 

Successful streambank stabilization is based upon more than an understanding 
of the problem and the identification of techniques capable of addressing the 
problem.  It is also based on understanding the interaction of the problem and 
proposed solutions with other ecosystem components, both locally and beyond the 
project’s boundaries, and over varied temporal scales. 
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Figure 1. Some erosion is necessary for proper ecological function and the creation of new habitats 
such as nesting sites and spawning gravels 

Comparison of Techniques 

The selected technique should be the one that successfully stabilizes the 
system with the minimum impact to the functions listed in the preceding section 
of this report.  To be successful, methods used to control erosion must address the 
underlying cause of the bank loss.  Banks fail in one of four ways: 

a. Hydraulic forces remove erodible bed or bank material. 

b. Geotechnical instabilities result in bank failures. 

c. Mechanical actions cause a reduction in the strength of the bank. 

d. A combination of the above factors causes failure. 

Fischenich and Allen (2000) present details of each of these mechanisms of bank 
loss, and list appropriate stabilization measures for each. 
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Table 8 summarizes the relative impacts of bank stabilization techniques upon 
each of the 15 functions.  Among categories of stabilization measures, a clear 
distinction can be made only for the energy reduction techniques, which have the 
greatest impact on the full range of ecosystem functions.  These are the only 
suitable techniques to address erosion caused by channel incision, but for other 
causal mechanisms, techniques from the other categories may be preferable. 

Table 8 suggests that stabilization efforts generally have a greater impact on 
morphological evolution, sediment continuity, and habitat than on hydrologic 
balance and chemical processes.  Moreover, the greatest impacts are likely to be 
associated with channel evolution, riparian succession, and sedimentation 
processes, so these should be a focal point of any assessment. 

Within each of the stabilization categories, a number of different techniques 
can be employed.  For example, a bank can be effectively armored using a 
revetment made of riprap, concrete, pavement blocks, rubble, or other material, or 
it can be armored with vegetation, erosion control fabrics, or other means.  Many 
of the impacts associated with each category are independent of the specific 
technique.  For example, ALL armor techniques affect stream evolution, energy 
processes, surface water storage, and hydrodynamic character in essentially the 
same manner.  In most instances, the differences among the techniques relate to 
the materials and design details, rather than to the overall performance of the 
structure. 

Thus, the use of riprap as a material should be assessed in addition to an 
evaluation of the overall structure type.  Differences in material type primarily 
affect habitat, but can also influence groundwater exchange, movement of 
organisms, and many of the chemical and nutrient processes.  The ramifications to 
habitat of adding riprap are often mixed – benefiting some species at the expense 
of others.  The impacts to habitat and to other functions from the use of riprap as a 
material, and as a function of the characteristics of the structure itself, are 
addressed in the following section.  The relative impacts of erosion control 
methods on stream and riparian functions are compared in Table 8.  A variety of 
armor techniques are shown in Figure 2. 
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Table 8 
Relative Impact of Erosion Control Methods on Stream and Riparian 
Functions (Scaled 1 to 10 with 1 Representing the Most Severe 
Impact) 

Function 
Armor 
Techniques 

Flow 
Deflection 

Slope 
Stabilization 

Energy 
Reduction Average Rank 

Morphologic Evolution 

Stream Evolution 
Processes 3 6 3 7 4.75 1 

Energy Processes 9 6 9 4 7.00 9 

Riparian 
Succession 3 6 4 6 4.75 2 

Hydrologic Balance 

Surface Water 
Storage Processes 10 8 10 5 8.25 14 

Surface/Subsurface 
Water Exchange  10 10 10 7 9.25 15 

Hydrodynamic 
Character 10 7 10 4 7.75 12 

Sediment Continuity 

Full Sedimentation 
Processes 5 5 5 4 4.75 3 

Substrate and 
Structural 
Processes 

8 5 7 5 6.25 6 

Quality and 
Quantity of 
Sediments 

7 7 7 6 6.75 8 

Habitat Provision 

Biological 
Communities and 
Processes 

6 5 7 5 5.75 5 

Necessary Habitats 
for all Life Cycles 6 5 6 5 5.50 4 

Trophic Structures 
and Pathways 8 9 8 6 7.75 13 

Chemical Processes &Pathways 

Water and Soil 
Quality Processes 8 9 7 5 7.25 11 

Chemical 
Processes & 
Nutrient Cycles 

7 9 7 5 7.00 10 

Landscape 
Pathways and 
Processes 

4 9 5 9 6.75 7 

Average 6.9 7.1 7.0 5.5     

Rank 2 4 3 1     
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Figure 2. Impacts from each of these armor techniques are largely the same - most of the differences 
are associated with the direct habitat afforded by each material 

Stone Size 

The size of the stone used in riprap revetments or other riprap structures must 
meet certain requirements for stability, or it will be susceptible to failure.  
However, the gradation and size of the stones can influence the local habitat by 
virtue of the sizes of the interstitial spaces. In some situations, the spaces provided 
by large or poorly graded stone may provide greater habitat than a riprap sized 
strictly for the design hydraulic condition. 

The size of the stone used in a riprap mix is determined by the stream’s 
energy environment.  Wave energy and boat wakes sometimes dictate this size, 
but it is usually determined on the basis of the stream velocity and depth at the 
design discharge.  The design condition should represent the most adverse 
condition likely to occur on the stream, but this is not typically the largest flood.  
Generally, some intermediate discharge in the 2- to 10-year return frequency 
exerts the greatest force against riprap and is selected as the design discharge. 

Stone size and thickness should be sufficient to withstand conditions during 
this design discharge, and may include some factor of safety.  A failed riprap 
structure is generally more environmentally damaging than one that performs its 
stabilization function properly, so it is important that the riprap be properly sized. 
Guidance for riprap in streamflow applications is found in EM-1110-2-1601, 
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C v  =  v erti c al v el o cit y distri b uti o n c o effi ci e nt, u nitl ess  
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g  =  gr a vit ati o n al c o nst a nt, m/s 2  
K 1  =  si d e sl o p e c orr e cti o n f a ct or, u nitl ess  

Ri pr a p t hi c k n ess f or m ost str e a m b a n k pr ot e cti o n pr oj e cts is t h e gr e at er of 
1. 0 D 1 0 0 ( m a x) or 1. 5D 5 0 ( m a x) a n d t h e bl a n k et t hi c k n ess c o effi ci e nt (C T ) c a n b e 
t a k e n as 1. 0. F or ri pr a p of t his t hi c k n ess a n d h a vi n g a u nif or mit y c o effi ci e nt 
(D 8 5 /D 1 5 ) b et w e e n 1. 7 a n d 5. 2, t h e st a bilit y c o effi ci e nt f or i n ci pi e nt f ail ur e ( C s) 
c a n b e esti m at e d as:  

C s  = 0. 3 0 f or a n g ul ar r o c k  
C s  = 0. 3 7 5 f or r o u n d e d r o c k  

T h e v al u e f or t h e v erti c al v e l o cit y distri b uti o n c o effi ci e nt (C v ) s h o ul d b e: 

C v   = 1. 0 f or str ai g ht c h a n n els or i nsi d e of b e n ds  
C v   = 1. 2 5 d o w nstr e a m of c o n cr et e c h a n n els  
C v   = 1. 2 5 at e n d of di k es  
C v   = 1. 2 8 3 - 0. 2l o g( R/ W) f or o utsi d e of b e n ds ( or 1. 0 f or R/ W > 2 6) 

w h er e:  

R  =  c e nt erl i n e r a di us of b e n d, m 
W  =  w at er s urf a c e wi dt h at u pstr e a m e n d of b e n d, m  

F or b a n k pr ot e cti o n, V  = V S S  w h er e V S S  is t h e d e pt h-a v er a g e d v el o cit y at 
2 0  p er c e nt of t h e sl o p e l e n gt h u p fr o m t h e t o e.  A mi ni m u m s af et y f a ct or ( S f) of 
1. 1 s h o ul d b e us e d.  R e c o m m e n d e d si d e sl o p e c orr e cti o n f a ct ors ( K 1 ) b as e d u p o n 
sl o p e ar e:  
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Slope   1V:1.5H  1V:2H 1V:3H 1V:4H or flatter 

K 1   0.71 0.88 0.98 1.0  

 

Revetment Dimensions  

The dimensions of revetments should be sufficient to provide the necessary 
degree of protection without  overkill.  The longitudinal extent of protection 
required for a particular bank protection scheme is highly dependent on local site 
conditions.  In general, the revetment should be continuous for a distance greater 
than the length that is impacted by chan nel- flow forces severe enough to cause 
dislodging and/or transport of bank material.  Although this is a vague criterion, it 
demands serious consideration.  A common criterion suggests an upstream 
distance of 1.0 channel width and a downstream distance of 1.5 channel widths 
from the area subject to erosion, but these values must be adjusted to adapt to the 
conditions at each site.  

The design height of a riprap installation should be set at the minimum 
necessary elevation, plus some allowance for freeboard.  The “necessary” 
elevation depends upon the energy of the stream, the size of the riprap, the 
channel planform, and the bank angle.  In general, the force exerted upon riprap 
by the flow decreases almost linearly from its maximum near the bed to a value of 
zero at the water surface.  Most stabilization projects use riprap up to an elevation 
much higher than is needed to afford adequate stabilization (Figure 3).  Although 
barren soils are easily eroded, a simple cover of vegetation is usually adequate to 
protect against shear stresses up to about 2 psf.  This equates to a depth of more 
than 6 ft below the water surface on a stream with a 0.5- percent slope.  Freeboard 
is provided to ensure the desired degree of protection considering uncertainties.  
The amount  of freeboard cannot be fixed by a single, widely applicable formula 
but, rather, depends upon the degree of analytical certainty and acceptable risk.  

Figure 3. Common problems include setting the riprap elevation higher than needed and not extending 
the protection far enough downstream  
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The undermining of revetment toe protection has been identified as one of the 
primary mechanisms of riprap revetment failure. In the design of bank protection, 
estimates of the depth of scour are needed so that the protective layer is placed 
sufficiently low in the streambed to prevent undermining. The ultimate depth of 
scour must consider channel degradation as well as natural scour and fill 
processes. 

When designing a riprap section to stabilize a streambank, the designer 
accounts for scour in one of two ways: 1) by excavation to the maximum scour 
depth and placing the stone section to this elevation, or 2) by increasing the 
volume of material in the toe section to provide a launching apron that will fill and 
armor the scour hole.  Preference should usually be given to option (2) because of 
ease of construction and lower cost, and because of environmental impacts 
associated with excavation of the streambed.   

Typical riprap bank stabilization structures are very uniform and lack the 
irregularities needed to provide velocity refugia for fishes or other aquatic 
organisms.  There are, however, many design features that can be incorporated 
into riprap structures to improve habitat value, including the following:   

a. Using larger-than-normal stone to increase size of interstitial spaces and 
thus increase amount of velocity refugia and cover for fishes.  

b. Adding spur dikes to the structure.  These features are built perpendicular 
to current extending from the toe toward the channel (Figure 4). 

c. Adding fish groins (i.e., ridges of riprap running from the top bank to the 
toe of the structure) (Shields et al. 1995). 

d. Incorporating indentations into the riprap structure. 

e. Placing large boulders (1 to 1.5 m in diameter) along the toe of the 
structure. 

f. Filling interstitial spaces with gravel so that the structure can serve as 
spawning habitat for salmonid fishes. 

These features, except the last one, are designed to maximize eddies and 
velocity refuges for fishes and other aquatic organisms.  However, they also have 
the potential to increase flow resistance and trap ice and debris, and thus reduce 
channel capacity and increase flood hazard of a stream.  

Deflection Structure Design 

Flow deflection structures extend into the stream channel, and redirect part of 
the flow so that hydraulic forces at the channel boundary are reduced to a 
non-erosive level.  They include a variety of measures that differ somewhat in 
configuration and function and fall under names such as:  groins, dikes, retards, 
bendway weirs, and vanes. 
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Figure 4. Incorporating irregular alignments, features such as spurs, and other 
habitat measures into a revetment can significantly improve habitat 
benefits  

Although channel capacity at high flow is decreased initially with these 
structures, the channel will usually adjust by forming a deeper, though narrower, 
cross section and the ultimate effect may even be an increase in capacity.  
However, the extent of the adjustment cannot always be reliably predicted, even 
with physical or numerical models.  Dikes and retards may be a safety hazard if 
the stream is used for recreation, and the esthetics often leave much to be desired, 
although vegetative growth lessens the impact in most regions. 

Little or no bank preparation is involved for deflection structures.  This 
reduces cost and riparian environmental impacts, simplifies the acquisition of 
rights-of-way, eliminates material disposal problems, and usually allows existing 
overbank drainage patterns to remain undisturbed.  Existing channel alignment 
and geometry can be modified, although the changes may not always be beneficial 
or predictable.  Indirect approaches usually increase geotechnical bank stability by 
causing deposition at the bank toe, although this process is not immediate enough 
or positive enough in all cases. 

These structures offer the opportunity for incorporating a wide variety of 
environmental features.  They can be designed to generate scour holes and may 
thus improve aquatic and terrestrial habitat by increasing diversity (Figure 5), 
although sometimes at the expense of shallow-water habitat.  Conversely, they can 
be designed to trap sediments and create shallow-water areas near the streambank. 
 In arid areas, the reduction of water surface area during low flows decreases 
evaporation, which is usually considered a benefit. 
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Figure 5. Flow deflection structures can create diverse habitats  

An incidental effect of these two techniques might be to increase energy loss 
in bends at low flow, through both the modification of channel shape and the 
roughness introduced by the structures themselves.  This would be beneficial on 
many streams, especially channelized ones that have suffered a lowering of 
flowlines with detrimental effects on aquatic habitat, riverside facilities, and the 
water table.  A bend would in effect act as a very long grade control structure, 
without interfering with the natural flow of the stream, or if the structures are 
submerged below navigation depth, without interfering with navigation. 

The principal design considerations for flow deflection structures are the 
structure length, height, orientation (angle to the bank), spacing and the type of 
material used for its construction.  Unfortunately, little guidance is available for 
most of these parameters.  The optimum height of flow deflection structures 
depends on the objectives of the project, the nature of the erosion at the site and 
the general channel geometry.  Structures intended to generate a low-flow 
channel, disrupt secondary currents, protect against toe erosion, or placed along a 
straight reach generally need not be placed high above the bed of the stream.  
Many designers try to match the relative elevations of natural point bar features 
under these circumstances.  On tight bends, or where the erosion occurs along the 
entire bank face, the structures generally need to be higher.  They are commonly 
constructed with a top that slopes from nearly the top of the bank to only a 
fraction of the flow depth (about 20 percent) at the toe.  In cases where impacts to 
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the water surface elevation during flood flows are a concern, a balance between 
the structure length and height must be sought.  Sand and gravel-bed streams that 
scour and adjust to the placement of deflectors can generally accommodate a flow 
blockage of only about 15 percent without experiencing impacts to the water 
surface profile.  

Structure length is almost always determined with the objective of providing a 
desirable flowline for the thalweg and bank.  When the structures are intended to 
trap sediments and promote the development of bars, natural bars on the stream 
can be used as a guide to help determine the necessary structure length.  Structure 
lengths exceeding 30 percent of the channel width generally require more detailed 
analyses. 

Spacing of deflection structures (groins, barbs, hardpoints) is generally based 
on the length of the structure and the width of the channel.  This is one of the few 
parameters for which acceptable design guidelines exist.  Table 9 presents 
guidelines found in the literature.  These guidelines are intended to address the 
minimum necessary spacing to provide adequate stabilization. 

The most contentious issue with respect to flow deflection structures seems to 
be the appropriate orientation.  Some argue that the only effective orientation is 
upstream (and they may even identify a specific angle), while others point out that 
for every upstream-angled structure, a dozen have been constructed perpendicular 
to the flow or angled downstream and have worked effectively for decades.  
Simply put, this is an intractable issue at this point.  Additional research is needed 
to define the limits of application and to formulate the appropriate guidance. 

Incorporation of Vegetation 

Live plants can be incorporated into a riprap structure to enhance its habitat 
and aesthetic value (Figure 6).  Live staking (i.e., planting live woody vegetation) 
of the riprap interstices is common, and root wads can be incorporated into a 
riprap structure.  The woody vegetation enhances the habitat value of the 
structure, and as an added benefit, it can also increase bank stability and reduce 
chances of structure failure.  In areas where aesthetics are especially important, 
the stone above the normal high water level can be covered with soil and planted 
in grasses. 
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T a bl e 9  
R e c o m m e n d e d Gr oi n S p a ci n g ( S) a s a F u n cti o n of Gr oi n L e n gt h 
( L) a n d Str e a m Wi dt h ( B) (fr o m Fi s c h e ni c h a n d All e n ( 2 0 0 0)) 

A ut h or  S p a ci n g  S/ L  S p a ci n g  S/ B  
T y p e  of 
B a n k  R e m a r k s  

1   C o n c a v e  G e n er al pr a cti c e  
U nit e d  N ati o n s( 1 9 5 3)  

2 -2. 5   C o n v e x  G e n er al  pr a cti c e 

4. 2 9   Str ai g ht    
A h m a d ( 1 9 5 1)  

< 2. 5   C ur v e s    

J o gl e k ar ( 1 9 7 1)  2 ∼ 2. 5    U p str e a m gr oi n s  

U. S. Ar m y ( 1 9 8 4 a)  2    Mi s si s si p pi Ri v er  

M at h e s ( 1 9 5 6)  1. 5     

Str o m ( 1 9 6 2)  3 -5     

A c h e s o n ( 1 9 6 8)  3 -4    
V ari e s d e p e n di n g o n 
c ur v at ur e a n d str e a m 
sl o p e  

4   Str ai g ht  α  > 7 5 °  

3    f or 0. 0 0 5≤  I ≤  0. 0 1 Alt u n i n ( 1 9 6 2) 

2    f or I ≥  0. 0 1 

2 -6    F or b a n k pr ot e cti o n  

3 -4    
T - h e a d gr oi n s f or 
n a vi g ati o n c h a n n el s  Ri c h ar d s o n et al. ( 1 9 7 5)  

1. 5 -2    
D e e p c h a n n el f or 
n a vi g ati o n  

M a m a k ( 1 9 5 6)  2 -3  1    

 0. 5  C o n c a v e    

 5/ 4  C o n v e x    M a c ur a ( 1 9 6 6)  

 3/ 4 -1  Str ai g ht    

 1 -2   I n c o n stri ct e d ri v er s 
J a n s e n et al. ( 1 9 7 9)  

 0. 5 -1    

Bl e n c h et al. ( 1 9 7 6)  3. 5     

C o p el a n d ( 1 9 8 3)  > 3   C o n c a v e    

 0. 9 -1   
F or φ  = 4 5° -5 0 °  R/ B = 
8 - 1 3. 5 

   F or φ  = 5 5°  R/ B = 8 A k a nti s z et al. ( 1 9 8 9)  

   
F o r φ  = 5 5°  R/ B = 
1 3. 5  

K o v a c s et al. ( 1 9 7 6)  1 -2    D a n u b e Ri v er  

M o h a n a n d A gr a v al 
( 1 9 7 9) 

5    
S u b m er g e d gr oi n s of 
h ei g ht o n e -t hir d t h e 
d e pt h  

5. 1 - 6. 3   Str ai g ht  
Sl o pi n g -cr e st e d 
gr oi n s f or b a n k  M a z a Al v ar e z ( 1 9 8 9)  

2. 5 - 4   C ur v e s  Pr ot e cti o n  
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Figure 6. A combination of riprap in the toe section and woody vegetation on the upper banks often 
affords the best combination of stabilization and environmental benefits 

Cuttings (live stakes) are the most beneficial means of adding vegetation to 
riprap structures.  Cuttings should be prepared from woody plants that root 
adventitiously (e.g. Salix spp.), obtained from as near the site as possible, and 
should be free from obvious signs of diseases. To root effectively, cuttings must 
have good soil/stem contact, which can be difficult to achieve in many riprap 
structures, and must be placed to a depth sufficient to access groundwater during 
drought (Figure 7). 

Woody cuttings or posts can be placed through many riprap sections using a 
stinger mounted on an excavator.  The stinger creates a pilot hole into which the 
cutting is inserted.  A newly patented procedure, shown in Figure 7, allows the 
installation through riprap of plants that are encapsulated with soil.  This greatly 
improves survival, as a lack of soil contact within the riprap section is a leading 
cause of mortality for plants installed with a conventional stinger. 
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Figure 7. Conventional stinger application (left) and new stinger design (right) that uses soil-
encapsulated plants (center) for insertion into riprap sections  

Grade Control 

Low-head stone weirs (LHSW) are boulder structures that extend across the 
entire bed of a stream channel, and have an effective height of less than 3 ft (see 
Figure 8).  The structures are primarily used to: 

a. Prevent streambed degradation. 

b. Reduce the energy slope to control erosion. 

c. Create backwater for reliable water surface elevations.  

d. Increase aquatic habitat diversity.  

Unlike traditional grade control structures, which can adversely impact fish 
passage, habitat, recreation, and other environmental functions, LHSW are 
designed to provide stabilization and riffle and pool habitat, reoxygenate water, 
establish desired substrate characteristics, improve local bank stability, and 
enhance habitat diversity and visual appeal.   

LHSW structures are flexible in that their design characteristics can be altered 
to achieve specific objectives and to address unique site characteristics.   All 
LHSW structures are designed to remain stable under the full range of anticipated 
flow conditions, and to permit fish passage. 
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Figure 8. Low-head stone weir on the North Fork of the White River, Colorado 

All LHSW structures obstruct the flow, creating a backwater area upstream 
that, at least temporarily, serves as a pool and reduces upstream erosion.  Most 
concentrate the energy losses in a scour hole or dissipation basin immediately 
downstream of the structure.  They can be designed to arrest bed degradation, or 
can have virtually no effect upon this phenomenon.  The extent to which these and 
other characteristics are manifested depends upon the structure dimensions, shape 
and orientation, material, and the character of the stream.   

A common configuration for conventional LHSW structures is a V-shaped 
structure with the apex pointing upstream, a depressed central region to serve as a 
low-flow notch, and boulders or riprap as a foundation with the ends keyed well 
into the banks.  The dimensions can be varied for effect, but the structure height is 
commonly set at about the bankfull elevation at the banks, and is generally 0-2 ft 
above the bed at the apex. 

The V-shape is intended to concentrate flows in the central portion of the 
channel and minimize the velocity gradient near the banks.  The friction generated 
by the water flowing over the weir crest causes the streamlines to “bend” 
approximately perpendicular to the crest alignment.  This phenomenon only 
persists for a narrow range of flow depths (generally less than one fifth the 
structure height), so on an LHSW with a sloping crest, the effect varies with 
discharge. 
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Construction 

Construction methods used to place revetments should be carefully reviewed 
to ensure that they do not contribute to environmental degradation.  Construction 
of a typical riprap structure requires extensive use of heavy equipment, and steps 
should be taken to minimize damage to riparian vegetation and instream habitats. 
Movement of construction materials should be planned to minimize impacts to 
riparian vegetation outside the area of interest. 

When possible, riprap placement should be conducted so as to preserve 
existing trees along the bank that are not in danger of windthrow or toppling 
(Figure 9).  Equipment operation on the upper banks should be regulated to 
minimize soil compaction in the riparian zone, which leads to plant mortality. 

The common methods of riprap placement are hand placing; machine placing, 
such as from a skip, dragline, or some form of bucket; and dumping from trucks 
and spreading by bulldozer.  Hand placement produces the best riprap revetment, 
but it is the most expensive method except when labor is unusually cheap.  
Steeper side slopes can be used with hand-placed riprap than with other placing 
methods.  Where steep slopes are unavoidable (when channel widths are 
constricted by existing bridge openings or other structures, and when rights-of-
way are costly), hand placement should be considered.  In the machine placement 
method, sufficiently small increments of stone should be released as close to their 
final positions as practical.  Rehandling or dragging operations to smooth the 
revetment surface tend to result in segregation and breakage of stone, and can 
result in a rough revetment surface.  Stone should not be dropped from an 
excessive height as this may result in the same undesirable conditions.  Riprap 
placement by dumping and spreading is the least desirable method, as a large 
amount of segregation and breakage can occur.  In some cases, it may be 
economical to increase the layer thickness and stone size somewhat to offset the 
shortcomings of this placement method. 

Timing of construction is important when managing for certain impacts.  
Construction activities should generally be avoided when they will disrupt 
spawning or nesting activities of nearby sensitive species.  Designs that 
incorporate vegetation may require that the installation occur during the dormant 
season. Construction activities should generally be abandoned when flows are 
sufficient to heighten the risk of catastrophic failure. 
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Figure 9. Careful placement of riprap can allow the preservation of mature trees 
along the banks and avoid impacts associated with their removal  
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4 Summary 

Riprap usually refers to natural stone (i.e., cobbles, boulders, or broken stone), 
used for shoreline, streambank, or streambed armoring for erosion control. It has 
many advantages over other bank protection techniques including:  

a. Low cost compared to other bank protection techniques. 

b. Relatively simple construction with no special equipment or construction 
techniques necessary. 

c. Easily repaired by adding stone to damaged areas. 

d. Vegetation can often grow between the rocks, increasing stability of the 
bank and improving habitat value of the structure. 

e. Riprap structures are flexible and are not impaired or weakened by 
settling or other minor adjustments. 

When stone is readily available, riprap is one of the most economically 
effective bank stabilization techniques.  There are numerous large- and small-
scale negative ecological impacts associated with riprap bank stabilization 
structures, and construction of structures often results in severe damage to riparian 
and instream habitats.   

Conversely, riprap structures also have ecological benefits and can even be 
used specifically to improve the quality of riverine habitat.  Stabilizing stream 
channels with riprap can reduce sediment loads, improve water quality, and allow 
reestablishment of riparian vegetation.  Stone used in riprap structures provides 
hard substrate habitat that can be important in some sand bed streams where it 
might be limited, and spaces between riprap stones provide velocity refuge and 
cover for aquatic invertebrates and small fishes. 

Generally, streams with healthy riparian vegetation communities and the 
habitat features associated with such communities (shade, relatively stable 
undercut banks, large woody debris, etc.) will be harmed ecologically from the 
addition of riprap structures.  On the other hand, habitat may be improved on 
streams where natural hard substrate is rare or lacking.  Additionally, systems with 
excessive erosion due to anthropogenic causes are most likely to benefit 
ecologically from riprap. 
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Careful planning can minimize impacts due to construction, and design 
features can often be incorporated into riprap structures that will improve their 
habitat value.  Although severe ecological impacts are often associated with 
riprap, it is still one of the most ecologically and aesthetically desirable techniques 
for erosion control and under certain conditions can be ecologically desirable. 

The evidence presented in the literature strongly suggests that the impacts 
from riprap are very site-specific.  The influence of riprap upon habitat even for a 
specific life stage of a given species depends upon the character of the system in 
which the riprap is placed, so care should be exercised in extrapolating habitat 
assessments from one system to another. 
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Resources 

http://swr.ucsd.edu/fmd/citguide.htm 
(This link is to A Citizen’s Guide to the 4(d) Rule for Threatened Salmon and 
Steelhead on the West Coast, published by the National Marine Fisheries 
Service Northwest and Southwest Regions, June 20, 2000.  Provides 
information on compliance with the Endangered Species Act with reference to 
salmonids.  Also provides links for additional information at the Federal and 
local levels.) 

http://www.4sos.org/ 
(Provides sources of information and links to additional information for 
stream restoration and salmonid-specific issues.  Primarily layman/activist 
oriented.) 

http://www.cityofbellevue.org/utilities/shorezone/potential.htm 
(The Utilities Department for the City of Bellevue, Washington published the 
Final Report on Effects of Shorezone Development - Potential Impacts of 
Shoreline Development.  This particular site discusses the potential impacts of 
various types of shoreline development.  It contains links to fish ecology, 
conclusions, and the Utilities homepage.) 

http://nepa.eh.doe.gov/eis/eis-0265/Table_of_Contents.htm 
(This link is to the Table of Contents page for the Bonneville Power 
Administration Watershed Management Program Final Environmental Impact 
Statement [DOE/EIS-0265].) 

http://www.americanrivers.org/ 
(The AmericanRivers home page is primarily a layman-oriented site for 
obtaining information on, and becoming active in, a number of river issues 
nationwide, including the Columbia and Snake River systems.  The “Tools 
and Additional Links” button provides access to both scientific and popular 
literature.) 

http://www.epa.gov/OWOW/NPS/MMGI/Chapter6/ch6-2a.html  
(This is Chapter 6 of the EPA Office of Water manual.  This contains 
information on channelization and channel modification measures, including 
a discussion of riprap.  Also contains links to other areas of interest on non-
point source issues.)  
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http://www.epa.gov/OWOW/NPS/urbanize/report.html 
(EPA Office of Water site with information on the hydrologic impacts 
associated with the urbanization of streams.  Provides a literature cited 
section.)  

http://www.state.ak.us/adfg/habitat/geninfo/webpage/liepitz.htm 
(Executive summary of “An Assessment of the Cumulative Impacts of 
Development and Human Uses on Fish Habitat in the Kenai River” by 
Gary S. Liepitz.  The purpose of the study was to identify and evaluate the 
cumulative impacts of development on Kenai River fish habitat.) 

http://www.epa.gov/owow/estuaries/coastlines/spring98/rockbarb.html 
(This site provides information from the EPA Office of Water on the use of 
rock barbs for enhancing fish habitat and water quality in the Tillamook Bay 
watershed.  It provides a good “how-to” discussion of the use and 
construction of barbs in conjunction with riprap and vegetation.  A discussion 
of pros and cons is provided.) 

http://www.critfc.org/handbook/Bibliography.html 
(The link is to a bibliography produced by the Columbia River Inter-Tribal 
Fish Commission.  Many titles refer to salmonids, habitat, impacts, riparian 
and stream enhancements, etc.  The home page of the Commission can also be 
accessed from this site.) 

http://www.ijc.org/boards/wqb/hab_summ.html 
(Provides extended abstracts for a number of presentations from the Habitat 
Session of the Practical and Cost-Effective Watershed Management 
Conference, Livonia, Michigan, May 3, 1996.  Streambank stabilization, 
sediment control, and habitat enhancement are included among the topics.) 
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