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ABSTRACT 

Tests were performed on deep beams under a midspan load to determine 

the scaling of cracking and ultimate load-carrying capacities of bea~s fail

ing in shear. Two types of scaling procedures were used, one in which only 

the geometries are scaled (replica or mach models), the other in which both 

geometry and material properties are scaled (dissimilar-strength or envi

ronmental models). The results of twenty simply supported beams tested 

statically with span-to-depth ratios of 4.67, 3.88, 2.80, and 2.00 and com

prising 1/4- and 1/2-scale models and laboratory prototypes are presented. 

Two prototype beams with L/d ratios of 4.67 and 3.88 were tested dynamically 

to provide some correlation between statically and dynamically loaded beams. 

Test results indicate that cracking loads can be adequately predicted from 

both replica and dissimilar-strength models and ultimate loads can be pre

dicted from replica models for all span-to-depth ratios tested. When tran

sition from beam to arch action occurs, the dissimilar-strength models un

derpredict the ultimate load-carrying capacity of the prototypes. 
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NOTATION 

a Length of the shear span 

b Width of beam cross section 

d Effective depth, distance from top compressive fiber to centroid 
of tensile reinforcement 

f' Concrete compressive streneth c 

F Force dimension 

h Total depth of beam 

Kf, Scale factor for concrete stren~th 
c 

K
1 

Scale factor for length 

L Length dimension; clear span, distance between inside edges of sup
ports 

M Bending moment 

Ratio of area of p tensile reinforcement to effective area of corccrete 

Ratio of area of p' compressive reinforcement to effective area of 

p 
u 

v 

v 
c 

v 
u 

concrete 

Ultimate load 

Shear force 

Cracking shear 

Ultimate shear 
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CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT 

British units of measurement used in this report can be converted to 
metric units as follows. 

Multiply By To Obtain 

inches 25.4 millimeters 

kips 4.448222 kilonewtons 

pounds per square inch 6.894757 kilonewtons per square meter 



SIMILITUDE STUDY OF REINFORCED 

CONCRETE DEEP BEAMS 

INTRODUCTION 

The design of protective structures to resist high-intensity loading 

from nuclear detonations must often be experimentally evaluated, and in 

many instances prototype testing would exceed the load and/or size limita

tions of laboratory simulation facilities. This evaluation can be carried 

out by testing models and applying the principles of similitude. 

The objectives of the similitude study are to develop design, con

struction, and testing techniques for scale modeling deep reinforced con

crete structures. 

As an initial step towards achieving these objectives, deep beams have 

been statically tested under a midspan load to determine the scaling of 

cracking and ultimate load-carrying capacitie-s- of beams failing- hr shear~ 

Two types of scaling procedures have been used, one in which only the geom

etries are scaled (replica or mach models), the other in which both geome

try and material properties are scaled (dissimilar-strength or envirorunen

tal mode ls ) • 

The use of any modeling technique requires that the design of the 

model be based on parameters which influence the behavior of its prototype. 

Reference l presents an expression for shear at diagonal tension cracking 

Which is derived from the equation of principal stress at a point. The 

equation contains two parameters which, when simplified, may be expressed 

as a nondimensional parameter v/(bd --ff') which represents the diagonal 
c -2 

tension strength, and (•fi;/p)(M/Vd), a parameter with dimensions of FL , 

Which represents the properties of the beam. This parameter has dimensions 

since the modulus of elasticity of steel is assumed a constant and not in

cluded. The terms used in these expressions and their dimensions are de

fined as follows: 

v == shear force, F 

b == width of beam cross section, L 

d == effective depth of beam, L 

f' == c concrete compressive strength, FL-2 

9 



p tensile reinforcement ratio 

.M bending moment, FL 

1' force dimension 

L = length dimension 

For simply supported beams with a concentrated load, the M/Vd term is syn

onymous with a/d, the ratio of shear span to effective depth. 

Four series of static tests, A, B, c, and D, were conducted with the 

following respective span-to-depth ratios: 4.67, 3.88, 2.80, and 2.00. 

Model and prototype beams for each span-to-depth ratio were designed such 

that the quantity ~ f'dp would be constant and that failure would occur in 

shear. As indicated by the beam designations in Table 1, each series in

cluded environmental (E), mach (M), and prototype (P) beams. Scale factors 

of 4 and 2 were used. Duplication of tests was used to indicate repeata

bility of results. 

Two prototype beams were tested dynamically to provide some correla

tion between statically and dynamically loadecl bemns. 

EXPERIMENTAL PROCEDURE 

The dimensions of the prototype beams are shown in Figure l and the . 

properties of the beams tested statically are given in Table 1. All dimen

sions shown in Figure l were scaled by factors of !~ and 2 for the models. 

The area of the compressive reinforcement, in all cases, was half the area 

of the tensile reinforcement. Numbers 2, 4, and 8 intermediate-grade de

formed bars were used for the 1/4-scale, 1/2-scale, and prototype beams, 

respectively, and anchor plates were provided for the tension steel. 

A nominal concrete strength of 4,ooo psi1 was selected for the proto

type beams and the 1/4-.scale replica model, and 1,000- and 2,000-psi con

cretes were used for the 1/4- and 1/2-scale dissimilar-strength models. 

The maximum size aggregate (MSA) for the prototype beam was 1-1/2 inches, 

and scaled MSA's (i.e. 3/4 and 3/8 inch, respectively) were used for the 

1/2- and 1/4-scale models. 

1 A table of factors for converting British units of measurement to metric 

units is presented on page 8. 
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Two hydraulic loaders with capacities of approximately 25 kips and 500 

kips were used for the static tests. These tests were conducted under a 

continuously applied load. Testing times varied from approximately 1 to 3 

minutes. A 200-kip loader was used for the dynamic tests. Rapid loading 

in this loader is obtained by the use of rupture disks and the expansion of 

precompressed low bulk modulus fluid. Rise times are controlled by an ori

fice plate and by the stiffness of the beams. A more complete description 

of the loaders is presented in Reference 2. 

All beams were instrwnented to measure steel strains and deflections 

at midspan. Strain gages with scaled gage lengths of 1/4, 1/2, and 1 inch 

were bonded to the compression steel and both layers of tension steel. A 

few selected beams were gaged at quarterspan on the tension steel to deter

mine strain distribution. Deflections were monitored by linear variable 

differential transformers (LVDT) at the top of the beam. The probe of the 

LVDT rested on the loading block and the body of the LVDT was anchored to 

the reaction frame. Loads were monitored by a load cell mounted at the end 

of the loading ram. Magnetic tapes or oscillograph recorders were used to 

record the data. 

RESULTS AND DISCUSSION 

Standard compression cylinder tests were conducted periodically and 

the beams were tested when the strength of concrete was within approxi

mately 10 percent of the desired value. Typical stress-strain curves from 

cylinder compression tests for the prototypes and models are shown in Fig

ure 2a. The types of models are identified by a scale factor for length 

K1 and a scale factor for concrete strength Kf' Figure 2b shows that 
c 

the tensile strength of concrete can be approximated as a function of Vf' 
c 

as assumed in the parameters for inclined cracking shear. 

The normalized cracking shear V and ultimate shear V for the c u 
four series of models and prototypes are given in Table 2. The cracking 

load was interpreted from load-steel strain or load-deflection plots. Fig

ures 3 and 4 show the normalized cracking and ultimate shear for the proto

types and models. The cracking shear parameter V /(bd"Vf') is nearly 
c c 
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constant since the parameter (...ff'/p)(a/d) representing the beam proper
c 

ties is approximately the same for all four span-to-depth ratios. 

The ultimate shear V /bd-..ff' shows an increase with decreasing I/d. 
u c 

Failures of beams with large span-to-depth ratio occur almost simultane-

ously with the development of the inclined crack. As the span-to-depth ra

tio increases, the beam can support loads considerably higher than the in

clined cracking load due to a transition from beam to arch action. The 

area of concrete in compression above the crack and the tensile reinforce

ment, which acts as a tension tie, provide the increased load capacity. 

The magnitudes of the reserve capacity above cracking for the replica model 

and prototype beams with L/d ratios of 2.88 and 2.00 were similar to the 

values determined in Reference 3 for uniformly loaded beams and Reference 4 

for beams loaded at third points. Reference 5 indicates that beams sub

jected to concentrated loads had lower reserve capacity than those sub

jected to uniform loads. The test results (Figure 3) show that increases 

in reserve capacity do occur but at smaller L/d ratios than observed in 

tests of uniformly loaded beams (the smallest value of L/d for those beams 

being 4.69). 

Figure 5 shows similar crack development in the 1/4-scale replica 

model and prototype and the development of uniform strain in the tension 

steel after the formation of arch action. The similarity of crack patterns 

and failures of the 1/4-scale replica model and a prototype is shown in 

Figure 6. (No data were obtained for the prototype shown.) 

Figures 7 through 10 show the posttest crack patterns for 1/4-scale 

models and prototypes. The beams with L/d ratios of 4.67 and 3.88 failed 

along initially formed inclined cracks with secondary splitting along the 

tensile reinforcement. The prototypes and 1/4-scale replica models with 

the L/d ratios of 2.80 and 2.00 showed multiple cracking, and in some in

stances failure occurred along a suddenly developed crack. The 1/2- and 

1/4-scale dissimilar-strength models with L/d ratios of ~.80 and 2.00 

showed no multiple cracking, and failure of these beams occurred along an 

initially formed crack. This difference in crack formation and propaga

tion in the deeper dissimilar-strength models (L/d = 2.88 and 2.00, 
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Figure 4) accounts for the lower load-carrying capability since arch action 

was not fully developed. 

The tensile steel strains at midspan, shown as dimensionless plots in 

Figures 11 and 12, indicate good correlation for the 1/4-scale replica 

model and prototype. The strains for the 1/4-scale dissimilar models are 

higher, probably due to the distortions in strength scaling. Load

deflection curves at midspan are shown in Figures 13 through 16. Although 

no abrupt changes in deflection rate were evident at the cracking load, the 

load-deflection curves and tensile and compressive steel strains were used 

to determine cracking loads for the Series A and B beams. Gracking loads 

in the deeper beams corresponded to a point at which the slope of the load

steel strain curve becomes constant. 

The crack pattern of a Series A prototype beam, tested at a dynamic 

load approximately 50 percent over the st'ltic capacity, is compared with 

the crack pattern from the companion static test in Figure 17. The dy-

na.mic failure is s;ymme-tric, with much higher strains- and displacements tharr 

occurred in the static tests. The dynamic load, displacements, and strains 

are shown in Figures 18 and 19. The oscillations in the load are charac

teristic of the loader. The tensile strains become uniform at approxi

mately 6 msec, indicating arch formation; failure occurred at approximately 

11 msec as evidenced by a rapid decrease in strain and c.m increased deflec

tion rate. 

Comparison of static and dynamic failures for the Series B prototype 

beams is shovm in Figure 20. The dynamic test was conducted at a load 

slightly higher than the static capacity. The failures appear identical, 

but the strains and deflections under the dynamic load, shown in 1"igures 21 

and 22, are higher than the strains and deflection from the companion 

static test. The dynamic data indicate completely formed arch action at 

approximately 8 msec, after which the bemn maintains constant load 1·1i th no 

increasing strains or deflection until failure occurs at approximately l+2 

msec. The time for which the load was maintained before failure occurred 

indicates that a lower load may not have caused failure. The increase in 

the dynamic load-carrying capacity may be explained by the increase in con

crete strengths due to strain rate sensitivity. If a 15 to 20 percent 
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increase in concrete strength is assumed, the static and dynamic ultimate 

normalized shear strengths are almost identical for the Series B prototype 

tests. 

CONCLUSIONS 

The conclusions presented are based on limited test data reported 

herein. 

1. From test data interpretation, the inclined cracking load can be 

adequately predicted from 1/4-scale replica and 1/4- and 1/2-scale 

dissimilar-strength models. 

2. The ultimate load-carrying capacity, failure pattern, and strains 

of the prototype beams can be adequately predicted from l/L~-scale replica 

models. 

3. The failure pattern and ultimate load capacity of prototype beams 

with L/d ratios of 4.67 and 3.88 can be predicted from the 1/4- and 1/2-

sca:le dissimilar models. For the deeper beams (L/d == 2.80 and 2.00) the 

ultimate capacity of the prototypes would be underpredicted from the 

dissimilar-strength models. 

4. A comparison of static and dynamic failures and load-carrying ca

pacities indicates that the Series A beam (L/d = 4.67), when subjected to a 

dynamic load approximately 50 percent higher than its static capacity, ex

hibited a different failure pattern. For the Series B tests (L/d = 3.88), 
the failures and crack patterns were very similar for static and dynamic 

loads with the exception that the failure crack in the dynamic test was in

clined at a steeper angle to a horizontal plane. If an increase in con

crete strength of 15 to 20 percent is assumed for the beam tested dynami

cally, the noTinalized ultimate shear strengths for static and dynamic loads 

are almost identical. 
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TAB IE l PROPERTIES OF' STATIC TEST SPEC"G·fr:IIS 

Bearn Beam Total Clear Effective L Concrete Compressive Tensile 
Width Depth Span Depth d Com- Reinforcement Reinforcement 
b h L d pressive 

Strength Number Size Ratio Number Size Ratio 
f' p' p c 

inches inches inches inches psi 

AF.Lfol 3 5.82 24 5. llJ. 4.67 1,050 2 Ilo. 2 0.0065 I iio. 2 0.0130 4 

£1..t:4s2 3 5.82 24 ~) .11+ 4.67 1,050 2 ~:o. 2 0.0o6) 1, lio. 2 0.0130 
x.r4s1 3 5.82 21+ 5. lL~ !-t.67 3,980 )! i.:o. 2 0.0130 8 lTo. 2 0.')260 
At:2Sl 6 11.64 l18 10.28 4.67 1,983 3 =~o. 

l, 
't 0.0097 6 Ilo. 4 0.0194 

AP1S2 12 23.23 96 20.56 lj. .67 3, '5T( 4 I:o. 8 0.0130 8 l·To. 8 0.0260 

BELJ.Sl 3 : •• 87 2lJ. 6.19 3.88 1,097 2 ~Jo. 2 0.0053 4 1:0. 2 0.0106 
,___, 1<;.rl+Sl 3 6.87 2l+ 6.19 3.88 3,980 ii- ::o. 2 0.0106 8 I!o. 2 0.0212 ,_., 

BE2Sl 6 13.7Lt L~8 12 .3.S 3.88 l, ~t/O 3 !:o. \ 0.0081 6 1:0. 4 0.0162 
BPJSl 12 27.48 96 24.76 3.88 !e ,3Lfo 4 ~:o. 8 O.Olo6 8 IJo. 8 0.0212 

CT:l+Sl 3 9.25 2Jf 8.57 2.80 1,097 2 Iio. 2 0.0039 4 I.Jo. 2 0.0078 
Cl.Il+Sl 3 9.25 2JJ. 8.57 2.80 3,980 lj. IJo. 2 0.0077 8 IJo. 2 0.0154 
1.::E2Sl /" 18.50 :+8 l'( .1!1 2.80 2,030 3 =;o. 

l 0.0053 
,,-

ITo. !+ 0.0117 0 '-1- 0 

C'PlSl 12 37 .00 o(, 
,/~' 3\.28 2.80 3,893 l· t :10. 8 0.0077 8 ilo. 8 0.0154 

CP1S3 12 37.00 96 34.28 2.80 3,980 1. IJo. 8 0.0077 8 !Jo. 8 0.0154 '-T 

0:=11s2 3 12.68 2'+ 12.00 2.00 920 2 I:o. 2 0.0028 LJ. 1:0. 2 0.0056 
D;;;J,::;3 3 12.68 2;, 

·r 12.00 2.00 920 2 1;0. 2 0.0028 4 Eo. 2 0.0056 
D::'1s3 3 12.GS 21+ 12.00 2.00 3,980 lj. r;o. 2 0.0056 8 r;o. 2 0.0112 
DE2Sl v 25.36 I '°' '+u 2!1.00 2.00 2,020 3 Ho. 4 O.OOll-2 6 Iro. 4 0.0083 
iJPlSl 12 ~'o. 72 9G '.8.oo 2.00 .', ,343 1+ =:o. 8 0.0055 8 I:o. 8 0.0110 
DP1S2 l2 c:o.n o._) ':3.oo 2.00 3, 9L,f; 1 ~ I To. 8 0.0055 8 1;0. 8 0.0110 



TABLE 2 EXPERIMENTAL CRACKING Ai."ID ULTIMATE SHEAR 

Beam Concrete Cracking Ultimate Cracking Shear Ultimate Shear 
Compressive Shear Shear Parameter Parameter 
Strength v v v /bd VF v /bd -vf' 
f' 

c u c c u c 
c 

psi kips kips 

AE1~Sl 1,050 1.50 1.96 3.00 3,92 

AE4S2 1,050 1.85 2.13 3.70 l~ .26 

AM4Sl 3,980 3.23 l+.30 3.32 4.42 

AE2Sl 1,983 9.50 11.10 3. L~6 4 .oi~ 

AP1S2 3,577 37.00 53,50 2.51 3,63 

BEl~Sl 1,097 l.90 2.27 3.09 3,65 

BM4Sl 3,980 4.35 5.38 3.70 4.59 
B1S2Sl i,97_o 9,50 2.88 

BPlSl 4.340 57,00 64.oo 2.94 3,32 

CEl+Sl 1,097 2.03 3.60 2.38 4.23 
CMl1-Sl 3,980 '.).80 11.71 3°'.>7 7.22 
CTi:2~)1 2,030 13.75 17.15 3.01 3.70 
CPlSl 3,893 80.00 207.00 3.12 8.06 
CP1S3 3,980 65.00 162.00 2.38 5,95 

DE4S2 920 3.25 5,55 2.98 5.08 
DEl~S3 920 5.21 4.77 
DM4S3 3,980 7.10 14.61 3.13 6. 5l~ 
DE2Sl 2,020 33 .10 5 .o6 
DPlSl l-1'343 100.00 2l+8. 00 2.63 6.53 
DP1S2 3 '9l~6 102.50 257,50 2.83 7.12 
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L = 96.0 
~ I I n-;~o- ... I 

SERIES A B c D 

d 20.56 24,76 34.28 48.00 

h 23.28 27.48 37.00 50,72 

L/d 4,57 3.38 2.80 2.00 

Figure 1 Dimensions (in inches) for simply supported prototype deep beams. 
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Figure 2 Concrete properties. 
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a. BeaJll AP1S2, prototYJJe. 

b. Beam A.;.~l+Sl, K,-
.LJ 

1 . 

c. Beam AELfSl, Y'J~ = 4 , Kf' :...= 4 • 
c 

Figure 7 Crack patterns of Series A 1/4-scale models 
and prototY})e. 
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a. Beam BPlSl, prototype. 

b. BeamBMl~Sl, l\= J~, Kf' l. 
c 

c. Beam BE4Sl, K1 = !~ , Kf' = 4 . 
c 

Figure 8 Crack patterns of Series B 1/4-sca.le models 
and prototype. 
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\ 

a. Beam CP1S3, prototype. 

b. Beam CM4Sl, KL= 4 , Kf' - 1 • 
c 

c. Beam CE4Sl, KL= 4, Kf' -· 4. 
c 

Figure 9 Crack patterns of Series c 1/4-scale models 
and prototype. 
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a. Beam DP1S2, prototype. 

b. Beam DM4S3, 11., = 4 , Kf' = 1 • 
c 

c. Beam DE4s3, ~ = 4 ' Kf, = 4 • 
c 

Figure 10 Crack patterns of Series D 1/4-scale models 
and prototype • 
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Figure 11 Normalized shear-tensile steel strains at midspan for 
Series A and B 1/4-scale models and prototypes. 
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Figure 12 Normalized shear-tensile steel strains at midspan 
for Series C and D 1/4-scale models and prototypes. 
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Figure 13 Load-deflection at midspan for Series A 1/4-scale 
models and prototype. 
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Figure 14 Load-deflection at midspan for Series B 1/4-scale 
models and prototype. 
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models and prototype. 

30 600 

12.5 - 25 DM4S3 
100 500 

DP!S2 

10.0 20 
80 400 

OE2SI 

m 

"' N 7.5 ~ 15 
60 ~ 300 

"' 0 11 11 0 

~- ~ ~ ow w "0 0 0 
J 

5.0 10 
40 200 

2.5 
20 

0.1 0.2 0.3 
0.6 0.4 

DEFLECTION, INCHES 
DEFLECTION, INCHES 

Figure 16 Load-deflection at midspan for Series D 1/4-scale 
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a. Dynamic test, P = 155 kips , f' = 3,957 psi. u c 

b. Static test, Pu= 107 kips , f~ = 3,577 psi. 

Figure 17 Comparison of crack patterns of Series A prototypes 
after static and dynamic tests. 
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Figure 18 Dynamic load and midspan de
flection for Series A prototype beam. 
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Figure 19 Dynamic steel strains for Series A prototype beam. 
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a. Dynamic test, P = 135 kips, f' = 3,730 psi. u c 

b. Static test, P = 128 kips, f' 
u c 4 ,340 psi. 

Figure 20 Comparison of crack patterns of Series B prototypes 
after static and dynamic tests. 
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Figure 21 Dynamic load and midspan deflection for 
Series B prototype beam. 
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U. ABSTRACT 

Tests were performed on deep beams under a midspan load to determine the scaling 
of cracking and ultimate load-carrying capacities of beams failing in shear. Two types 
of scaling procedures were used, one in which only the geometries are scaled (replica 
or mach models), the other in which both geometry and material properties are scaled 
(dissimilar-strength or environmental models). The results of twenty simply supported 
beams tested statically with span-to-depth ratios of 4.67, 3.88, 2.80, and 2.00 and 
comprising 1/4- and 1/2-scale models and laboratory prototypes are presented. Two 
prototype beams with L/d ratios of 4.67 and 3.88 were tested dynamically to provide 
some correlation between statically and dynamically loaded beams. Test results indi-
cate that cracking loads can be adequately predicted from both replica and dissimilar-
strength models and ultimate loads can be predicted from replica models for all span-
to-depth ratios tested. When transition from beam to arch action occurs, the 
dissimilar-strength models underpredict the ultimate load-carrying capacity of the 
prototypes. 
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