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Tests were performed on deep beams under a midspan load to determine
the scaling of cracking and ultimate load-carrying capacities of beams fail-
ing in shear. Two types of scaling procedures were used, one in which only
the geometries are scaled (replica or mach models), the other in which both
geometry and material properties are scaled (dissimilar-strength or envi-
ronmental models). The results of twenty simply supported beams tested
statically with span-to-depth ratios of 4.67, 3.88, 2.80, and 2.00 and com-
prising 1/4- and 1/2-scale models and laboratory prototypes are presented.
Two prototype beams with L/d ratios of L.67 and 3.88 were tested dynamically
to provide some correlation between statically and dynamically loaded beams.
Test results indicate that cracking loads can be adequately predicted from
both replica and dissimilar-strength models and ultimate loads can be pre-
dicted from replica models for all span-to-depth ratios tested. When tran-
sition from beam to arch action occurs, the dissimilar-strength models un-

derpredict the ultimate load-carrying capacity of the prototypes.
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NOTAT ION

Length of the shear span
Width of beam cross section

Effective depth, distance from top compressive fiber to centroid
of tensile reinforcement

Concrete compressive strength
Force dimension

Total depth of beam

Scale factor for concrete strength
Scale factor for length

Length dimension; clear span, distance between inside edges of sup-
ports

Bending moment
Ratio of area of tensile reinforcement to effective area of corcrete

Ratio of area of compressive reinforcement to effective area of
concrete

Ultimate load
Shear force
Cracking shear

Ultimate shear



CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of measurement used in this report can be converted to
metric units as follows.

Multiply By To Obtain
inches 25.4 millimeters
kips 4. 448222 kilonewtons
pounds per square inch 6.894757 kilonewtons per square meter




SIMILITUDE STUDY OF REINFORCED
CONCRETE DEEP BEAMS

INTRODUCTION

The design of protective structures to resist high-intensity loading
from nuclear detonations must often be experimentally evaluated, and in
many instances prototype testing would exceed the load and/or size limita~
tions of laboratory simulation facilities. This evaluation can be carried
out by testing models and applying the principles of similitude.

The objectives of the similitude study are to develop design, con-
struction, and testing techniques for scale modeling deep reinforced con-
crete structures.

As an initial step towards achieving these objectives, deep beams have
been statically tested under a midspan load to determine the scaling of
Cracking and ultimate load-carrying capacities of beams failing inm shear.
Two types of scaling procedures have been used, one in which only the geom~
etries are scaled (replica or mach models), the other in which both geome-
try and material properties are scaled (dissimilar-strength or environmen-
tal models).

The use of any modeling technique requires that the design of the
Mmodel be based on parameters which influence the behavior of its prototype.
Reference 1 presents an expression for shear at diagonal tension cracking
which is derived from the equation of principal stress at a point. The
€quation contains two parameters which, when simplified, may be expressed
as a nondimensional parameter V/(bdﬁV——3 which represents the dlagonal
tension strength, and (Vr_yp)(M/Vd), a parameter with dimensions of L2
which represents the properties of the beam. This parameter has dimensiong
Since the modulus of elasticity of steel is assumed a constant and not in-

Ccluded. The terms used in these expressions and their dimensions are de-

Tined as follows:
V = ghear force, F
b = width of beam cross section, L
d = effective depth of beam, L

-2
fé = concrete compressive strength, FL



tensile reinforcement ratio

= g
[T

bending moment, FL

force dimension

I

L = length dimension
For simply supported beams with a concentrated load, the M/Vd term 1s syn-
onymous with a/d, the ratio of shear span to effective depth.

Four series of static tests, A, B, C, and D, were conducted with the
following respective span-to-depth ratios: Lu.67, 3.88, 2.80, and 2.00.
Model and prototype beams for each span-to-depth ratio were designed such
that the quantity“VTz7p would be constant and that failure would occur in
shear. As indicated by the beam designations in Table 1, each series in-
cluded environmental (E), mach (M), and prototype (P) beams. Scale factors
of Lk and 2 were used. Duplication of tests was used to indicate repeata-
bility of results.

Two prototype beams were tested dynemically to provide some correla-

tion between statically and dynamically loaded beams.
EXPERIMENTAL PROCEDURE

The dimensions of the prototype beams are shown in Figure 1 and the .
properties of the beams tested statically are given in Table 1. All dimen-
sions shown in Figure 1 were scaled by factors of 4 and 2 for the models.
The area of the compressive reinforcement, in all cases, was half the area
of the tensile reinforcement. Numbers 2, 4, and 8 intermediate-grade de-
formed bars were used for the 1/L-scale, 1/2-scale, and prototype beams,
respectively, and anchor plates were provided for the tension steel.

A nominal concrete strength of 4,000 psil was selected for the proto-
type beams and the l/h;scale replica model, and 1,000- and 2,000-psi con-
cretes were used for the l/h- and l/2-scale dissimilar-strength models.
The maximum size aggregate (MSA) for the prototype beam was 1-1/2 inches,

and scaled MSA's (i.e. 3/k and 3/8 inch, respectively) were used for the
1/2- and 1/k-scale models.

1 .
A table of factors for converting British units of measurement to metric

units is presented on page 8.
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Two hydraulic loaders with capacities of approximately 25 kips and 500
kips were used for the static tests. These tests were conducted under a
continuously applied load. Testing times varied from approximately 1 to 3
minutes. A 200-kip loader was used for the dynamic tests. Rapid loading
in this loader is obtained by the use of rupture disks and the expansion of
precompressed low bulk modulus fluid. Rise times are controlled by an ori-
fice plate and by the stiffness of the beams. A more complete description
of the loaders is presented in Reference 2.

All beams were instrumented to measure steel strains and deflections
at midspan. Strain gages with scaled gage lengths of L/M, 1/2, and 1 inch
were bonded to the compression steel and both layers of tension steel. A
few selected beams were gaged at quarterspan on the tension steel to deter-
mine strain distribution. Deflections were monitored by linear variable
differential transformers (LVDT) at the top of the beam. The probe of the
LVDT rested on the loading'block and the body of the LVDT was anchored to
the reaction frame. ILoads were monitored by a load cell mounted at the end

of the loading ram. Magnetic tapes or oscillograph recorders were used to

record the data.

RESULTS AND DISCUSSION

Standard compression cylinder tests were conducted periodically and
the beams were tested when the strength of concrete was within approxi-
mately 10 percent of the desired value. Typical stress-strain curves from
Cylinder compression tests for the prototypes and models are shown in Fig-
ure 2a. The types of models are identified by a scale factor for length
KL and a scale factor for concrete strength Kfé . Figure 2b shows that
the tensile strength of concrete can be approximated as a function of WCﬁj
&s assumed in the parameters for inclined cracking shear.

The normalized cracking shear Vc and ultimate shear Vu for the
four series of models and prototypes are given in Table 2. The cracking
load was interpreted from load-steel strain or load-deflection plots. Fig-
ures 3 and L4 show the normalized cracking and ultimate shear for the proto-

types and models. The cracking shear parameter Vd/(bdv fé) is nearly

11



constant since the parameter (V?Z/p)(a/d) representing the beam proper-
ties is approximately the same for all four span-to-depth ratios.

The ultimate shear Vu/bd\rfz- shows an increase with decreasing I/d.
Failures of beams with large span-to-depth ratioc occur almost simultane-
ously with the development of the ineclined crack. As the span-to-depth ra-
tio increases, the beam can support loads considerably higher than the in-
clined cracking load due to a transition from beam to arch action. The
area of concrete in compression sbove the crack and the tensile reinforce-
ment, which acts as a tension tie, provide the increased load capacity.

The magnitudes of the reserve capacity above cracking for the replica model
and prototype beams with L/d ratios of 2.88 and 2.00 were similar to the
values determined in Reference 3 for uniformly loaded beams and Reference U
for beams loaded at third points. Reference 5 indicates that beams sub-
Jected to concentrated loads had lower reserve capacity than those sub-
Jected to uniform loads. The test results (Figure 3) show that increases
in reserve capacity do occur but at smaller L/d ratios than observed in
tests of uniformly loaded beams (the smallest value of I/d for those beams
being h4.69).

Figure 5 shows similar crack development in the 1/L-scale replica
model and prototype and the development of uniform strain in the tension
steel after the formation of arch action. The similarity of crack patterns
and failures of the l/h-scale replica model and a prototype is shown in
Figure 6. (No data were obtained for the prototype shown. )

Figures 7 through 10 show the posttest crack patterns for 1/Lk-scale
models and prototypes. The beams with L/d ratios of L4.67 and 3.88 failed
along initially formed inclined cracks with secondary splitting along the
tensile reinforcement. The prototypes and 1/L-scale replica models with
the L/d ratios of 2.80 and 2.00 showed multiple cracking, and in some in-
stances failure occurred along a suddenly developed crack. The 1/2- and
L/M-scale dissimilar-strength models with L/d ratios of 2.80 and 2.00
showed no multiple cracking, and failure of these beams occurred along an
initially formed crack. This difference in crack formation and propaga-

tion in the deeper dissimilar-strength models (L/d = 2.88 and 2.00,
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Figure 4) accounts for the lower load-carrying capability since arch action
was not fully developed.

The tensile steel étrains at midspan, shown as dimensionless plots in
Figures 11 and 12, indicate good correlation for the l/h-scale replica
model and prototype. The strains for the 1/4-scale dissimilar models are
higher, probably due to the distortions in strength scaling. Load-
deflection curves at midspan are shown in Figures 13 through 16. Although
no abrupt changes in deflection rate were evident at the cracking load, the
load-deflecticn curves and tensile and compressive steel strains were used
to determine cracking loads for the Series A and B beams. Cracking loads
in the deeper beams corresponded to a point at which the slope of the load-
Steel strain curve becomes constant.

The crack pattern of a Series A prototype beam, tested at a dynamic
load approximately 50 percent over the static capacity, is compared with
the crack pattern from the companion static test in Figure 17. The dy-
namic failure is symmetrie, with much higher strains and displacements  tham
occurred in the static tests. The dynamic load, displacements, and strains
are shown in Figures 18 and 19. The oscillations in the load are charac-
teristic of the lcader. The tensile strains become uniform at approxi-
mately 6 msec, indicating arch formation; failure occurred at approximately
11 msec as evidenced by a rapid decrease in strain and an increased deflec-
tion rate.

Comparison of static and dynamic fallures for the Series B prototype
beams is shown in Figure 20. The dynamic test was conducted at a load
slightly higher than the static capacity. The failures appear identical,
but the strains and deflecctions under the dynamic load, shown in "igures 21
and 22, are higher than the strains and deflection from the companion
static test. The dynamic data indicate completely formed arch action at
approximately & msec, after which the beam maintains constant load with no
increasing strains or deflection until failure occurs at approximately 42
msec. The time for which the load was maintained berore failure occurred
indicates that a lower load may not have caused failure. The increase in
the dynamic load-carrying capacity may be explained by the increase in con-

Crete strengths due to strain rate sensitivity. If a 15 to 20 percent
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increase in concrete strength is assumed, the static and dynamic ultimate
normalized shear strengths are almost identical for the Series B prototype

tests.

CONCLUSTIONS

The conclusions presented are based on limited test data reported
herein.

1. Trom test data interpretation, the inclined cracking load can be
adequately predicted from 1/L-scale replica and 1/Lk- and 1/2-scale
dissimilar-strength models.

2. The ultimate load-carrying capacity, failure pattern, and strains
of the prototype beams can be adequately predicted from l/h-scale replica
models.

3. The failure pattern and ultimate load capacity of prototype beams
with I/d ratios of 4.67 and 3.88 can be predicted from the 1/L- and 1/2-
scale dissimilar models. TFor the deeper beams (L/d = 2.80 and 2.00) the
ultimate capacity of the prototypes would be underpredicted from the
dissimilar-strength models,

L. A comparison of static and dynamic failures and load-carrying ca-
pacities indicates that the Series A beam (L/d = L4.67), when subjected to a
dynamic load approximately 50 percent higher than its static capacity, ex-
hibited a different failure pattern. For the Series-B tests (L/d = 3.88),
the failures and crack patterns were very similar for static and dynamic
loads with the exception that the failure crack in the dynamic test was in-
clined at a steeper angle to a horizontal plane. If an increase in con-
crete strength of 15 to 20 percent is assumed for the beam tested dynami-

cally, the normalized ultimate shear strengths for static and dynamic loads
are almost ldentical,

1L



TABIE 1 PROPERTIES OF STATIC TEST SPECIMILS

Beam Total Clear Effective Compressive

Depth Span Depth Reinforcement Reinforcement

h

Strength Number Size Ratio Number Size Ratio
p' D

inches 1inches inches
ARASL 3 5.82 el 5.1k 2 2  0.0065 4 2  0.0130
axhgo 3 5.82 ol 5,14 2 2  0.0065 L 2  0.0130
Ansl 3 5.82 ol 5.1k I 2 0.0130 8 2 0.7260
AR2S1 6 11.64 L8 10.28 3 b 0.0097 & . b 0.0194
APl1S2 12 23.28 a6 20.56 H .3 0.0130 8 8 0.0260
RELS1 3 4.87 ol 6.19 2 2 0.0053 4 2 0.0106
muhs1 3 6.87 2l £.19 ly .2 0.0106 8 .2  0.0212
BE2S1L 6 13.74 48 12.38 3 .h 0.0081 6 . b 0.0162
RP1S1 12 27.48 95 ol 76 L 8 0.0106 8 8 0.0212
orhsl 3 9.25 2h 8.57 2 .2 0.0039 & 2 0.0078
cMbsl 3 9.25 ol 8.57 L 2 0.0077 8 2  0.015k4
CESSL 5 18.50 n8 17,14 3 b 0.0053 & . b o0.0117
¢P1S1 12 37.00 s 3h.28 L 8 0.0077 8 .8 0.0154
CP1S3 12 27.00 95 3h.28 L 8 0.0077 8 8 0.0154
Drhg2 3 12.68 2l 12.00 2 2 0.0028 L .2  0.00556
Diha3 3 12.68 ok 12.00 2 2 0.0028 L 2  0.0056
DS 3 12.53 o4 12.00 L 2 0.0056 8 2 0.0112
presl & 25.36 48 2k.o0 L o.00k2 & L 0.0083
DPI1S1T 12 50.72 95 518,00 i 8 0.0055 8 .8 0.0110
DPIS2 12 c0.72 o5 483,00 g 8 0.0055 8 . 8 0.0110




TABLE 2 EXPERIMENTAL CRACKING AND ULTIMATE SHEAR

Beam Concrete Cracking Ultimate Cracking Shear Ultimate Shear
Compressive  Shear Shear Parameter Parameter
iﬁrength v, v, vc/bdwﬁﬁg' Vu/bdxfﬁz

(e}
psi kips kips

AE4S1 1,050 1.50 1.96 3.00 3.92

ABLS2 1,050 1.85 2.13 3.70 L.26

AMLs1 3,980 3.23 1+.30 3.32 L.ho

AE2S1 1,983 9.50 11.10 3.46 Lok

AP1S2 3,577 37.00 53.50 2.51 3.63

BELS1 1,097 1.90 2.27 3.09 3.65

BMLS 1 3,980 4.35 5.38 3.70 h.59

RE2S1 1,970 -- 9.50 -- 2.88

BP1S1 4.340 57.00 6. 00 2.9k 3.32

CEks1 1,097 2.03 3.60 2.38 L.23

oMhis1 3,980 5.80 11.71 3.57 7.22

CuE23l 2,030 13.75 17.15 3.01 3.70

CP1S1 3,893 80.00 207.00 3.12 8.06

CP1S3 3,980 - 65.00 162,00 2.38 5.95

DELS2 920 3.25 5.55 2.98 5.08

DELS3 920 -- 5.21 - ko7

DMLS3 3,980 7.10 14.61 3.13 6.5

DE2S1 2,020 -~ 33.10 - 5.06

DP1S1 4,343 100.00 o4i8.00 .63 6.53

DP182 3,946 102.50 257.50 2.83 7.12

16
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Figure 1 Dimensions (in inches) for simply supported prototype deep beams.
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Figure 4 Inclined cracking and ultimate shear of
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a. Beam AP1S2, prototype.
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—

b. Beam A4S, K, =k , Ko = 1.
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c. Beam AEMSL, K =1L , Koy =
- c

Figure 7 Crack patterns of Series A 1/4-scale models
and prototype.
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a. Beam BP1S1l, prototype.

b. Beam BMiS1l, K. = h , K

L = 1.
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N

¢c. Beam BELSL, K_ =4 | x =L |
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rlgure 8 Crack patterns of Series B l/h -scale models
and prototype.
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a. Beam CP1S3, prototype.

b. Beam CMiS1, K. =k , = 1.

Kf,
c

c. Beam CEUSI, Kp= b, Kfé =L .

Figure 9 Crack patterns of Series C 1/4-scale models
and prototype.
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a. Beam DP1S2, prototype.

7

/

=1 .

b. Beam DM4S3, K = AN Koy
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c
Figure 10 Crack patterns of Series D 1/h-scale models
and prototype.

a5

77155



1,500

’
/
/
!
{
4= ’l /
// /
/ /
/// /
/ /
3 / /
i / /
// /
v /7 /
bd 4fF; ;S s
/ / L/d = a.67
[}
2k i /
1 //
I 4
11/
/
LEGEND
L ’/ ——— PROTOTYPE
[ ————— MODEL, K =4, K,;
II —-= —- MODEL, KL:K‘;
o | 1 i
[ 500 1,000
€, pINSIN

1,500

!
]
I~ !
’
/ /
,/ /
y /
/
— ¥
/
/
/
Y ,
P / L/d = 3.88
L / /
/
/
/
/ /
/
- ,Il//
//
!
!
/
| { |
500 1,000
€, HIN/IN

Figure 11 Normalized shear-tensile steel strains at midspan for
Series A and B 1/k-scale models and prototypes.

7.5

6.0

’
/
/
/
14
/
}. /
/,
/
/,
/
/,
7’
/
/
/
i /
/
/ /
/ /7
-/ J
e Vs
a S
. L/d =280
/ 7/
/ o
/ 2
/
/
/
| LEGEND
/
,/ ————— PROTOTYPE
[} - -
" m——— MODEL, K, =3, Kfc' =1
ll ————— MODEL, K_=a, Kf; =4
1 { |
0 500 1,000 1,500
€, pIN’IN

1

L/d = 2.00

s00

€, UIN/IN

1,000

1,500

Figure 12 Normalized shear-tensile steel strains at midspan
for Series C and D 1/L-scale models and prototypes.

26



LOAD, KIPS

LOAD. KIPS

AE451

BE4S1

— 10 — 25 —
AM4S1
- 8- 20 |~
AE4ST
[ e 15—
g ]
> w
< <
- 4} 10
- 2 5
L [+ § 1 ol
0 0.1 0.2

DEFLECTION, INCHES

1285

AP1S2

Figure 13 ILoad-deflection at midspan for Series A 1/l-scale

models and prototype.

25
BM4ST

BE4S]

- 6 15
2 Q@
s w
® [u

- 4 4= 10

L 0 ! ) o

o 0.1 0.2
DEFLECTION, INCHES

BP1S1

—~
AE2S}
100 |
AP1S2
751
50 [~
25 -
0 ! ! |
0 0.1 0.2 03
DEFLECTION, INCHES
125
BP1ST
100
BE2S1
75
50
25
o] ! 1 I
o 0.1 0.2 0.3

DEFLECTION, INCHES

Figure 14 Load-deflection at midspan for Series B 1/4-scale

models and prototype.
27



LOAD, KIPS

CEA4SH

25 —

80 ~

40

20

o -

el

500

300

CcPi1S3

200

100

CP1s3

CE251

0.1 0.2
DEFLECTION, INCHES

15 Load-deflection at midspan for Series C 1/U-scale

100
r

80 t—~

60 b=

aol-

20—

200 L

100 -

DE2ST

Dp1s2

! 1

0.2 0.4

DEFLECTION, INCHES

0.6

16 Load-deflection at midspan for Series D 1/kwscale

CM4ST
7.5 L 15 L—
a CE4S]
<
=
8]
a
5.0 [~ 10 |- q
Q
25 L
oL 0 { | |
-0 -0:1 -0.2 03
DEFLECTION, INCHES
Figure
models and prototype.
30—
12.5 - 25’- DM4S3
DE452
10.0 ~ 20 f—
7.5 |~ gls -
n o
o
2% 7
5.0 L- 10 -
2.5 51—
o [ L L |
o 0.1 0.2 0.3
DEFLECTION, INCHES
Figure
models and prototype.

28



]

b. Static test, P, = 107 kips , fé = 3,577 psi.

Figure 17 Comparison of crack patterns of Series A prototypes
after static and dynamic tests.
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Figure 18 Dynamic load and midspan de-
flection for Series A prototype beam.
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Figure 19 Dynamic steel strains for Series A prototype beam.
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b. Static test, P = 128 kips, £l = 14,340 psi.

Tigure 20 Comparison of crack patterns of Series B prototypes
after static and dynamic tests.
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Figure 21 Dynamic load and midspan deflection for
Series B prototype beanm.
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