134m 10. N-71-2 0P.3

MISCELLANEOUS PAPER N-71-2

SIMILITUDE STUDY OF REINFORCED CONCRETE DEEP BEAMS

by

J. P. Balsara, L. E. Roggenkamp

ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG, MISSISSIPPI

January 1971

Sponsored by Defense Atomic Support Agency

Conducted by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

This document has been approved for public release and sale; its distribution is unlimited

MISCELLANEOUS PAPER N-71-2

SIMILITUDE STUDY OF REINFORCED CONCRETE DEEP BEAMS

Ьу

J. P. Balsara, L. E. Roggenkamp

January 1971

Sponsored by Defense Atomic Support Agency

Conducted by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS.

This document has been approved for public release and sale; its distribution is unlimited

W34m No. N-71-20 Cop.3

ABSTRACT

Tests were performed on deep beams under a midspan load to determine the scaling of cracking and ultimate load-carrying capacities of beams failing in shear. Two types of scaling procedures were used, one in which only the geometries are scaled (replica or mach models), the other in which both geometry and material properties are scaled (dissimilar-strength or environmental models). The results of twenty simply supported beams tested statically with span-to-depth ratios of 4.67, 3.88, 2.80, and 2.00 and comprising 1/4- and 1/2-scale models and laboratory prototypes are presented. Two prototype beams with L/d ratios of 4.67 and 3.88 were tested dynamically to provide some correlation between statically and dynamically loaded beams. Test results indicate that cracking loads can be adequately predicted from both replica and dissimilar-strength models and ultimate loads can be predicted from replica models for all span-to-depth ratios tested. When transition from beam to arch action occurs, the dissimilar-strength models underpredict the ultimate load-carrying capacity of the prototypes.

PREFACE

The research reported herein was conducted at the U. S. Army Engineer Waterways Experiment Station under the sponsorship of the Defense Atomic Support Agency. The results of this study were presented at the American Society of Civil Engineers National Structural Engineering Meeting held at Portland, Oregon, 6-10 April 1970. The work was accomplished during the period 1968-1970 under the general supervision of Mr. G. L. Arbuthnot, Jr., Chief of the Nuclear Weapons Effects Division, and under the direct supervision of Mr. W. J. Flathau, Chief of the Protective Structures Branch. The report was prepared by Dr. J. P. Balsara and Mr. L. E. Roggenkamp.

COL Levi A. Brown, CE, and COL Ernest D. Peixotto, CE, were the Directors of the Materways Experiment Station during this study and the preparation of this report. Mr. J. B. Tiffany and Mr. F. R. Brown were Technical Directors.

	RACT	3
PREFA	ACE	4
NOTA	rion	7
CONVI	ERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT	8
INTRO	DDUCTION	9
EXPEI	RIMENTAL PROCEDURE	10
	LTS AND DISCUSSION	11
	LUSIONS	14
	RENCES	33
TABLI		
1	Properties of Static Test Specimens	15
2	Experimental Cracking and Ultimate Shear	16
FIGUI	RES	
l	Dimensions for simply supported prototype deep beams	17
2 3	Concrete properties Inclined cracking and ultimate shear of replica models and	18
2	prototypes	19
14	Inclined cracking and ultimate shear of dissimilar-strength	00
5	models and prototypesInclined cracking loads determined from tensile steel strains,	20
	Series C replica model and prototype	21
6 7	Crack patterns of 1/4-scale replica model and prototype Crack patterns of Series A 1/4-scale models and prototype	21 22
8	Crack patterns of Series B 1/4-scale models and prototype	23
9	Crack patterns of Series C 1/4-scale models and prototype	24
10	Crack patterns of Series D 1/4-scale models and prototype	25
11	Normalized shear-tensile steel strains at midspan for Series A and B 1/4-scale models and prototypes	26
12	Normalized shear-tensile steel strains at midspan for Series C	20
	and D 1/4-scale models and prototypes	2 6
13	Load-deflection at midspan for Series A 1/4-scale models and	077
14	prototype Load-deflection at midspan for Series B 1/4-scale models and	27
	prototype	27
15	Load-deflection at midspan for Series C 1/4-scale models and prototype	28
16	Load-deflection at midspan for Series D 1/4-scale models and	20
7	prototype	28
17	Comparison of crack patterns of Series A prototypes after static and dynamic tests	29
18	Dynamic load and midspan deflection for Series A prototype beam	29

19	Dynamic steel strains for Series A prototype beam	30
20	Comparison of crack patterns of Series B prototypes after static	
	and dynamic tests	31
21	Dynamic load and midspan deflection for Series B prototype beam	31

22 Dynamic steel strains for Series B prototype beam----- 32

NOTATION

- a Length of the shear span
- b Width of beam cross section
- d Effective depth, distance from top compressive fiber to centroid of tensile reinforcement
- f_c' Concrete compressive strength
- F Force dimension
- h Total depth of beam
- $K_{f'}$ Scale factor for concrete strength
 - K_{I} Scale factor for length
 - L Length dimension; clear span, distance between inside edges of supports
 - M Bending moment

С

- p Ratio of area of tensile reinforcement to effective area of concrete
- p' Ratio of area of compressive reinforcement to effective area of concrete
- P Ultimate load
- V Shear force
- V Cracking shear
- V_u Ultimate shear

British units of measurement used in this report can be converted to metric units as follows.

Multiply	Ву	To Obtain			
inches	25.4	millimeters			
kips	4.448222	kilonewtons			
pounds per square inch	6.894757	kilonewtons per square meter			

SIMILITUDE STUDY OF REINFORCED CONCRETE DEEP BEAMS

INTRODUCTION

The design of protective structures to resist high-intensity loading from nuclear detonations must often be experimentally evaluated, and in many instances prototype testing would exceed the load and/or size limitations of laboratory simulation facilities. This evaluation can be carried out by testing models and applying the principles of similitude.

The objectives of the similitude study are to develop design, construction, and testing techniques for scale modeling deep reinforced concrete structures.

As an initial step towards achieving these objectives, deep beams have been statically tested under a midspan load to determine the scaling of cracking and ultimate load-carrying capacities of beams failing in shear. Two types of scaling procedures have been used, one in which only the geometries are scaled (replica or mach models), the other in which both geometry and material properties are scaled (dissimilar-strength or environmental models).

The use of any modeling technique requires that the design of the model be based on parameters which influence the behavior of its prototype. Reference 1 presents an expression for shear at diagonal tension cracking which is derived from the equation of principal stress at a point. The equation contains two parameters which, when simplified, may be expressed as a nondimensional parameter $V/(bd\sqrt{f_c^{*}})$ which represents the diagonal tension strength, and $(\sqrt{f_c^{*}}/p)(M/Vd)$, a parameter with dimensions of FL⁻², which represents the properties of the beam. This parameter has dimensions since the modulus of elasticity of steel is assumed a constant and not included. The terms used in these expressions and their dimensions are defined as follows:

V =shear force, F

- b = width of beam cross section, L
- d = effective depth of beam, L
- f_c' = concrete compressive strength, FL⁻²

- p = tensile reinforcement ratio
- M = bending moment, FL
- F =force dimension
- L = length dimension

For simply supported beams with a concentrated load, the M/Vd term is synonymous with a/d, the ratio of shear span to effective depth.

Four series of static tests, A, B, C, and D, were conducted with the following respective span-to-depth ratios: 4.67, 3.88, 2.80, and 2.00. Model and prototype beams for each span-to-depth ratio were designed such that the quantity $\sqrt{f_C'}/p$ would be constant and that failure would occur in shear. As indicated by the beam designations in Table 1, each series included environmental (E), mach (M), and prototype (P) beams. Scale factors of 4 and 2 were used. Duplication of tests was used to indicate repeatability of results.

Two prototype beams were tested dynamically to provide some correlation between statically and dynamically loaded beams.

EXPERIMENTAL PROCEDURE

The dimensions of the prototype beams are shown in Figure 1 and the . properties of the beams tested statically are given in Table 1. All dimensions shown in Figure 1 were scaled by factors of 4 and 2 for the models. The area of the compressive reinforcement, in all cases, was half the area of the tensile reinforcement. Numbers 2, 4, and 8 intermediate-grade deformed bars were used for the 1/4-scale, 1/2-scale, and prototype beams, respectively, and anchor plates were provided for the tension steel.

A nominal concrete strength of 4,000 psi¹ was selected for the prototype beams and the 1/4-scale replica model, and 1,000- and 2,000-psi concretes were used for the 1/4- and 1/2-scale dissimilar-strength models. The maximum size aggregate (MSA) for the prototype beam was 1-1/2 inches, and scaled MSA's (i.e. 3/4 and 3/8 inch, respectively) were used for the 1/2- and 1/4-scale models.

¹ A table of factors for converting British units of measurement to metric units is presented on page 8.

Two hydraulic loaders with capacities of approximately 25 kips and 500 kips were used for the static tests. These tests were conducted under a continuously applied load. Testing times varied from approximately 1 to 3 minutes. A 200-kip loader was used for the dynamic tests. Rapid loading in this loader is obtained by the use of rupture disks and the expansion of precompressed low bulk modulus fluid. Rise times are controlled by an orifice plate and by the stiffness of the beams. A more complete description of the loaders is presented in Reference 2.

All beams were instrumented to measure steel strains and deflections at midspan. Strain gages with scaled gage lengths of 1/4, 1/2, and 1 inch were bonded to the compression steel and both layers of tension steel. A few selected beams were gaged at quarterspan on the tension steel to determine strain distribution. Deflections were monitored by linear variable differential transformers (LVDT) at the top of the beam. The probe of the LVDT rested on the loading block and the body of the LVDT was anchored to the reaction frame. Loads were monitored by a load cell mounted at the end of the loading ram. Magnetic tapes or oscillograph recorders were used to record the data.

RESULTS AND DISCUSSION

Standard compression cylinder tests were conducted periodically and the beams were tested when the strength of concrete was within approximately 10 percent of the desired value. Typical stress-strain curves from cylinder compression tests for the prototypes and models are shown in Figure 2a. The types of models are identified by a scale factor for length K_L and a scale factor for concrete strength $K_{f_C^{\prime}}$. Figure 2b shows that the tensile strength of concrete can be approximated as a function of $\sqrt{f_c^{\prime}}$ as assumed in the parameters for inclined cracking shear.

The normalized cracking shear V_c and ultimate shear V_u for the four series of models and prototypes are given in Table 2. The cracking load was interpreted from load-steel strain or load-deflection plots. Figures 3 and 4 show the normalized cracking and ultimate shear for the prototypes and models. The cracking shear parameter $V_c/(bd\sqrt{f_c})$ is nearly

constant since the parameter $(\sqrt{f_c}/p)(a/d)$ representing the beam properties is approximately the same for all four span-to-depth ratios.

The ultimate shear $V_{\mu}/bd\sqrt{f'}$ shows an increase with decreasing I/d. Failures of beams with large span-to-depth ratio occur almost simultaneously with the development of the inclined crack. As the span-to-depth ratio increases, the beam can support loads considerably higher than the inclined cracking load due to a transition from beam to arch action. The area of concrete in compression above the crack and the tensile reinforcement, which acts as a tension tie, provide the increased load capacity. The magnitudes of the reserve capacity above cracking for the replica model and prototype beams with L/d ratios of 2.88 and 2.00 were similar to the values determined in Reference 3 for uniformly loaded beams and Reference 4 for beams loaded at third points. Reference 5 indicates that beams subjected to concentrated loads had lower reserve capacity than those subjected to uniform loads. The test results (Figure 3) show that increases in reserve capacity do occur but at smaller L/d ratios than observed in tests of uniformly loaded beams (the smallest value of L/d for those beams being 4.69).

Figure 5 shows similar crack development in the 1/4-scale replica model and prototype and the development of uniform strain in the tension steel after the formation of arch action. The similarity of crack patterns and failures of the 1/4-scale replica model and a prototype is shown in Figure 6. (No data were obtained for the prototype shown.)

Figures 7 through 10 show the posttest crack patterns for 1/4-scale models and prototypes. The beams with L/d ratios of 4.67 and 3.88 failed along initially formed inclined cracks with secondary splitting along the tensile reinforcement. The prototypes and 1/4-scale replica models with the L/d ratios of 2.80 and 2.00 showed multiple cracking, and in some instances failure occurred along a suddenly developed crack. The 1/2- and 1/4-scale dissimilar-strength models with L/d ratios of 2.80 and 2.00 showed no multiple cracking, and failure of these beams occurred along an initially formed crack. This difference in crack formation and propagation in the deeper dissimilar-strength models (L/d = 2.88 and 2.00,

Figure 4) accounts for the lower load-carrying capability since arch action was not fully developed.

The tensile steel strains at midspan, shown as dimensionless plots in Figures 11 and 12, indicate good correlation for the 1/4-scale replica model and prototype. The strains for the 1/4-scale dissimilar models are higher, probably due to the distortions in strength scaling. Loaddeflection curves at midspan are shown in Figures 13 through 16. Although no abrupt changes in deflection rate were evident at the cracking load, the load-deflection curves and tensile and compressive steel strains were used to determine cracking loads for the Series A and B beams. Cracking loads in the deeper beams corresponded to a point at which the slope of the loadsteel strain curve becomes constant.

The crack pattern of a Series A prototype beam, tested at a dynamic load approximately 50 percent over the static capacity, is compared with the crack pattern from the companion static test in Figure 17. The dynamic failure is symmetric, with much higher strains and displacements than occurred in the static tests. The dynamic load, displacements, and strains are shown in Figures 18 and 19. The oscillations in the load are characteristic of the loader. The tensile strains become uniform at approximately 6 msec, indicating arch formation; failure occurred at approximately 11 msec as evidenced by a rapid decrease in strain and an increased deflection rate.

Comparison of static and dynamic failures for the Series B prototype beams is shown in Figure 20. The dynamic test was conducted at a load slightly higher than the static capacity. The failures appear identical, but the strains and deflections under the dynamic load, shown in Figures 21 and 22, are higher than the strains and deflection from the companion static test. The dynamic data indicate completely formed arch action at approximately 8 msec, after which the beam maintains constant load with no increasing strains or deflection until failure occurs at approximately 42 msec. The time for which the load was maintained before failure occurred indicates that a lower load may not have caused failure. The increase in the dynamic load-carrying capacity may be explained by the increase in concrete strengths due to strain rate sensitivity. If a 15 to 20 percent

increase in concrete strength is assumed, the static and dynamic ultimate normalized shear strengths are almost identical for the Series B prototype tests.

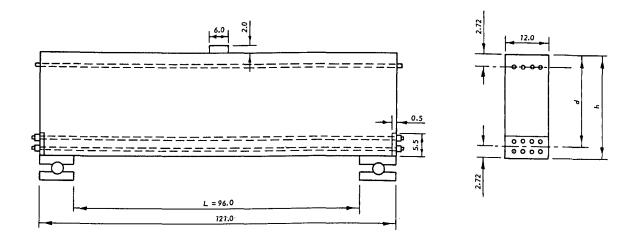
CONCLUSIONS

The conclusions presented are based on limited test data reported herein.

1. From test data interpretation, the inclined cracking load can be adequately predicted from 1/4-scale replica and 1/4- and 1/2-scale dissimilar-strength models.

2. The ultimate load-carrying capacity, failure pattern, and strains of the prototype beams can be adequately predicted from 1/4-scale replica models.

3. The failure pattern and ultimate load capacity of prototype beams with L/d ratios of 4.67 and 3.88 can be predicted from the 1/4- and 1/2- scale dissimilar models. For the deeper beams (L/d = 2.80 and 2.00) the ultimate capacity of the prototypes would be underpredicted from the dissimilar-strength models.


4. A comparison of static and dynamic failures and load-carrying capacities indicates that the Series A beam (L/d = 4.67), when subjected to a dynamic load approximately 50 percent higher than its static capacity, exhibited a different failure pattern. For the Series B tests (L/d = 3.88), the failures and crack patterns were very similar for static and dynamic loads with the exception that the failure crack in the dynamic test was inclined at a steeper angle to a horizontal plane. If an increase in concrete strength of 15 to 20 percent is assumed for the beam tested dynamically, the normalized ultimate shear strengths for static and dynamic loads are almost identical.

Beam	Beam Width b	Total Depth h	Clear Span L	Effective Depth d	$\frac{L}{d}$	Concrete Com- pressive		pressive			sile nforceme	ent
	a	<i>I</i> 1	11	a		Strength f'	Number	Size	Ratio p'	Number	Size	Ratio p
<u> </u>	inches	inches	inches	inches		psi					···· <u>·····</u> ···························	
AE481 AE482 AM481 AE281 AP182	3 3 6 12	5.82 5.82 5.82 11.64 23.28	24 24 24 48 96	5.14 5.14 5.14 10.28 20.56	4.67 4.67 4.67 4.67 4.67	1,050 1,050 3,980 1,983 3,577	2 2 1+ 3 1+	No. 2 No. 2 No. 2 No. 4 No. 8	0.0065 0.0065 0.0130 0.0097 0.0130	8 6	No. 2 No. 2 No. 4 No. 8	0.0130 0.0130 0.0260 0.0194 0.0260
BE4S1 BM4S1 BE2S1 BP1S1	3 3 6 12	6.87 6.87 13.74 27.48	214 214 48 96	6.19 6.19 12.38 24.76	3.88 3.88 3.88 3.88 3.88	1,097 3,980 1,970 4,340	2)+ 3 }+	No. 2 No. 2 No. 4 No. 8	0.0053 0.0106 0.0081 0.0106	8 6	No. 2 No. 2 No. 4 No. 8	0.0106 0.0212 0.0162 0.0212
CE4S1 CM4S1 CE2S1 CP1S1 CP1S3	3 5 12 12	9.25 9.25 18.50 37.00 37.00	214 214 148 96 96	8.57 8.57 17.1 ¹ 4 3 ¹ 4.28 34.28	2.80 2.80 2.80 2.80 2.80	1,097 3,980 2,030 3,893 3,980	2 24 3 14 4	No. 2 No. 2 No. 4 No. 8 No. 8	0.0039 0.0077 0.0058 0.0077 0.0077	8 6 8	No. 2 No. 2 No. 4 No. 8 No. 8	0.0078 0.0154 0.0117 0.0154 0.0154
DE482 DE483 DE483 DE281 DE281 DE181 DE182	3 3 6 12 12	12.68 12.68 12.68 25.36 50.72 50.72	24 24 28 96	12.00 12.00 12.00 214.00 48.00 48.00	2.00 2.00 2.00 2.00 2.00 2.00	920 920 3,980 2,020 ^{1,} ,343 3,946	2 2 4 3 4	Ho. 2 No. 2 No. 2 No. 4 No. 8 No. 8	0.0028 0.0028 0.0056 0.00 ¹ 42 0.0055 0.0055	4 8	No. 2 No. 2 No. 2 No. 4 No. 8 No. 8	0.0056 0.0056 0.0112 0.0083 0.0110 0.0110

12

Beam	Concrete Compressive Strength f' c	Cracking Shear ^V c	Ultimate Shear ^V u	Cracking Shear Parameter V _c /bd√f' _c	Ultimate Shear Parameter $V_u/bd \sqrt{f'_c}$
	psi	kips	kips		
AE ¹ 4Sl	1,050	1.50	1.96	3.00	3.92
AE4S2	1,050	1.85	2.13	3.70	4.26
AM4S1	3,980	3.23	4.30	3.32	4.42
AE2S1	1,983	9.50	11.10	3.46	¹ 4 • O ¹ 4
AP1S2	3,577	37.00	53.50	2.51	3.63
BE4S1	1,097	1.90	2.27	3.09	3.65
BM4S1	3,980	4.35	5.38	3.70	4.59
BE2S1	1,970		9.50		2.88
BP1S1	4.340	57.00	64.00	2.94	3.32
CE4S1	1,097	2.03	3.60	2.38	4.23
CM4S1	3,980	5.80	11.71	3.57	7.22
CE2S1	2,030	13.75	17.15	3.01	3.70
CP1S1	3,893	80.00	207.00	3.12	8.06
CP1S3	3,980	65.00	162.00	2.38	5.95
DE4S2	920	3.25	5.55	2.98	5.08
DE4S3	920		5.21		4.77
DM4S3	3,980	7.10	14.61	3.13	6.51+
DE2S1	2,020		33.10		5.06
DP1S1	4,343	100.00	248.00	2.63	6.53
DP1S2	3,946	102.50	257.50	2.83	7.12

SERIES	A	8	с	D
d	20.56	24.76	34.28	48.00
h	23.28	27.48	37.00	50,72
∟/d	4.67	3.38	2.80	2.00

Figure 1 Dimensions (in inches) for simply supported prototype deep beams.

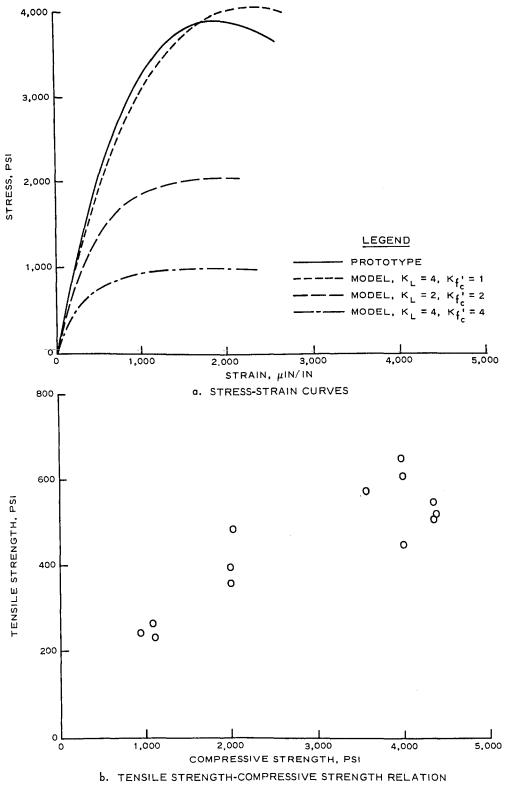


Figure 2 Concrete properties.

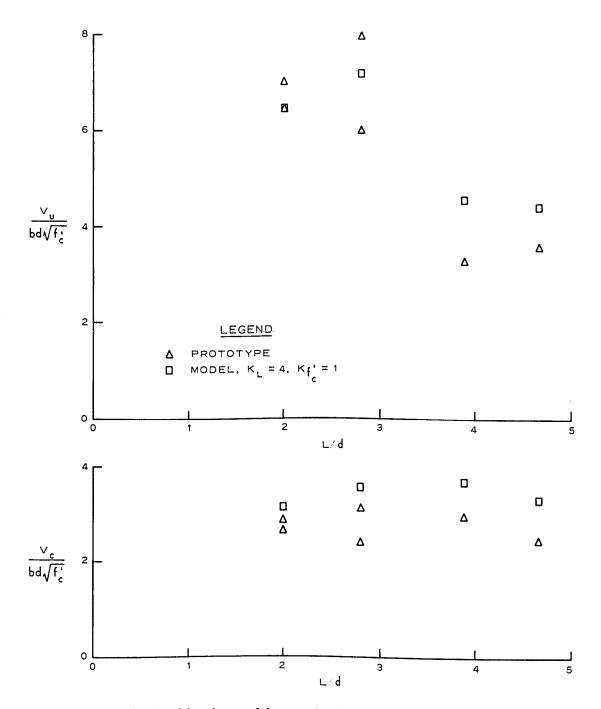


Figure 3 Inclined cracking and ultimate shear of replica models and prototypes.

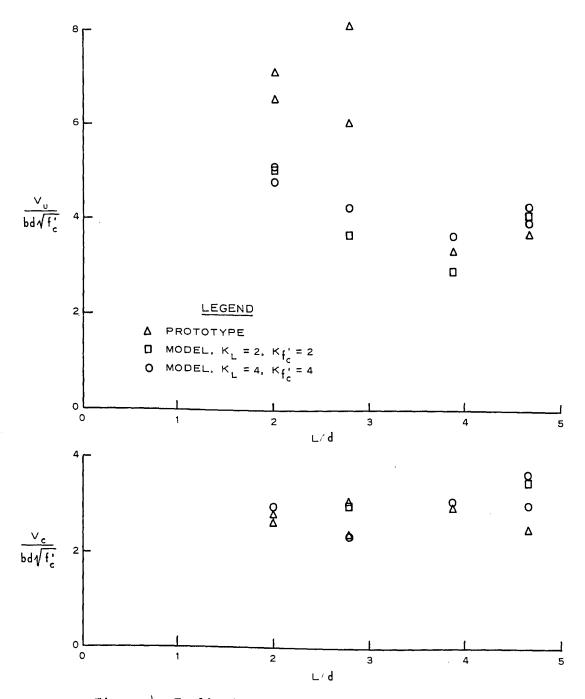


Figure 4 Inclined cracking and ultimate shear of dissimilar-strength models and prototypes.

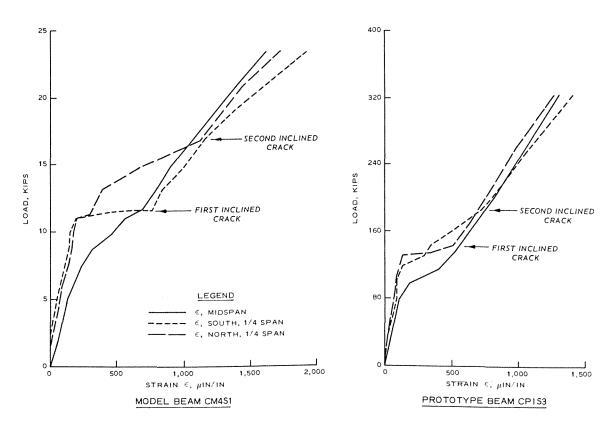


Figure 5 Inclined cracking loads determined from tensile steel strains, Series C replica model and prototype.

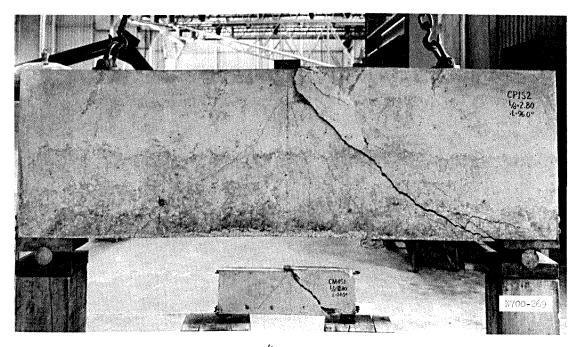
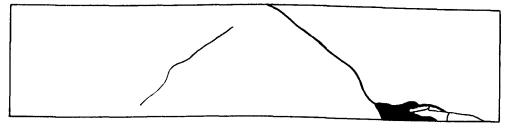


Figure 6 Crack patterns of 1/4-scale replica model and prototype.

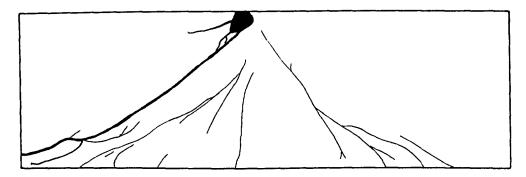
a. Beam AP1S2, prototype.

b. Beam AM4S1, $K_{L} = 4$, $K_{f_{c}} = 1$.

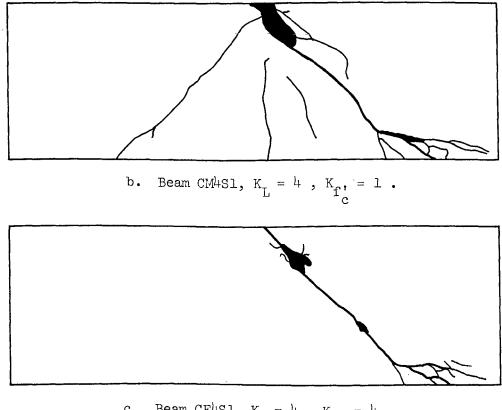
c. Beam AE4S1, $K_{IJ} = 4$, $K_{fc} = 4$.


Figure 7 Crack patterns of Series A 1/4-scale models and prototype.

a. Beam BPIS1, prototype.

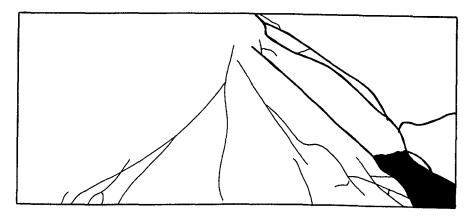


b. Beam BM¹+S1, $K_L = \frac{h}{r}$, $K_{f'_c} = 1$.

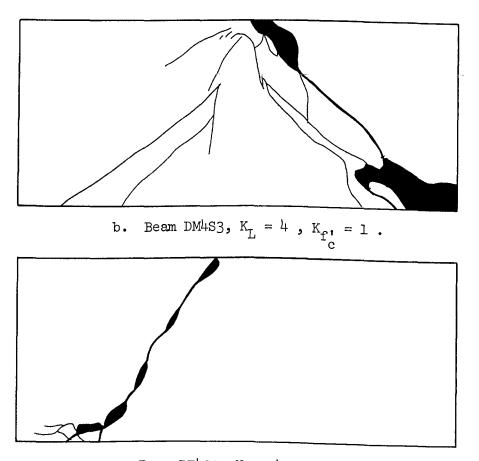


c. Beam BE4S1, $K_L = 4$, $K_{f'_c} = 4$.

Figure 8 Crack patterns of Series B 1/4-scale models and prototype.



a. Beam CP1S3, prototype.



c. Beam CE4S1, $K_L = 4$, $K_{f_c} = 4$.

Figure 9 Crack patterns of Series C 1/4-scale models and prototype.

a. Beam DP1S2, prototype.

c. Beam DE4S3, $K_L = 4$, $K_{f'_c} = 4$. Figure 10 Crack patterns of Series D 1/4-scale models and prototype.

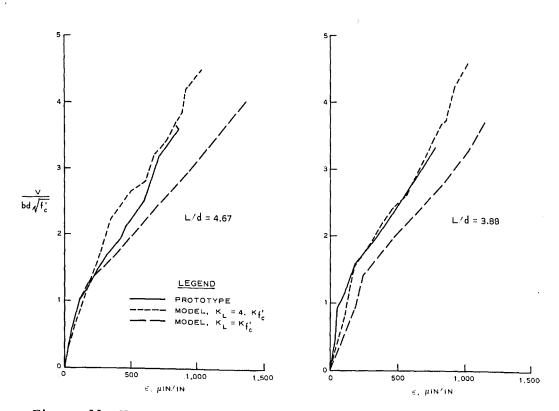


Figure 11 Normalized shear-tensile steel strains at midspan for Series A and B 1/4-scale models and prototypes.

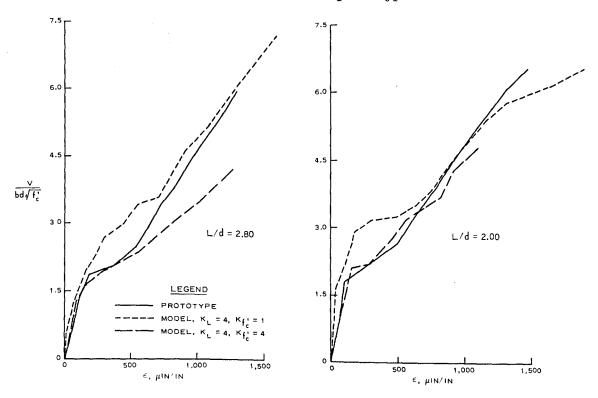


Figure 12 Normalized shear-tensile steel strains at midspan for Series C and D 1/4-scale models and prototypes.

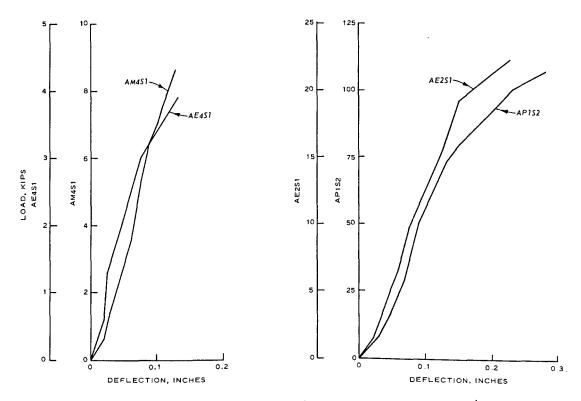


Figure 13 Load-deflection at midspan for Series A 1/4-scale models and prototype.

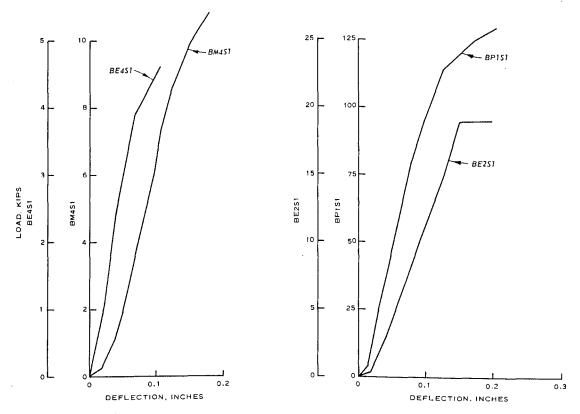


Figure 14 Load-deflection at midspan for Series B 1/4-scale models and prototype.

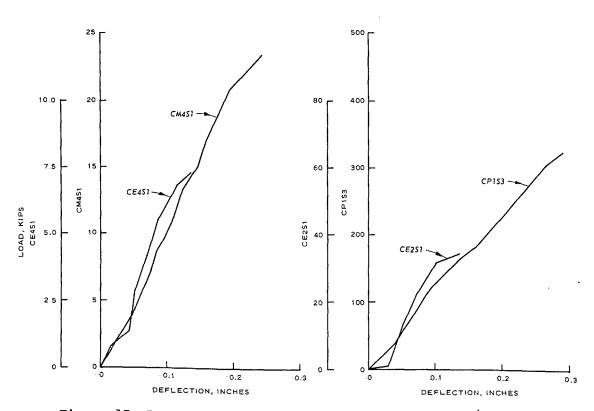
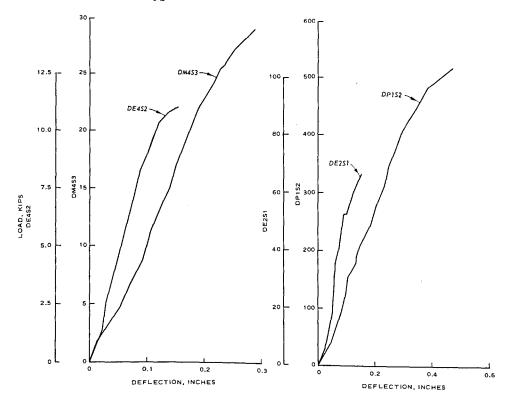


Figure 15 Load-deflection at midspan for Series C 1/4-scale models and prototype.



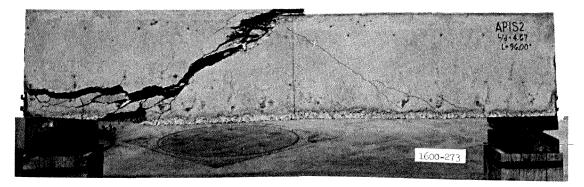
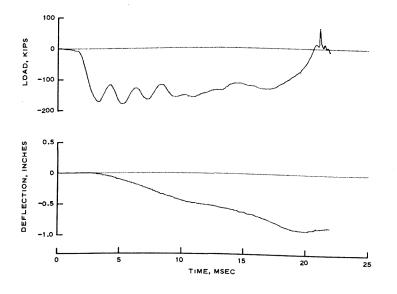
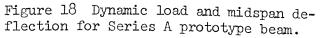


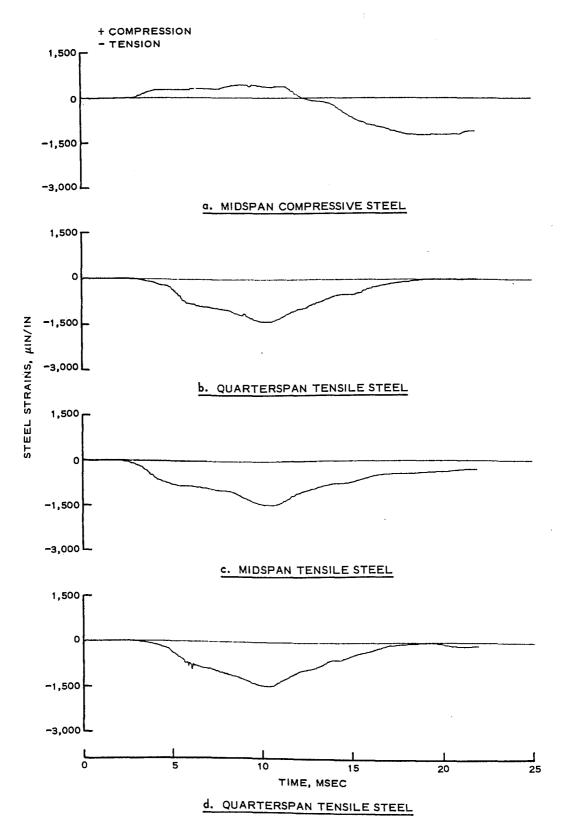
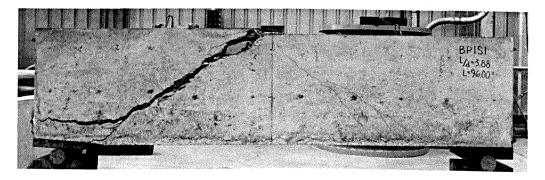
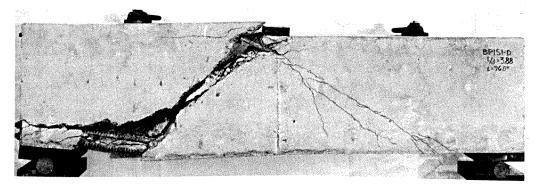
Figure 16 Load-deflection at midspan for Series D 1/4-scale models and prototype.

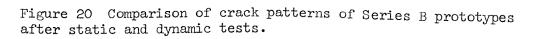



a. Dynamic test, $P_u = 155$ kips , $f'_c = 3,957$ psi.

b. Static test, $P_u = 107$ kips , $f'_c = 3,577$ psi.

Figure 17 Comparison of crack patterns of Series A prototypes after static and dynamic tests.


Figure 19 Dynamic steel strains for Series A prototype beam.

a. Dynamic test, $P_u = 135$ kips, $f'_c = 3,730$ psi.

b. Static test, $P_u = 128$ kips, $f'_c = 4,340$ psi.

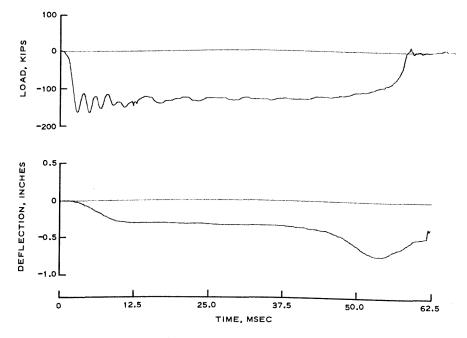
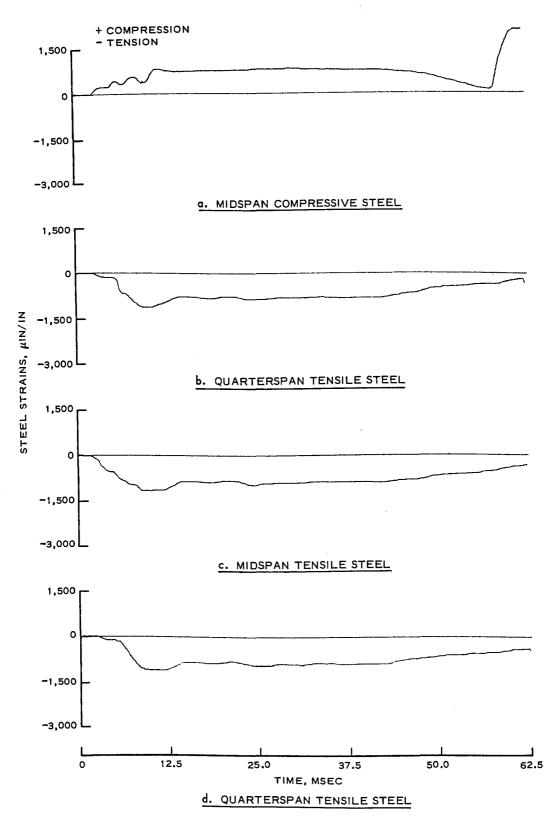
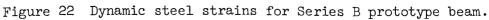




Figure 21 Dynamic load and midspan deflection for Series B prototype beam.

REFERENCES

1. American Concrete Institute-American Society of Civil Engineers Committee 326; "Shear and Diagonal Tension; Part 2, Beams and Frames"; Proceedings, American Concrete Institute, February 1962, Vol. 59, Pages 353-396; Detroit, Michigan; Unclassified.

2. W. L. Huff; "Test Devices, Blast Load Generator"; Miscellaneous Paper N-69-1, April 1969; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi; Unclassified.

3. R. A. Crist; "Shear Behavior of Deep Reinforced Concrete Beams; Static Tests"; Technical Report No. AFWL-TR-67-61, Vol II, October 1967; Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico; Unclassified.

4. H. A. R. de Paiva and C. P. Siess; "Strength and Behavior of Deep Beams in Shear"; Journal of the Structural Division, American Society of Civil Engineers, October 1965, Vol. 91, No. ST5, Pages 19-41; Ann Arbor, Michigan; Unclassified.

5. W. J. Krefeld and C. W. Thurston; "Studies of the Shear and Diagonal Tension Strength of Simply Supported Reinforced Concrete Beams"; Journal of the American Concrete Institute, Proceedings, April 1966, Vol. 63, No. 4, Pages 451-476; Detroit, Michigan; Unclassified. ,

	No. of
Address	Copies

Army

Chief of Engineers, Department of the Army, Washington, D. C. 20315 ATTN: ENGME-S ENGME ENGCW-E ENGCW-Z ENGMC-E ENGMC-EM ENGMC-DE ENGAS-1 ENGNA	1 1 1 1 1 1 2 1
Chief of Research and Development, Headquarters, Department of the Army, Washington, D. C. 20310 ATTN: Director of Army Technical Information	3 copies of Form 1473
Chief of Research and Development, Department of the Army, Washington, D. C. 20310 ATTN: Atomic Office CRDES	1 1
Division Engineers, U. S. Army Engineer Divisions, Continental United States	Cy to ea
Commandant, U. S. Army Air Defense School, Fort Bliss, Tex. 79906	1
Commandant, U. S. Army Command & General Staff College, Fort Leavenworth, Kans. 66027 ATTN: Archives	1
Commandant, Army War College, Carlisle Barracks, Pa. 17013 ATTN: Library	1 1
Commanding General, Aberdeen Proving Ground, Aberdeen, Md. 21005 ATTN: Director, Ballistic Research Laboratories	4
Commanding General, The Engineer Center, Fort Belvoir, Va. 22060 ATTN: Assistant Commandant, Engineer School	1
Commanding General, U. S. A. Electronic R&D Laboratory, Fort Monmouth, N. J. 07703 ATTN: Technical Documents Center, Evans Area	1
Commanding General, USA Missile Command, Huntsville, Ala. 35809	1
Commanding General, USA Munition Command, Dover, N. J. 07801	1
Commanding General, U. S. Continental Army Command, Fort Monroe, Va. 23351	1
Commanding General, U. S. Army Materiel Command, Washington, D. C. 20310 ATTN: AMCRD-DE-N	2
Commanding Officer, Picatinny Arsenal, Dover, N. J. 07801 ATTN: ORDBB-TK	1
Commanding Officer, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Va. 23604	1
Commanding Officer, U. S. Army Combat Developments Command, Institute of Nuclear Studies, Fort Bliss, Tex. 79916	2
Commanding Officer, U. S. Army Mobility Equipment Research and Development Center Fort Belvoir, Va. 22060 ATTN: Technical Documents Center, Building 315	1

ATTN: Technical Documents Center, Building 315

Army (Continued)

Commanding Officer, U. S. Army Nuclear Defense Laboratory, Edgewood Arsenal Edgewood, Md. 21040 ATTN: Technical Library	1
Department of the Army, CE Ballistic Missile Construction Office, P. O. Box 4187 Norton AFB, Calif. 92409	1
Director of Civil Defense, Office of the Secretary of the Army, Washington, D. C. 20310 ATTN: Mr. George Sisson (RE-ED)	2
Director, Nuclear Cratering Group, U. S. Army Corps of Engineers, Lawrence Radiation Laboratory P. O. Box 808, Livermore, Calif. 94550	1
Director, Technical Documents Center, Evans Signal Laboratory, Belmar, N. J. 07719	1
Director, U. S. Army Corps of Engineers, Coastal Engineering Research Center Washington, D. C. 20016 ATTN: Mr. T. Saville, Jr.	1
Director, U. S. Army Corps of Engineers, Ohio River Division Laboratories, 5851 Mariemont Avenue, Cincinnati, Ohio 45227	1
Director, U. S. Army Mobility Equipment Research and Development Center Fort Belvoir, Va. 22060 ATTN: Chief, Technical Support Branch	1
Director, U. S. Army CRREL, P. O. Box 282, Hanover, N. H. 03755 ATTN: Mr. K. Boyd	1
Director, U. S. Army Construction Engineering Research Laboratory, P. O. Box 4005, Champaign, Ill. 61820	1
District Engineer, U. S. Army Engineer District, Omaha, 6012 U. S. Post Office and Court House 215 N. 17th Street, Omaha, Nebr. 68101 ATTN: MROGS-B	1
President, U. S. Army Air Defense Board, Fort Bliss, Tex. 79906	1
Superintendent, U. S. Military Academy, West Point, N. Y. 10996 ATTN: Library	2
U. S. Army Engineer Division, Missouri River, P. O. Box 103, Downtown Station Omaha, Nebr. 68101 ATTN: Mr. Ken Lane	1
Navy	
Commander-in-Chief, Pacific, FPO, San Francisco 94129	1
Commander-in-Chief, U. S. Atlantic Fleet, U. S. Naval Base, Norfolk, Va. 23511	1
Chief of Naval Operations, Navy Department, Washington, D. C. 20350 ATTN: OP-75 OP-03EG	2 1
Chief of Naval Research, Navy Department, Washington, D. C. 20390 ATTN: Code 811	1
Commandant of the Marine Corps, Navy Department, Washington, D. C. 20380 ATTN: Code A04E	2

Navy (Continued)

Commander, Naval Facilities Engineering Command, Navy Department, Washington, D. C. 20370	
ATTN: Code 04 Code 03	1 1
Commander, Naval Ordnance Systems Command, Washington, D. C. 20360	1
Commander, Naval Ship Engineering Center, Washington, D. C. 20360 ATTN: Code 6115	1
Commanding Officer, Nuclear Weapons Training Center, Atlantic Naval Base, Norfolk, Va. 23511 ATTN: Nuclear Warfare Department	1
Commanding Officer, Nuclear Weapons Training Center, Pacific, Naval Station, North Island San Diego, Calif. 92136	2
Commanding Officer & Director, Naval Electronics Laboratory, San Diego, Calif. 92152	1
Commanding Officer & Director, Naval Ship Research and Development Center Carderock, Md. 20007	1
Commanding General, Marine Corps Development and Education Command, Quantico, Va. 22134 ATTN: Director, Development Center	2
Commanding Officer & Director, U. S. Naval Civil Engineering Laboratory Port Hueneme, Calif. 93041 ATTN: Code L31	2
Commanding Officer, U. S. Naval Civil Engineer Corps Officer School, U. S. Naval Construction Battalion Center, Port Hueneme, Calif. 93041	1
Commanding Officer, U. S. Naval Damage Control Training Center, Naval Base Philadelphia, Pa. 19112 ATTN: ABC Defense Course	1
Commanding Officer, U. S. Naval Weapons Evaluation Facility, Kirtland Air Force Base Albuquerque, N. Mex. 87117 ATTN: Code WEVS	1
Commanding Officer, U. S. Naval Weapons Laboratory, Dahlgren, Va. 22448 ATTN: TE	1
Commander, U. S. Naval Oceanographic Office, Suitland, Md. 20023	1
Commander, U. S. Naval Ordnance Laboratory, Silver Spring, Md. 20910	
ATTN: EA EU E	1 1 1
Commander, U. S. Naval Ordnance Test Station, China Lake, Calif. 93555	1
Director, U. S. Naval Research Laboratory, Washington, D. C. 20390	1
President, U. S. Naval War College, Newport, R. I. 02840	1
Special Projects, Navy Department, Washington, D. C. 20360 ATTN: SP-272	1
Superintendent, U. S. Naval Postgraduate School, Monterey, Calif. 93940	1
Underwater Explosions Research Division, Naval Ship Research and Development Center Norfolk Naval Shipyard, Portsmouth, Va. 23511	1

Air Force

Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433 ATTN: Mr. Frank Janik, Jr.	1
Air Force Institute of Technology, AFIT-L, Building 640, Wright-Patterson AFB, Ohio 45433	1
Commander, Air Force Logistics Command, Wright-Patterson AFB, Ohio 45433	2
Air Force Systems Command, Andrews Air Force Base, Washington, D. C. 20331 ATTN: SCTSW	1
Air Force Technical Applications Center, Department of the Air Force, Washington, D. C. 20333	1
Air Force Weapons Laboratory, Kirtland AFB, N. Mex. 87117 ATTN: Library WLDC	2 1
WLDC/R. W. Henny	1
Director, Air University Library, Maxwell AFB, Ala. 36112	2
Commander, Strategic Air Command, Offutt AFB, Nebr. 68113 ATTN: OAWS	1
Commander, Tactical Air Command, Langley AFB, Va. 23365 ATTN: Document Security Branch	1
Space and Missile Systems Organization, Norton AFB, Calif. 92409 ATTN: SAMSO (SMQNM)	1
Headquarters, USAF, Washington, D. C. 20330 ATTN: AFRSTG	1
Director, Air Research and Development Command Headquarters, USAF Washington, D. C. 20330 ATTN: Combat Components Division	1
Director of Civil Engineering, Headquarters, USAF, Washington, D. C. 20330 ATTN: AFOCE	1
Director, U. S. Air Force Project RAND, Via: U. S. Air Force Liaison Office, The RAND Corporation, 1700 Main Street, Santa Monica, Calif. 90406 ATTN: Library	1
Dr. Harold L. Brode Dr. Olen A. Nance	1 1
Other DOD Agencies	
Administrator, National Aeronautics & Space Administration, 400 Maryland Avenue, S. W. Washington, D. C. 20546	1
Assistant to the Secretary of Defense (Atomic Energy), Washington, D. C. 20301	1
Commandant, Armed Forces Staff College, Norfolk, Va. 23511 ATTN: Library	1
Commandant, National War College, Washington, D. C. 20310 ATTN: Class Rec. Library	1
Commandant, The Industrial College of the Armed Forces, Fort NcNair Washington, D. C. 20310	1

Address	No. of Copies
Other DOD Agencies (Continued)	
Commander, Test Command, DASA, Sandia Base, Albuquerque, N. Mex. 87115 ATTN: TCCOM, TCDT	2
Commander, Field Command, DASA, Sandia Base, Albuquerque, N. Mex. 87115	2
Defense Documentation Center (DDC), Cameron Station, Alexandria, Va. 22314 (NO TOP SECRET TO THIS ADDRESS) ATTN: Mr. Myer Kahn	12
Director, Defense Atomic Support Agency, Washington, D. C. 20301 ATTN: SPSS	5
Director of Defense Research and Engineering, Washington, D. C. 20301 ATTN: Technical Library Mr. Frank J. Thomas	1
Director, Advanced Research Projects Agency, Washington, D. C. 20301 ATTN: NTDO	1
Director, Defense Intelligence Agency, Washington, D. C. 20301 ATTN: DIA-AP8B-1	2
Director, Weapons Systems Evaluation Group, Washington, D. C. 20305	1
Langley Research Center, NASA, Langley Field, Hampton, Va. 23365 ATTN: Mr. Philip Donely	1
Manager, Albuquerque Operations Office, USAEC, P. O. Box 5400, Albuquerque, N. Mex. 87115	1
Manager, Nevada Operations Office, USAEC, P. O. Box 1676, Las Vegas, Nev. 89101	1
National Aeronautics & Space Administration, Man-Spacecraft Center, Space Technology Division, Box 1537, Houston, Tex. 77001	1
National Military Command System Support Center, Pentagon BE 685, Washington, D. C. 20301 ATTN: Technical Library	1
U. S. Atomic Energy Commission, Washington, D. C. 20545 ATTN: Chief, Classified Tech Lib, Tech Information Service	1
U. S. Documents Officer, Office of the United States National Military Representative-SHAPE APO New York 09055	1
Other Agencies	
Aerospace Corporation, 1111 E. Mill Street, San Bernardino, Calif. 92408 ATTN: Dr. M. B. Watson	1
Agbabian-Jacobsen Associates, Engineering Consultants, 8939 South Sepulveda Boulevard Los Angeles, Calif. 90045	1
Applied Theory, Inc., 1728 Olympic Blvd, Santa Monica, Calif. 90404 ATTN: Dr. John G. Trulio	1
AVCO Corporation, Research and Advanced Development Division, 201 Lowell Street Wilmington, Mass. 01887 ATTN: Mr. R. E. Cooper	1
Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201 ATTN: Dr. P. N. Lamori	1

Address	No. of Copies
Other Agencies (Continued)	
Bell Telephone Laboratories, Inc., Whippany Road, Whippany, N. J. 07981 ATTN: Mr. R. W. Mayo	1
The Boeing Company, P. O. Box 3707, Seattle, Wash. 98124 ATTN: Technical Library	1
Corrugated Metal Pipe Institute, Crestview Plaza, Port Credit, Ontario, Canada ATTN: Mr. W. A. Porter	1
Defence Research Establishment, Suffield, Ralston, Alberta, Canada	1
Defense Research Corporation, P. O. Box 3587, Santa Barbara, Calif. 93105 ATTN: Mr. Benjamin Alexander	1
Denver Mining Research Center, Building 20, Denver Federal Center, Denver, Colo. 80225 ATTN: Dr. Leonard A. Obert	1
Dynamic Science Corporation, 1900 Walker Avenue, Monrovia, Calif. 91016 ATTN: Dr. J. C. Peck	1
Edgerton, Germeshausen & Grier, Inc., 95 Brookline Avenue, Boston, Mass. 02129 ATTN: D. F. Hansen	1
Engineering Physics Company, 12721 Twinbrook Parkway, Rockville, Md. 20852 ATTN: Dr. Vincent J. Cushing Mr. W. Danek	1
General American Transportation Corporation, General American Research Division 7449 North Natchez Avenue, Niles, Ill. 60648 ATTN: Dr. G. L. Neidhardt	1
General Electric Company, Missile and Space Vehicle Department, Valley Forge Space Technology Center, Goddard Boulevard, King of Prussia, Pa. 19406	1
General Electric Company, TEMPO, 816 State Street, Santa Barbara, Calif. 93101 ATTN: Mr. Warren Chan (DASIAC)	1
IIT Research Institute, 10 West 35th Street, Chicago, Ill. 60616 ATTN: Dr. T. Schiffman	1
Kondner Research, Downes Road, Parkton, Md. 21120 ATTN: Dr. R. L. Kondner	1
Lockheed Missile and Space Company, Lockheed Aircraft Corporation, 111 Lockheed Way Sunnyvale, Calif. 94086 ATTN: Dr. R. E. Meyerott	1
Los Alamos Scientific Laboratory, P. O. Box 1663, Los Alamos, N. Mex. 87544 ATTN: Report Librarian	l
Ministry of Defense, MEXE, Christchurch, Hampshire, England ATTN: Dr. Philip S. Bulson Mr. Bruce T. Boswell	1
The Mitre Corporation, Route 62 and Middlesex Turnpike, Bedford, Mass. 01730	1
Physics International Company, 2700 Merced Street, San Leandro, Calif. 94577 ATTN: Dr. Charles Godfrey Mr. Fard M. Sama	1
Mr. Fred M. Sauer Research Analysis Corporation, Document Control Supervisor, McLean, Va. 22101	1

Address	No. of Copies
Other Agencies (Continued)	
Dr. John S. Rinehart, Senior Research Fellow (R.2), IER/ESSA, Boulder, Colo. 80302	1
Sandia Laboratories, P. O. Box 5800, Albuquerque, N. Mex. 87115 ATTN: Classified Document Division for Dr. M. L. Merritt	1
Southwest Research Institute, 8500 Culebra Road, San Antonio, Tex. 78228 ATTN: Dr. Robert C. DeHart	1
Systems, Science and Software, P. O. Box 1620, La Jolla, Calif. 92037 ATTN: Mr. K. D. Pyatt, Jr.	1
TRW Space Technology Laboratories, One Space Park, Redondo Beach, Calif. 90278 ATTN: Dr. Peter Dai, Mail Station 73/3049	1
URS Corporation, 1811 Trousdale Drive, Burlingame, Calif. 94010 ATTN: Mr. Harold Mason	2
U. S. Department of the Interior, Geological Survey, Geologic Division, Branch of engineering Geology, 345 Middlefield Road, Menlo Park, Calif. 94025 ATTN: Harold W. Olsen	1
Paul Weidlinger, Consulting Engineer, 110 East 59th Street, New York, N. Y. 10022 ATTN: Dr. M. L. Baron	1
Colleges and Universities	
University of Arizona, Tucson, Ariz. 85721 ATTN: Dr. Donald A. DaDeppo, Department of Civil Engineering Professor Bruce G. Johnston, Dept of Civil Engineering Dr. George Howard, College of Engineering	1 1 1
University of California, Lawrence Radiation Laboratory, P. O. Box 808 Livermore, Calif. 94550 ATTN: Technical Information Division	2
Unviersity of Colorado, School of Architecture, Boulder, Colo. 80304 ATTN: Professor G. K. Vetter	1
University of Detroit, Department of Civil Engineering, 4001 West McNichols Road Detroit, Mich. 48221 ATTN: Professor W. J. Baker	1
University of Florida, Department of Mechanical Engineering, Gainesville, Fla 32603 ATTN: Professor John A. Samuel	1
Florida State University, Department of Engineering Science, Tallahassee, Fla. 32306 ATTN: Dr. G. L. Rogers	1
 University of Illinois, Urbana Campus, Department of Civil Engineering, Urbana, Ill. 61801 ATTN: Professor N. M. Newmark Professor S. L. Paul Professor M. T. Davisson Professor G. K. Sinnamon Professor W. J. Hall Professor A. J. Hendron, Jr. Professor M. A. Sozen 	1 1 1 1 1 1
Iowa State University of Science and Technology, Ames, Iowa 50010 ATTN: Professor Glen Murphy	2

Colleges	and	Universities	(Continued)
----------	-----	--------------	-------------

Lehigh University, Bethlehem, Pa. 18015 ATTN: Dr. J. F. Libsch, Materials Research Center Dr. D. A. Van Horn, Department of Civil Engineering	1 1
University of Massachusetts, Department of Civil Engineering, Amherst, Mass. 01002 ATTN: Dr. M. P. White	1
Massachusetts Institute of Technology, Division of Sponsored Research, 77 Massachusetts Avenue, Cambridge, Mass. 02139 ATTN: Dr. Robert J. Hansen Dr. Robert V. Whitman	1
University of Michigan, Civil Engineering Department, Ann Arbor, Mich. 48104 ATTN: Professor Frank E. Richart, Jr., Consultant	1
Dr. George B. Clark, Director, Rock Mechanics Research Group, University of Missouri at Rolla, Rolla, Mo. 65401	1
University of New Mexico, Eric H. Wang Civil Engineer Research Facility, Albuquerque, N. Mex. 87106 ATTN: Dr. Eugene Zwoyer	1
University of New Mexico, Civil Engineering Research Facility, P. O. Box-188 University Station, Albuquerque, N. Mex. 87106	2
Nova Scotia Technical College, School of Graduate Studies, Halifax, Nova Scotia, Canada ATTN: Dr. G. G. Meyerhof	1
Pennsylvania State University, University Park, Pa. 16802 ATTN: Professor G. Albright, Dept of Architectural Engineering Professor Richard Kummer, 101 Eng. A	1 1
Purdue University, School of Civil Engineering, Civil Engineering Building, Lafayette, Ind. 47907 ATTN: Professor M. B. Scott	1
Rensselaer Polytechnic Institute, Troy, N. Y. 12180 ATTN: Dr. Clayton Oliver Dohrenwend, Security Officer, Mason House	1
Rice University, Department of Civil Engineering, Houston, Tex. 77001 ATTN: Professor A. S. Veletsos	1
San Jose State College, Department of Civil Engineering, San Jose, Calif. 95114 ATTN: Dr. Franklin J. Agardy	1
University of Texas, Balcones Research Center, Austin, Tex. 78712 ATTN: Dr. J. Neils Thompson	1
Utah State University, Department of Mechanical Engineering, Logan, Utah 84321 ATTN: Professor R. K. Watkins	1
University of Washington, Seattle, Wash. 98105 ATTN: C. H. Norris, Department of Civil Engineering Dr. A. B. Arons, Department of Physics Professor William Miller, Department of Civil Engineering, 307 More Hall	1 1 1
The George Washington University, Nuclear Defense Design Center, School of Engineering and Applied Science, Washington, D. C. 20006	1
Worcester Polytechnic Institute, Department of Civil Engineering, Worcester, Mass. 01609 ATTN: Dr. Carl Koontz	1

Un	<u>c1</u>	ass:	ifie	d	

_

DOCUMENT CC (Security classification of title, body of abatract and index			he overall report is stoositist	
ORIGINATING ACTIVITY (Corporate author)			SECURITY CLASSIFICATION	
U. S. Army Engineer Waterways Experiment	t Station		ssified	
Vicksburg, Miss.		2b. GROUP		
REPORT TITLE		1	······	
SIMILITUDE STUDY OF REINFORCED CONCRETE	DEEP BEAMS			
DESCRIPTIVE NOTES (Type of report and inclusive dates) Final report				
AUTHOR(3) (First name, middle initial, last name)				
Jimmy P. Balsara SP5 Larry E. Roggenkamp				
ory marry h. noggennamp				
REPORT DATE	74. TOTAL NO. O		75. NO. OF REFS	
January 1971 Contract or grant no.	42	-	5	
	Miscellar			
. PROJECT NO.	MIDCCIId.	reous rap	er N=/1=2	
	9b. OTHER REPO this report)	RT NO(S) (An	y other numbers that may be assigned	
DISTRIBUTION STATEMENT				
This document has been approved for pub unlimited	lic release and	l sale; i	ts distribution is	
I. SUPPLEMENTARY NOTES	12. SPONSORING			
	Defense A	Defense Atomic Support Agency Washington, D. C.		
	"asiting of	<i>m</i> , <i>D</i> . C.		
ABSTRACT				
Tests were performed on deep beams of cracking and ultimate load-carrying c of scaling procedures were used, one in or mach models), the other in which both (dissimilar-strength or environmental mo- beams tested statically with span-to-dep comprising 1/4- and 1/2-scale models and prototype beams with L/d ratios of 4.67 some correlation between statically and cate that cracking loads can be adequate strength models and ultimate loads can b to-depth ratios tested. When transition dissimilar-strength models underpredict prototypes.	apacities of be which only the h geometry and odels). The re pth ratios of 4 d laboratory pr and 3.88 were dynamically lo dynamically lo be predicted fr h from beam to	eams fail geometr material soults of 67, 3.88 cototypes tested d baded bea from both arch act	ing in shear. Two types ies are scaled (replica properties are scaled twenty simply supported 8, 2.80, and 2.00 and are presented. Two ynamically to provide ms. Test results indi- replica and dissimilar- ca models for all span- ion occurs the	
D 100 1473 REPLACES DD FORM 1473, 1 JAN	64, WHICH 15			

Unclassified Security Classification							
14. KEY WORDS			LINK A Role wt		кв wt	LINK C ROLE WT	
Beams			1	ROLE			
Prototypes							
Reinforced concrete							
Scaling							
Similitude							
			[[{	
			ļ				
				1	1	1	
			ł				
			ĺ	ŀ			
			}	1			
						1	
				ļ			
					1		
		1			Í	1	
				1		1	
		}]			
	1.1		17	L		I	
	1414			ssifie			

.