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ABSTRACT 

The objective of this investigation was to study experimentally 

the elastic behavior of horizontally oriented, stiff cylinders buried 

at shallow depths in dense, dry sand and subjected to static surface 

overpressures. 

Static tests were conducted on nine different cylinders in the 

U. S. Army Engineer Waterways Experiment Station's Small (4-foot­

diameter) Blast Load Generator (SBLG). The cylinders were fabricated 

from steel mechanical tubing having a 6-inch outside diameter and a 

specially isolated 12-inch-long test section. The nine test specimens 

comprised three groups of cylinders with wall thicknesses of 1/8, 1/4, 

and 3/8 inch that corresponded to stiffnesses (EI/R3 ) of 170, 1,644, 

and 5,926 psi, respectively. In order to study the effects of burial 

depth, the first, second, and third cylinders of each group were tested 

at depths of 3, 6, and 9 inches, respectively. A total of 14 static 

tests were conducted, 9 on virgin soil samples and 5 on samples that 

had been previously loaded. The peak surface overpressure attained 

for all tests was approximately 1,000 psi. Measurements were made of 

cylinder hoop strain, Yertical diameter changB , soil stress , and sur-

face overpressure. 

The test results indicated that cylinder stiffness significantly 

affected the overall response of the soil-structure system. Normalized 

moment (M/PR2 ) data obtained from these tests were determined to be 

much greater than such values for less stiff cylinders. However, the 

maximum values of the normalized moments from the test data were in 

close agreement with the analytically predicted upper-bound values for 

a rigid cylinder. The experimental information for the 1/4- and 3/8-

inch-thick cylinders was used to provide data in the low normalized 

pressure (PR3/EI) region, for which very little data previously existed. 

For the range of cylinder stiffnesses tested, normalized thrust values 

(T/PR) indicated that both active and passive arching occurred and 

were dependent on cylinder stiffness. 

A description of the properties of the steel used in fabricating 

4 



the test cylinders is given in Appendix A, and a description of the 

confining soil properties is given in Appendix B. 
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NOTATION 

C Soil coefficient of uniformity 
u 
d Mean cylinder diameter, inches 

D Outside diameter of the cylinder, inches 

E Modulus of elasticity of test cylinders, psi 

I Moment of inertia per unit length of the cylinder cross section, 
in4/in 

K Coefficient of lateral earth pressure 

M 

M 
c 

M 
s 

p 

R 

Circumferential 
lb-in/in 

Circumferential 

Circumferential 
lb-in/in 

Pressure, psi 

Outside radius 

bending moment per unit 

bending moment measured 

bending moment measured 

of the cylinder, inches 

t Cylinder wall thickness, inches 

length of the cylinder, 

at the crown, lb-in/in 

at the springline, 

T Circumferential thrust per unit length of the cylinder, lb/in 

Z Burial depth, measured from soil surface to top of cylinder crown, 
inches 

Ee Exterior cylinder strain in the circumferential direction, in/in 

Ei Interior cylinder strain in the circumferential direction, in/in 

e Angle measured at the center of the cylinder cross section posi­
tive clockwise from the crow-n, cte-gre-es-

Ad Dry unit weight of the sand, pcf 

~ Angle of internal friction, degrees 
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CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT 

British units of measurement used in this report can be converted to 
metric units as follows. 

Multiply 

inches 

feet 

pounds 

pounds (force) per square inch 

kips (force) per square inch 

pounds per cubic foot 

inches per second 

inch-pounds per inch 

By 

2.54 

0.3048 

o.45359237 

0.6894757 

0.6894757 

16.0185 

2.54 

4.448222 
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centimeters 

meters 

kilograms 

newtons per square 
centimeter 

kilonewtons per square 
centimeter 

kilograms per cubic 
meter 

centimeters per second 

newton-meters per meter 



CHAPI'ER 1 

INTRODUCTION 

1.1 BACKGROUND 

Many strategic underground systems incorporate horizontally ori­

ented cylindrical structures of various stiffnesses. Thus, in the de­

sign or analysis of any strategic structure, whether it be located above 

or below ground, the applied loading must first be defined and then 

procedures developed to describe how the structure in its particular 

environment will respond to the loading. Under attack conditions, it 

is reasonable to expect that shallow buried strategic facilities could 

be located in regions in which the airblast pressure could be as great 

as 1,000 psi1 • For this reason, buried stiff cylindrical metal and/or 

reinforced concrete structures that have greater structural resistance 

than flexible cylindrical elements are considered necessary for such 

systems. 

The information that has become available within the past few 

years from both analytical and laboratory studies conducted by the 

U. S. Army Engineer Waterways Experiment Station (WES) (Reference 1) 

and other agencies has verified that flexible cylindrical structures 

buried in soil can effectively maintain structural integrity under the 

loading resulting from a nuclear ground-shock environment by utilizing 

the resistance provided by the confining media. Therefore, elements 

of underground protective systems that consist of flexible cylindrical 

structures such as ventilation conduits, entrances, and escape routes 

can be designed to remain functional during a proposed threat. How­

ever, the same is not true for elements of shallow underground pro­

tective systems that consist of stiff horizontally oriented cylindrical 

structures such as command capsules and, if vertically oriented, missile 

1 
A table of factors for converting British units of measurement to 
metric units is presented on page 10. 
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silos. There is a lack of well documented experimental data for buried 

stiff cylindrical structures, and the structure-medium interaction 

(SMI) phenomenon associated with stiff cylinders is not fully under­

stood. Currently, the design practice of extrapolating the existing 

knowledge to such cylinders surrounded by a soil medium is highly 

conservative. 

1.2 OBJECTIVES 

The general objective of this program was to determine the re­

sponse of cylindrical protective structures for shallow and deeply 

buried installations subjected to ground surface airblast loading re­

sulting from nuclear detonations. Results of this study will be used 

to develop rational procedures for analyzing the vulnerability of this 

class of structures and to improve design procedures. 

Specifically, the objectives were to study: 

1. Thrust and moment at various sections of the cylinder. 

2. Changes in vertical diameter of the cylinder as a function of 

static overpressure. 

3. Arching action of the soil as it affects the total vertical 

load on the structure. 

4. Static behavior of the cylinders as a function of the struc­

tural stiffness. 

5. Effect of depth of burial on the behavior of the cylinders. 

-From the test -results, -tt -was expected that guia.elines could be 

verified and/or extended in current design procedures for protective 

structures in order to secure maximum protection at minimum cost. 

1.3 PROBLEM UNDER STUDY 

Because of the uncertainties associated with the response of shal­

low buried stiff cylindrical configurations, primarily those constructed 

of reinforced concrete, the current design procedures for such struc­

tures have not been verified. Previously, most experimental research on 

buried cylindrical structures has utilized metal material for fabrica­

tion of the cylinder models, and such structures had stiffnesses (EI/R3) 
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of approximately 50 psi or less. However, buried reinforced concrete 

cylindrical structures designed to resist ground surface airblast pres­

sures ranging from 200 to 1,000 psi may require stiffness values of 

approximately 100 to 7,500 psi. Consequently, there is virtually no 

experimental validation for current design criteria for such stiff 

structures. In addition, as noted in Reference 2, the problems of de­

signing shallow buried protective structures to withstand overpressure­

induced loadings from large-yield weapons differ from those associated 

with other underground cylindrical structures in at least two major 

ways: (1) the live load is large compared with the dead load, and the 

structure must be designed primarily for the live load; and (2) the 

criteria for design, together with the factor of safety, must lead to 

the least expensive structure that will fulfill requirements. 

The approach taken in this study was to test small, stiff, steel 

cylindrical models under static loading and to use the results as guide­

lines for designing large-scale reinforced concrete cylindrical struc­

tures. There are numerous advantages to this approach: (1) steel is 

a homogeneous linear elastic material that can be readily analyzed to 

compute the circumferential thrusts and bending moments, (2) testing 

devices having specimen chambers and static and dynamic loading capa­

bilities compatible with the size of the models are available, (3) the 

effect of stiffness of the models can be included in the parameter 

study, (4) steel cylinders are commercially available in various diam­

eters and wall thicknesses, and ('.J) because :i:t- ts- less expensive- to fab­

ricate and test such models, more tests can be conducted for statistical 

verification. 

1.4 SCOPE 

To accomplish the objectives of the study, static tests were con­

ducted on nine different 6-inch-O.D. steel cyli?ders that had a spe­

cially isolated 1-foot-long test section and were horizontally buried 

in a dense, dry sand. The tests were conducted in the Small Blast 

Load Generator (SBLG) facility at WES. Three cylindrical structures 

each had wall thicknesses of 1/8, 1/4, and 3/8 inch, which corresponded 
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to cylinder stiffnesses (EI/R3) of 170, 1,644, and 5,926 psi, respec­

tively. Such stiff cylinders were chosen to insure that the results 

obtained would provide sufficient information concerning the structural 

stiffness relationship; also, maximum strain experienced by any section 

was kept below yield, thus allowing repeated testing of the same test 

section. In order to examine the effect of depth of burial, static 

tests were conducted for each cylinder at depths of cover equal to 3, 
6, and 9 inches over the cylinder crown, i.e., at depths of D/2, D, and 

1-1/2 D, where D is the cylinder's outside diameter. During the 14 

static tests, measurements were made of hoop strain and vertical diam­

eter change in the cylindrical test sections, surface overpressure, 

and the associated free-field stress. In addition, various elastic 

analytical solutions and empirical concepts were examined and compared 

with the test results. 
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CHAPI'ER 2 

RESPONSE CRITERIA AND CONCEPTS 

2.1 GENERAL 

Before the bending moment, thrust, and displacement data acquired 

in this investigation are discussed, it is of value to cite two pre­

vious investigations (References 3 and 4) in order to gain insight into 

the structure-medium interaction problem. These references (page 95) 

present information that is relevant to this investigation and to the 

establishment of reasonable theoretical upper bounds for the bending 

moments and thrusts developed in stiff, shallow buried cylinders in a 

soil medium. The pertinent aspects of the aforementioned references are 

summarized in the following paragraphs so that a comparison between 

these referenced results and the results of this investigation can be 

made. 

2.2 RESULTS PRESENTED IN REFERENCE 3 

In Reference 3, the interaction between a linearly elastic, iso­

tropic, homogeneous medium and an embedded, elastic cylinder was ana­

lyzed by use of a mathematical formulation satisfying the conditions 

of deformational compatibility. The free-field stress distributions 

in the soil medium were assumed to be a uniformly distributed vertical 

pressure of magnitude P and a uniformly distributed horizontal pres­

sure of magnitude KP , where K is the coefficient of lateral earth 

pressure. The analytical results indicated that the distribution of 

stresses and the deformations of the cylinder were dependent upon the 

relative stiffnesses of the medium and the embedded cylinder. In 

addition, the analytical results indicated that for a soil with a 

coefficient of lateral earth pressure of 0.35, a rigid cylinder, and 

the case with no slippage on the soil-cylinder interface, the upper 

bound for the normalized springline thrust T/PR is 1.4. 
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2.3 RESULTS PRESENTED IN REFERENCE 4 

In the Reference 4 analysis, the same vertical and horizontal soil 

pressures used in the Reference 3 study were assumed. However, in the 

analysis presented in Reference 3, the interaction of the soil and the 

cylinder was not considered and, in addition, the influence of cylinder 

deflection on bending moments was neglected. In Reference 4, the 

equation for the bending moment per unit length of cylinder in terms 

of the polar coordinates R and e is expressed as: 

M = ~ (1 + K - 2 sin
2 e - 2K cos

2 e) (2.1) 

where e is measured clockwise from the crown, and positive moments 

are defined as producing compression in external fibers of the cylinder. 

Inspection of Equation 2.1 reveals that the crown and springline mo­

ments are of equal magnitude but are opposite in sign and can be ex­

pressed respectively as: 

PR2 
M = T (1 - K) c (2.2) 

2 
M = T (K - 1) s (2.3) 

Utilizing Reference 5 and Appendix B of this report, the coefficient 

of lateral earth pressure for Cook's Bayou No. 1 sand (used in this 

test program) was estimated to be approximately 0.325. By substituting 

this value in Equations 2.2 and 2.3, the following values for the 

normalized crown and springline bending moments were determined: 

M c 
0.167 (2 .4) = 

PR2 

and 

M s 
-0.167 (2 .5) 2= 

PR 
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As indicated in Reference 4, these values represent an upper bound to 

the possible bending moment; however, these values are at least five 

times greater than any previous test data indicate. 
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CHAPI'ER 3 

EXPERIMENTAL PROCEDURES 

3.1 CYLINDRICAL TEST SPECIMENS 

3.1.1 Design Considerations. Several practical considerations 

were influential in the selection of the geometrical dimensions and 

material for the cylinders. The relative size of the cylinders was 

governed primarily by three factors: (1) the dimensions of the 4-foot­

diameter SBLG, (2) the diameters and thicknesses of commercially avail­

able mechanical tubing that would provide the range of stiffnesses de­

sired, and (3) the desirability to have test results from previous 

investigations with which to compare the test results from the most 

flexible cylinder considered in this study. The range of overpressures 

at which this compar_ison could be made was 0 to 250 psi. Steel was 

selected as the cylinder material because it has well defined elastic 

properties, which simplifies the computational procedures for circum­

ferential bending moments and thrusts. Also, steel mechanical tubing 

was commercially available in sizes and thicknesses that would reduce 

fabrication time and costs. 

3.1.2 Descriptions of Test Specimens. All of the cylindrical 

test specimens were fabricated from cold-drawn, low-carbon, seamless, 

steel mechanical tubing. The outside diameter of all specimens was 

· 6 inches, and the wall thicknesse-s -t -were 1/8, 1/4, and 3/8 inch 

(Figure 3.1). The nominal variations in the outside diameter and the 

wall thickness of the tubing were ~1/2 and ~2 percent, respectively. 

The stress-strain properties of the mechanical tubing were obtained 

from longitudinal tension test specimens in accordance with the pro­

cedures discussed in Appendix A. The modulus of elasticity E was 

30.0 x 106 psi ~4 percent. The proportional limit and the rupture 

strength were 47,700 psi ~5 percent and 91,200 psi ~5 percent, 

respectively. 

The test geometry for the cylinders is illustrated in Figure 3.2. 

Although the outside diameter of all cylinders was 6 inches, the mean 

18 



diameters d for the 1/8-, 1/4-, and 3/8-inch wall thicknesses were 

5.880, 5.750, and 5.625 inches, respectively. The corresponding d/t 

ratios were 49.0, 23.0, and 15.0, and the EI/R3 values were 170.0, 

1,643.8, artd 5,925.8 psi, respectively. To minimize the influence of 

the end conditions and other boundary effects, the length of the cen-
1 

tral test section of all cylinders was fixed at 12 inches. The closed-

end caps were 8 inches long and were constructed in such a way that the 

cylindrical section of the end cap could be changed when the thickness 

of the central test section was changed. The closed-end caps were in­

dependently supported by four 3/4-inch-diameter, cold-drawn steel rods. 

The rods were arranged in a circular pattern to provide uniform support 

for the closed-end cap plates. The four support rods were provided 

with interior bracing plates to prevent buckling and to add to the 

rigidity of the assemblage. The ends of the support rods were threaded 

and provided with nuts in order that the separation between the central 

test section and the closed-end caps could be adjusted and maintained. 

The separations between the end caps and the central test section were 

closed with a pliable gasket fabricated from vulcanized silicone rubber. 

The purpose of the gasket was to prevent soil from entering the interior 

of the cylinder test specimens during the test. 

The end conditions of the central test section were essentially 

representative of a free boundary, since the independent support sys­

tem for the end caps prevented the transfer of any axial load to the 

central test section. In addition, the possible development of longi­

tudinal bending moments in the central test section resulting from 

differential settlement of the end caps was eliminated. However, a 

small nonuniform radial shear load was applied to the central test 

section as a result of the separation between the end caps and the cen­

tral test section. Calculations demonstrated that the effects of the 

radial shear load on the circumferential bending moments and thrusts 

at the midpoints of the central test section were negligible. 

3.2 TESTING FACILITY 

All testing was conducted in the WES SBLG facility utilizing the 
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high-pressure test pit in the 18-foot-deep foundation shown in 

Figure 3.3. 

The SBLG 1,000-psi-capacity cylindrical rings provided the lateral 

confinement for the soil sample. The rings have an outside diameter 

and wall thickness of 48 and 9/16 inches, respectively. The ends of 

the rings are flanged so that they can be bolted together in various 

combinations to vary the depth of the soil sample. A combination 

aluminum and neoprene rubber diaphragm was installed over the soil 

sample surface to prevent the surface overpressure from entering the 

voids in the soil. During the static tests, the surface overpressure 

was applied to the soil surface by air acting on the diaphragm. A 

more complete physical description of the SBLG is given in Reference 6, 

and the operating procedures are discussed in Reference 7. 
Throughout the test program, the depth of the soil sample was 

maintained at 39 inches. This depth was maintained by the use of 3-, 

12-, and 24-inch-high rings. The 12-inch ring served as an adapter to 

make the bolt circle in the base plate of the high-pressure test pit 

compatible with the remaining cylindrical rings. The 24-inch ring was 

bolted to the 12-inch ring, and subsequently, the 3-inch ring was 

bolted to the 24-inch ring. 

3.3 SOIL PROPERTIES AND PLACEMENT 

Cook's Bayou No. 1 sand, which has been used extensively in other 

experimental programs at WES, was used throughout the test program. 

This sand is a uniform fine sand and is classified as SP according 

to the Unified Soil Classification System. Additional information on 

this sand is presented in Appendix B. 

A WES-designed box sprinkling device, shown in Figure 3.4a and 

described in Reference 2, was used to place the sand. The sprinkling 

device was maintained at a height of 24 inches above the sand surface 

and rotated at a rate of approximately 21 rpm to provide a uniform and 

average repeatable density of 109.6 ~ pcf. During the process of 

backfilling around the cylindrical test specimens, it was necessary to 

use a can sprinkler (Figure 3.4b) to insure a uniform density adjacent 
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to the test specimen. This device consisted of a sprinkling apparatus 

similar to that of the box sprinkler; however, the can sprinkler could 

be manually controlled, thus permitting the sprinkling of sand to be 

confined to a small area. This device was also capable of placing the 

sand at an average repeatable density of 109.1 ±1 pcf. 

3,4 INSTRUMENTATION 

3.4.1 Strain Measurements. Circumferential strains at the cen­

tral test sections' midpoints were measured with Micro-Measurements 

Type EA-06-250BG-120 strain gages. These strain gages are 120-ohm, 

resistance-type foil gages with a 0.25-inch gage length and were 

temperature-compensated for steel. The strain gages were affixed to 

the interior and exterior surfaces of the central test sections at the 

0-, 30-, 60-, 90-, 120-, 150-, 180-, and 270-degree locations (Fig-

ure 3.5) and were oriented to measure circumferential strains. In 

order to form a wheatstone bridge and insure temperature compensation, 

each of the circumferential strain gages and the primary sensing ele­

ments of the bridge were connected to three dummy strain gages. The 

dummy strain gages were mounted on a 1-1/4-inch-square steel bar, which 

was axially supported between the bracing plates for the four rods 

supporting the closed-end caps. Since the central test section had 

essentially free boundary conditions and was not subjected to axial 

loads, longitudinal strain gages were not provided. 

Each of the four rods supporting the closed-end caps was instru­

mented with four strain gages that were identical with those used on 

the central test section. Two strain gages had their axes parallel to 

the axis of the rod and were positioned diametrically opposite each 

other. Two other strain gages were placed perpendicular to the axis 

of the rod to provide automatic temperature compensation. Because of 

the manner in which the strain gages were arranged to form the wheat­

stone bridge, there was no imbalance in the bridge as a result of loads 

that were not tension or compression loads. 

3.4.2 Deflection Measurement. A deflection gage to measure the 

relative displacement between the crown and invert of the central test 
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section was constructed from a Bourns Linipot, 5,000-ohm, 7/16-inch 

potentiometer; a 402-ohm wheatstone bridge; and a 51,000-ohm limit 

resistor, as shown in Figure 3.6. The deflection gage, which was 

mounted 0.75 inch from the end of the central test section, had a reso­

lution of 0.002 inch. It was desirable to place the deflection gage 

adjacent to the circumferential strain gages at the midpoint of the 

central test section. However, the dummy gage block within the frame­

work of the end-cap support rods prevented the placement of the gage 

at this location. 

3.4.3 Pressure Measurements. Free-field soil pressures were 

measured with WES SE wafer-type diaphragm transducers. A detailed de­

scription of this gage is presented in Reference 8. Free-field soil 

pressures were measured at eight locations around the central test 

section, as illustrated in Figure 3.7. Four of the gages were oriented 

to measure vertical soil pressure, and four were oriented to measure 

horizontal soil pressure. 

The static surface overpressure was measured with two 5,000-psi 

Norwood diaphragm-type pressure transducers. The Norwood pressure 

transducers were actually located outside the bonnet, monitoring the 

surface overpressure through a 6-inch-long, 3/8-inch-I.D. tube. 

A Consolidated Electrodynamics Corporation (CEC) Type 4-313 pressure 

transducer was used to monitor the soil pore pressure. The pore pres­

sure was measured to determine if the diaphragm covering the soil 

sample's surface developed a leak or rupture. The gage was located in 

an instrumentation access port in the 12-inch-high ring section. A 

porous bronze plate, which allowed the gage to sense pore pressure 

changes and yet not be affected by horizontal soil pressure, was used. 

3.4.4 Recording and Reduction Equipment. Sensor Analog ModUle 

(SAM) amplifiers and B and F transducer conditioning modUles coupled 

with DANA amplifiers were employed to condition the resistance-type 

bridge circuits. Both the systems provided de variable-excitation 

voltage, automatic double-shunt calibration of the bridge circuit, and 

amplifiers to meet the input requirements of the recording equipment. 

Three Sangamo magnetic-tape recorders were employed to record and 
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play back the analog voltage signals from the static tests. Each tape 

recorder has 14 recording channels and an edge voice track for address­

ing purposes. In addition, each tape recorder has multiple-speed re­

cord and playback capabilities; however, for this test program, a re­

cording speed of 7-1/2 in/sec was selected. The playback speed was 

determined by the duration of the static test. 

3,5 TEST PREPARATIONS 

Prior to testing, it was necessary to assemble the components of 

the cylindrical test specimen (Figure 3.8) and connect the circum­

ferential strain gages to the dummy gages, as illustrated in Figure 

3,9a. All cable connections associated with the interior and exterior 

strain gages were located at terminal strips at opposite ends of the 

support rods. A~er all connections had been completed and the re­

maining end cap attached, the pliable gaskets were placed in the sepa­

ration joints as illustrated in Figure 3.9b. The cylindrical test 

specimen was then firmly strapped to the wooden cradle. The cradle was 

used to position the various components in the proper orientation and 

also to assist in the placement of the specimen in the soil sample. 

Prior to placement of the soil sample, a sidewall friction reducing 

liner was taped to the inner surface of the SBLG cylindrical rings. 

The liner consisted of thin layers of automotive and artillery grease 

spread between two 0.008-inch-thick layers of polyethylene sheeting. 

This particular liner has been used extensively in the SBLG and is dis­

cussed in more detail in Reference 9. 

Each soil sample was constructed utilizing the procedures dis­

cussed in Section 3.3. When the sand reached the approximate level at 

which a free-field soil pressure gage was to be installed, sprinkling 

was stopped and the surface leveled at the proper depth. The gage was 

carefully placed, and any excess cable was placed in an area where no 

measurements were being taken or along the inner surface of the cylin­

drical rings. 

Likewise, when construction of the soil sample reached the proper 

level for placement of the cylindrical test specimen, the sprinkling 
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was stopped and the sand surface leveled. However, before placement 

of the cylindrical test specimen, it was necessary to excavate a bed­

ding surface with a 70-degree bedding angle for the invert of the cyl­

inder. The guide and template used to excavate the bedding surface 

are shown in Figure 3.1oa. The cylindrical test specimen was then 

placed in the bedding surface (Figure 3.lOb), and the bedding surface 

was carefully backfilled. Figure 3.11 shows the cylindrical test spec­

imen in the half-buried configuration. Also shown in the figure are 

four of the free-field soil pressure gages. 

When construction of the soil sample was completed, a 1/16-inch­

thick neoprene rubber diaphragm was placed over the surface of the soil. 

During the first test, however, this diaphragm ruptured at the inner 

edge of the cylindrical rings. The rupture was attributed to the high 

localized strains at the ring edge and also to abrasion from the sand. 

Subsequently, a combination aluminum and neoprene rubber diaphragm was 

fabricated and placed over the sample. This combination diaphragm 

satisfactorily reduced the diaphragm rupture problems. 

The static bonnet was then bolted to the cylindrical rings, and 

the Norwood and CEC pressure transducers were installed. Air lines 

for pressure input and exhaust were connected to the bonnet, and all 

resistive gages were connected to conditioning modules. Calibration 

voltages were applied to the respective tape channels, and deviation 

of each channel was adjusted to the proper level. 

3.6 TEST PROCEDURES 

Immediately preceding a test, calibration voltages were applied 

to all channels and recorded on magnetic tape. When the calibration 

sequence was completed, the loading of the surface of the soil sample 

was initiated. During the loading cycle, compressed air was permitted 

to fill the bonnet until the peak surface overpressure was attained. 

The loading rate was controlled by monitoring the output from one of 

the Norwood pressure transducers on an X-Y plotter. The typical loading 

rate was approximately 130 psi/min, and the typical unloading rate was 

approximately 110 psi/min until a surface overpressure of 200 psi was 
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reached. Thereafter, the unloading rate was approximately 25 psi/min. 

The output from all transducers was monitored throughout both the load­

ing and unloading cycles. 

After the test, the data were played back and recorded on an 

oscillograph. Then a preliminary analysis of the data was conducted. 

If the data were satisfactory, the cylindrical test specimen was re­

moved and buried at a new depth or the stiffness of the cylinder was 

qhanged. If the data were not satisfactory, the test was repeated with­

out replacing the cylindrical test specimen, i.e., the cylindrical test 

specimen was reloaded. 
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Figure 3.3 SBLG facility. 



a. Initial sand placement using box sprinkler. 

Figure 3 .4 WES soil placement devices. 
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a. Deflection gage in place. 
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b. Electrical diagram of deflection gage. 

3.6 Deflection gage. 
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a. End-cap support assemblage. 

b. Central test section and end cap. 

Figure 3.8 Components of the cylindrical test specimens. 
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a. Connection of strain gage leads. 

b. Pliable gaskets in separation joints. 

Figure 3,9 Assemblage of cylindrical test specimen. 
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a. Guide and template used to excavate bedding surface. 

b. Installed cylindrical test specimen. 

Figure 3.10 Placement of cylindrical test specimen in soil. 
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CHAPTER 4 

SUMMARY OF TESTS AND DISCUSSION OF RESULTS 

4.1 SUMMARY OF TESTS 

A summary of the tests conducted during this experimental inves­

tigation is presented in Table 4.1. A total of 14 static tests were 

conducted, 9 of which were conducted on virgin soil samples and 5 of 

which were conducted on soil samples that had previously been loaded. 

In general, the reloading was conducted because a major data channel 

was either saturated or because it malf'unctioned during the previous 

test. The time and economic advantages in reloading are considerable 

and, in addition, reloading provides an opportunity to assess the ef­

fects that cyclic loading has on test specimens. 

During the test program, all tests relating to one cylinder stiff­

ness (EI/R3) were conducted prior to changing to another cylinder 

stiffness. The test program connnenced with testing of the least stiff 

specimen and concluded with testing of the stiffest specimen. While 

testing a particular cylinder stiffness, the depth of burial was varied 

in the following order: 9, 6, and 3 inches. This format of testing 

was adopted mainly because previous test results at low pressures 

could be used to predict the response of the 1/8-inch-thick cylinder 

at high overpressures. A typical SBLG static surface overpressure 

versus time curve is presented fn Figure 4 .l. 

4.2 DISCUSSION OF RESULTS 

Values for the measured bending moments and thrusts presented in 

this chapter were calculated as follows: 

Et 
T = 2 (€ + €,) 

e 1 
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Where: 

€ 

M = circumferential bending moment, in-lb/in 

E = elastic modulus of the material, psi 

t = thickness of the cylinder wall, inches 

exterior strain in the circumferential direction, e 
€. = interior strain in the circumferential direction, 

1 

T circumferential thrust, lb/in 

in/in 

in/in 

The use of Equations 4.1 and 4.2 for calculation purposes implies 

the assumption of linear elastic material behavior. This assumption 

is justified since no permanent set in the material was noticed when 

the strain gages were read before and after all tests. Compressive 

strains and thrusts are considered positive. Also, moment causing 

compression in the external cylinder fibers is considered positive. 

Figures 4.2 through 4.8 present plots of moment versus surface 

overpressure for each cylinder at three different depths of burial. 

The bending moments were determined at the crown and at 30-degree in­

tervals (going clockwise) to the invert. Figures 4.2 through 4.8 also 

present composite plots showing the variation of moment with cylinder 

stiffness. Each composite plot was made by drawing a weighted line 

through the test data for each cylinder and then superimposing these 

curves on a common set of coordinate axes. Obviously, the composite 

plots mask, to some extent, the effects of depth of burial. However, 

the figures are-A!'X'B.nged in such a manner that the reader can judge the 

validity of the composite plot curves by observing the scatter due to 

depth of burial in the accompanying plots of a particular figure. The 

influence on bending moment caused by recycling a typical test is shown 

in Figure 4.9. 

Thrust versus surface overpressure plots are presented in Figures 

4.10 through 4.16. For each cylinder, the thrusts were determined at 

the same locations as the moments; also, the format for the thrust fig­

ures is the same as that for the moment figures. The only difference 

in the presentation of the thrust and moment data is that the thrust 

data were banded because of scatter. 

Dimensionless plots of M/PR2 versus PR3/EI at the crown and 
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springline are shown in Figures 4.17 and 4.18, respectively. Three 

plots, on~ for each depth of burial, are presented in each of these 

figures. Plots of M/PR
2 

versus PR3/EI at the crown for the range 

0 < PR3/EI < 1.0 are shown in Figure 4.19. Also, in each of Figures 

4.17 through 4.19, the recommended design envelope for buried cylinders, 

as established in Reference 1, is presented as a solid line. The rela­

tive displacement between the crown and invert is plotted as a function 

of surface overpressure in Figure 4.20. 

Physical properties of the steel tubing and the confining soil 

media are given in Appendixes A and B, respectively. 

4.2.1 Bending Moment. Examination and comparison of the moment 

data reveal that the cylinder stiffness EI/R3 is the single most im­

portant variable influencing the bending moment. The bending moment 

response of the cylinders was, in general, nonlinear, particularly for 

the 1/8- and 1/4-inch-thick cylinders in the low surface overpressure 

range. The significant effect of the cylinder stiffness is attributable 

to soil arching, which is a function of the relative stiffnesses of 

the cylinder and soil. 

Since the 1/8-inch-thick cylinder was more flexible (less stiff) 

than the surrounding soil environment, active soil arching developed 

as the overpressure was applied to the soil-structure system. However, 

the 3/8-inch-thick cylinder was generally stiffer than the surrounding 

soil; consequently, passive soil arching developed. 

The effect of cylinder stiffness on the interface pressure dis­

tribution can also be observed by comparing the composite bending mo­

ment versus surface overpressure plots. At peak surface overpressure, 

the differences between the crown and invert bending moments for the 

1/8-, 1/4-, and 3/8-inch-thick cylinders as percentages of their mean 

values are ~10.0, ~3.8, and ~0.5 percent, respectively. Comparison of 

the average crown and invert bending moments with the average spring­

line bending moments shows another transition. At peak surface over­

pressures, the average springline bending moments for the 1/8-, 1/4-, 

and 3/8-inch-thick cylinders are approximately 55, 90, and 100 percent, 

39 



respectively, of the average values of the crown and invert bending 

moments. Thus, as the cylinder stiffness increased, the crown, spring­

line, and invert bending moments approached a common value. 

The crown bending moments at high surface overpressures for the 

1/8- and 1/4-inch-thick cylinders at the 3-inch depth of burial are 

approximately 15 percent greater than the corresponding bending moments 

for the 6- and 9-inch depths of burial. The reverse situation occurs in 

the bending moment data for the 3/8-inch-thick cylinder, i.e., the bend­

ing moments for the 3-inch depth of burial are less than the correspond­

ing bending moments for the 6- and 9-inch depths of burial. From Ref­

erence 3, experimental measurements of the interface pressure at the 

crown of a shallow buried cylinder with a D/t ratio similar to that of 

the 1/8-inch-thick cylinder indicated that the crown interface pressure 

decreased with an increase in depth of burial. However, for a virtually 

rigid cylinder, the crown interface pressure increased with an increase 

in depth of burial. Except for the relative arrangement of the bending 

moments for the 6- and 9-inch burial depths, the bending moment data 

obtained in this study agree with the experimental measurements given 

in Reference 3. 

The effects that recycling had on the bending moment response of 

the cylinders were most prevalent for the 1/8-inch-.thick cylinder. 

Recycling resulted in the bending moments of the second and following 

cycles-being greater-than-those produced in the initial loading cycle, 

particularly in the low surface overpressure range. 

4.2.2 Thrust. As stated earlier, the plots of thrust versus sur­

face overpressure are banded in Figures 4.10 through 4.16 due to the 

scatter in the data. The thrust data for the stiffer cylinders display 

considerably more scatter than the corresponding bending moment data, 

primarily as a result of the respective calculation procedures. The 

interior and exterior circumferential strains, which were of opposite 

signs at all times during a test, were algebraically subtracted in Equa­

tion 4.2 and algebraically added in Equation 4.1. Since the strains 

were generally large and of the same order of magnitude, the thrust 

40 



calculations were very sensitive to the accuracy of the data. The bend­

ing moment calculations were not as significantly affected. As cyl-
' inder stiffness increases, the effects of density irregularities on 

bending moments decrease, and the scatter in test data becomes pri­

marily dependent on calculation procedures. 

Except for the scatter and the unusually high thrusts for the 1/8-

inch-thick cylinder at the 30-degree location, the thrust data are 

relatively consistent. All of the thrusts are positive, i.e., com­

pressive, although the thrust for the 3/8-inch-thick cylinder at the 

crown is positive by only a small amount. 

The normalized springline thrust T/PR is a measure of the amount 

and type of arching created in the soil-structure system. A normalized 

thrust value of 1.0 is the bifurcation point for soil arching, i.e., 

passive arching occurs above 1.0 and active arching occurs below 1.0. 

Since at peak overpressure the normalized springline thrust values 

were 0.95, 1.05, and 1.30 for the 1/8-, 1/4-, and 3/8-inch-thick cylin­

ders, respectively, active arching was present during the loading of 

the 1/8-inch-thick cylinder, and passive arching was present during the 

loading of the 1/4- and 3/8-inch-thick cylinders. The latter norrnaJ.­

ized springline thrust value is also in relatively good agreement with 

the theoretical reasonable upper bound for thrust reported in Chapter 2. 

The average of the normalized crown and invert thrusts serves as a 

measure of the lateral earth pressures a~~lied to the buried cylinder • 

. Ideally, the crown and invert thrusts would have equal magnitude; how­

ever, this was only approximated in the case of the 1/8-inch-thick cyl­

inder. In this instance, the average of the normalized crown and in­

vert thrusts at the peak surface overpressure was approximately 0.52, 

an increase of about 65 percent over the coefficient of earth pressure 

at rest for this soil. In the case of the 3/8-inch-thick cylinder, the 

average of the normalized crown and invert thrusts at peak surface over­

pressure was about 0.21, a decrease of about 35 percent relative to the 

coefficient of earth pressure at rest. Again, this is to be expected 

because there is a decrease in the vertical soil stress laterally ad­

jacent to the cylinder due to the passive soil arching. Also, in this 
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instance, the extension of the horizontal diameter of the cylinder is 

only about 20 percent of the corresponding extension for the 1/8-inch­

thick cylinder. Thus, the mobilization of the passive resistance of 

the soil is not expected to be as great. 

4.2.3 Dimensionless Plots. The dimensionless plots in Figures 

4.17 and 4.18 can be most effectively used in studying the response of 

the 1/8-inch-thick cylinder. The responses of the 1/4- and 3/8-inch­

thick cylinders can best be seen in Figure 4.19, in which the PR3/Er 

axis has been expanded in the interval of 0 to 1. 

'rt can be seen in Figures 4 .17 and 4 .18 that normalized moment 

M/PR2 data for tests of the 1/8-inch-thick cylinder consistently fall 

outside the recommended design envelope presented in Reference l. The 

normalized moment decreases rapidly for low values of PR3/Er , par­

ticularly in the interval 0 < PR3 /Er < l • For values of PR3 /Er > 1 , 

the normalized moment tends to decrease more slowly, as an almost con­

stant slope is approached at high values of PR3/EI , i.e., 

PR3/Er ~ 5 • rt is interesting to note that the differences in the 

crown and springline normalized bending moments for the 1/8-inch-thick 

cylinder at each burial depth remain practically constant for all pres­

sures throughout the test. 

The influence of burial depth on the data presented in Figures 

4.17 and 4.18 is relatively small. However, in each figure the lowest 

normalized moment -values -occur at the Z = 3D/2 d~pth. ~/PR2 data 

at the crown are approximately equal for the Z = D and Z = 3D/2 

depths. At the springline, however, normalized moment data are approxi­

mately equal for the Z = D/2 and Z = D depths. 

Only the crown normalized moment data are shown in Figure 4.19 for 

the 1/4- and 3/8-inch-thick cylinders. Because the normalized spring­

line moments for these stiffer cylinders we!e approximately equal to 

those values at the crown, they are not presented. 

Examination of Figure 4.19 reveals that the normalized bending 

moment for the stiffer cylinders approaches a maximum value between 

0.16 and 0.185. The theoretical considerations for the bending moment 

in a rigid cylinder, discussed in Chapter 2, indicated a reasonable 
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theoretical upper bound for the crown, springline, and invert bending 

moments of 0.167, which is in close agreement with the test data. The 

normalized moments decrease with increasing pressure, but remain over 

twice the vaJ.ue prescribed by the design envelope. 

4.2.4 Diameter Change. The vertical diameter change with over­

pressure for the cylinders, as presented in Figure 4.20, was greatest 

for the 1/8-inch-thick cylinder. No real trend was observed regarding 

the effect of burial. depth on diameter change, since only the data for 

the 1/8-inch-thick cylinder reflected any noticeable effects of depth 

of burial. 
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TABLE 4.1 SUMMARY OF TESTING 

Test Designation Peak Surface Cylinder Wall Depth of Remarks 
overpressure Thickness Burial 

psi inches inches 

s 11 984 0.120 3 

s 12-1 1,021 0.120 6 First loading of specimen 

s 12-2 1,034 0.120 6 Second loading of specimen 

s 12-3 1,036 0.120 6 Third loading of specimen 

s 12-4 940 0.120 6 Fourth loading of specimen 
+ 
+ s 13 1,075 0.120 9 

s 21 968 0.250 3 

s 22-1 1,086 0.250 6 First loading of specimen 

s 22-2 1,086 0.250 6 Second loading of specimen 

s 23-1 1,015 0.250 9 First loading of specimen 

s 23-2 l.,020 0.250 9 Second loading of specimen 

s 31 962 0.375 3 

s 32 1,067 0.375 6 

s 33 l,o61 0.375 9 
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CHAPI'ER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

5.1.1 Thrusts. The thrusts developed in the cylinders were gen­

erally a linear function of the applied surface overpressure. The 

maximum and, in general, the minimum thrusts were recorded at the 

springline and crown, respectively; however, an increase in cylinder 

stiffness resulted in an increase in the springline thrusts and a de­

crease in the crown and invert thrusts. 

5.1.2 Bending Moments. The absolute values of the normalized 

crown, springline, and invert bending moments M/PR2 for the 3/8-inch­

thick cylinder were in good agreement with the theoretical reasonable 

upper-bound values obtained from the analysis of a cylinder subjected 

to a uniform vertical pressure of magnitude P and a uniformly dis­

tributed horizontal pressure of magnitude KP • The bending moments 

developed in the cylinders were, in general, nonlinear and tended to 

increase at a decreasing rate with an increase in the applied surface 

overpressure. For the 1/8-inch-thick cylinder, the crown and invert 

bending moments were greater than the springline bending moments; how­

ever, for the 3/8-inch-thick cylinder, the crown, springline, and in-

vert bending moments were of a.miroximately equal magnitude at the peak 

surface overpressure of approximately 1,000 psi. 

5.1.3 Diameter Change. There was no definite trend observed in 

the test data to indicate any positive relationship regarding the effect 

of burial depth and overpressure on vertical diameter change. 

5.1.4 Arching Action. Values of the normalized springline thrust 

T/PR revealed that active soil arching was present during the loading 

of the 1/8-inch-thick cylinder, whereas passive arching occurred for 

the 1/4- and 3/8-inch-thick cylinders. The values of the normalized 

springline thrusts for the 3/8-inch-thick cylinder were in good agree­

ment with the theoretical reasonable upper-bound value for the normal­

ized springline thrust in a virtually rigid cylinder, i.e. 1.4. The 
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average of the normalized crown and invert thrusts also displayed evi­

dence of the active and passive soil arching and the influence of cyl­

inder stiffness. 

5.1.5 Structural Stiffness. Based on the results of this experi­

mental program, it is concluded that cylinder stiffness EI/R3 is the 

single most important parameter affecting the response of horizontally 

oriented, stiff cylindrical structures buried in a dense sand and sub­

jected to static surface overpressures. Thus, in formulating and 

evaluating design criteria and procedures for structures of the pre­

viously described type, proper cognizance should be rendered cylinder 

stiffness in order to produce safe, serviceable, and economical 

structures. 

5.1.6 Depth of Burial. Test results indicated that, for the cyl­

inder stiffnesses tested, the influence of burial depth was almost 

insignificant. 

5.1.7 Analytical Predictions. Based on the almost constant dif­

ference .in crown and springline normalized moments throughout the en­

tire range of PR3/EI values, it is concluded that the general shape 

of the pressure distribution around the cylinders does not radically 

change with increasing surface overpressure. From this reasoning, it 

appears that the validity of analytically predicted cylinder response 

will greatly depend on the choice of the initial interface pressure 
' distribution together with an appropriate earth_ pressure coefficient._ 

5.2 RECOMMENDATIONS 

The initial experimental program to investigate the response of 

stiff steel cylinders buried in a dense dry sand should be continued, 

and tests should be conducted to determine the dynamic response of 

these cylinders. In addition, the ultimate strength and mode of failure 

for these cylinders should be investigated in the WES 6,000-psi-capacity 

test chamber. This would provide normalized moment data in the region 

PR3/EI > 1 for the 1/4- and 3/8-inch-thick cylinders. These tests, 

coordinated with analytical finite element studies currently in 
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progress at WES, could provide valuable insight into the behavior of 

stiff steel cylindrical structures. 

In order to fUlly understand the static and dynamic behavior of 

shallow buried, horizontally oriented, reinforced concrete cylindrical 

structures in a soil medium, large-diameter reinforced concrete cyl­

inders with stiffnesses similar to those utilized in this test program 

should be tested. Tests such as this would indicate whether a change 

in the cylinder material would influence the results. The stiffness 

of a reinforced concrete cylinder changes as the loading increases be­

cause the reinforced concrete is subjected to tensile stress cracks, 

thus allowing the reinforcement to assume the load. This reduction in 

the initial stiffness of the reinforced concrete cylinder consequently 

reduces the thrusts and bending moments developed in the cylinder. In 

addition, it would be desirable to test some reinforced concrete cyl­

inders to failure to determine the ultimate strength of the cylinders 

and the mode of failure. 

Analytical investigations using finite element methods should be 

continued in order to develop the capability of predicting the response 

of reinforced concrete cylinders for those cases for which experimental 

data are not available. The analytical investigators should consider 

the nonlinear behavior of both the cylinder material and the soil me­

dium and the static and dynamic loading environments. 
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APPENDIX A 

PROPERTIES OF THE STEEL MECHANICAL TUBING 

The cylindrical test specimens used in this study were fabricated 

from commercially available cold-drawn, low-carbon, seamless, steel 

mechanical tubing having a 6-inch outside diameter and wall thicknesses 

of 1/8, 1/4, and 3/8 inch. 

To determine the stress-strain properties of the mechanical tubing, 

longitudinal tension test specimens were cut from a representative sec­

tion of each of the different-sized tubings. All tension test speci­

mens were proportioned in accordance with ASTM Designation: A 370-617, 

Supplement II. Each tension test specimen was 9.5 inches long and 1 

inch wide at the grips. The widths and gage lengths of the reduced 

sections of the test specimens were 3/4 and 2-1/2 inches, respectively. 

Prior to testing, each specimen was instrumented with two strain gages 

positioned directly opposite each other on opposite faces of the speci­

mens. Completed test specimens of each thickness are shown in Figure 

A.l. The specimens were tested in a constant-strain-rate device at an 

average crosshead speed of 0.025 in/min. The test results were re­

corded on an X-Y plotter, which recorded load and strain simultaneously. 

The individual stress-strain curves were then used to construct 

the average stress-strain curve plotted in Figure A.2. The tension 

tests did not reveal any significant variation in stress-strain charac-

teristics for the various thicknesses of the mechanical tubing. The 

modulus of elasticity for the mechanical tubing was 30.0 X 106 psi 

~t+ percent. The proportional limit was 47 ,000 psi ~5 percent, and the 

yield strength, as determined by use of the 0.2 percent offset method, 

was 79,000 psi ~5 percent. 
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APPENDIX B 

SOIL PROPERTIES 

Throughout this investigation, only dense air-dry Cook's Bayou 

No. 1 sand was utilized. Cook's Bayou No. 1 sand is commonly used in 

experimental programs at the U. S. Army Engineer Waterways Experiment 

Station because it can be placed at high relative densities with com­

parative ease and because the test results are reproducible. 

A typical grain-size distribution curve for Cook's Bayou No. 1 

sand is shown in Figure B.la, and the angle of internal friction (from 

the consolidated-drained shear test) versus initial dry unit weight is 

shown in Figure B.lb. In general, the sand is a uniform fine sand with 

a coefficient of uniformity C of 1.60. The angle of internal fric-u 
tion increases from 34.6 to 42.0 degrees as the dry unit weight ranges 

between 98.5 and 109 pcf. Laboratory tests also indicated that the 

minimum and maximum dry densities for this sand were 93.3 and 110.8 pcf, 

respectively, and that the specific gravity of the sand was 2.65. 

Static one-dimensional compression tests were conducted by the 

United Research Services Corporation (Reference 10) to determine the 

stress-strain characteristics of Cook's Bayou sand. The results of 

these tests are presented in Figure B.2. The stress-strain curves are 

of the stiffening type, which display an increase in tangent modulus 

with an increase in the stress level. Unfortunately, the stress-strain 

data are not available for stress levels in excess of 500 psi. 
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