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ABSTRACT 

The objectives of this study were to measure and interpret the earth 

motions and stresses produced by the Prairie Flat 500-ton TNT detonation. 

Acceleration, particle velocity, and soil stress gages were installed 

to measure the ground motions and stresses encompassed by the 2,000- to 

10-psi predicted airblast overpressure region (84 to 1,150 feet from ground 

zero) and depths below the ground surface of 1.5 to 30 feet. Time histo­

ries of all successful measurements are included in Appendixes A and B. 

Ground shock arrival times indicated the occurrence of outrunning 

ground motion at a distance of about 560 feet, or the 35-psi pressure 

level. Peak vertical particle accelerations varied from 1,200 to 1.9 g's 

at the extremes of the instrumented region, attenuating sharply with both 

distance and depth. Peak acceleration to peak overpressure ratios, used 

as a basis for correlation, were observed to be both pressure and yield 

dependent, increasing with lower pressures and higher yields. 

Vertical particle velocities varied from 84 to 0.33 ft/sec over the 

area instrumented, also attenuating rapidly with distance and depth. Ver­

tical velocities were also correlated on the basis of velocity to pressure 

ratios, and the ratios were again observed to be pressure and yield 

dependent. 

Peak horizontal velocities were found to vary from about 20 to 

0.3 ft/sec over the same region, with little or no attenuation with depth. 

These velocities were compared with tnose ootained on Distant Plain Event 6 

by means of cube-root scaling, and excellent comparability was noted. 

Both horizontal and vertical displacements were calculated from meas­

ured accelerations and velocities. Peak transient displacements were 

20 feet upward and 20 feet outward at the 84-foot range and 1.5-foot depth. 

The upward displacement attenuated more rapidly with distance, so that at 

400 feet it was only one-half of the outward displacement. 

Soil stress measurements were generally of poor quality from a signal­

to-noise standpoint. Data at the 1.5- and 30-foot depths, where good meas­

urements resulted, were exceptions. Vertical stresses at the 1.5-foot 

depth averaged 40 percent of the surface overpressure. 
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PREFACE 

This report describes an experiment conducted by the u. S. Army Engi­

neer Waterways Experiment Station (WES) as a part of Operation Prairie 

Flat. The study was sponsored by the Defense Nuclear Agency (formerly 

Defense Atomic Support Agency). 

The work was conducted during March-August 1968 by the Nuclear Weapons 

Effects Division under the direction of Messrs. G. L. Arbuthnot, Jr., Di­

vision Chief, L. F. Ingram, Chief, Physical Sciences Branch, and J. D. 

Day, Chief, Blast and Shock Section. Project personnel were Messrs. D. W. 

Murrell, Project Officer and author of this report, M. A. Vispi, Field Op­

erations Officer, and C. M. Wright, all of the Blast and Shock Section, 

and Messrs. L. T. Watson, G. P. Bonner, G. H. Williams, and C. E. Tompkins 

of the WES Instrumentation Branch. 

COL Levi A. Brown, CE, and COL Ernest D. Peixotto, CE, were Directors 

of WES during this experiment and the preparation of this report. 

Messrs. J. B. Tiffany and F. R. Brown were Technical Directors. 
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CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT 

British units of measurement used in this report can be converted to 
metric units as follows. 

Multiply By To Obtain 

inches 25.4 millimeters 

feet 0.3048 meters 

tons ( 2, 000 pounds) 0.907185 megagrams 

pounds per square inch 6.894757 kilonewtons per square meter 

pounds per cubic foot 16.0185 kilograms per cubic meter 

feet per second 0.3048 meters per second 
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CHAPTER 1 

INTRODUCTION 

1.1 OBJECTIVES 

The objectives of Project LN302 were to measure the earth motions and 

stresses on the Prairie Flat Event and to analyze and correlate the re­

sults with those obtained on other pertinent detonations, such as Snow 

Ball, Flat Top, and several events of the Distant Plain Series. 

1.2 BACKGROUND 

Operation Prairie Flat, conducted at the Defence Research Establish­

ment, Suffield (DRES), Alberta, Canada, during August 1968, was a continu­

ation of a hjgh explosive test program at DRES planned under the auspices 

of the Tripartite Technical Cooperation Program (TTCP). The primary pur­

pose of the Prairie Flat Event was to obtain loading and response data for 

a variety of military targets, since knowledge of free-field ground mo­

tions and stresses is essential for analysis of such target response. In 

addition, experimental data are needed for verifying and improving calcu­

lational techniques for ground shock prediction. 

The charge size (500 tons1 ) and geometry (tangent sphere) for the 

Prairie Flat Event were such that measurements of ground shock were feas­

ible up to an airblast overpressure of 2,000 psi. Substantial outrunning 

ground motion was anticipated based on results of the Snow Ball and Dis­

tant Plain Event 6 detonations; therefore, documentation of earth motion 

in this region, i.e., 10 to 50 psi, was desired in order to assess re­

sponses of various structural systems. 

1.3 GROUND MOTION AND STRESS PREDICTIONS 

Estimated peak values of ground motions and stresses are necessary 

for selecting proper gage ranges and making recording system gain settings. 

1 
A table of factors for converting British units of measurement to metric 
units is given on page 8. 
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For the Prairie Flat Event, ground motion predictions (Reference 1), were 

made by the Technical Director's staff and are presented in Table 1.1 Pre­

dictions of soil stress were based on relative attenuations with depth ob­

served on Operation Upshot-Knothole (Reference 2). Attenuation of verti­

cal earth stress as a i'unction of depth, at least to a depth of 10 feet, 

was determined to be 

( 
d )-0.37 

p = p -r d
1 

which describes the vertical stress P at a depth d in terms of stress 

P
1 

at a depth d1 (Reference 2). For the Prairie Flat Event, P1 and 

d1 were arbitrarily fixed to be the surface overpressure and 0.5 foot, 

respectively, thus allowing calculation of expected pressures at any de­

sired depth. Stress predictions are listed in Table 1.2. 

(1) 

All stresses in directions other than vertical were taken as two­

thirds of the vertical for the upper 10 feet of soil. For the 17- and 

30-foot depths, no further attenuation with depth was assumed, and all 

components were taken to be equal due to the increasingly saturated nature 

of the soil. 
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TABLE 1.1 PREDICTED GROUND MOTION PARAMETERS 

For the values above the line, airblast-induced motion predominates; 
for those below the line, cratering-induced motion predominates. 

Depth Maximum Value at Indicated Range 

70 84 105 140 170 220 280 330 400 
ft ft ft ft ft ft ft ft ft 

feet 

Maximum Vertical Acceleration, g's: 

1.5 750 720 720 700 660 580 430 320 220 
5 180 180 180 180 180 180 160 130 100 

10 80 85 80 80 90 80 80 70 60 
17 80 45 45 45 45 40 45 40 35 
24 80 45 30 30 30 30 30 30 25 
30 80 45 25 25 25 25 25 25 20 

Maximum Horizontal Acceleration, g's: 

1.5 120 120 120 110 110 100 75 60 40 
5 80 45 30 30 30 30 25 25 20 

10 80 45 25 15 15 15 15 15 10 
17 80 45 25 10 10 7 8 7 7 
24 80 45 25 10 5 5 6 5 
30 80 45 25 10 6 4 4 5 4 

Maximum Vertical Velocity, ft/sec: 

1.5 40 40 35 35 30 30 20 15 11 
5 40 40 25 

I i~ I 

15 15 15 10 9 
10 40 35 15 10 IO IO- 9- g-
17 35 20 10 7 7 7 7 6 
24 35 20 10 6 6 6 5 5 
30 35 20 10 5 5 5 5 5 

Maximum Horizontal Velocity, ft/sec: 

1.5 70 40 20 8 5 4 3 2 2 
5 70 40 20 8 5 3 3 2 2 

10 65 40 20 8 5 3 3 3 2 
17 60 35 20 8 5 3 3 3 3 
24 60 35 20 8 5 3 3 3 3 
30 50 30 15 8 4 3 3 3 3 
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TABLE 1.2 PREDICTED EARTH STRESSES 

PV--vertical stress; PH--horizontal stress; PS--stress at 45 degrees to 
horizontal; PT--tangential stress. · 

Range Depth Maximum Stress 

"PV PH PS PT 

feet feet psi psi psi psi 

84 1.5 1,200 

5 Boo 533 533 533 

10 700 467 467 467 

17 500 500 

30 500 

140 1.5 670 

5 420 270 270 270 

10 350 233 233 233 

17 270 270 270 270 

30 270 

220 1.5 330 

5 200 133 133 133 

10 175 117 117 117 

17 150 150 150 150 

30 150 

330 1.5 130 

5 85 57 57 57 

10 70 47 47 47 

400 1.5 80 

5 50 33 33 33 
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CHAPTER 2 

PROCEDURE 

2.1 DESCRIPTION OF TEST SITE 

The Prairie Flat Event was detonated on the Watching Hill Blast Range 

of DRES. Over the area instrumented for this project, the ground surface 

was essentially flat, with an elevation of approximately 2,160 feet above 

mean sea level. Geologically, the test site lies in the southern end of 

the Ross Depression, which apparently was once covered by a large lake. 

The soils to a depth of 200 feet are lacustrine deposits consisting of 

fairly uniform beds of clays and silts with occasional sand lenses ' 

(Reference 3). 

Detailed accounts of the soil survey and testing for the Distant Plain 

Series are given in References 4 and 5. Briefly, Project 3.10, Soil Sam­

pling and Testing (References 4 and 5), reported the upper 5.5 feet of soil 

at the Watching Hill Range to be a tan, sandy, silty clay. From this point 

to a depth of about 30 feet, the soil was sandy silt. The upper 30 feet of 

soil (both layers) was about 40 percent air by volume, resulting in a high 

compressibility. For example, a dynamic uniaxial strain test on a sample 

taken from the upper 5 feet produced a 23 percent vertical strain at 

4,ooo psi. Upon unloading, the material recovered only about 2 percent of 

this strain (Reference 5). 

2.2 INSTRUMENTATION LAYOUT 

A total of 129 earth motion and stress gages were installed for this 

Project, which included 51 accelerometers, 30 particle velocity gages, and 

48 earth stress gages. One hundred and eleven gages, including all of the 

Particle velocity and stress gages, were installed in the region of super­

seismic ground shock, between the 125- and 2,000-psi predicted overpressure 

levels. Twenty-four locations were instrumented in this region at depths 

of 1.5, 5, 10, 17, and 30 feet below ground surface. The remaining 18 ac­

celerometers were installed in the region of anticipated outrunning ground 

shock, at pressure levels of 10, 20, and 50 psi, and at depths of 1.5, 5, 
and 10 feet. 

13 



At 12 of the locations instrumented in the superseismic region, mul­

tiple stress gages were installed, oriented to sense vertical stress, hor­

izontal stress, stress at an angle of 45 degrees with the horizontal, and, 

at four of these locations, tangential stress. By using the multiple 

gages and assuming spherical symmetry, it is theoretically possible to 

calculate the principal stresses, their directions, and the shear stress 

component in the plane of the sensors. 

The total gage array for this project is listed in Tables 2.1 and 2.2. 

2.3 INSTRUMENTATION 

2.3.1 Gages and Calibration. All particle motion gages used on this 

project were commercially available units which have proved reliable in 

numerous field or laboratory soil motion experiments. 

ity gages were the Spartan Southwest, Inc., Model 601. 

The particle veloc­

This gage was de-

veloped under a Defense Atomic Support Agency contract by Stanford Research 

Institute and modified by Sandia Corporation.· The Model 601 is a variable 

reluctance gage of the highly overdamped accelerometer design. 

-Two different types of accelerometers were used. Pace Model Al8 vari­

able reluctance gages were installed at the 17- and 30-foot depths, and in 

the outrunning region, while Endevco Corporation semiconductor strain gage 

accelerometers were used at the remaining locations. 

The soil stress gages were constructed by the Waterways Experiment 

Station (WES) using our own design. Basically, the gage is a dual­

diaphragm gage with two arms of a full semiconductor strain gage bridge 

bonded to each diaphragm. Reference 6 gives a detailed account of the de­

velopment and testing of this gage. 

All velocity gages were calibrated by using the free fall of the pen­

dulum method. The variable reluctance accelerometers were statically cal­

ibrated on a rotary accelerator (spin table), while the strain gages were 

dynamically calibrated with a dynamic shock calibrator of the impacting 

ball type. The soil stress gages were calibrated statically in a small 

pressure chamber. 

All gages were electrically calibrated just prior to shot time by 

shunting a resistor across one arm of the bridge circuit, producing a 
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circuit imbalance of a known motion or stress equivalence. 

2.3.2 Gage Canisters and Placement. All motion gages installed at a 

particular location were mounted in a single aluminum canister along with 

associated calibration and line-matching electronics. Figure 2.1 shows a 

typical canister with mounted gages. All canisters were potted with par­

affin in order (1) to resist water leakage and (2) to damp high-frequency 

vibrations. The final density of the assembled canister was about 100 pcf, 

Which provided a good match with the in situ soil. Stress gages placed at 

the 1.5-foot depth were placed by hand, and soil was hand tamped around 

them. The stress gages at depths of 5 feet and below were cast in soil­

cement plugs consisting of native soil, about 3 percent portland cement, 

and about 10 percent water to enable compaction. 

In all cases, the instrument holes were backfilled with the same soil­

cement mixture used for the stress gage plugs. This mixture, though per­

haps slightly stiffer than the in situ soil, provided a good density match 

and was considered to be a significant improvement over dry sand or cement 

grout for matching alluvial soils. 

Instrument cables were protected downhole by heavy-duty reinforced 

rubber hose, and in the main cable trench wel~ fed into a- 3~inc...li--dia.rneter 

Plastic pipe. This method proved satisfactory since the few cables which 

broke did so well after significant motion peaks had occurred. 

2.3.3 Recording System. Signal conditioning and recording equipment 

was housed in a wooden bunker located about 3,800 feet southwest of ground 
zero (GZ). 

The basic signal conditioning equipment for all variable reluctance 

gages was the CEC Model 113-B (System D) 3-kHz carrier-demodulator ampli­

fier. Outputs from this system were recorded on CEC 5-ll9 oscillographs. 

The strain gage transducer outputs were fed into an operational amplifier 

system designed and constructed by WES, and all but four stress gage out­

puts were recorded on CEC VR-3300 l!M magnetic tape recorders. Those four 

Were recorded on oscillographs. 

Calibration and recorder start signals were produced by a cam-type 

timing device which was triggered by the -30-second signal from DRES Con­

trol. The -2-second signal from Control was used as a backup to shift all 

15 



recorders to operating speed. The zero time pulse from Control (DET ZERO) 

was recorded directly on all oscillographs and was superimposed on the 

1-kHz timing channel on magnetic tape. 
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TABLE 2.1 SUMMARY OF MOTION GAGE INSTALLATION 

+ = Vertical velocity, horizontal velocity, vertical acceleration. 
Y = Vertical acceleration, horizontal acceleration. 

Pressure Distance Gage Array at Depths of 

1.5 ft 5 ft 10 ft 17 ft 30 ft 

psi feet 

2,000 84 + + + y y 

1,000 140 + + + y y 

500 220 +- + + y y 

200 330 + + + y y 

125 400 + + + y 

50 560 y y y 

20 830 y y y 

10 1,150 y y y 

TABLE 2.2 SUMMARY OF STRESS GAGE INSTALLATION 

X--three-component soil stress (PV, PH, PS); Z--four-component soil 
stress (PV, PH, PS, PT); PV--vertical soil stress; PH--horizontal soil 
stress; PS--soil stress at 45 degrees to horizontal; PT--tangential soil 
stress. 

Pressure Distance Gage Array at Depths of 

1.5 ft 5 ft 10 ft 17 ft 30 ft 

psi feet 

2,000 84 PV z x z PH 
1,000 140 PV z x x PH 

500 220 PV x z x PH 
200 330 PV x x 
125 400 PV x 
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Figure 2.1 Typical gage canister. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 INSTRUMENT PERFORMANCE 

All of the 129 gages installed for Prairie Flat were operational at 

shot time, and all gages responded to shock arrival. Of the 81 motion 

gages installed, 72 yielded usef'ul data of generally high quality from a 

signal-to-noise perspective. The eight accelerometers installed at the 

30-foot depths were severely overranged, and no data other than arrival 

times were obtained from them. Stress gage outputs were consistently much 

lower than had been estimated preshot, except for the 1.5- and 30-foot 

depths. The four gages at the 220-foot range and 10-foot depth, which 

were recorded on oscillographs, produced no measurable trace deflection. 

Seven other stress gages produced either no usable output or outputs suf­

ficiently low to render the data questionable. 

The calibration and sequence initiating signals from DRES control were 

Properly received and translated, and all equipment operated as programmed. 

A good DET ZERO signal was received and recorded. 

3.2 DATA REDUCTION 

Data recorded on oscillograph recorders were read on an electro­

mechanical pencil follower unit. The output from this apparatus was in a 

computer-compatible digital magnetic tape format. Data recorded on mag­

netic tape were digitized on the WES high-speed analog-to-digital con­

verter. All digitized records were then processed through a digital com­

puter, where baseline corrections and integrations were performed. Com­

puter outputs were then plotted to a report-size format. 

The data were initially plotted to a time of 4 seconds after detona­

tion. However, difficulties were encountered in making reasonable baseline 

corrections to the oscillograph records and their integrations when car­

ried to the full 4 seconds. This problem arose, at least in part, from the 

large number of separate "setups" required in reading each record, since 

Only 200 msec of record could be read at a time in the frame of the pencil 

follower. Thus slightly different baselines were possibly introduced at a 
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number of points on the record. Consequently, it was decided to alleviate, 

if not eliminate, the problem by processing data to only 2 seconds rather 

than 4 seconds, at the cost of not showing late-time motions on some 

records. 

Data plots for all successful measurements and their integrals are 

presented in Appendixes A and B. Tables 3.1 and 3.2 summarize the abso­

lute peak values and shock arrival times for these records. The location 

code used in the tables and the plots in the appendixes was simply a 

method for identifying a given gage or gage location and was developed to 

insure uniformity of designation between this project and others. 

3.3 ARRIVAL TIMES 

Shock arrival times were established for all successf'ully recorded 

gages. In addition, several of the channels which yielded no useful peak 

data gave arrival time information. Among these were the eight accelerom­

eters at the 30-foot depth. For the most part, agreement of arrival times 

obtained from several gages installed at a point was only fair. Differ­

ences from gage to gage on the order of a millisecond were not uncommon, 

and several cases of as much as 5-msec difference were noted. Since the 

expanded time oscillograms offered a time resolution of a fraction of a 

millisecond, the problem must lie with the slow rise times noted, particu­

larly for horizontal velocity gages. These slow rise times made the selec­

tions of shock arrivals tenuous at best. 

Shock propagation velocities for the upper soil layer were calculated 

using the earliest arrival times noted for the 1.5- and 10-foot depths. For 

the saturated material below the water table, shock arrivals at the 30-foot 

depth were used. Propagation velocities for the two layers were found to 

average 1,270 and 6,100 ft/sec, respectively. These values are 15 percent 

and ll percent higher than were reported for Distant Plain Event 6 (Refer­

ence 7). No explanation for the difference is readily apparent, since it 

is unlikely that soil properties vary to that degree between the two sites. 

The lack of precision among the arrival times could account for some of the 

difference, but it is improbable that this is the only contributing factor. 

Figure 3.1 is a shock front profile constructed from airblast arrival 
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time data (Reference 8), ground shock arrival times measured on this pro­

ject, the calculated propagation velocities, and, importantly, the direc­

tions of initial motions for vertical measurements. The development of 

two distinct shock fronts is indicated by Figure 3.1. The first of these 

is the airblast-induced ground shock which trails behind the airblast 

wave. Motions generated by thi~ pulse are downward and outward and are 

the initial motions in the superseismic region. The shock front is nearly 

horizontal near the source and becomes more nearly vertical as the air­

blast wave slows down. The second pulse identifiable from Figure 3.1 is a 

shock front refracted along the saturated layer. Energy from this wave is 

continuously fed back into the overburden as an upward-moving pulse. This 

refracted wave is seen to overtake the airblast, and at a ground range of 

about 560 feet, or about the 35-psi overpressure level, produces the ini­

tial motion at the ground surface. The onset of outrunning ground motion 

occurs at this approximate range, and at all points beyond this range, 

initial motions will be upward and outward due to the outrunning motion. 

Not shown in Figure 3.1, but of great significance to a range of 

several hundred feet, is the directly induced, or cratering-induced, front 

in the upper soil layer. This shock front follows the airblast-induced 

motion at all locations, and, as will be discussed later, it is dominant 

in producing displacements. 

3.4 PARTICLE ACCELERATION 

3.4.1 Measurements. Peak airblast-induced downward accelerations 

are plotted versus horizontal distance in Figure 3.2. Data from the 

three shallowest depths (1.5, 5, and 10 feet) are shown. A rapid attenua­

tion with both increasing range and depth is noted, with airblast-induced 

downward accelerations varying from l,200 g's at the 84-foot range and 

1.5-foot depth to l.9 g's at the 1,150-foot range and 10-foot depth. 

Figure 3.3 shows typical vertical acceleration records from the 

220-foot range. The first three of these (1.5-, 5-, and 10-foot depths) 

are characteristic of near-surface accelerations in the superseismic re­

gion in that they are dominated by a sharp downward spike at air shock 

·arrival followed by a lesser magnitude upward "rebound." Subsequent to 
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these peaks, upward cratering-induced motion occurs, also of less magni­

tude than the airblast motion but of considerably longer duration. The 

airblast-induced pulse is also noted to increase in duration with depth, 

from about 5 msec at the 1.5-foot depth to about 14 msec at the 10-foot 

depth. The record from the 17-foot depth also shows initially downward 

motion. However, at this point the downward pulse has attenuated to such 

a degree that subsequent upward motions are greater. 

3.4.2 Discussion and Correlation. For airbursts, maximum near­

surface vertical acceleration is caused by-the airblast, and ratios of 

peak downward acceleration to overpressure have proved to be a usef'ul tool 

for correlating motions. Figure 3.4 is a plot of the ratio of airblast­

induced acceleration to overpressure (g's/psi) versus overpressure, which 

offers a means of.predicting accelerations based on overpressure. 

from three events at DRES (Prairie Flat and Distant Plain Events 3 

and two at NTS (Flat Top II and III) are included for canparison. 

Data 

and 6) 

Two 

well-defined trends in this data are apparent. First, there is an observ­

able tendency toward smaller ratios at the higher pressures. This effect 

was predicted by Sauer (Reference 9) and is attributed to the more rapid 

rates of decay ("spikedness") of airblast at higher overpressures. The 

second noticeable trend is a yield dependency, as indicated by the gener­

ally higher Prairie Flat data. The difference, if any, between the Dis­

tant Plain Event 6 (100-ton yield) and the Distant Plain Event 3 and Flat 

Top events (20 tons) is less apparent, however, even though the fivefold 

difference in yield was the same as the Prairie Flat to Distant Plain 

Event 6 difference. The data scatter for all five sets of data plotted 

in Figure 3.4 is unfortunately too large to make reliable fits to the 

data. Therefore, the usefulness of Figure 3.4 is limited to showing the 

broad patterns of yield and pressure dependency of acceleration-to-pressure 

ratios. 

For depths below the 1.5-foot level, a plot was constructed which 

normalized peak accelerations at the 5- and 10-foot depths to a depth of 

1.5 feet. Figure 3.5 presents normalized data for Prairie Flat and Dis­

tant Plain Events 3 and 6. A large amount of scatter is readily apparent, 

being on the order of a factor of four for the extremes. To explain the 
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scatter, at least in part, the pressure levels for the Prairie Flat data 

are listed. With a few exceptions, notably the data at the 1,150-foot 

range (8-psi level), the most rapid attenuations, or lowest ratios on the 

ordinate of the graph, occur at the highest pressure levels. This, too, 

is in keeping with predictions, and again is due to the more rapid rate of 

decay of the pressure-time history at higher pressures. As a result, it 

appears that average attenuation rates would be meaningless without con­

sidering the pressure level of interest. Sauer (Reference 9) uses a corre­

lation method which accounts for pressure effects and effectively reduces 

the scatter in a plot such as Figure 3.5. 

3.4.3 Outrunning Effects. Figures 3.6 and 3.7 are comparisons of 

vertical and horizontal acceleration waveforms, respectively, for locations 

in the outrunning region. The first record on Figure 3.6, for the 560-foot 

range and 1.5-foot depth, still shows superseismic characteristics, i.e., 

an initially sharp downward airblast-induced spike. The remaining three 

records, however, show well developed outrunning motion waveforms, as dem­

onstrated by the initially upward pulse, with the airblast-induced motion 

superimposed. Of interest here is the relationship between the outrunning 

and airblast-induced pulses. For the first record, the airblast-induced 

motion is dominant, being greater than the unward nulse by a facto~ oi'c 

about seven. At the 10-foot depth, while the airblast-induced motion is 

still greater, its dominance has been reduced to a factor of less than 

two. For the shallow depth at the 1,150-foot range, the airblast-induced 

motion occurs well after onset of motion, and is still greater than the 

Upward motions, although by a factor of only about three, in contrast to 

the 560-foot range. At the 10-foot depth, the trend toward lessening im­

portance of the airblast-induced motion is continued, and in fact, outrun­

ning motions are at this point three times greater than the airblast pulse. 

Thus the airblast-induced vertical motion is seen to decrease in signifi­

cance relative to outrunning motion as the distance and depth increase. 

For horizontal accelerations in the outrunning region (Figure 3.7) a 

somewhat similar pattern is observed, although at the 560-foot range the 

change with depth of the airblast to outrunning motion relationship was 

less pronounced than was noted for vertical measurements. At the 
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1,150-foot range, the airblast motion was greater than the outrunning by a 

factor of six at the 1.5-foot depth, but was only slightly greater at the 

10-foot depth. Vertical motions from both sources were generally two to 

three times the associated horizontal motions. 

3.5 VERTICAL PARTICLE VELOCITY 

3.5.1 Measurements. Peak airblast-induced downward particle velocity 

is plotted versus distance in Figure 3.8. Very much the same pattern 

noted for accelerations is observed, that is, a rapid attenuation with 

both increasing depth and distance. Data plotted in Figure 3.8 are meas­

ured velocities out to a distance of 400 feet, and beyond that are inte­

grals of accelerations. Peak vertical velocities ranged from 74 ft/sec at 

the 84-foot range and 1.5-foot depth to 0.33 ft/sec at the 1,150-foot 

range and 5-foot depth. 

Measured velocity peaks were in reasonably good agreement with first 

integrals of accelerations, with generally less than 20 percent difference 

in the two methods. Wavefonns were also observed to agree. Figure 3.9 

shows time iustories of v-ertical 'J"eJ..ocities at the 220-foot range. Both 

measured velocities and integrals of accelerations are shown for the first 

three depths, and excellent agreement is apparent. As with acceleration 

wavefonns at the same distance (Figure 3.3), typical superseismic signa­

tures are featured. These exhibit initial dominant downward peaks due to 

passage of the airblast, followed by an upward pulse. An exception is the 

measured velocity at the 1.5-foot depth, where a baseline shift has elimi­

nated the upward motion; characteristics of the wave are still discernible, 

however, when compared with the acceleration integral. 

3.5.2 Discussion and Correlation. As with accelerations, velocity 

to overpressure ratios are convenient for correlation. Figure 3.10 is a 

plot of vertical airblast-induced velocity to overpressure ratio versus 

overpressure for Prairie Flat, Distant Plain Events 3 and 6, and Flat Top 

II and III. There is again a trend toward smaller ratios at higher pres­

sures, although the four points from Distant Plain Event 6 in the 10- to 

50-psi region appear to counter the trend. The yield dependency of the 

velocity to overpressure ratio is obvious, and in this case the 100-ton 
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data (Distant Plain Event 6) fall clearly above the 20-ton data in the 

region above 200 psi. As a result, the scatter of data in Figure 3.10 is 

much less than it at first appears if yield dependency is considered. 

Attenuation of vertical particle velocity with depth is plotted in 

Figure 3.11 using the normalizing method used in Figure 3.5. A great deal 

of scatter is again encountered, but is partially explainable on the basis 

Of pressure dependency since the most rapid attenuation rates are associ­

ated with the higher pressures. The effect of yield, if any, on attenua­

tion rates is not apparent from Figure 3.11, since data points over a 

25-fold yield difference are well mixed. The rates of attenuation of ver­

tical velocity with depth are somewhat less rapid than was found for ac­

celerations, an effect which is more pronounced for the 10-foot depth than 

for the 5-foot depth. This can be attributed to the dependence of peak 

accelerations on both peak velocity and velocity rise times, which increase 

with distance traveled by the shock wave. 

3.6 HORIZONTAL PARTICLE VELOCITY 

3.6.1 Measurements. Horizontal ~article velocities are character­

ized in the close-in region (out to several crater radii) by two distinct 

outward waves. The first of these is due to passage of the airblast. The 

second is caused by cratering-induced energy, and within roughly three 

crater radii is of p~ramount importance in producing displacements. These 

are clearly apparent in Figure 3.12, which shows three horizontal velocity­

time histories at the 10-foot depths. The first of these, from the 84-foot 

range, shows a relatively small airblast-induced motion of about 3 ft/sec, 

followed by a very long cratering-induced pulse of 15 to 20 ft/sec. The 

next record, from the 220-foot range, shows both pulses reduced somewhat 

in magnitude, although the difference is not nearly so great, and at 330 

feet, the airblast-induced motion is the greater. 

Horizontal cratering-induced velocities are listed in the following 

tabuiation, and are plotted versus distance in Figure 3.13. A rapid at­

tenuation with distance is observed, as the -2.3 power of range. Very 

little scatter is present except at the 330-foot range, and although the 
1 ·5-foot data are generally highest, the three data points at a common 
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Horizontal Cratering-Induced Horizontal Cratering-Induced 
Particle Velocities Particle Velocities 

Range Depth Velocity Range Depth Velocity 

feet feet ft/sec feet feet ft/sec 

84 1.5 22 330 l.5 l.6 
5 19.2 5 0.72 

10 17.6 10 o.44 
140 l.5 7.2 400 1.5 O.l+O 

5 6.2 5 0.32 
10 6.3 10 0.38 

220 1.5 2.4 
5 2.84 

10 3.1 

distance are sufficiently close to preclude positive statements about at­

tenuation wi±.h_depth. 

3.6.2 Discussion and Correlation. Since the cratering-induced veloc­

ities arise from a directly induced effect, somewhat analogous to that from 

contained detonations, cube-root scaling was applied to the data for cor­

relative purposes. Figure 3.14 is a plot of peak cratering-induced veloc­

ities for the Prairie Flat and Distant Plain Event 6 data versus scaled 

range. Due to the above-mentioned lack of attenuation with depth, the 

data are not differentiated on this basis. Excellent agreement between 

the two events is noted, with neither being uniformly high nor low with 

respect to the fitted line. The decay power of -2.3 is the same as for the 

unscaled Prairie Flat data. The precision of the scaled data from the two 

events adds to its reliability, and probably points to horizontal velocity 

as the most predictable parameter measured. 

3.7 DISPLACEMENT 

Both vertical and horizontal displacements in the close-in region are 

dominated by the cratering-induced pulses. In the case of vertical dis­

placements, the downward motion caused by the airblast is insignificant 

compared with the upward motion, at least at the closest stations, and is 
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quite possibly clipped short by arrival of the cratering pulse. For this 

reason, discussion of transient displacements is limited to the dominant 

upward motion. 

Figure 3.15 is a plot of upward vertical displacements versus dis­

tance. The plot is marked by a very rapid attenuation as the -3.8 power 

of distance. Relatively little scatter is present considering the de­

pendency of calculated displacements on measurement accuracy and data re­

duction techniques (e.g., baseline corrections). Of interest on this fig­

ure are the large (~20-foot) displacements observed at the 84-foot range. 

It is pointed out here that this location was in the lip of the crater, 

which accounts for the large motions upward. 

Figure 3.16 is a similar plot for horizontal displacements. Here the 

decay rate is a slightly lower -3.l power of distance. This accounts for 

somewhat larger horizontal than vertical displacements at the greater dis­

tances, even though upward and outward displacements at the 84-foot range 

were virtually identical. 

3.8 SOIL STRESS 

Soil stress data obtained by this project were unfortunately not of 

uniformly good quality. With the exception of data at the l.5- and 30-foot 

depths, recorded signals were generally much lower than had been expected, 

resulting in poor signal-to-noise ratios. This precluded calculation of 

shear stresses, for example, which depends on three virtually ideal records 

With no negative (tensile) stresses to avoid extraneous results. In addi­

tion, attenuation patterns below the l.5-foot depth were quite irregular, 

to the point of meaninglessness. Subsequent investigation of the problem 

Points toward the extreme sensitivity of stress measurements to gage place­

ment techniques. For example, in recent laboratory tests at WES it has 

been found that there is a tendency for the material in the soil plug to 

separate from the gage on curing, producing extremely small but significant 

YOids. In addition, there is a possibility that the soil plugs were too 

stiff, allowing the arching effect to reduce load on the gage. This, too, 

has been suggested by laboratory tests. 

Measurements at the l.5- and 30-foot depths, however, were of good 
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quality. A partial explanation of the more successful measurements at 

these depths lies in the method of placement and coupling. For the 

l.5-foot depths, placement of the gage and tamping of the backfill mate­

rial was done by hand directly around the gage. This apparently led to 

greater uniformity and better coupling of the gage. At the 30-foot depth, 

the plug of soil containing the gage was located in saturated material, 

which in turn saturated the plug and filled any voids which may have 

opened. Improved methods of placement and development of better potting 

materials should alleviate stress gage coupling problems. Studies of this 

nature are under way at WES. 

Figure 3.17 shows the vertical stress-time histories for the 1.5-foot 

depths. These are plotted on an expanded time scale in order to show de­

tail of the stress pulses. All of the records show predominant single 

pulses which are associated with passage of the airblast. All of the 

stress records are marked by a fairly rapid rise to peak, which tends to 

increase at lower pressure. For example, the fastest rise was at the 

140-foot range (2.4 msec) and the slowest at the 330-foot range (7.6 msec). 

The peaks are followed by a decay which in all cases is less rapid than 

the rise and takes on a semi-exponential form. The time required for 

decay to one-half of peak amplitude was taken as a correlating character­

istic, and again increased for lower pressures. The most rapid decay was 

at the 140-foot range (2.4 msec), and the longest decay to one-half ampli­

tude was at the 400-foot range (8.8 msec). At the same ranges, the air­

blast decay to one-half amplitude increased from l.4 msec to 9 msec (Ref­

erence 8). It follows that -the -test m.-te ~oil is better able to respond 

to stress waves as the stress level decreases and, more significantly, as 

the sharpness of airblast decay is reduced since at the 400-foot range 

decay rates of airblast and stress at the l.5-foot depth were virtually 

identical. This reinforces the evidence cited previously that motion to 

overpressure ratios increase at decreasing pressure levels. 

Figure 3.18 is a plot of vertical stresses measured at the 1.5-foot 

depths versus distance. Peak overpressures measured by Project LNlOl 

(Reference 8) are also plotted for comparison purposes. With the excep­

tion of data at the 330-foot range, the data exhibit a uniform attenuation 
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with distance and are observed to maintain a nearly constant relation 

to the airblast overpressure. The ratio of vertical stress to overpres­

sure of 0.4 is a more rapid attenuation with depth than the 0.67 which 

had been predicted. However, the prediction method used assumed an un­

attenuated overpressure at a depth of 0.5 foot, which accounts to some 

degree for the difference. 
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TABLE 3 .1 SUMMARY OF MOTION MEASUREMENTS 

Positive motion is upward or outward. AV--vertical acceleration; AH--horizontal acceleration; w--vertj.cal. velocity; UH--horizontal velocity. 

Range Di>pth Wea-
ti on 

er:tatio!1 

10 
1J\' 
l~E 

17 
AH 

30 

'' 

JO 

tffi 

1074 

107{; 
AH 

l.~ 

l':! 

e No petili de.tG .• 

f i\o reliable p0si tive peak. 

reliable integn.ls. 

of 

msec 

7.2 

2 1:.0 
2').v 

Peak Acceleratior. Peak \'elocity 

Pc:::itive Negative Pt'sitive Negative 

g's g's f't/sec tt/sec 

1,200 45 
32 
22 

203 2:; 
20.4 

19.2 

&; lh.4 
13.0 

37 b 
32 

8~0 42 
26 
7.2 

101 

22 64 

12 2.3 
5.6 

Peak Displacement Ra'nge Depth Time of 
Arrival 

Positive Negative Code cntation 

feet feet feet feet m.sec 

o.4 1122 
1.2 

21.2 UH 

10 1123 
UV 
UE 

2i;,Q 17 1124 AV 
AH 

112' 
b AH 

400 1.5 1151 
UV 

16.4 b 1152 AV 
12.6 0.2 l:'V 
6.0 U!! 

10 1153 
UV 

3,9 U1i 

!,.1 b 17 1154 AV 
4.2 0.1 A.'i 
3.9 l.5 i1e1 M 

b 

1182 

10 1183 
AH 

1.5 1211 
AH 

0.32 1212 
0.30 AH 

0.18 10 1213 AV 

0.17 
1.5 

Peak Acceleration Peak Velocity Peak Displacement 

Pcsitive Negative Positive Negative Positive Negative 

g's g's tt/ sec tt/sec feet feet 

15.2 36.4 2.2 

0.32 

11.2 29.6 1.6 0.21 
0.11 

a 0.17 a 

8.8 L8 
2.5 a 

12 152 

0.22 

42 0.18 0.15 
f 0.12 

a 0.11 

9.2 22.4 0.18 
:f 

a 0.13 

1.4 0.9 0.011 
0.52 a 

28 f 2.6 f 0.052 
a o.o4 

3,4 1.6 f 0.028 
1.32 a 0.15 

o.88 
3,52 

J.o4 0.011 o.Q!.5 
g g 

o.64 b 
a 

o.44 0.58 b 

b 



TABLE 3.2 SUMMARY OF STRESS .MEASUREMENTS 

PV--vertical stress; FH--horizontal stress; PS--stress at 45 degrees to horizontal; PT--tangential 
stress. 

Range Depth Location Gage Type and Time of Peak Stress 
Code Orientation Arrival 

feet feet msec psi 

84 1.5 1051 PV 7.9 680 

5 1052 PV 9.9 40 
PH 10.4 78 
PS a a 
PT 10.4 47 

1053 PV b 55 10 17.2b 
PH 18.5b 46° 
PS 17.l 90 

1054 PV 
b 132 17 31.0b 

FH 29.4b 4o8 
PS 30.:i-b 140 
PT 30.1 340 

30 1056 PH 21.8 l,o4oa 

140 1.5 1071 PV 14.3 352 

5 1072 PV b 30° 21.0b 
PH 20.6b 15 
PS 18.7b 73 
PT 20.6 28 

10 1073 PV a a 
PH 19.0 13 
PS 21.l 3.4° 

17 1074 PV 28.0 24 
P"rl 2T.4 30 
PS 27.5 50 

30 1076 PH 33.2 710 
220 1.5 1091 PV 25.1 172 

5 1092 PV 30.7 4.o0 

PH 29.0 9.4° 
PS 28.5 14C 

220 10 1093 PV d d 
PH d d 
PS d d 
PT d d 

17 1094 PV 49.1~ 38 
PH 53.~ 14 
PS 48.5 10 

30 1096 FH 48.ob 620 
330 1.5 1121 PV 47.0 210 

5 1122 PV 53.0 9.5 
PH 54.3 11 
PS 53.8 19 

10 1123 PV 55.1 3.2 
PH 56.2 8 
PS 54.7 4.9 

400 1.5 1151 PV 67.6 45 
5 1152 PV 67.5 4.5 

PH 66.5 6.8 
PS 

a No data. 
67.1 14 

b 
Questionable arrival times due to very slow initial rise. 

c Questionable data. 
d 

Oscillogram traces too small to read peaks or arrival. 
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CHAPTER 4 

CONCLUSIONS 

Overall performance of motion gages for Prairie Flat was excellent. 

Stress gage performance was less satisfactory due to apparent placement or 

coupling problems, especially at intermediate depths. 

Arrival times were obtained for nearly all gages installed. These 

were used primarily to construct a shock front profile. From this profile, 

the spatial development of outrunning ground motion was determined, and 

it was observed that outrunning conditions first appeared at the ground 

surface at a distance of about 560 feet, or the 35-psi overpressure level. 

Peak vertical accelerations were found to attenuate sharply with both 

distance and depth, varying over the range of distances and depths instru­

mented from 1,200 to 1.9 g's. The ratio of acceleration to overpres:;ure 

was used as a correlating factor for comparison with Distant Plain and Flat 

Top data. This ratio was noted to be both pressure and yield dependent, 

decreasing for both higher pressures and smaller yields. These effects 

had both been predicted. Attenuation of vertical acceleration was also 

found to be pressure de1:i-end:ent, ·with more rapid attenuation at higher 

pressures. 

Peak vertical velocities also attenuated sharply with distance and 

depth, although to a somewhat lesser degree than did accelerations. Peak 

downward velocities varied from 8l1- to 0 .33 ft/ sec over the intervals in­

strumented. Peak vertical velocities were also correlated on the basis of 

motion to overpressure ratios, and again the ratios were observed to be 

pressure and yield dependent, decreasing for smaller yields and higher 

pressures. Attenuation with depth was also found to be dependent on pres­

sure, being more rapid at higher pressures. 

Peak horizontal velocities were compared with those measured on Dis­

tant Plain Event 6 by means of cube-root scaling. Excellent agreement, 

with little data scatter, was noted for the two events. These velocities 

varied from about 20 ft/sec at the 84-foot range to 0.3 ft/sec at the 

400-foot range. There was essentially no attenuation with depth. 

Both vertical and horizontal displacements were calculated from 
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velocity measurements. Peak transient displacerri.ents in both directions 

were 20 feet at the 84-foot range. The upward vertical displacement, how­

ever, attenuated more rapid.J.S" with distance so that at a range of 400 feet 

it was only one-half of the horizontal. 

Soil stress measurements were generally of a mixed quality. Only at 

the 1.5- and 30-foot depths were the data of uniformly good quality. Data 

at the other locations were much lower than predicted, which degraded the 

data from a signal-to-noise standpoint. Peak vertical stresses at the 

1.5-foot depth were, with one exception, consistent in averaging 40 percent 

Of the applied overpressure. 
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APPENDIX A 

MOTION-TIME HISTORIES 
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