

TECHNICAL REPORT N-72-2

OPERATION PRAIRIE FLAT, PROJECT LN 302: EARTH MOTION AND STRESS MEASUREMENTS

by

D. W. Murrell

February 1972

Sponsored by Defense Nuclear Agency

Conducted by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

TECHNICAL REPORT N-72-2

OPERATION PRAIRIE FLAT, PROJECT LN 302: EARTH MOTION AND STRESS MEASUREMENTS

by
D. W. Murrell

February 1972

Sponsored by Defense Nuclear Agency

Conducted by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.

The objectives of this study were to measure and interpret the earth motions and stresses produced by the Prairie Flat 500-ton TNT detonation.

Acceleration, particle velocity, and soil stress gages were installed to measure the ground motions and stresses encompassed by the 2,000- to 10-psi predicted airblast overpressure region (84 to 1,150 feet from ground zero) and depths below the ground surface of 1.5 to 30 feet. Time histories of all successful measurements are included in Appendixes A and B.

Ground shock arrival times indicated the occurrence of outrunning ground motion at a distance of about 560 feet, or the $35-$ psi pressure level. Peak vertical particle accelerations varied from 1,200 to 1.9 g 's at the extremes of the instrumented region, attenuating sharply with both distance and depth. Peak acceleration to peak overpressure ratios, used as a basis for correlation, were observed to be both pressure and yield dependent, increasing with lower pressures and higher yields.

Vertical particle velocities varied from 84 to $0.33 \mathrm{ft} / \mathrm{sec}$ over the area instrumented, also attenuating rapidly with distance and depth. Vertical velocities were also correlated on the basis of velocity to pressure ratios, and the ratios were again observed to be pressure and yield dependent.

Peak horizontal velocities were found to vary from about 20 to $0.3 \mathrm{ft} / \mathrm{sec}$ over the same region, with little or no attenuation with depth. These velocities were compared with those obtained on Distant Plain Event 6 by means of cube-root scaling, and excellent comparability was noted.

Both horizontal and vertical displacements were calculated from measured accelerations and velocities. Peak transient displacements were 20 feet upward and 20 feet outward at the 84 -foot range and 1.5 -foot depth. The upward displacement attenuated more rapidly with distance, so that at 400 feet it was only one-half of the outward displacement.

Soil stress measurements were generally of poor quality from a signal-to-noise standpoint. Data at the 1.5- and 30-foot depths, where good measurements resulted, were exceptions. Vertical stresses at the 1.5-foot depth averaged 40 percent of the surface overpressure.

This report describes an experiment conducted by the U. S. Army Engineer Waterways Experiment Station (WES) as a part of Operation Prairie Flat. The study was sponsored by the Defense Nuclear Agency (formerly Defense Atomic Support Agency).

The work was conducted during March-August 1968 by the Nuclear Weapons Effects Division under the direction of Messrs. G. L. Arbuthnot, Jr., Division Chief, L. F. Ingram, Chief, Physical Sciences Branch, and J. D. Day, Chief, Blast and Shock Section. Project personnel were Messrs. D. W. Murrell, Project Officer and author of this report, M. A. Vispi, Field Operations Officer, and C. M. Wright, all of the Blast and Shock Section, and Messrs. L. T. Watson, G. P. Bonner, G. H. Williams, and C. E. Tompkins of the WES Instrumentation Branch.

COL Levi A. Brown, CE, and COL Ernest D. Peixotto, CE, were Directors of WES during this experiment and the preparation of this report.

Messrs. J. B. Tiffany and F. R. Brown were Technical Directors.
ABSTRACT 4
PREFACE 5
CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT 8
CHAPTER 1 INTRODUCTION 9
1.1 Objectives 9
1.2 Background 9
1.3 Ground Motion and Stress Predictions 9
CHAPTER 2 PROCEDURE 13
2.1 Description of Test Site 13
2.2 Instrumentation Layout 13
2.3 Instrumentation- 14
2.3.1 Gages and Calibration- 14
2.3.2 Gage Canisters and Placement 15
2.3.3 Recording System 15
CHAPTER 3 RESULTS AND DISCUSSION- 19
3.1 Instrument Performance 19
3.2 Data Reduction- 19
3.3 Arrival Times- 20
3.4 Particle Acceleration 21
3.4.1 Measurements 21
3.4.2 Discussion and Correlation 22
 23
3.5 Vertical Particle Velocity 24
3.5.1 Measurements 24
3.5.2 Discussion and Correlation 24
3.6 Horizontal Particle Velocity 25
3.6.1 Measurements 25
3.6.2 Discussion and Correlation- 26
3.7 Displacement 26
3.8 Soil Stress 27
CHAPTER 4 CONCLUSIONS 50
APPENDIX A MOTION-TIME HISTORIES 53
APPENDIX B STRESS-TIME HISTORIES 127
REFERENCES 170
TABLES
1.1 Predicted Ground Motion Parameters 11
1.2 Predicted Earth Stresses 12
2.1 Summary of Motion Gage Installation 17
2.2 Summary of Stress Gage Installation 17
3.1 Summary of Motion Measurements 30
3.2 Summary of Stress Measurements 31
FIGURES
2.1 Typical gage canister 18
3.1 Ground shock profile 32
3.2 Peak airblast-induced (downward) vertical acceleration versus distance 33
3.3 Vertical acceleration waveforms, 220-foot range-----.-.-. 34
3.4 Correlation of vertical acceleration data with airblast, 1.5-foot depths 35
3.5 Vertical acceleration attenuation with depth 36
3.6 Vertical acceleration waveforms in outrunning region 37
3.7 Horizontal acceleration waveforms in outrunning region- 38
3.8 Peak airblast-induced (downward) vertical velocity versus distance 39
3.9 Vertical velocity waveforms, 220-foot distance 40
3.10 Correlation of vertical velocity with airblast, 1.5-foot depth 41
3.11 Vertical velocity attenuation with dept 42
3.12 Horizontal velocity waveforms at lo-foot depth 43
3.13 Peak horizontal cratering-induced (outward) velocity attenuation with distance 44
3.14 Peak cratering-induced (outward) horizontal velocity versus scaled distance 45
3.15 Peak transient upward displacement versus distance 46
3.16 Peak transient outward displacement versus distance 47
3.17 Vertical stress-time histories, 1.5-foot depth 48
3.18 Vertical stress versus distance, 1.5-foot depth 49

British units of measurement used in this report can be converted to metric units as follows.

Multiply	By	To Obtain
inches	25.4	millimeters
feet	0.3048	meters
tons (2,000 pounds)	0.907185	megagrams
pounds per square inch	6.894757	kilonewtons per square meter
pounds per cubic foot	16.0185	kilograms per cubic meter
feet per second	0.3048	meters per second

CHAPTER 1

INTRODUCTION

1.1 OBJECTIVES

The objectives of Project IN302 were to measure the earth motions and stresses on the Prairie Flat Event and to analyze and correlate the results with those obtained on other pertinent detonations, such as Snow Ball, Flat Top, and several events of the Distant Plain Series.

1.2 BACKGROUND

Operation Prairie Flat, conducted at the Defence Research Establishment, Suffield (DRES), Alberta, Canada, during August 1968, was a continuation of a high explosive test program at DRES planned under the auspices of the Tripartite Technical Cooperation Program (TICP). The primary purpose of the Prairie Flat Event was to obtain loading and response data for a variety of military targets, since knowledge of free-field ground motions and stresses is essential for analysis of such target response. In addition, experimental data are needed for verifying and improving calculational techniques for ground shock prediction.

The charge size (500 tons 1) and geometry (tangent sphere) for the Prairie Flat Event were such that measurements of ground shock were feasible up to an airblast overpressure of 2,000 psi. Substantial outrunning ground motion was anticipated based on results of the Snow Ball and Distant Plain Event 6 detonations; therefore, documentation of earth motion in this region, i.e., 10 to 50 psi, was desired in order to assess responses of various structural systems.

1.3 GROUND MOTION AND STRESS PREDICTIONS

Estimated peak values of ground motions and stresses are necessary for selecting proper gage ranges and making recording system gain settings.

1
A table of factors for converting British units of measurement to metric units is given on page 8.

For the Prairie Flat Event, ground motion predictions (Reference l) were made by the Technical Director's staff and are presented in Table l.l Predictions of soil stress were based on relative attenuations with depth observed on Operation Upshot-Knothole (Reference 2). Attenuation of vertical earth stress as a function of depth, at least to a depth of 10 feet, was determined to be

$$
\begin{equation*}
P=P_{1}\left(\frac{d}{d_{1}}\right)^{-0.37} \tag{1}
\end{equation*}
$$

which describes the vertical stress P at a depth d in terms of stress P_{1} at a depth d_{1} (Reference 2). For the Prairie Flat Event, P_{1} and d_{1} were arbitrarily fixed to be the surface overpressure and 0.5 foot, respectively, thus allowing calculation of expected pressures at any desired depth. Stress predictions are listed in Table 1.2.

All stresses in directions other than vertical were taken as twothirds of the vertical for the upper 10 feet of soil. For the 17- and 30-foot depths, no further attenuation with depth was assumed, and all components were taken to be equal due to the increasingly saturated nature of the soil.

TABLE 1.1 PREDICTED GROUND MOTION PARAMETERS
For the values above the line, airblast-induced motion predominates;
for those below the line, cratering-induced motion predominates.

Depth	Maximum Value at Indicated Range								
	70	84	105	140	170	220	280	330	400
	ft								

feet

Maximum Vertical Acceleration, g's:

1.5	750	720	720	700	660	580	430	320	220
5	180	180	180	180	180	180	160	130	100
10	80	85	80	80	90	80	80	70	60
17	80	45	45	45	45	40	45	40	35
24	80	45	30	30	30	30	30	30	25
30	80	45	25	25	25	25	25	25	20

Maximum Horizontal Acceleration, g's:

1.5	120	120	120	110	110	100	75	60	40
	80	45	30	30	30	30	25	25	20
10	80	45	25	15	15	15	15	15	10
17	80	45	25	10	10	7	8	7	7
24	80	45	25	10	6	5	5	6	5
30	80	45	25	10	6	4	4	5	4

Maximum Vertical Velocity, ft/sec:

1.5	40	40	35	35	30	30	20	15	11
5	40	40	25	15	15	15	15	10	9
10	40	35	15	10	10	10	10	9	8
17	35	20	10	7	7	7	7	7	6
24	35	20	10	6	6	6	6	5	5
30	35	20	10	5	5	5	5	5	5

Maximum Horizontal Velocity, ft/sec:

1.5	70	40	20	8	5	4	3	2	2
5	70	40	20	8	5	3	3	2	2
10	65	40	20	8	5	3	3	3	2
17	60	35	20	8	5	3	3	3	3
24	60	35	20	8	5	3	3	3	3
30	50	30	15	8	4	3	3	3	3

TABIE 1.2 PREDICTED EARTH STRESSES
PV--vertical stress; PH--horizontal stress; PS--stress at 45 degrees to horizontal; PT--tangential stress.

Range	Depth	Maximum Stress			
		PV	PH	PS	PT
feet	feet	psi	psi	psi	psi
84	1.5	1,200	--	--	--
	5	800	533	533	533
	10	700	467	467	467
	17	500	500	--	--
	30	--	500	--	--
140	1.5	670	--	--	--
	5	420	270	270	270
	10	350	233	233	233
	17	270	270	270	270
	30	--	270	--	--
220	1.5	330	--	--	--
	5	200	133	133	133
	10	175	117	117	117
	17	150	150	150	150
	30	--	150	--	--
330	1.5	130	--	--	--
	5	85	57	57	57
	10	70	47	47	47
400	1.5	80	--	--	--
	5	50	33	33	33

2.1 DESCRIPTION OF TEST SITE

The Prairie Flat Event was detonated on the Watching Hill Blast Range of DRES. Over the area instrumented for this project, the ground surface was essentially flat, with an elevation of approximately 2,160 feet above mean sea level. Geologically, the test site lies in the southern end of the Ross Depression, which apparently was once covered by a large lake. The soils to a depth of 200 feet are lacustrine deposits consisting of fairly uniform beds of clays and silts with occasional sand lenses (Reference 3).

Detailed accounts of the soil survey and testing for the Distant Plain Series are given in References 4 and 5. Briefly, Project 3.10, Soil Sampling and Testing (References 4 and 5), reported the upper 5.5 feet of soil at the Watching Hill Range to be a tan, sandy, silty clay. From this point to a depth of about 30 feet, the soil was sandy silt. The upper 30 feet of soil (both layers) was about 40 percent air by volume, resulting in a high compressibility. For example, a dynamic uniaxial strain test on a sample taken from the upper 5 feet produced a 23 percent vertical strain at 4,000 psi. Upon unloading, the material recovered only about 2 percent of this strain (Reference 5).

2.2 INSTRUMENTATION LAYOUT

A total of 129 earth motion and stress gages were installed for this project, which included 51 accelerometers, 30 particle velocity gages, and 48 earth stress gages. One hundred and eleven gages, including all of the particle velocity and stress gages, were installed in the region of superseismic ground shock, between the 125- and 2,000-psi predicted overpressure levels. Twenty-four locations were instrumented in this region at depths of $1.5,5,10,17$, and 30 feet below ground surface. The remaining $18 \mathrm{ac}-$ celerometers were installed in the region of anticipated outrunning ground shock, at pressure levels of 10,20 , and 50 psi , and at depths of $1.5,5$, and 10 feet.

At 12 of the locations instrumented in the superseismic region, multiple stress gages were installed, oriented to sense vertical stress, horizontal stress, stress at an angle of 45 degrees with the horizontal, and, at four of these locations, tangential stress. By using the multiple gages and assuming spherical symmetry, it is theoretically possible to calculate the principal stresses, their directions, and the shear stress component in the plane of the sensors.

The total gage array for this project is listed in Tables 2.1 and 2.2.

2.3 INSTRUMENTATION

2.3.1 Gages and Calibration. All particle motion gages used on this project were commercially available units which have proved reliable in numerous field or laboratory soil motion experiments. The particle velocity gages were the Sparton Southwest, Inc., Model 601. This gage was developed under a Defense Atomic Support Agency contract by Stanford Research Institute and modified by Sandia Corporation. The Model 601 is a variable reluctance gage of the highly overdamped accelerometer design.

Two different types of accelerometers were used. Pace Model Al8 variable reluctance gages were installed at the 17- and 30-foot depths, and in the outrunning region, while Endevco Corporation semiconductor strain gage accelerometers were used at the remaining locations.

The soil stress gages were constructed by the Waterways Experiment Station (WES) using our own design. Basically, the gage is a dualdiaphragm gage with two arms of a full semiconductor strain gage bridge bonded to each diaphragm. Reference 6 gives a detailed account of the development and testing of this gage.

All velocity gages were calibrated by using the free fall of the pendulum method. The variable reluctance accelerometers were statically calibrated on a rotary accelerator (spin table), while the strain gages were dynamically calibrated with a dynamic shock calibrator of the impacting ball type. The soil stress gages were calibrated statically in a small pressure chamber.

All gages were electrically calibrated just prior to shot time by shunting a resistor across one arm of the bridge circuit, producing a
circuit imbalance of a known motion or stress equivalence.
2.3.2 Gage Canisters and Placement. All motion gages installed at a particular location were mounted in a single aluminum canister along with associated calibration and line-matching electronics. Figure 2.1 shows a typical canister with mounted gages. All canisters were potted with paraffin in order (1) to resist water leakage and (2) to damp high-frequency vibrations. The final density of the assembled canister was about 100 pcf , which provided a good match with the in situ soil. Stress gages placed at the 1.5-foot depth were placed by hand, and soil was hand tamped around them. The stress gages at depths of 5 feet and below were cast in soilcement plugs consisting of native soil, about 3 percent portland cement, and about 10 percent water to enable compaction.

In all cases, the instrument holes were backfilled with the same soilcement mixture used for the stress gage plugs. This mixture, though perhaps slightly stiffer than the in situ soil, provided a good density match and was considered to be a significant improvement over dry sand or cement grout for matching alluvial soils.

Instrument cables were protected downole by heavy-duty reinforced rubber hose, and in the main cable trench were fed into a-3-inch-diameter plastic pipe. This method proved satisfactory since the few cables which broke did so well after significant motion peaks had occurred.
2.3.3 Recording System. Signal conditioning and recording equipment was housed in a wooden bunker located about 3,800 feet southwest of ground zero (GZ).

The basic signal conditioning equipment for all variable reluctance gages was the CEC Model 113-B (System D) 3-kHz carrier-demodulator amplifier. Outputs from this system were recorded on CEC 5-119 oscillographs. The strain gage transducer outputs were fed into an operational amplifier system designed and constructed by WES, and all but four stress gage outputs were recorded on CEC VR-3300 FM magnetic tape recorders. Those four were recorded on oscillographs.

Calibration and recorder start signals were produced by a cam-type timing device which was triggered by the -30 -second signal from DRES Control. The -2-second signal from Control was used as a backup to shift all
recorders to operating speed. The zero time pulse from Control (DET ZERO) was recorded directly on all oscillographs and was superimposed on the l- kHz timing channel on magnetic tape.

TABLE 2.1 SUMMARY OF MOTION GAGE INSTALLATION
$+=$ Vertical velocity, horizontal velocity, vertical acceleration.
$Y=$ Vertical acceleration, horizontal acceleration.

Pressure	Distance	Gage Array at Depths of				
		1.5 ft	5 ft	10 ft	17 ft	30 ft
psi	feet					
2,000	84	+	+	+	Y	Y
1,000	140	+	+	+	Y	Y
500	220	+-	$+$	$+$	Y	Y
200	330	+	+	+	Y	Y
125	400	$+$	+	$+$	Y	--
50	560	Y	Y	Y	--	--
20	830	Y	Y	Y	--	--
10	1,150	Y	Y	Y	--	--

TABLE 2.2 SUMMARY OF STRESS GAGE INSTALIATION
X--three-component soil stress (PV, PH, PS); Z--four-component soil stress (PV, PH, PS, PT); PV--vertical soil stress; PH--horizontal soil stress; PS--soil stress at 45 degrees to horizontal; PT--tangential soil stress.

Pressure	Distance	Gage Array at Depths of				
		1.5 ft	5 ft	10 ft	17 ft	30 ft
psi	feet					
2,000	84	PV	Z	X	Z	PH
1,000	140	PV	Z	X	X	PH
500	220	PV	X	Z	X	PH
200	330	PV	X	X	--	--
125	400	PV	X	--	--	--

Figure 2.1 Typical gage canister.

RESULTS AND DISCUSSION

3.1 INSTRUMENT PERFORMANCE

All of the 129 gages installed for Prairie Flat were operational at shot time, and all gages responded to shock arrival. Of the 81 motion gages installed, 72 yielded useful data of generally high quality from a signal-to-noise perspective. The eight accelerometers installed at the 30-foot depths were severely overranged, and no data other than arrival times were obtained from them. Stress gage outputs were consistently much lower than had been estimated preshot, except for the 1.5- and 30-foot depths. The four gages at the 220-foot range and lo-foot depth, which were recorded on oscillographs, produced no measurable trace deflection. Seven other stress gages produced either no usable output or outputs sufficiently low to render the data questionable.

The calibration and sequence initiating signals from DRES control were properly received and translated, and all equipment operated as programmed. A good DET ZERO signal was received and recorded.

3.2 DATA REDUCTION

Data recorded on oscillograph recorders were read on an electromechanical pencil follower unit. The output from this apparatus was in a computer-compatible digital magnetic tape format. Data recorded on magnetic tape were digitized on the WES high-speed analog-to-digital converter. All digitized records were then processed through a digital computer, where baseline corrections and integrations were performed. Computer outputs were then plotted to a report-size format.

The data were initially plotted to a time of 4 seconds after detonation. However, difficulties were encountered in making reasonable baseline corrections to the oscillograph records and their integrations when carried to the full 4 seconds. This problem arose, at least in part, from the large number of separate "setups" required in reading each record, since only 200 msec of record could be read at a time in the frame of the pencil follower. Thus slightly different baselines were possibly introduced at a
number of points on the record. Consequently, it was decided to alleviate, if not eliminate, the problem by processing data to only 2 seconds rather than 4 seconds, at the cost of not showing late-time motions on some records.

Data plots for all successful measurements and their integrals are presented in Appendixes A and B. Tables 3.1 and 3.2 summarize the absolute peak values and shock arrival times for these records. The location code used in the tables and the plots in the appendixes was simply a method for identifying a given gage or gage location and was developed to insure uniformity of designation between this project and others.

3.3 ARRIVAL TIMES

Shock arrival times were established for all successfully recorded gages. In addition, several of the channels which yielded no useful peak data gave arrival time information. Among these were the eight accelerometers at the 30 -foot depth. For the most part, agreement of arrival times obtained from several gages installed at a point was only fair. Differences from gage to gage on the order of a millisecond were not uncommon, and several cases of as much as $5-\mathrm{msec}$ difference were noted. Since the expanded time oscillograms offered a time resolution of a fraction of a millisecond, the problem must lie with the slow rise times noted, particularly for horizontal velocity gages. These slow rise times made the selections of shock arrivals tenuous at best.

Shock propagation velocities for the upper soil layer were calculated using the earliest arrival times noted for the 1.5- and 10-foot depths. For the saturated material below the water table, shock arrivals at the 30 -foot depth were used. Propagation velocities for the two layers were found to average 1,270 and $6,100 \mathrm{ft} / \mathrm{sec}$, respectively. These values are 15 percent and 11 percent higher than were reported for Distant Plain Event 6 (Reference 7). No explanation for the difference is readily apparent, since it is unlikely that soil properties vary to that degree between the two sites. The lack of precision among the arrival times could account for some of the difference, but it is improbable that this is the only contributing factor. Figure 3.1 is a shock front profile constructed from airblast arrival
time data (Reference 8), ground shock arrival times measured on this project, the calculated propagation velocities, and, importantly, the directions of initial motions for vertical measurements. The development of two distinct shock fronts is indicated by Figure 3.1. The first of these is the airblast-induced ground shock which trails behind the airblast wave. Motions generated by this pulse are downward and outward and are the initial motions in the superseismic region. The shock front is nearly horizontal near the source and becomes more nearly vertical as the airblast wave slows down. The second pulse identifiable from Figure 3.1 is a shock front refracted along the saturated layer. Energy from this wave is continuously fed back into the overburden as an upward-moving pulse. This refracted wave is seen to overtake the airblast, and at a ground range of about 560 feet, or about the $35-\mathrm{psi}$ overpressure level, produces the initial motion at the ground surface. The onset of outrunning ground motion occurs at this approximate range, and at all points beyond this range, initial motions will be upward and outward due to the outrunning motion.

Not shown in Figure 3.1, but of great significance to a range of several hundred feet, is the directly induced, or cratering-induced, front in the upper soil layer. This shock front follows the airblast-induced motion at all locations, and, as will be discussed later, it is dominant in producing displacements.

3.4 PARTICLE ACCELERATION

3.4.1 Measurements. Peak airblast-induced downward accelerations are plotted versus horizontal distance in Figure 3.2. Data from the three shallowest depths ($1.5,5$, and 10 feet) are show. A rapid attenuation with both increasing range and depth is noted, with airblast-induced downward accelerations varying from $1,200 \mathrm{~g}$'s at the 84 -foot range and 1.5 -foot depth to 1.9 g 's at the 1,150 -foot range and 10 -foot depth.

Figure 3.3 shows typical vertical acceleration records from the 220 -foot range. The first three of these (1.5-, 5-, and 10-foot depths) are characteristic of near-surface accelerations in the superseismic region in that they are dominated by a sharp downward spike at air shock arrival followed by a lesser magnitude upward "rebound." subsequent to
these peaks, upward cratering-induced motion occurs, also of less magnitude than the airblast motion but of considerably longer duration. The airblast-induced pulse is also noted to increase in duration with depth, from about 5 msec at the 1.5 -foot depth to about 14 msec at the 10 -foot depth. The record from the 17-foot depth also shows initially downward motion. However, at this point the downward pulse has attenuated to such a degree that subsequent upward motions are greater.
3.4.2 Discussion and Correlation. For airbursts, maximum nearsurface vertical acceleration is caused by the airblast, and ratios of peak downward acceleration to overpressure have proved to be a useful tool for correlating motions. Figure 3.4 is a plot of the ratio of airblastinduced acceleration to overpressure ($g^{\prime} \mathrm{s} / \mathrm{psi}$) versus overpressure, which offers a means of.predicting accelerations based on overpressure. Data from three events at DRES (Prairie Flat and Distant Plain Events 3 and 6) and two at NTS (Flat Top II and III) are included for comparison. Two well-defined trends in this data are apparent. First, there is an observable tendency toward smaller ratios at the higher pressures. This effect was predicted by Sauer (Reference 9) and is attributed to the more rapid rates of decay ("spikedness") of airblast at higher overpressures. The second noticeable trend is a yield dependency, as indicated by the generally higher Prairie Flat data. The difference, if any, between the Distant Plain Event 6 (100-ton yield) and the Distant Plain Event 3 and Flat Top events (20 tons) is less apparent, however, even though the fivefold difference in yield was the same as the Prairie Flat to Distant Plain Event 6 difference. The data scatter for all five sets of data plotted in Figure 3.4 is unfortunately too large to make reliable fits to the data. Therefore, the usefulness of Figure 3.4 is limited to showing the broad patterns of yield and pressure dependency of acceleration-to-pressure ratios.

For depths below the 1.5-foot level, a plot was constructed which normalized peak accelerations at the 5- and lo-foot depths to a depth of I. 5 feet. Figure 3.5 presents normalized data for Prairie Flat and Distant Plain Events 3 and 6. A large amount of scatter is readily apparent, being on the order of a factor of four for the extremes. To explain the
scatter, at least in part, the pressure levels for the Prairie Flat data are listed. With a few exceptions, notably the data at the l,l50-foot range (8 -psi level), the most rapid attenuations, or lowest ratios on the ordinate of the graph, occur at the highest pressure levels. This, too, is in keeping with predictions, and again is due to the more rapid rate of decay of the pressure-time history at higher pressures. As a result, it appears that average attenuation rates would be meaningless without considering the pressure level of interest. Sauer (Reference 9) uses a correlation method which accounts for pressure effects and effectively reduces the scatter in a plot such as Figure 3.5.
3.4.3 Outrunning Effects. Figures 3.6 and 3.7 are comparisons of vertical and horizontal acceleration waveforms, respectively, for locations in the outrunning region. The first record on Figure 3.6, for the 560-foot range and l.5-foot depth, still shows superseismic characteristics, i.e., an initially sharp downward airblast-induced spike. The remaining three records, however, show well developed outrunning motion waveforms, as demonstrated by the initially upward pulse, with the airblast-induced motion superimposed. Of interest here is the relationship between the outrunning and airblast-induced pulses. For the first record, the airblast-induced motion is dominant, being greater than the upward pulse by a factor of about seven. At the 10-foot depth, while the airblast-induced motion is still greater, its dominance has been reduced to a factor of less than two. For the shallow depth at the 1,150 -foot range, the airblast-induced motion occurs well after onset of motion, and is still greater than the upward motions, although by a factor of only about three, in contrast to the 560 -foot range. At the 10 -foot depth, the trend toward lessening importance of the airblast-induced motion is continued, and in fact, outrunning motions are at this point three times greater than the airblast pulse. Thus the airblast-induced vertical motion is seen to decrease in significance relative to outrunning motion as the distance and depth increase.

For horizontal accelerations in the outrunning region (Figure 3.7) a somewhat similar pattern is observed, although at the 560 -foot range the change with depth of the airblast to outrunning motion relationship was less pronounced than was noted for vertical measurements. At the

1,150-foot range, the airblast motion was greater than the outrunning by a factor of six at the l.5-foot depth, but was only slightly greater at the 10-foot depth. Vertical motions from both sources were generally two to three times the associated horizontal motions.

3.5 VERTICAL PARTICLE VELOCITY

3.5.1 Measurements. Peak airblast-induced dowward particle velocity is plotted versus distance in Figure 3.8. Very much the same pattern noted for accelerations is observed, that is, a rapid attenuation with both increasing depth and distance. Data plotted in Figure 3.8 are measured velocities out to a distance of 400 feet, and beyond that are integrals of accelerations. Peak vertical velocities ranged from $74 \mathrm{ft} / \mathrm{sec}$ at the 84 -foot range and 1.5 -foot depth to $0.33 \mathrm{ft} / \mathrm{sec}$ at the $1,150-\mathrm{foot}$ range and 5 -foot depth.

Measured velocity peaks were in reasonably good agreement with first integrals of accelerations, with generally less than 20 percent difference in the two methods. Waveforms were also observed to agree. Figure 3.9 shows time histories of vertical velocities at the 220-foot range. Both measured velocities and integrals of accelerations are shown for the first three depths, and excellent agreement is apparent. As with acceleration waveforms at the same distance (Figure 3.3), typical superseismic signatures are featured. These exhibit initial dominant downward peaks due to passage of the airblast, followed by an upward pulse. An exception is the measured velocity at the 1.5-foot depth, where a baseline shift has eliminated the upward motion; characteristics of the wave are still discernible, however, when compared with the acceleration integral.
3.5.2 Discussion and Correlation. As with accelerations, velocity to overpressure ratios are convenient for correlation. Figure 3.10 is a plot of vertical airblast-induced velocity to overpressure ratio versus overpressure for Prairie Flat, Distant Plain Events 3 and 6, and Flat Top II and III. There is again a trend toward smaller ratios at higher pressures, although the four points from Distant Plain Event 6 in the 10- to $50-\mathrm{psi}$ region appear to counter the trend. The yield dependency of the velocity to overpressure ratio is obvious, and in this case the 100 -ton
data (Distant Plain Event 6) fall clearly above the 20-ton data in the region above 200 psi. As a result, the scatter of data in Figure 3.10 is much less than it at first appears if yield dependency is considered.

Attenuation of vertical particle velocity with depth is plotted in Figure 3.11 using the normalizing method used in Figure 3.5. A great deal of scatter is again encountered, but is partially explainable on the basis of pressure dependency since the most rapid attenuation rates are associated with the higher pressures. The effect of yield, if any, on attenuation rates is not apparent from Figure 3.11, since data points over a 25-fold yield difference are well mixed. The rates of attenuation of vertical velocity with depth are somewhat less rapid than was found for accelerations, an effect which is more pronounced for the 10-foot depth than for the 5 -foot depth. This can be attributed to the dependence of peak accelerations on both peak velocity and velocity rise times, which increase with distance traveled by the shock wave.

3.6 HORIZONTAL PARTICLE VELOCITY

3.6.1 Measurements. Horizontal particle velocities are characterized in the close-in region (out to several crater radii) by two distinct outward waves. The first of these is due to passage of the airblast. The second is caused by cratering-induced energy, and within roughly three crater radii is of paramount importance in producing displacements. These are clearly apparent in Figure 3.12, which shows three horizontal velocitytime histories at the 10-foot depths. The first of these, from the 84-foot range, shows a relatively small airblast-induced motion of about $3 \mathrm{ft} / \mathrm{sec}$, followed by a very long cratering-induced pulse of 15 to $20 \mathrm{ft} / \mathrm{sec}$. The next record, from the 220-foot range, shows both pulses reduced somewhat in magnitude, although the difference is not nearly so great, and at 330 feet, the airblast-induced motion is the greater.

Horizontal cratering-induced velocities are listed in the following tabulation, and are plotted versus distance in Figure 3.13. A rapid attenuation with distance is observed, as the -2.3 power of range. Very little scatter is present except at the 330 -foot range, and although the 1.5-foot data are generally highest, the three data points at a common

Horizontal Cratering-Induced Particle Velocities			Horizontal Cratering-Induced Particle Velocities		
Range	Depth	Velocity	Range	Depth	Velocity
feet	feet	$\mathrm{ft} / \mathrm{sec}$	feet	feet	$\mathrm{ft} / \mathrm{sec}$
84	$\begin{gathered} 1.5 \\ 5 \\ 10 \end{gathered}$	$\begin{aligned} & 22 \\ & 19.2 \\ & 17.6 \end{aligned}$	330	$\begin{gathered} 1.5 \\ 5 \\ 10 \end{gathered}$	$\begin{aligned} & 1.6 \\ & 0.72 \\ & 0.44 \end{aligned}$
140	$\begin{gathered} 1.5 \\ 5 \\ 10 \end{gathered}$	$\begin{aligned} & 7.2 \\ & 6.2 \\ & 6.3 \end{aligned}$	400	$\begin{gathered} 1.5 \\ 5 \\ 10 \end{gathered}$	$\begin{aligned} & 0.40 \\ & 0.32 \\ & 0.38 \end{aligned}$
220	$\begin{gathered} 1.5 \\ 5 \\ 10 \end{gathered}$	$\begin{aligned} & 2.4 \\ & 2.84 \\ & 3.1 \end{aligned}$			

distance are sufficiently close to preclude positive statements about attenuation with depth.
3.6.2 Discussion and Correlation. Since the cratering-induced velocities arise from a directly induced effect, somewhat analogous to that from contained detonations, cube-root scaling was applied to the data for correlative purposes. Figure 3.14 is a plot of peak cratering-induced velocities for the Prairie Flat and Distant Plain Event 6 data versus scaled range. Due to the above-mentioned lack of attenuation with depth, the data are not differentiated on this basis. Excellent agreement between the two events is noted, with neither being uniformly high nor low with respect to the fitted line. The decay power of -2.3 is the same as for the unscaled Prairie Flat data. The precision of the scaled data from the two events adds to its reliability, and probably points to horizontal velocity as the most predictable parameter measured.

3.7 DISPIACEMENT

Both vertical and horizontal displacements in the close-in region are dominated by the cratering-induced pulses. In the case of vertical displacements, the dowward motion caused by the airblast is insignificant compared with the upward motion, at least at the closest stations, and is
quite possibly clipped short by arrival of the cratering pulse. For this reason, discussion of transient displacements is limited to the dominant upward motion.

Figure 3.15 is a plot of upward vertical displacements versus distance. The plot is marked by a very rapid attenuation as the -3.8 power of distance. Relatively little scatter is present considering the dependency of calculated displacements on measurement accuracy and data reduction techniques (e.g., baseline corrections). Of interest on this figure are the large (≈ 20-foot) displacements observed at the 84 -foot range. It is pointed out here that this location was in the lip of the crater, which accounts for the large motions upward.

Figure 3.16 is a similar plot for horizontal displacements. Here the decay rate is a slightly lower -3.1 power of distance. This accounts for somewhat larger horizontal than vertical displacements at the greater distances, even though upward and outward displacements at the 84 -foot range were virtually identical.

3.8 SOIL STRESS

Soil stress data obtained by this project were unfortunately not of uniformly good quality. With the exception of data at the 1.5- and 30-foot depths, recorded signals were generally much lower than had been expected, resulting in poor signal-to-noise ratios. This precluded calculation of shear stresses, for example, which depends on three virtually ideal records with no negative (tensile) stresses to avoid extraneous results. In addition, attenuation patterns below the 1.5-foot depth were quite irregular, to the point of meaninglessness. Subsequent investigation of the problem points toward the extreme sensitivity of stress measurements to gage placement techniques. For example, in recent laboratory tests at WES it has been found that there is a tendency for the material in the soil plug to separate from the gage on curing, producing extremely small but significant voids. In addition, there is a possibility that the soil plugs were too stiff, allowing the arching effect to reduce load on the gage. This, too, has been suggested by laboratory tests.

Measurements at the 1.5- and 30-foot depths, however, were of good
quality. A partial explanation of the more successful measurements at these depths lies in the method of placement and coupling. For the 1.5-foot depths, placement of the gage and tamping of the backfill material was done by hand directly around the gage. This apparently led to greater uniformity and better coupling of the gage. At the $30-\mathrm{foot}$ depth, the plug of soil containing the gage was located in saturated material, which in turn saturated the plug and filled any voids which may have opened. Improved methods of placement and development of better potting materials should alleviate stress gage coupling problems. Studies of this nature are under way at WES.

Figure 3.17 shows the vertical stress-time histories for the l.5-foot depths. These are plotted on an expanded time scale in order to show detail of the stress pulses. All of the records show predominant single pulses which are associated with passage of the airblast. All of the stress records are marked by a fairly rapid rise to peak, which tends to increase at lower pressure. For example, the fastest rise was at the $140-$ foot range (2.4 msec) and the slowest at the $330-$ foot range (7.6 msec). The peaks are followed by a decay which in all cases is less rapid than the rise and takes on a semi-exponential form. The time required for decay to one-half of peak amplitude was taken as a correlating characteristic, and again increased for lower pressures. The most rapid decay was at the 140 -foot range (2.4 msec), and the longest decay to one-half amplitude was at the 400 -foot range $(8.8 \mathrm{msec})$. At the same ranges, the airblast decay to one-half amplitude increased from 1.4 msec to 9 msec (Reference 8). It follows that the test site soil is better able to respond to stress waves as the stress level decreases and, more significantly, as the sharpness of airblast decay is reduced since at the 400 -foot range decay rates of airblast and stress at the $1.5-f o o t$ depth were virtually identical. This reinforces the evidence cited previously that motion to overpressure ratios increase at decreasing pressure levels.

Figure 3.18 is a plot of vertical stresses measured at the 1.5 -foot depths versus distance. Peak overpressures measured by Project LN101 (Reference 8) are also plotted for comparison purposes. With the exception of data at the 330 -foot range, the data exhibit a uniform attenuation
with distance and are observed to maintain a nearly constant relation to the airblast overpressure. The ratio of vertical stress to overpressure of 0.4 is a more rapid attenuation with depth than the 0.67 which had been predicted. However, the prediction method used assumed an unattenuated overpressure at a depth of 0.5 foot, which accounts to some degree for the difference.

Table 3.1 sumary of motion neasurembits
Fositive motion is upward or cutward. AV--vertical acceleration; AH--horizontal acceleration; W--vertical velocity; uh-horizontal velocity.

[^0]TABLE 3.2 SUMMARY OF STRESS MEASUREMENTS
PV--vertical stress; PH--horizontal stress; PS--stress at 45 degrees to horizontal; PT--tangential stress.

Range	Depth	Location Code	Gage Type and Orientation	Time of Arrival	Peak Stress
feet	feet			msec	psi
84	1.5	1051	PV	7.9	680
	5	1052	PV	9.9	40
			PH	10.4	78
			PS	a	a
			PT	10.4	47
	10	1053	PV	$17.2{ }^{\text {b }}$	55
			PH	$18.5{ }^{\text {b }}$	$46^{\text {c }}$
			PS	$17.1{ }^{\text {b }}$	90
	17	1054	PV	$31.0{ }^{\text {b }}$	132
			PH	$29.4{ }^{\text {b }}$	408
			PS	30.15	140
			PT	$30.1{ }^{\text {b }}$	340
	30	1056	PH	21.8	1,040 ${ }^{\text {a }}$
140	1.5	1071	PV	14.3	352
	5	1072	PV	$21.0{ }^{\text {b }}$	$30^{\text {c }}$
			PH	20.6	15
			PS	$18.7{ }^{\text {b }}$	73
			PT	$20.6{ }^{\text {b }}$	28
	10	1073	FV	a	a
			PH	19.0	
			PS	21.1	$3.4{ }^{\text {c }}$
	17	1074	PV	28.0	24
			PH	27.4	30
			PS	27.5	50
	30	1076	PH	33.2	710
220	1.5	1091	PV	25.1	172
	5	1092	FV	30.7	$4.0^{\text {c }}$
			PH	29.0	$9.4{ }^{\text {c }}$
			PS	28.5	$14^{\text {c }}$
220	10	1093	PV	d	d
			PH	d	d
			PS	d	d
			PT	d	d
	17	1094	PV	$49.1{ }^{\text {b }}$	38
			PH	53.3 b	14
			PS	48.5	10
	30	1096	PH	48.0^{6}	620
330	1.5	1121	PV	47.0	210
	5	1122	PV	53.0	9.5
			PH	54.3	11
			PS	53.8	19
	10	1123	PV	55.1	3.2
			PH	56.2	
			PS	54.7	4.9
400	1.5	1151	PV	67.6	45
	5	1152	PV	67.5	4.5
			PH	66.5	6.8
			PS	67.1	14

No data.
${ }^{\mathrm{b}}$ Questionable arrival times due to very slow initial rise.
${ }^{c}$ Questionable data.
d Oscillogram traces too small to read peaks or arrival.

Figure 3.1 Ground shock profile.

Figure 3.2 Peak airblast-induced (downward) vertical acceleration versus distance.

Figure 3.3 Vertical acceleration waveforms, 220-foot range.

Figure 3.4 Correlation of vertical acceleration data with airblast, 1.5-foot depths.

Figure 3.5 Vertical acceleration attenuation with depth.

AIRBLAST-INDUCED MOTION

Figure 3.6 Vertical acceleration waveforms in outrunning region.

Figure 3.7 Horizontal acceleration waveforms in outrunning region.

Figure 3.8 Peak airblast-induced (downward) vertical velocity versus distance.

Figure 3.9 Vertical velocity waveforms, 220-foot distance.

Figure 3.10 Correlation of vertical velocity with airblast, 1.5-foot depth.

Figure 3.11 Vertical velocity attenuation with depth.

Figure 3.12 Horizontal velocity waveforms at 10-foot depth.

Figure 3.13 Peak horizontal cratering-induced (outward) velocity attenuation with distance.

Figure 3.14 Peak cratering-induced (outward) horizontal velocity versus scaled distance.

Figure 3.15 Peak transient upward displacement versus distance.

Figure 3.16 Peak transient outward displacement versus distance.

Figure 3.17 Vertical stress-time histories, 1.5-foot depth.

Figure 3.18 Vertical stress versus distance, 1.5-foot depth.

Overall performance of motion gages for Prairie Flat was excellent. Stress gage performance was less satisfactory due to apparent placement or coupling problems, especially at intermediate depths.

Arrival times were obtained for nearly all gages installed. These were used primarily to construct a shock front profile. From this profile, the spatial development of outrunning ground motion was determined, and it was observed that outrunning conditions first appeared at the ground surface at a distance of about 560 feet, or the 35 -psi overpressure level.

Peak vertical accelerations were found to attenuate sharply with both distance and depth, varying over the range of distances and depths instrumented from 1,200 to $1.9 \mathrm{~g}^{\prime} \mathrm{s}$. The ratio of acceleration to overpressure was used as a correlating factor for comparison with Distant Plain and Flat Top data. This ratio was noted to be both pressure and yield dependent, decreasing for both higher pressures and smaller yields. These effects had both been predicted. Attenuation of vertical acceleration was also found to be pressure dependent, with more rapid attenuation at higher pressures.

Peak vertical velocities also attenuated sharply with distance and depth, although to a somewhat lesser degree than did accelerations. Peak downard velocities varied from 84 to $0.33 \mathrm{ft} / \mathrm{sec}$ over the intervals instrumented. Peak vertical velocities were also correlated on the basis of motion to overpressure ratios, and again the ratios were observed to be pressure and yield dependent, decreasing for smaller yields and higher pressures. Attenuation with depth was also found to be dependent on pressure, being more rapid at higher pressures.

Peak horizontal velocities were compared with those measured on Distant Plain Event 6 by means of cube-root scaling. Excellent agreement, with little data scatter, was noted for the two events. These velocities varied from about $20 \mathrm{ft} / \mathrm{sec}$ at the 84 -foot range to $0.3 \mathrm{ft} / \mathrm{sec}$ at the 400-foot range. There was essentially no attenuation with depth. Both vertical and horizontal displacements were calculated from
velocity measurements. Peak transient displacements in both directions were 20 feet at the 84 -foot range. The upward vertical displacement, however, attenuated more rapidly with distance so that at a range of 400 feet it was only one-half of the horizontal.

Soil stress measurements were generally of a mixed quality. Only at the 1.5 - and 30 -foot depths were the data of uniformly good quality. Data at the other locations were much lower than predicted, which degraded the data from a signal-to-noise standpoint. Peak vertical stresses at the 1.5-foot depth were, with one exception, consistent in averaging 40 percent of the applied overpressure.

APPENDIX A

MOTION-TIME HISTORIES

Figure A.I Gage 1051 AV.

1051 PRAIRIE FLAT 03
841 UV
0G/0G/70 MPC

$$
\begin{aligned}
& \begin{array}{llllllllllll}
-0.0 & 0.2 & 0.4 & 0.5 & 0.9 & 1.0 & 1.2 & 1.4 & 1.5 & 1.9 & 2.0
\end{array} \\
& \text { TIME FROM DET - SECS }
\end{aligned}
$$

Figure A. 2 Gage 1051 UV.

$$
\begin{aligned}
& 1051 \text { PRAIRIE FLAT } 50 \\
& 841 \mathrm{UH} \\
& 05 / 10 / 70 \mathrm{MPC}
\end{aligned}
$$

Figure A. 3 Gage 1051 UH.

Figure A. 4 Gage 1052 AV.

$$
\begin{aligned}
& 1052 \text { PRAIRIE FL.AT } 47 \\
& 845 \text { UV } \\
& 05 / 06 / 70
\end{aligned}
$$

$$
\begin{array}{ccccccccccc}
-0.0 & 0.2 & 0.4 & 0.5 & 0.8 & 1.0 & 1.2 & 1.4 & 1.5 & 1.8 & 2.0 \\
& & & \text { TIME FROM DET } & -\operatorname{SECS} & & &
\end{array}
$$

Figure A. 5 Gage 1052 UV.

1052 PRAIRIE FLAT 65
845 UH
06/05/70

Figure A. 6 Gage 1052 UH.

$$
\begin{array}{ccccccccccc}
-0.0 & 0.2 & 0.4 & 0.5 & 0.3 & 1.0 & 1.2 & 1.4 & 1.5 & 1.3 & 2.0 \\
& & \text { TIME FROM DET }-9 E C .5 & & &
\end{array}
$$

Figure A. 8 Gage 1053 UV.

1053 PRAIRIE FLAT 11 8410 UH 05/06/70

Figure A. 9 Gage 1053 UH.

TIME FROM DET - SECS
Figure A. 10 Gage 1054 AV.

1071 PRAIRIE FLATIOS
 1401 AV
 07/07/70 C.15 2

$$
\begin{aligned}
& \begin{array}{lllllllllll}
\hline-0.0 & 0.2 & 0.4 & 0.5 & 0.8 & 1.0 & 1.2 & 1.4 & 1.5 & 1.8 & 2.0
\end{array} \\
& \text { TIME FROM DET - SECS }
\end{aligned}
$$

Figure A. 12 Gage 1071 AV.

> 1071 PRAIRIE FLAT 21
> 1401 UV
> $05 / 10 / 70 \mathrm{xxx}$

1071 PRAIRIE FLAT 04
1401 UH
08/10/70 MPC

ACCELERATION - G-S
-200.-100. $0 . \quad 100$.

$$
\begin{array}{ccccccccccc}
-0.0 & 0.2 & 0.4 & 0.6 & 0.3 & 1.0 & 1.2 & 1.4 & 1.6 & 1.0 & 2.0 \\
& & \text { TIME FROM DET } & -\operatorname{SECS} & &
\end{array}
$$

Figure A. 15 Gage 1072 AV.

1072 PRAIRIE FLAT 44 1405 UV
 05/10/70 MPC

FHgure A. 16 Gage 1072 UV.

> 1072 PRAIRIE FLAT 26
> 1405 UH
> $08 / 06 / 70 \mathrm{MPC}$

Figure A. 17 Gage 1072 UH.

1073 PRAIRIE FLATI08
14010 AV
04/30/70

TIME FROM DET - SECS
Figure A. 18 Gage 1073 AV.

```
1073 PRAIRIE FLAT 62
14010 UV
06/06/70 MPC
```


Figure A. 19 Gage 1073 UV.

1073 PRAIRIE FLAT 08 14010 UH 06/06/70 MPC

Figure A. 21 Gage 1074 AV.

1074 PRAIRIE FLAT 23
14017 AH
05/06/70 CES

$$
\begin{aligned}
& \begin{array}{lllllllllll}
-0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 & 1.5 & 1.8 & 2.0
\end{array} \\
& \text { TIME FROM DET - SECS } \\
& \text { Figure A. } 22 \text { Gage } 1074 \mathrm{AH} \text {. }
\end{aligned}
$$

Figure A. 23 Gage 1091 AV.

```
220 l UV 205
1091 PRAIRIE FLAT 39
03/17/71MCB
```


Flgure A. 24 Gage 1091 UV.

> 1091 PRAIRIE FLAT 22 2201 UH
> $05 / 05 / 70 \mathrm{MPC}$

Figure A. 25 Gage 1091 UH.

Figure A. 26 Gage 1092 AV.

1092 PRAIRIE FLAT 15 2205 UV

$$
\begin{aligned}
& 1092 \text { PRAIRIE FLAT } 51 \\
& 2205 \mathrm{UH} \\
& 05 / 05 / 70 \mathrm{MPC}
\end{aligned}
$$

$$
\begin{array}{ccccccccccc}
-0.0 & 0.2 & 0.4 & 0.5 & 0.8 & 1.0 & 1.2 & 1.4 & 1.8 & 1.8 & 2.0 \\
& & \text { TIME FROM DET } & - \text { SECS } & & &
\end{array}
$$

Figure A. 28 Gage 1092 UH.

Figure A. 29 Gage 1093 AV.

1093 PRAIRIE FLAT 14

22010 UV
05/06/70

Figure A. 30 Gage 1093 UV.

Figure A. 31 Gage 1093 UH.

1094 PRAIRIE FLAT O9
22017 AV

Figure A. 32 Gage 1094 AV.

Figure A. 33 Gage 1094 AH.

$$
\begin{aligned}
& 3301 \text { AV } 439 \\
& / / 2 / \text { PRAIRIE FLAT } \\
& 03 / 19 / 71 \text { CES }
\end{aligned}
$$

Figure A. 34 Gage 1121 AV.

> 1121 PRAIRIE FL.AT 57
> 3301 UV
> $05 / 08 / 70 \mathrm{xXX}$

Figure A. 35 Gage 1121 UV.

1121 PRAIRIE FLAT 40
3301 UH
05/09/70

$$
\begin{array}{cccccccccc}
-0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 & 1.5 & 1.8 \\
& & & \text { TIME FROM DET } & -5 E C 5 & & &
\end{array}
$$

Figure A. 36 Gage 1121 UH.

$$
\begin{array}{ccccccccccc}
\hline-0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0
\end{array}
$$

TIME FROM DET - SECS

Figure A. 37 Gage 1122 AV.

1122 PRAIRIE FLAT 25
3305 UH
05/09/70

TIME FROM DET - SECS
Figure A. 39 Gage 1122 UH.

Figure A. 40 Gage 1123 AV.

1123 PRAIRIE FLAT O7
33010 UV
05/09/70

time from det - secsj
Figure A. 41 Gage 1123 UV.

$$
\begin{aligned}
& 1123 \text { PRAIRIE FL.AT } 43 \\
& 33010 \mathrm{UH} \\
& 05 / 06 / 70 \mathrm{MPC}
\end{aligned}
$$

Figure A. 42 Gage 1123 UH.

Figure A. 43 Gage 1124 AV.

Figure A. 44 Gage 1124 AH.

Figure A. 45 Gage 1151 AV.

```
1151 PRAIRIE FL.AT 16
4 0 0 1 ~ U V
0G/OG/70 MPC
```


Figure A. 46 Gage 1151 UV.

> 1151 PRAIRIE FL.AT 5月
> 4001 UH
> $05 / 09 / 70$

Figure A. 47 Gage 1151 UH.

1152 PRAIRIE FLAT 72
4005 AV
55/03:70 CBs

$$
\begin{array}{ccccccccccc}
-0.0 & 0.2 & 0.4 & 0 . G & 0.3 & 1.0 & 1.2 & 1.4 & 1.5 & 1.3 & 2.0 \\
& & & \text { TIME FROM DET } & \text { SECS } & & &
\end{array}
$$

Figure A. 48 Gage 1152 AV.

```
1152 PRAIRIE FLAT 28
4005 UV
05/10/70 MPC
```


TIME FROM DET - SECS
Figure A. 49 Gage 1152 UV.

> 1152 PRAIRIE FLAT 10 4005 UH $06 / 10 / 70 \mathrm{MPC}$

$$
\begin{array}{cccccccccc}
-0.0 & 0.2 & 0.4 & 0.5 & 0.8 & 1.0 & 1.2 & 1.4 & 1.5 & 1.8 \\
& & & \text { TIME FROM DET } & \text { SECS } & & \\
& &
\end{array}
$$

Figure A. 50 Gage 1152 UH.

40010 AV 328
 1153 PRAIRIE FLAT 73
 33:16/71 CES

Figure A. 51 Gage 1153 AV.

1153 PRAIRIE FLAT 46
40010 UV
05/09/70

$$
\begin{array}{ccccccccccc}
-0.0 & 0.2 & 0.4 & 0.5 & 0.8 & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 \\
& & & \text { TIME FROM DET } & - \text { SECS } & & &
\end{array}
$$

Figure A. 52 Gage 1153 UV.

1153 PRAIRIE FLAT 64 40010 UH 06/06/70 MPC

Figure A. 53 Gage 1153 UH.

1154 PRAIRIE FLAT 34
40017 GV GII
03/30/716.85

$$
\begin{aligned}
& \begin{array}{lllllllllll}
-0.0 & 0.2 & 6.4 & 0.5 & 0.3 & 1.0 & 1.2 & 1.4 & 2.5 & 1.3 & 2.0
\end{array} \\
& \text { TIME FROM DET - SECS }
\end{aligned}
$$

Figure A. 54 Gage 1154 AV.

Figure A. 55 Gage 1154 AH.

$$
\begin{array}{cccccccccc}
-0.0 & 0.2 & 0.4 & 0.5 & 0.8 & 1.0 & 1.2 & 1.4 & 1.5 & 1.8 \\
& & & \text { TIME FROM DET } & -.5 E C .5 & & &
\end{array}
$$

Figure A. 56 Gage 1181 AV.

Figure A. 57 Gage 1181 AH.

DISPLACEMENT - FEET

time from det - secs
Figure A. 58 Gage 1182 AV.

time from ofet - secs
Figure A. 59 Gage 1182 AH.

1183 PRAIRIE FLAT 42
56010 AV

$$
\begin{aligned}
& \begin{array}{rlllllllll}
-0.0 & 0.2 & 0.4 & 0.5 & 0.8 & 1.0 & 1.2 & 1.4 & 1.5 & 1.8 \\
2.0
\end{array} \\
& \text { TIME FROM DET - SECS }
\end{aligned}
$$

Figure A. 61 Gage 1183 AH.

Figure A. 62 Gage 1211 AV.
$\overline{1211}$ PRAIRIE FLAT 18 8301 AH
05/09/70 CBS

Figure A. 64 Gage 1212 AV.

Figure A. 65 Gage 1212 AH.

Figure A. 66 Gage 1213 AV.

$$
\begin{array}{cccccccccc}
0.0 .0 & 0.2 & 0.4 & 0.5 & 0.3 & 1.0 & 1.2 & 1.4 & 1.5 & 1.3 \\
& & & \text { TIME FROM DET } & \text { - SEC5 } & & &
\end{array}
$$

Figure A. 68 Gage 1231 AV.

-integral not reliable beyond this point


```
TIME FROM DET - SECS
```

Figure A. 69 Gage 1231 AH.

$$
\begin{array}{cccccccccc}
-0.0 & 0.2 & 0.4 & 0.5 & 0.8 & 1.0 & 1.2 & 1.4 & 1.5 & 1.8 \\
& & & \text { TIME FROM OET } & -5 E C S & & &
\end{array}
$$

Figure A. 70 Gage 1232 AV.

```
1232 PRFIRIE FL.FT 30 11505 GH
\(05 / 09 / 70\) C.ES
```


$$
\begin{aligned}
& \begin{array}{rlllllllll}
-0.0 & 0.2 & 0.4 & 0.6 & 0.3 & 1.0 & 1.2 & 1.4 & 2.5 & 1.3 \\
2.0
\end{array} \\
& \text { TIME FROM JET - SECG }
\end{aligned}
$$

Figure A. 72 Gage 1233 AV.

APPENDIX B

STRESS-TIME HISTORIES

1051 PRAIRIE FLATI15
841 PV
99/25/70

Figure B. 1 Gage 1051 PV.

$$
\begin{array}{lll}
1052 & \text { PRAIRIE FLAT } & 74 \\
845 \mathrm{PV} & & \\
05 / 02 / 70 & 14 &
\end{array}
$$

TIME FROM DET - SECS
Figure B. 2 Gage 1052 PV.

1052 PRAIRIE FLAT 75

1053 PRAIRIE FLAT 85

 9410 PV 09/25/704

Figure B. 5 Gage 1053 PV.

1053 PRAIRIE FLAT BE 9410 PH
09/25/70

1053 PRAIRIE FLAT 87

3410 PS
09/25/70

$$
\begin{aligned}
& \text { IOS4 PRFIRIE FI.FIT } 37 \\
& 3417 \text { PV } \\
& \text { 09/23.70 }
\end{aligned}
$$

ImPULSE - PG! X SET
0
0
0
0
0
0

TIME FROM DET - GLCS
Figure B. 9 Gage 1054 PH .

1054 PRFIRIE FIFT 99 3417 PG
09/23:70
2

Figure B. 10 Gage 1054 PS.

1056 PRAIRIE FLAT 128 8430 PH 09/28/70 2

$$
\begin{array}{cccccccccc}
70.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 & 1.5 & 1.8 \\
& & & \text { TIME FROM DET } & -5 E C S & & & \\
& &
\end{array}
$$

Figure B. 12 Gage 1056 PH.

1071 PRAIRIE FL.ATIO4
1401 PV
39/26/70

$$
\begin{array}{ll}
1072 \text { PRAIRIE FLAT121 } \\
1405 \mathrm{PV} \\
05 / 07 / 70 & 14
\end{array}
$$

Figure B. 15 Gage 1072 PH.

1072 PRAIRIE FLAT 124
1405 PT
09/25/70 4

$$
\begin{array}{rllllllllll}
-0.0 & 0.2 & 0.4 & 0 . G & 0.3 & 1.0 & 1.2 & 1.4 & 1.5 & 1.3 & 2.0 \\
& & \text { TIME: FROM DET } & -9 E C S
\end{array}
$$

Figure B. 17 Gage 1072 PT.

TIME FROM DET - SECS
Figure B. 18 Gage 1073 PH .

1074 PRFIRIE FLAT 33
14017 PV
09/25/70
4

1074 PRAIRIE FLAT 89 14017 PH
05/05/70 14

JMPULSE - PSIX SEC

TIME FROM DET - SECS
Figure B. 21 Gage 1074 PH .

1074 PRAIRIE FLAT 90
14017 PS
09/25/70

1075 PRAIRIE FLAT116 14030 PH
09/25/70

Figure B. 23 Gage 1076 PH.

1091 PRGIRIE. FL.ATI17

2201 PV
29/26/70

$$
\begin{aligned}
& 1092 \text { PRAIRIE FLATIOS } \\
& 2205 \mathrm{PV} \\
& 04 / 30 / 70
\end{aligned}
$$

$$
\begin{aligned}
& 1094 \text { PRAIRIE FL.ATI25 } \\
& 22017 \mathrm{PV} \\
& 09 / 25 / 70
\end{aligned}
$$

TIME FROM DET - SECS
Figure B. 29 Gage 1094 PH.

$$
22017 \text { PS }
$$

$$
05 / 07 / 70 \quad 14
$$

$$
\begin{array}{llllllllllll}
-0.0 & 0.2 & 0.4 & 0.5 & 0.8 & 1.0 & 1.2 & 1.4 & 1.5 & 1.3 & 2.0
\end{array}
$$

time from det - secs
Figure B. 30 Gage 1094 PS.

1096 PRAIRIE FIFT125 22030 PH
09/25/70

$\begin{array}{rrr}\text { IMPULSE } & \text { PSI } \times \text { SE: } \\ -50 . ~ & 50 . & 100 .\end{array}$ TIME FROM DE:T - SEC.j

Figure B. 31 Gage 1096 PH.

Figure B. 32 Gage 1121 PV.

```
1122 PRAIRIE FLAT101 3305 PV




TIME FROM DET - SECS
Figure B. 33 Gage 1122 PV.


\[
\begin{array}{ccccccccccc}
-0.0 & 0.2 & 0.4 & 0.5 & 0.8 & 1.0 & 1.2 & 1.4 & 1.5 & 1.8 & 2.0
\end{array}
\]
TIME FROM DET - SECS

Figure B. 34 Gage 1122 PH .

1122 PRRIRIE. FLAT103 3305 PS 05/03/70 14


\[
\begin{array}{cccccccccc}
-0.0 & 0.2 & 0.4 & 0.5 & 0.3 & 1.0 & 1.2 & 1.4 & 1.5 & 1.0 \\
& & \text { TIME FROM DET } & 2.0 \\
& & \text { SECS } & & &
\end{array}
\]

Figure B. 35 Gage 1122 PS.
\[
\begin{aligned}
& 1123 \text { PRAIRIE FLATI12 } \\
& 33010 \mathrm{PV} \\
& 04 / 30 / 70
\end{aligned}
\]


Figure B. 36 Gage 1123 PV.



1151 PRGIRIE FIFFT10\% 4001 PV
09/25:70
4


> 1152 PRAIRIE FL.AT 91 4005 PV 05.07 .70


\[
\begin{array}{lllllllllllll}
-0.0 & 0.2 & 0.4 & 0.5 & 0.3 & 1.0 & 1.2 & 1.4 & 1.5 & 1.3 & 2.0
\end{array}
\]
TIME FROM DET - SECS
Figure B. 40 Gage 1152 PV.

1152 FRAIRIE FLAT 92
4005 PH
05/07:70
14



Figure B. 41 Gage 1152 PH.
\[
\begin{aligned}
& 1152 \text { PRAIRIE FIAT } 93 \\
& 4005 \mathrm{PS} \\
& 05 / 07 / 70
\end{aligned}
\]



\[
\begin{aligned}
& \begin{array}{rlllllllll}
-0.0 & 0.2 & 0.4 & 0.6 & 0.3 & 1.0 & 1.2 & 1.0 & 2.0 & 1.0
\end{array} 2.0 \\
& \text { TIME FROM DET - SECS } \\
& \text { Figure B. } 42 \text { Gage } 1152 \text { PS. }
\end{aligned}
\]
1. J. H. Keefer, F. M. Sauer, and L. J. Cauthen, Jr.; "Technical and Administrative Information for Operation Prairie Flat"; DASIAC Special Report No. 69, 15 May 1968; DASA Information and Analysis Center, Santa Barbara, California; Unclassified.
2. W. R. Perret and V. L. Gentry; "Operation Upshot-Knothole, Project 1.4, Free-Field Measurements of Earth Stress, Strain, and Ground Motion"; WT-716, February 1955; Atomic Energy Commission, Oak Ridge, Tennessee; Unclassified.
3. A. J. Hendron, Jr.; "Correlation of Operation Snowball Ground Motions with Dynamic Properties of Test Site Soils"; Miscellaneous Paper No. 1-745, October 1965; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi; Unclassified.
4. J. L. Gatz; "Soil Survey and Support Activities, Operation Distant Plain Event 6"; Miscellaneous Paper No. 3-990, April 1968; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi; Unclassified.
5. J. G. Jackson, Jr., and J. E. Windham; "Preliminary Report, Operation Distant Plain, Event 6; Soil Property Investigation for Project 3.10, Soil Sampling and Testing"; December 1967; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi; Unclassified.
6. J. K. Ingram; "Development of a Free-Field Soil Stress Gage for Static and Dynamic Measurements"-, Technical Report No. 1-814, February 1968; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi; Unclassified.
7. D. W. Murrell; "Distant Plain Events 6 and 1A, Project 3.02A, Earth Motion and Stress Measurements"; Technical Report N-70-14, September 1970; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi; Unclassified.
8. F. M. Sauer; "Operation Prairie Flat Symposium Report"; Vol. I, Part I, DASA 2377-1, DASIAC SR-92, January 1970; DASA Information and Analysis Center, Santa Barbara, California; Unclassified.
9. F. M. Sauer; "Summary Report on Distant Plain Events 6 and 1A Ground Motion Experiments"; DASA 2587, October 1970; Stanford Research Institute, Menlo Park, California; Unclassified.

\section*{Department of Defense}

Director, Defense Nuclear Agency, Washington, D. C. 20305
ATTN: Technical Library (APTL)
STSP 1
OAOP I
OPQR 1
SPLN 16
Commander, Test Command, Defense Nuclear Agency,
Kirtland AFB, N. Mex. 87115
ATIN: Document Control 2
Technical Library I
FCTG-5 1
FCDV-1 1
Administrator, Defense Documentation Center, Cameron Station, 12
Bldg. 5, Alexandria, Va. 22314
ATTN: Document Control
Defense Intelligency Agency, Washington, D. C. 20301
ATIN: DI-7B
DIA-AP8B-I
Assistant to the Secretary of Defense (Atomic Energy),
Washington, D. C. 20301
ATTN: Class Rec. Library
Director of Defense Research and Engineering, Washington,
D. C. 20301

ATTN: Asst. Director (Strategic Weapons) I
Asst. Director (Nuclear Programs) I
Director, Weapons Systems Evaluation Group, Washington, I
D. C. 20305

ATTN: Document Control
Joint Strategic Target Planning Staff, Offutt AFB, Nebr. 68113

Commandant, Industrial College of The Armed Forces, Ft.
1 McNair, Washington, D. C. 20315
ATTN: Document Control

\section*{Department of Defense (Continued)}

Commandant, National War College, Fort Lesley J. McNair,
ATTN: Class Rec. Library
Director of Defense Research and Engineering, Washington,
D. C. 20301

ATTN: Asst. Director, Nuclear Programs
Chief, Livermore Division, Field Command DNA, Lawrence
Radiation Laboratory, P. O. Box 808, Livermore,
California 94550
ATTN: FCDV-3
Director, Defense Communications Agency, Washington,
1
D. C. 20305

ATTN: NMCSSC

\section*{Department of the Army}

Chief of Engineers, Department of the Army, Washington, D. C. 20314

ATTN: ENGMC-E . . . 1 Director of Military Construction 1

Chief of Research and Development, Department of the Army, I Washington, D. C. 30410
ATTN: Nuclear, Chemical-Biological Division
Commanding General, U. S. Army Engineer Center, Ft.
1
Belvoir, Va. 22060
ATTN: Asst. Commandant Engineer School
Commanding Officer, U. S. Army Combat Developments Com- 1 mand, Institute of Nuclear Studies, Ft. Bliss, Tex. 79916
ATIN: Document Control
U. S. Army Engineer Waterways Experiment Station Explosive

Excavation Research Office, Livermore California 94550
ATTN: Document Control
Division Engineer, U. S. Army Engineer Division, Ohio River, I P. O. Box ll59, Cincinnati, Ohio 45201

ATTN: Document Control

Department of the Army (Continued)

Division Engineer, U. S. Army Engineer Division, Huntsville, Box 1600, West Station, Huntsville, Ala. 35807 ATTN: Mr. H. L. Solomonson

District Engineer, U. S. Army Engineer District, Omaha,
215 N. 17th Street, Omaha, Nebr. 68101 ATTN: Office of Administrative Services (MRD Library)

Commanding General, Army Materiel Command, Bldg. T-7, Gravelly Point, Washington, D. C. 20315
ATTN: AMCPM-SM-EA (Mr. Powers)
Commanding General, Army Test and Evaluation Command,
Aberdeen Proving Ground, Maryland 21005
ATIN: Mr. B. Sisson
Commanding Officer, Army Ballistic Research Laboratory,
Aberdeen Proving Ground, Maryland 21005
ATTN: AMXBR-TB (J. H. Keefer)
Commanding Officer, Army Terrestrial Sciences Center,
1
P. O. Box 282, Hanover, New Hampshire 03755

ATMN: T. C. Vogel
Commanding General, White Sands Missile Range, N. Mex. 88002
1
ATTN: Nuclear Effects Laboratory (Mr. Squires)
Commandant, Army Command and General Staff College, Ft.
1
Leavenworth, Kansas 66027
ATTN: Acquisitions, Library Division
Director of Civil Defense, Department of the Army, Wash-
1 ington, D. C. 20310
ATTN: Mr. George Sisson

\section*{Department of the Navy}

Chief of Naval Operations, Navy Department, Washington,
D. C. 20350

ATTN: OP-03EG
OP-75
1
Chief of Naval Research, Navy Department, Washington, D.C. I 20390
ATTN: Code 418

\section*{Department of the Navy (Continued)}
Commander, Naval Facilities Engineering Command, Head- quarters, Washington, D. C. 20370
ATIN: Code 04 ..... 1
Code 03 ..... 1
Director, Strategic Systems Projects Office, Navy Department, ..... 1
ATTN: NSP-272
Commander, U. S. Naval Ordnance Laboratory, Silver Spring, Md. 20910
ATTN: 241 ..... 1
243 ..... 1
240 ..... 1
Superintendent, U. S. Naval Postgraduate School, ..... 1 Monterey, Calif. 93940
ATTN: Technical Library
Commanding Officer, U. S. Naval Civil Engineer Corps ..... 1 Officer School, U. S. Naval Construction Battalion Center, Port Hueneme, Calif. 93041
ATTN: Document Control
Commanding Officer, Naval Applied Science Laboratory, ..... 1 Flushing and Washington Avenues, Brooklyn, N. Y. 11251
ATTN: W. L. Derksen
Commanding Officer, Naval Civil Engineering Laboratory, ..... 10 Port Hueneme, Calif. 93041
ATTN: Code L5l (Dr. Shaw)
Commander, Naval Ship Engineering Center, Center Building, Prince Georges Center, Hyattsville, Md. 20782
ATTN: Code 6115, Y. Park ..... 1
Code 6105 ..... 1
Commanding Officer and Director, Naval Ship Research and ..... 6 Development CTR, Washington, D. C. 2007
ATTN: Code 741 (E. T. Habib)
Commander, Naval Weapons Center, China Lake, Calif. 93555
ATTN: Code 30222

\section*{Department of the Air Force}

Headquarters, USAF, Washington, D. C. 20330
ATTN: AFNINDE (Dissemination Req. Res. Br.)
AFOCE (Dir. of Civil Eng.) l
AFRDQSN (Strat. and Def. Forces, Nuc Ord. Div) 1
AFRDDF (Missile Sys. Div., Dir. of Dev.) 1
Headquarters, Air Force Systems Command, Andrews AFB,
Washington, D. C. 20331
ATIN: SCS-7 (COL W. P. Wood)
DEE
Commander, Strategic Air Command, Offutt AFB, Nebr. 68113 ATTN: OAI (Stinfo Section)

DPLBIC (LTC J. B. Tye)
AFSC STLO (SCTL-10), Air Force UPO, Los Angeles, Calif. 90045
ATTN: RTSAL
1
Air Force Weapons Laboratory, Kirtland AFB, N. Mex. 87117
ATM'N: WLIL, Technical Library
WLDC (Dr. H. Cooper) 1
WLPM
Aerospace Defense Command, Ent AFB, Colo. 80912
ATTN: ADLDC (DCS OF Plans)
1
ADLMD-W (Missile and Space Weapons Div.)
Space and Missile Systems Organization, Norton AFB, Calif. 92409
ATTN: SMQHF
SMQN (MINUTEMAN Engineering Div.) 2
SMTSM-1
SMY
SMNP
SAFSP-6
Air Force Institute of Technology, AU, Wright-Patterson
ATTN: Technical Library

\section*{Department of the Air Force (Continued)}

Air Force Special Weapons Center, AFSC, Kirtland AFB, New l
Mexico 87117
ATTN: STWU Tech. Operations
65715 T Aeromedical Research Laboratory, AFSC, Holloman AFB,
New Mexico 88330
ATTN: Capt. Klopfenstein
Rome Air Development Center, AFSC, Griffis AFB, N. Y. 134401
ATTN: Documents Library EMLAL-1
Rome Air Development Center, AFSC, Griffis AFB, N. Y. 13440
2 ATTN: EMEAM, R. Mair

Atomic Energy Commission
Sandia Corporation, P. O. Box 5800, Kirtland AFB, N. Mex. 87115
ATTN: Document Control for: Dr. M. L. Merritt (Org. No.9150) 2
Library
Atomic Energy Commission, Washington, D. C. 20545 I
ATTN: Division of Peaceful Nuclear Explosions
University of California, Lawrence Radiation Laboratory,
Technical Information Div., P. O. Box 808, Livermore,
California 94550
ATMN: Document Control for Technical Library
Los Alamos Scientific Laboratory, P. O. Box 1663, Los Alamos, N. Mex. 87544
ATTN: Document Control for LASL Library, Serials Librarian

\section*{Other Government Agencies}

Bureau of Mines, Bldg. 20, Denver Federal Center, Denver, Colo. 80225
ATMN: Dr. L. A. Obert, Science Advisor, Mining Research
U. S. Geological Survey, Branch of Astrogeology (Dr. Roddy) I 601 East Cedar Street, Flagstaff, Arizona 86001

National Aeronautics and Space Admin., Langley Research
ATTN: Mr. H. Pierce

\section*{Civilian Contractors}

Aerospace Corporation, P. 0. Box 95085, Los Angeles, Calif. 2
90045
ATTN: Technical Information Services
Aerospace Corporation, 1lll East Mill St., P. O. Box 1308, San Bernardino, Calif. 92408
ATTN: Dr. M. B. Watson 1
Mr. W. Pfefferle I
Mr. Craig Smith l
Agbabian-Jacobsen Associates, 8939 South Sepulveda Blvd., 1
Los Angeles, Calif. 90045
ATTN: Document Control
Analytic Services, Inc., 5613 Leesburg Pike, Falls Church, 1
Va. 22041
ATTN: George Hesselbacher
Applied Theory, Inc., 1728 Olympic Blvd., Santa Monica, I Calif. 90404
ATTN: Security Officer
Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201
ATTN: Mr. R. W. Klingesmith
Edgerton, Germeshausen \& Grier, Inc., P. O. Box 227, I Bedford, Mass. 01730
ATTN: Mr. D. F. Hansen, Document Control Center
Engineering Physics Company, l2721 Twinbrook Parkway, I Rockville, Md. 28052
ATTN: Dr. Vincent J. Cushing
Environmental Research Corporation, 813 N. Royal Street, Alexandria, Va. 22314
ATTN: Mr. O. A. Israelson
General American Research Division, General American Transportation Corp., 7449 N. Natchez Ave., Niles, Ill. 60648 ATTN: Dr. G. L. Neidhardt

General Electric Company, TEMPO, 816 State Street, Santa
ATTN: Mr. W. Chan, DASA Information and Analysis Center

\section*{Civilian Contractors (Continued)}

General Motors Corporation, Manufacturing Development, Technical Center, Warren, Mich. 48090
ATTN: Mr. W. Isbell

General Research Corporation, P. O. Box 3587, Santa 1 Barbara, Calif. 93105
ATTN: Dr. Benjamin Alexander
General Research Corporation, 1501 Wilson Blvd., Arlington, 1 Va. 22209
ATTN: Dr. W. Layson
Gulf General Atomic, Inc., P. O. Box llll, San Diego, Calif. I 92112
ATTN: H. Dratz, Chief, Tech. Information Services
IIT Research Institute, 10 West 35 th Street, Chicago, Ill. 60616
ATTN: Technical Library 1
Dr. E. Sevin I
Institute for Defense Analyses, 400 Army-Navy Drive,
Arlington, Va. 22202
ATTN: Technical Information Office
Kaman Sciences Corp., Kaman Nuclear Division, Garden of the 1 Gods Road, Colorado Springs, Colo. 80907
ATTN: Mr. Paul Ellis
University of Illinois, Department of Civil Engineering,
ll14 Civil Engineering Bldg., Urbana, Ill. 61801
ATTN: Dr. Nathan M. Newmark
Prof. D. V. Deere 1
Prof. A. J. Hendron, Jr. 1
Physics International Company, 2700 Merced street, San Leandro, Calif. 94577
ATTN: Dr. Charles Godfrey I
Mr. F. M. Sauer 1

Civilian Contractors (Continued)

The Rand Corporation, 1700 Main Street, Santa Monica, Calif. 90406
ATTN: Library 1
Dr. A. L. Latter l
Mr. W. B. Wright 1
Dr. Olen A. Nance l
Dr. C. C. Mow l
Research Analysis Corporation, McLean, Va. 22101 I
ATTN: Document Control Supervisor
Systems, Science and Software, Inc., P. O. Box 1620, I
La Jolla, Calif. 92037
ATTN: Document Control
URS Corporation, 1811 Trousdale Drive, Burlingame, Calif. 94010
ATTTN: Mr. Harold Mason I
Mr. P. J. Morris I
Paul Weidlinger, Consulting Engineer, 110 E. 59th St.,
New York, N. Y. 10022
1
ATYN: Dr. M. Baron
Defence Research Establishment, Suffield, Ralston,
Ralston, Alberta, Canada
ATTN: Mr. J. S. Watson I
Mr. R. Wyld 1
University of Denver, Denver Research Institute, Uni- 1 versity Park, Denver, Colo. 80210
ATTN: Mr. John Wisotski
Eric H. Wang Civil Engineering Research Facility, P. O. Box 1 188, University Station, University of N. Mex. 87106

Mason and Hanger, Silas Mason Company, Inc., AEC Pantex \(\quad\) I
Plant, Amarillo, Texas 79105
ATTN: Document Control for I. Akst
Bell Telephone Labs., Inc., Whippany Road, Whippany, New Jersey 07981
ATTN: W. Butler 1
G. Nevrincean I I
E. F. Witt 1

Civilian Contractors (Continued)

The Boeing Company, P. O. Box 3996, Seattle, Wash. 981243 ATTN: Glen Jones (Mail Stop BC-78)

Lovelace Foundation for Medical Education and Research,
5200 Gibson Blvd., S.E., Albuquerque, N. Mex. 87108
ATTN: Dr. Clayton White
Philco-Ford Corporation, Aeronutronics Division, 1001 E.
Ball Road, Anaheim, California 92805
ATTN: A. Green, S. C. Bldg.
Shock Hydrodynamics, Inc., 15010 Ventura Blvd., Sherman Oaks, Calif. 91403
ATTN: Mr. Kreyenhagen
Stanford Research Institute, 333 Ravenswood Ave., Menlo Park, Calif. 94025
ATTN: Dr. D. Grine
GO 37 External Reports
TRW Systems Group, San Bernardino Operations, P. O. Box
1310,600 E. Mill St., San Bernardino, Calif. 92402
ATTN: F. Pieper
TRW Systems Group, One Space Park, Redondo Beach, Calif. 90278
ATTN: J. Carpenter
Lockheed Missiles and Space Co., A Division of Lockheed
1 Aircraft Corp., P.O. Box 504, Sunnyvale, Calif. 94088
ATTN: Dr. R. Mayerutt, Palo Alto
Dr. Harold Brode, R\&D Associates, P. O. Box 3580, 1 Santa Monica, Calif. 90403


Security Clasaification
```


[^0]: ${ }^{2}$ Wegstive peaks not reported for horizontal velocity and accelepation.
 b No roliable negative peok.
 "Questionable arrival time due to slow initial rise.
 Displacenent plot cut off before peak reahed due to gage or cable damage
 e Mo peak deta.
 T wo rellisble positive peak.
 ${ }_{5}$ no relisble integrals.

