
UN-UL-V Property of the United States Government

MISCELLANEOUS PAPER N-72-10

GROUND MOTIONS FROM HIGH-EXPLOSIVE EXPERIMENTS

by

L. F. Ingram

TECHNICAL INFORMATION CENTER US ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBUIR, MISSISSEPPI

December 1972

Conducted by U. S. Army Engineer Waterways Experiment Station Weapons Effects Laboratory Vicksburg, Mississippi

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

MISCELLANEOUS PAPER N-72-10

GROUND MOTIONS FROM HIGH-EXPLOSIVE EXPERIMENTS

Ьу

L. F. Ingram

December 1972

Conducted by U. S. Army Engineer Waterways Experiment Station Weapons Effects Laboratory Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

FOREWORD

This paper was prepared for presentation at the Colloquium to Review the State-of-the-Art in Predicting Ground Motions in Rock Media held at Defense Nuclear Agency 1-3 November 1972. Costs attendant to this presentation were borne by Defense Nuclear Agency funds allocated to the Waterways Experiment Station (WES) for operations MIDDLE GUST and MIXED COMPANY.

The data processing assistance provided by D. W. Murrell, Charles Joachim, Truman Brogan, J. L. Drake, and H. D. Carleton is acknowledged. The cooperation of CPT Steve Melzer and Mr. Jimmie Bratton of the Air Force Weapons Laboratory in connection with the MIDDLE GUST data is appreciated.

The presentation was prepared in the Weapons Effects Laboratory under the general direction of W. J. Flathau, Chief. The Waterways Experiment Station Director was COL Ernest D. Peixotto; Mr. F. R. Brown was Technical Director.

ABSTRACT

A review of ground shock data from recent large, near-surface highexplosive tests is made. Emphasis is on close-in motions in rock.

Wave forms are shown for selected shots and locations. Comparisons are made among wave forms for similar test conditions in different geologic materials including soil, shale, granite, and sandstone.

Variations in peak motion amplitudes at various depths and ranges are discussed for the different geologic materials.

CONTENTS

																							Page
FOREWO	RD	•••	• •	•	•••	٠	•	•	••	•	•	• •	. •	•	•	•	•	•	•	•	•	•	3
ABSTRA	CT.		• •	•	•••	•	•	•	•••	•	•	• •	•	•	•	•	•	•	•	•	•	•	4
INTROD	UCTION			•	•••	•	•	•	••	•	•	• •	•	•	•	•	•	•	•	•	•	•	7
	ose .																						7
	ground																						7
	oach.																						7 7
Scop	e	• • •	• •	•	• •	•	•	•	• •	•	•	• •	•	•	•	•	•	•	٠	٠	•	•	/
DATA P	RESENTA	TION	• •	•	•••	•	•	•	• •	•	•	• •	•	•	•	٠	•	•	•	•	•	•	8
	lew of T																						8
	ription																						8
Disp	lay and	Disc	ussi	on	of I	Wav	7e	Fo	rms	•	•	• •	•	٠	٠	•	•	•	•	•	•	•	11
CONCLU	SIONS		• •	•	•••	•	•	•	• •	•	•	• •	•	•	•	•	•	•	•	•	•	•	35
REFERE	ENCES .	• • •		•	• •	•	•	•		•	•	• •	•	•	•	•	•	•	•	•	•	•	36
TABLES	5																						
1.	Large S	nheri	cal	тит	Те	ete		n	Rocl	εŭ	J-1 +-	h	lro	11171	4 N	lat	-10	'n					
± •	Measure	-																					9
2.	Middle (10
3.	Middle (Gust	Dry	Sit	e Ma	ate	eri	a1	Pro	- pe	ert	y I	Pro	fi	le	•	•	•	•	•	•	•	12
FIGURE	S																						
1.	Mineral	Rock	ver	tic	al ı	mot	tio	ns	at	80)-f	tı	ran	ge		eas	st	1:	Lne	е.		•	15
2.	Mineral																						
		• • •																	•	•	•	•	16
3.	Mineral													-									
,																	•	٠	٠	٠	٠	•	17
4.	Mineral north 1:														_	-							18
5.	Mineral		• •		• •																		19
5. 6.	Mineral														-								20
7.	Mineral																						21
8.	Mineral																						22
9.	Mineral																						23

<u>Page</u>

10.	Mineral Rock horizontal displacements at 36-ft depth	24
11.	Middle Gust III vertical velocities at 80-ft range	25
12.	Middle Gust III vertical displacements at 80 ft range	26
13.	Middle Gust III horizontal velocities at 80-ft range	27
14.	Middle Gust III horizontal displacements at 80-ft range	28
15.	Mixed Company II vertical velocities at 1.5-ft depth	29
16.	Mixed Company II vertical displacements at 1.5-ft depth	30
17.	Mixed Company II horizontal velocities at 1.5-ft depth	31
18.	Mixed Company II horizontal displacements at 1.5-ft	
	depth	32
19.	A comparison of peak downward particle velocities from	
	100-ton detonations on soil and rock	33
20.	A comparison of peak outward particle velocities from	
	100-ton detonations on soil and rock	34

INTRODUCTION

Purpose

The purpose of this presentation is to acquaint the colloquium participants with recent high explosive tests which provide a source of ground shock information for near-surface bursts on rock and to describe the ground motions in regions of interest.

Background

Over the past few years the Defense Nuclear Agency has conducted several high explosive tests involving multiton, TNT, spherical charges detonated near the surface of the earth. The objective of these tests have largely been (1) to improve ground shock predictions for nuclear explosions by both empiricism and analytical methods, (2) to obtain a better understanding of the blast, shock and cratering phenomenology in geologic settings of military significance, and (3) to determine the response of various structures and targets to the explosion environment.

Approach

Pertinent test information is presented in tabular form; applicable references are cited.

Particle velocity and transient displacement wave forms are presented for different ranges, depths, and geologies. Comments are made on effects of test parameters on wave forms and amplitudes.

Scope

The scope of this presentation is limited to the following:

- a. Tests conducted since 1964 with TNT spheres.
- b. Charge weights of 20 tons or more.
- c. Heights of burst ranging from zero (1/2 in, 1/2 out) to two charge radii (above the surface).

It should be noted that some excellent ground motion (and cratering) information was obtained from the AFWL 1000-1b MIDDLE GUST series.

DATA PRESENTATION

Review of Tests

Table 1 lists some pertinent information for the spherical TNT shots considered within the scope of this presentation. Available references are indicated as well as information on apparent crater volumes; the volumes for MIDDLE GUST and MIXED COMPANY should be considered preliminary as results of stereophotography are not available.

Description of Test Sites

<u>Flat Top I</u> was executed in a fairly competent limestone outcrop on the south end of Banded Mountain in Area 9 of NTS. Compression wave velocities were 13,000 ft/sec horizontally and 19,000 ft/sec vertically.¹

<u>Distant Plain 6</u> was conducted at DRES Watching Hill Range. A thorough, comprehensive description of this site and its dynamic properties may be found in Reference 5, from which the following seismic velocities were extracted:

Depth Interval ft	Seismic Velocity ft/sec
0-21	1,150
21-42	4,850
42-130	5,500
130-215	6,000
215	7,500

The <u>Mine Shaft site</u> near Cedar City, Utah consisted of a granite rock called "tonalite." Its properties were relatively uniform with depth; it was a relatively weak granite with in situ seismic velocities ranging from 8,000 to 12,000 fps. Laboratory tests on cores gave somewhat higher values

The <u>MIDDLE GUST wet site</u> was near Crowley, Colorado. Some of the properties are shown in Table 2.

Table 1

Large Spherical TNT Tests on Rock With Ground Motion Measurements

Shot or Event	Date of Test	Yield (tons)	HoB (Charge Radii)	Test Site	Site Material	Apparent Crater Volume (ft ³)	Spread of Depth Instrumented (ft)	Spread of Distances Instrumented (ft)	Data Return
Flat Top I (1)	22 Jun 64	20	0	NTS	Limestone	10,000	1.5-100	0-150	Poor
Distant (2) Plain 6 ¹	Jul 67	100	1.0	DRES	Alluvium	35,800	1.5-10	49-680	Good
Mine Under (3)	22 Oct 68	100	2.0	Cedar City	Granite	Nil	1.5-18	39-400	Fair
Mine Ore (3)	12 Nov 68	100	0.9	Cedar City	Granite	5,940	1.5-18	28-434	Good
Mineral (4) Rock	8 Oct 69	100	0.9	Cedar City	Granite	8,100	2.0-36	40-500	Exc
Middle Gust I	16 Sep 71	20	0	Crowley	Soil/Wet Shale	70,000	1.5-60	0.280	Fair
Middle Gust II	14 Dec 71	100	2.0	Crowley	Soil/Wet Shale	50,700	1.5-60	0-500	Fair
Middle Gust III	13 Mar 72	100	1.0	Crowley	Soil/Wet Shale	95,000	1.5-80	0-500	Exc
Middle Gust IV	22 Jun 72	100	1.0	Ordway	Soil/Dry Shale	47,000	1.5-80	0-400	Exc
Middle Gust V	10 Aug 72	20	0	Ordway	Soil/Dry Shale	21,300	1.5-80	0-400	Ехс
Mixed Company I	1 Jun 72	20	0	Glade Park	Soil/Sandstone	10,100	2.0-20	25-175	Good
Mixed Company II	13 Jul 72	20	1.0	Glade Park	Soil/Sandstone	2,250	1.5-5	54-294	Exc
Mixed Company III	13 Nov 72	500	1.0	Glade Park	Soil/Sandstone	69,000	1.5-88	0-1431 ²	Exc

(Numbers in parenthesis are references shown at end of text.)

Although not fired on rock, DP-6 is included for comparison with several other 100-ton tangent sphere events.

² The limit of "strong motion" instrumentation is 1,431 ft; seismometers extend to approximately one mile beyond this line.

Tabl	.e 2
------	------

Layer No.	Depth	Wet Unit Weight pcf_	Initial Constrained Modulus <u>ksi</u>	Water Content %	Saturation	Compressional Velocity ft/sec	Material Description
1	0- 4	130.5	10	16.5	85.3	1000 to 1700	Tan, silty, sandy clay
2	4- 9	135.2	12	17.6	96.9	2600 to 5300	Sandy clay/clayey sand
3	9–15	129.3	30	21.3	94.8	6300	Tan to gray soft weathered clay shale
4	15-23	143.5	75	11.3	95.3	8200 to 90,000	Dark gray fractured clay shale
5	23-45	148.5	300	8.0	94.3	8200 to 10,000	Gray to black clay shale
6	45–125	149.7	525	7.7	94.8	8200 to 10,000	Gray to black clay shale

.

MIDDLE GUST Wet Site Material Property Profile

,

.

The <u>MIDDLE GUST dry site</u> is near Ordway, Colorado; properties are shown in Table 3.

The <u>MIXED COMPANY site</u>, near Grand Junction, Colorado, is 7 miles from the Glade Park community. A clayey silt of variable depth (from 0-6 ft) overlies massive sandstone. The seismic velocity in the overburden is 2,000 to 3,000 fps, the velocity in the rock ranges from 6,000 to 8,000 fps. A detailed property investigation is being performed by the WES Soil Dynamics Branch.

Display and Discussion of Wave Forms

Mineral Rock motions

Figures 1 through 10 show particle velocity and displacement time histories measured from the Mineral Rock Event of the Mine Shaft Series. The charge was 100 tons of TNT essentially tangent to the granite surface (buried 0.1 R).

The vertical motion waveforms are characteristic of vertical motions observed in relatively uniform earth materials. Initial downward motions are produced by the airblast wave; these are followed by relatively large upward motions caused by rebound and cratering action. Net upward motions occurred at these ranges. A comparison of the vertical motions at the 80- and 110-ft ranges reveals that the upward motions caused by cratering action predominate at 80 ft and that the upward and downward peaks (both velocity and displacement) became more nearly equal further out.

It is interesting to note that the basic wave shapes are the same at the three depths shown (2, 18 and 36 ft).

Figures 2 and 4 show corresponding horizontal motions at the 80- and 110-ft ranges, respectively. It is apparent that the horizontal motions have nearly identical shapes and that there is very little attenuation of horizontal motion magnitudes with depth at these ranges.

Figure 5 shows horizontal velocity wave forms for Mineral Rock at seven different ranges from 40-110 ft. This array spans the 1500-600 psi overpressure region. The small perturbation at the beginning of each trace is caused by arrival of the airblast-induced shock. An interesting

Layer No.	Depth	Wet Unit Weight pcf	Initial Constrained Modulus ksi	Water Content %	Saturation	Compressional Velocity ft/sec	Material Description
1	0-2	118	15	14	55.8	Not yet	Light clay shale
2	2-4.5	126	25	13	63.8	available	Weathered gray to brown clay shale
3	4.5-7.5	134	35	13	77.5		Weathered, fractured gray clay shale
4	7.5-11.5	138	50	13	85.2		Weathered, fractured gray clay shale
5	11.5-20	138	70	14.5	91.0		Weathered, fractured gray clay shale
6	20-23	133	90	14.5	81.0		Weathered, fractured gray clay shale
7	28-45	147	150	10	95.6		Unweathered, competent gray clay shale
8	45-70	148.5	225	9.3	95.9		Gray clay shale
9	70–100	149	450	9.0	95.6		Dark gray clay shale
10	100-160	150.5	750	9.0	95.1		Dark gray clay shale

.

				Table 3		
MIDDLE	GUST	Dry	Site	Material	Property	Profile

.

12

÷ .

feature of these records is the simple wave shape. It may be noted that the rock response becomes more nearly elastic at greater ranges; this is demonstrated by the increasingly negative portion of the wave forms at larger ranges.

Figure 6 displays the horizontal displacements derived by integration of the velocity records of Figure 5. The decrease in amplitude with increasing range is evident as well as the tendency toward elasticity also observed on the velocity records.

Figure 7 shows Mineral Rock horizontal velocities at the 18-ft depth for the ranges 40-110 ft; Figure 8 provides corresponding displacements. Similar data for the 36-ft depth is provided on Figures 9 and 10.

Middle Gust III motions

Figures 11 through 14 show vertical and horizontal velocity and displacement wave forms for the 80-ft range (approximately 900 psi) from Middle Gust III. Excellent measurements of both components were made at seven depths ranging from 1.5 to 80 ft, thus, this data set is one of the best and most complete motion documentations of record for large explosions in a layered geology.

Middle Gust III was a 100-ton tangent sphere detonated at the AFWL wet site near Crowley, Colorado. The geology consisted roughly of wet soil and weathered shale over more competent shale at a depth of about 20 ft. Table 2 shows properties of some of the layers.

Large upward and outward motions occurred near the surface (to a depth of about 11 ft) as a result of the cratering action. Rather dramatic changes toward shorter pulses (higher frequencies) are seen with increasing depth; this is especially evident on the horizontal velocity records, Figure 13. It is also interesting to note the change in direction of initial vertical motion, i.e., above 20 ft the initial motions are upward while below 20 ft they are down.

The most interesting feature of this data, however, is the graphic evidence on Figure 14 of a significant horizontal shear which occurred at a depth between 12 and 20 ft. Within this zone the soil properties change markedly.

Mixed Comapny II motion

Figures 15 through 18 show vertical and horizontal velocity and displacement time histories (measured at the 1.5-ft depth) for this 20-ton tangent sphere on a soil over sandstone geology scaled to the planned 500-ton event of this series. Although the wave forms are similar to those observed at the Mine Shaft and Middle Gust sites, it was observed that the near-surface transient vertical motions were predominantly down compared to the prevailing upward motions at the other sites. (The preliminary data shown on Figures 15 through 18 is subject to additional editing and adjustment.)

Figures 19 and 20 show scaled Mixed Comapny II peak downward and outward velocities, respectively, compared to the data trends of Distant Plain 6 and Mine Shaft. Although no 5-ft depth wave forms are shown in this presentation, the peaks observed are also plotted.

From Figure 19 we may see that the 1.5-ft downward velocities are comparable to those observed at DRES; the Mixed Company 5-ft velocities exceed those measured near the granite surface.

A significant observation of the horizontal motions at the Mixed Company site is evident in Figure 20 where the scaled peak values at 5-ft depth exceed both the Mine Shaft and Canadian data. Although horizontal particle velocities observed on Mixed Comapny II at 5-ft depth were considerably higher than those at 1.5-ft depth, a cursory look showed no gross differences in displacements at these depths.

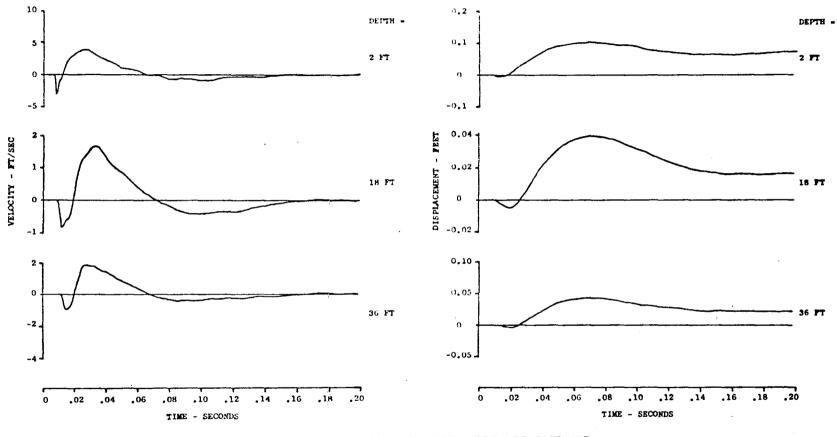
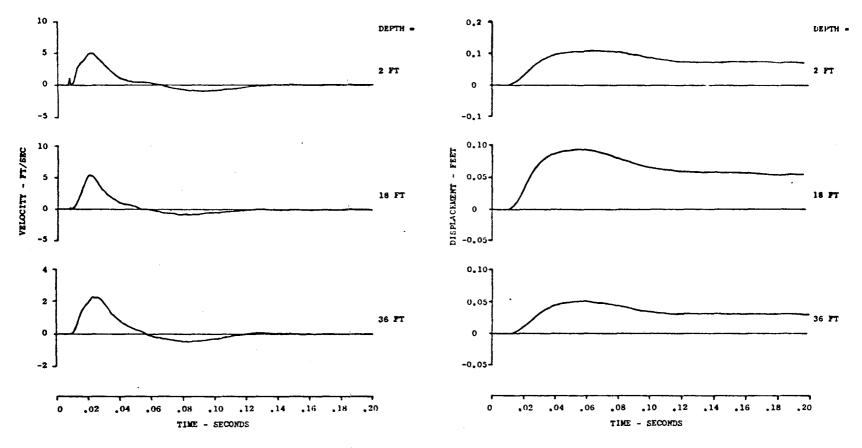



Figure 1

.

.

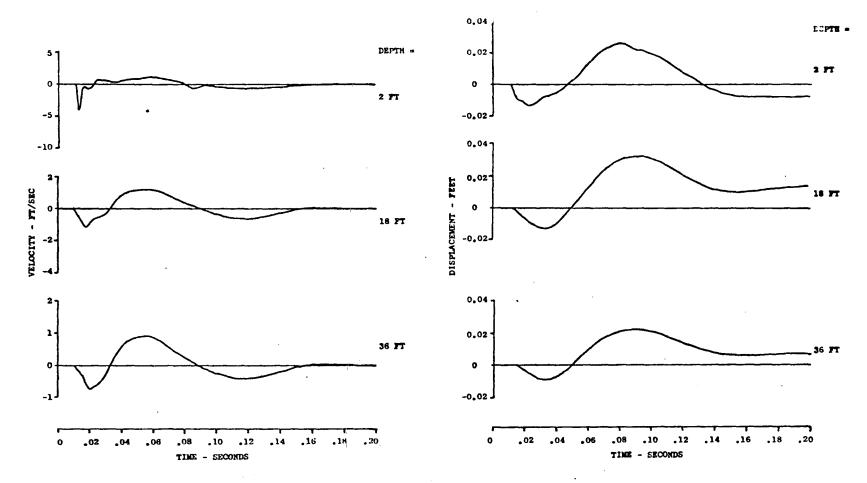
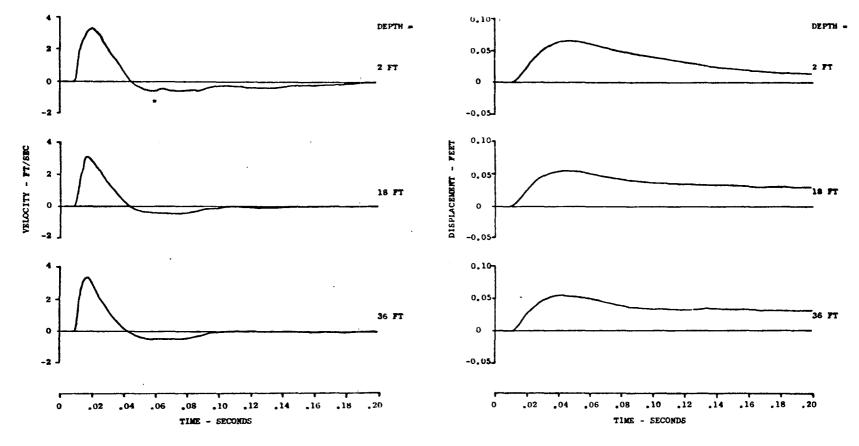

MINERAL ROCK HORIZONTAL MOTIONS AT 80-FT RANGE, EAST LINE

Figure 2

16

÷

.


MINERAL ROCK VERTICAL MOTIONS AT 110-FT RANGE, NORTH LINE

.

Figure 3

17

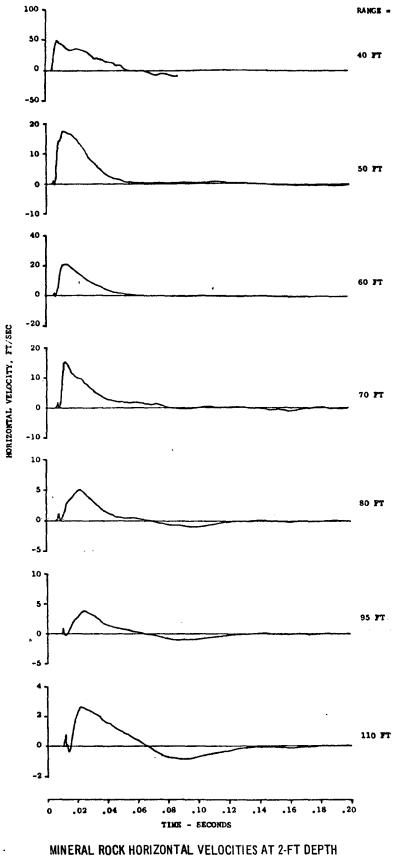
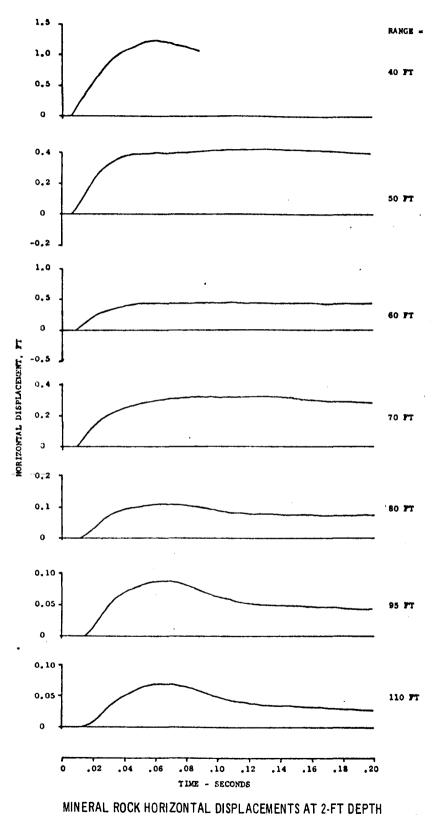
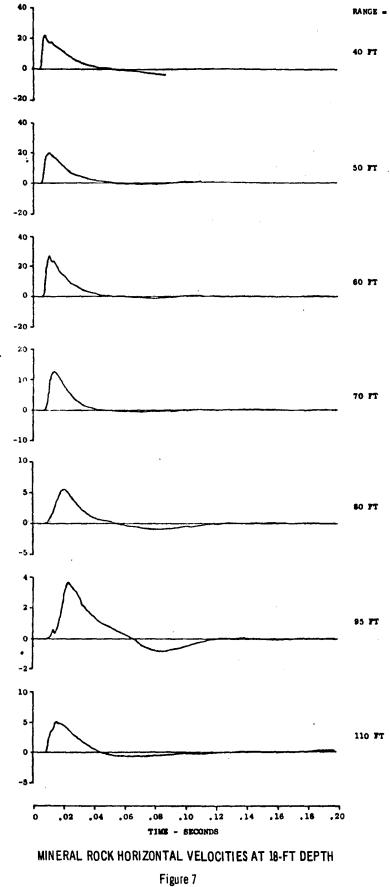
÷

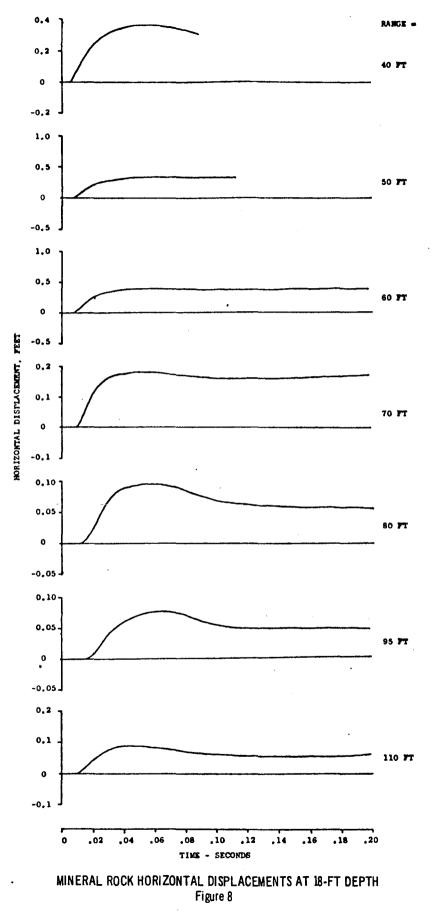
MINERAL ROCK HORIZONTAL MOTIONS AT 110-FT RANGE, NORTH LINE

Figure 4

81

.


Figure 5

HORIZONTAL VELOCITY, FT/SEC

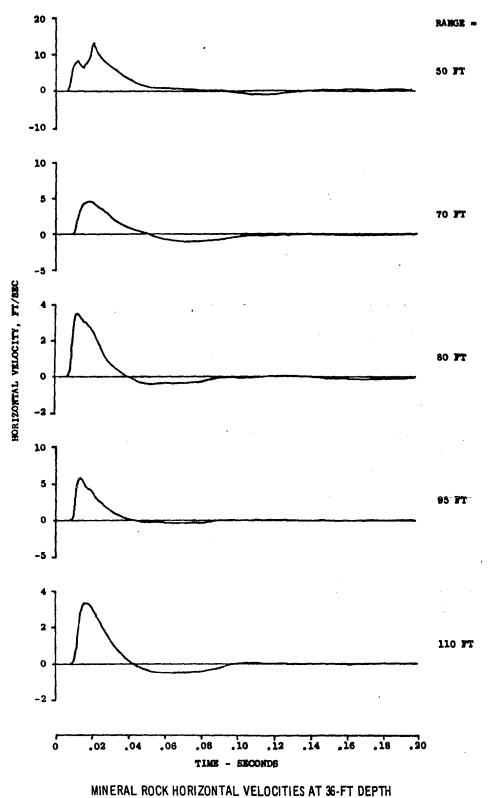
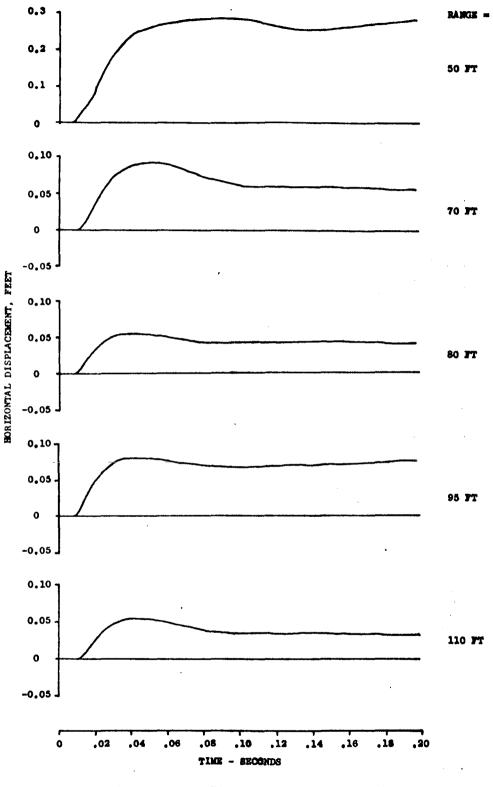
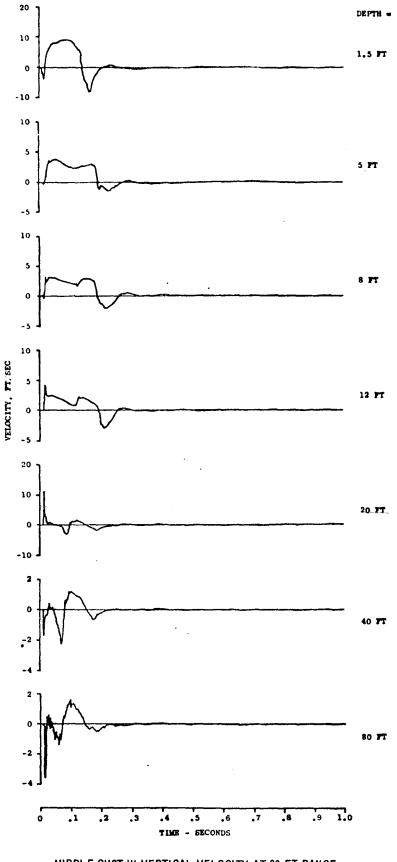
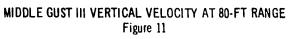
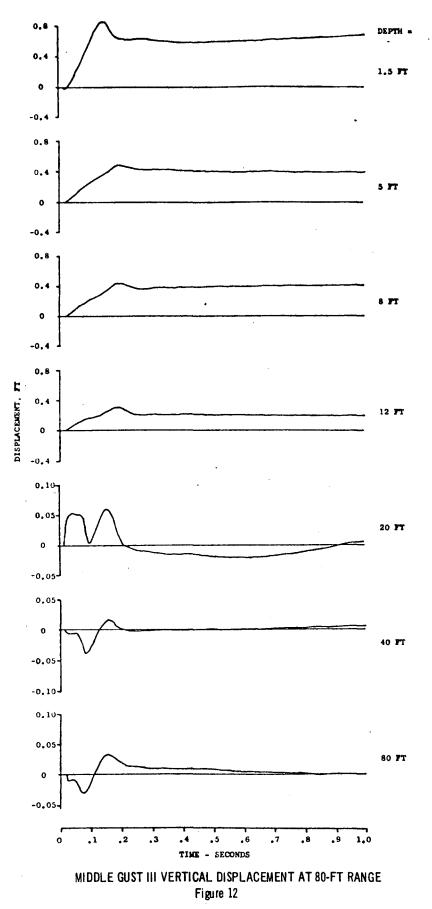
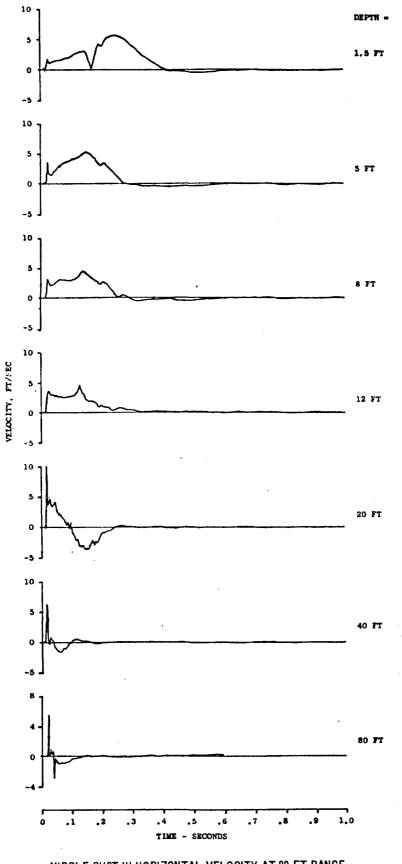
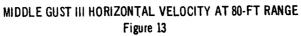
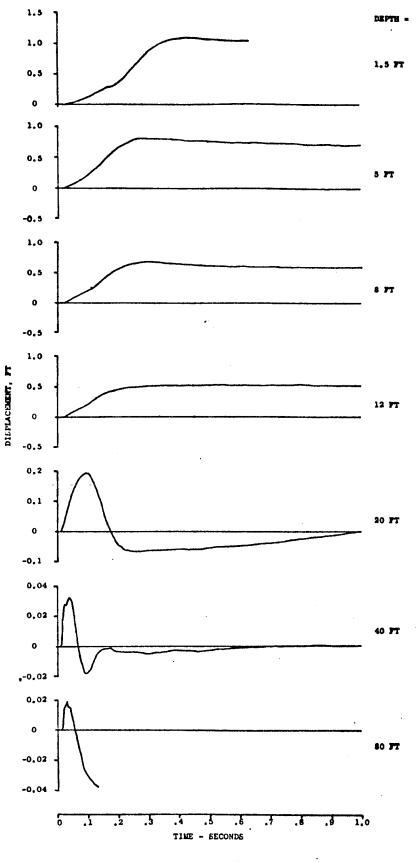


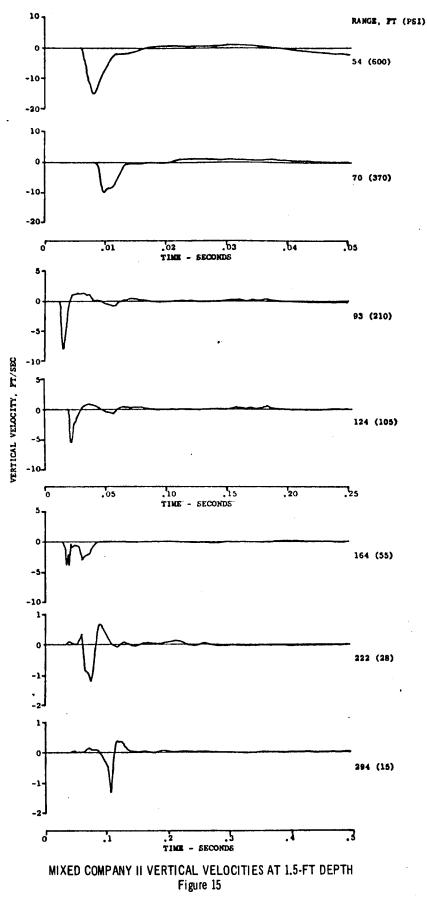
Figure 9


Figure 10







.

MIDDLE GUST III HORIZONTAL DISPLACEMENT AT 80-FT RANGE Figure 14

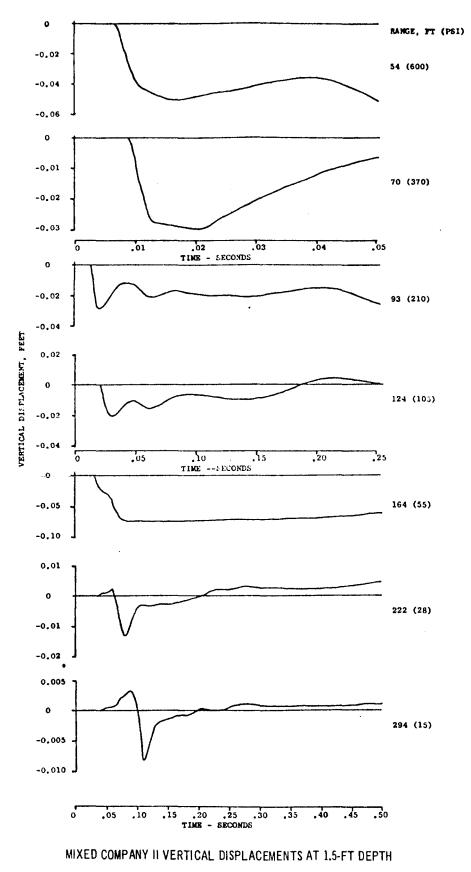


Figure 16

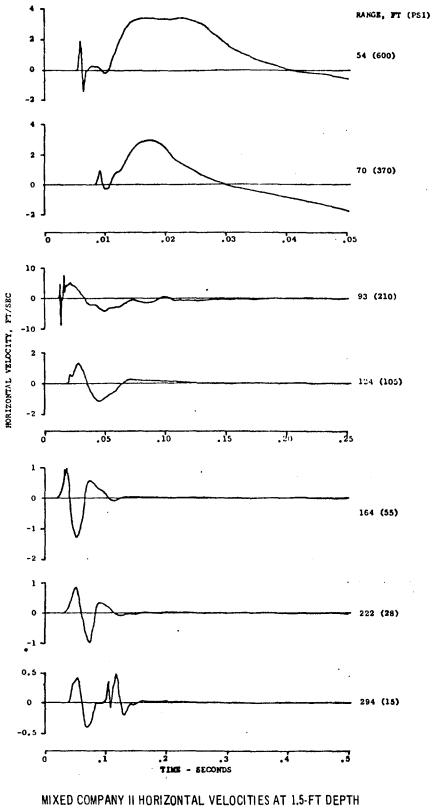
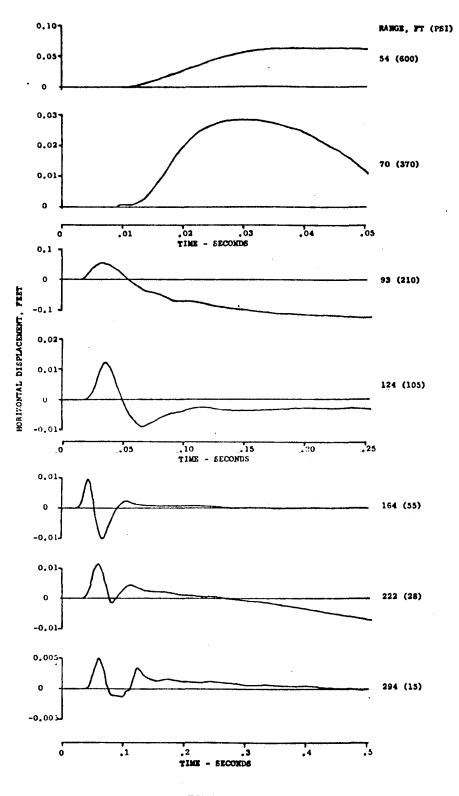
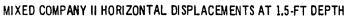
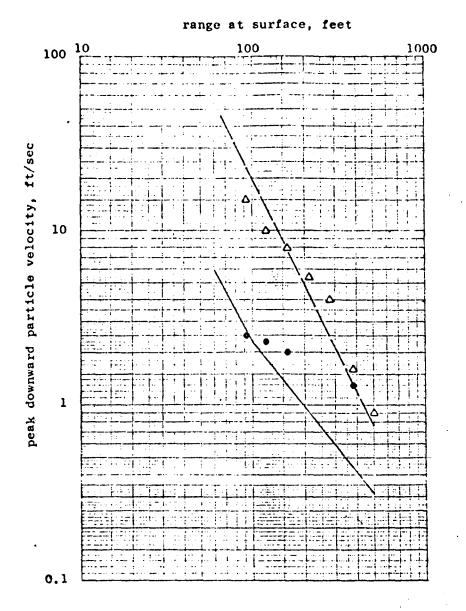
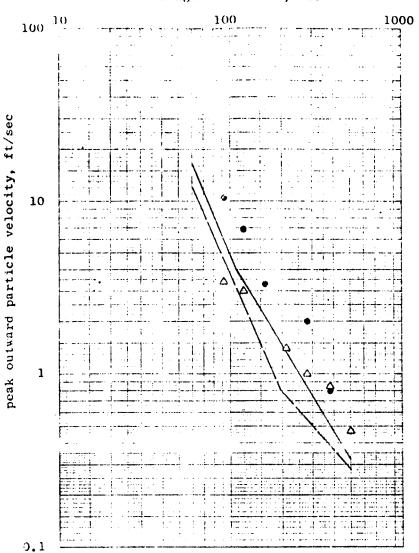



Figure 17


Figure 18

KEY TO DATA SOURCES:

Distant Plain 6 data trend for $1\frac{1}{2}$ -ft depth in alluvium Mine Shaft data trend for $1\frac{2}{3}$ - and 2-ft depths in granite Mixed Company II gages at $1\frac{1}{2}$ -ft depth in alluvium (scaled to 100 tons) Mixed Company II gages at 5-ft depth in sandstone (scaled to 100 tons)

Figure 19. A comparison of peak downward particle velocities from 100-ton detonations on soil and rock.

range at surface, feet

KEY TO DATA SOURCES:

Distant Plain 6 data trend for l¹/₂-ft depth in alluvium
Mine Shaft data trend for l²/₃- and 2-ft depths in granite
Mixed Company II gages at l¹/₂-ft depth in alluvium (scaled to 100 tons)
Mixed Company II gages at 5-ft depth in sandstone (scaled to 100 tons)

Figure 20. A comparison of peak outward particle velocities from 100-ton detonations on soil and rock.

CONCLUSIONS

Within the past few years a large quantity of high quality experimental ground motion data has been obtained at sites with widely varying geologies and material properties. Sites are representative of tactically significant regions. This information may be used as a basis for checking computer generated predictions as well as providing bases for improved empirical predictions.

A thorough analysis of this high explosive data will enhance our understanding of ground shock phenomenology and improve our ability to predict ground shock generated by nuclear explosions.

It is recommended that data analysts be very careful in correlating peak motions. This is especially so in layered geologies where wave shapes may change rapidly with reflections, refractions, interferences, etc.

REFERENCES

- Sauer, F. M., Vincent, Coye T., and others; "Earth Motion and Pressure Histories, Ferris Wheel Series, Flat Top Event;" POR-3002, Apr 1967; Stanford Research Institute, Menlo Park, California; Unclassified.
- Murrell, D. W.; "Earth Motion and Stress Measurements, Distant Plain Events 6 and 1A;" TR N-70-14, Sep 1970; U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi; Unclassified.
- Joachim, C. E.,; "Ground Motion and Stress Measurements, Mine Shaft Series, Events Mine Under and Mine Ore;" TR N-72-1, Jan 1972; U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi; Unclassified.
- 4. Murrell, D. W., and Carleton, H. D.; "Ground Shock From Underground and Surface Explosions in Granite, Mine Shaft Series, Events Mineral Lode aand iMineral Rock;" MS-2159-60 (in publication); U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi; Unclassified.
- Jackson, J. G., Jr.; "Physical Property and Dynamic Compressibility Analysis of the Watching Hill Blast Range;" TR S-72-4, Apr 1972;
 U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi; Unclassified.

Address	No. of <u>Copies</u>
HQDA (DAEN-MER-D) Washington, D. C. 20314	1
HQDA (DAEN-MCE) Washington, D. C. 20314	l
Division Engineer U. S. Army Engineer Division, Huntsville P. O. Box 1600, West Station Huntsville, Ala. 35807	1
Division Engineer U. S. Army Engineer Division, Missouri River ATTN: Office of Administrative Services (Library) P. O. Box 103, Downtown Station Omaha, Nebr. 68101	3
Commander/Director U. S. Army Engineer Cold Regions Research and Engineering Laboratory ATTN: Dr. D. Freitag P. O. Box 282 Hanover, N. H. 03755	1
Director Explosive Excavation Research Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 808 Livermore, Calif. 94550	1
Director Explosive Excavation Research Laboratory U. S. Army Engineer Waterways Experiment Station ATTN: Technical Information Division P. O. Box 808 Livermore, Calif. 94550	1
Director U. S. Army Construction Engineering Research Laboratory ATTN: Library P. O. Box 4005 Champaign, Ill. 61820	1
Director U. S. Army Ballistic Research Laboratories Aberdeen Proving Ground, Md. 21005	ц

DISTRIBUTION LIST

Address	No. of Copies
Commander U. S. Continental Army Command Fort Monroe, Va. 23351	1
Chief of Research and Development Department of the Army ATTN: DARD-ARE Washington, D. C. 20310	1
Defense Civil Preparedness Agency ATTN: Mr. George Sisson (RE-SR) Washington, D. C. 20301	1
Commander U. S. Army Materiel Command ATTN: AMCRD-DE-N Washington, D. C. 20310	2
Commander U. S. Army Combat Development Command Institute of Nuclear Studies Fort Bliss, Tex. 79916	l
Commanding Officer and Director U. S. Naval Civil Engineering Laboratory ATTN: Code L31 Port Hueneme, Calif. 93041	2
Commander U. S. Naval Ordnance Laboratory ATTN: 243 Silver Spring, Md. 20910	l
Space and Missile Systems Organization ATTN: MMHH/MAJ T. J. Aneff Norton Air Force Base, Calif. 92409	l
Commander Air Force Weapons Laboratory ATTN: Mr. R. W. Henney Kirtland Air Force Base, N. Mex. 87117	l
Sandia Laboratories ATTN: Dr. M. L. Merritt P. O. Box 5800 Kirtland Air Force Base East, N. Mex. 87115	l

~

Address	No. of Copies
Commander Field Command, Defense Nuclear Agency ATTN: FCTD-T Kirtland Air Force Base, N. Mex. 87115	2
Commander Air Force Weapons Laboratory ATTN: DEV/Mr. J. Bratton Kirtland Air Force Base, N. Mex. 87117	l
Air Force Systems Command Andrews Air Force Base ATTN: DEE Washington, D. C. 20331	1
Director Defense Nuclear Agency ATTN: SPSS Washington, D. C. 20305	5
University of Illinois, Urbana Campus Department of Civil Engineering ATTN: Prof. A. J. Hendron, Jr. Urbana, Ill. 61801	l
Dr. Nathan M. Newmark Head, Department of Civil Engineering University of Illinois Urbana, Ill. 61801	l
Eric H. Wang, Civil Engr. Research Facility University of New Mexico Box 188, University Station Albuquerque, N. Mex. 87106	2
Applied Theory Incorporated ATTN: Dr. John G. Trulio 1010 Westwood Boulevard Los Angeles, Calif. 90024	l
R&D Associates ATTN: Dr. Harold L. Brode P. O. Box 3580 Santa Monica, Calif. 90403	l

Address	No. of Copies
R&D Associates ATTN: Dr. H. F. Cooper, Jr. P. O. Box 3580 Santa Monica, Calif. 90403	l
Physics International Company ATTN: Mr. Fred M. Sauer 2700 Merced Street San Leandro, Calif. 94577	1

Unclassified						
Security Classification						
DOCUMENT CONT	ROL DATA - R	& D .				
(Security classification of title, body of abstract and indexing	annotation must be	entered when the	overall report is classified)			
1. ORIGINATING ACTIVITY (Corporate author)		28. REPORT SECURITY CLASSIFICATION				
U. S. Army Engineer Waterways Experiment Station Vicksburg, Miss.		Unclassified				
		2b. GROUP				
3. REPORT TITLE		1				
GROUND MOTIONS FROM HIGH-EXPLOSIVE EXPERI	MENTS					
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)						
Final report						
5. AUTHOR(5) (First name, middle initial, last name)						
Leo F. Ingram						
200 1 200-000						
8. REPORT DATE	74. TOTAL NO. O	F PAGES	75. NO. OF REFS			
December 1972	34		5			
B. CONTRACT OR GRANT NO.	98. ORIGINATOR	S REPORT NUME				
5. PROJECT NO.	Miscel.	aneous Pap	er N-72-10			
c.		BT NO(5) (Any of	has sumbers that may be assisted			
	this report)	PORT NO(5) (Any other numbers that may be assigned				
	1					
10. DISTRIBUTION STATEMENT						
10. DISTRIBUTION STATEMENT						
Approved for public release; distribution	unlimited					
Approved for public release, discribution	anirimi deu.					
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTI	VITY			
	1_					
13. ABSTRACT	J					
A review of ground shock data						
explosive tests is made. Emphasis is on	close-in mot	tions in ro	ck. Wave forms are			
shown for selected shots and locations.	Comparisons	are made a	mong wave forms for			
similar test conditions in different geol	.ogic materia	als includi	ng soil, shale,			
granite, and sandstone. Variations in pe	eak motion ar	mplitudes a	t various depths			
and ranges are discussed for the differer	nt geologic r	naterials.				
	6					
TO FORM CATO REPLACES DO FORM 1473, 1 JAN 84,						
DD 1 NOV 41473 REPLACES DO FORM 1473. I JAN 44.		ling	lassified			

Unclassified Security Classification

Security Classification

14.	Security Classification LINK A LINK B LINK C						K C
	KEY WORDS	ROLE WT				ROLE WT	
	Geologic materials						
	Ground motion						
	HE explosions						
		[{	
						}	
[
[1				;	
1							
			-				
1							
1							
ļ							
1							
		[
1		ľ					
1	•						
		ĺ	[l	

Unclassified Security Classification