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of the Tables and Figures. 
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EFFECT OF CHARGE SHAPE ON CRATER DIMENSIONS 

CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Where cylindrical charges are employed to produce craters, it has 

generally been required by those who routinely conduct crater scaling 

experiments (experiments that are designed to simulate point source 

spherical explosions) that the aspect ratio (charge height-to-diameter 

ratio) be less than three. This requirement on charge shape has been, 

to some degree, an arbitrary restriction; however, it has been rather 

widely imposed in an effort to insure that the crater produced by the 

nonspherical charge would have essentially the same shape and overall 

size as one that would have been formed by the detonation of a spherical 

charge having the same yield. 

The placement of large charges underground for the.purpose of form­

ing large craters can be simplified somewhat if the shape of the charge 

can be other than spherical, cubical, or cylindrical (assumes tlie aspect-­

ratio of the latter to be 1). For example, containment of a 1-megagram 

(Mg) (2200-pound) charge of, say, nitromethane, which has a density of 

approximately 1.2 g/cm3 , would require a volume equal to 0.83 m3 (29.3 

ft 3 ). If the charge is configured as a sphere, an access hole 1.2 

metres (3,94 feet) in diameter would be required for proper placement. 

Similarly, a cube would require an access hole 1.4 metres (4.59 feet) in 

diameter, and a cylindrical charge (aspect ratio of one) would require 

an access hole slightly larger than 1 metre (3.28 feet) in diameter. 

The practicality and economy of hole drilling favor small holes. 

The question thus arises "How high can the aspect ratio of a given cy­

lindrical charge be and yet not affect significantly the size or shape 

of the crater formed by an equivalent-yield spherical detonation?" For 

example, if a cylindrical charge with an aspect ratio of 5 does not 

significantly affect the size or shape of the resulting crater, then it 
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would be possible to emplace the same 1-Mg (2200-pound) charge through 

an access hole that is only 60 cm (23.62 inches) in diameter (allows for 

a 5-cm (l.97-inch) oversize for clearance). 

A series of tests was therefore conducted to investigate the effect 

that charge shape has on crater geometry and size. In these tests the 

variance in shape was confined to cylindrical charges whose aspect 

ratios varied from l to 8. 

1.2 SCOPE 

This report describes the geometries of the various craters formed 

by cylindrical charges having different aspect ratios. The crater pro­

files along mutually perpendicular diameters (north-south and east-west) 

are presented, and comparisons are made of crater radius, depth, and 

volume, as well as certain crater shape parameters. 
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CHAPTER 2 

EXPERIMENTAL PROCEDlffiES 

2.1 TEST SITE 

The test series was conducted at the U. S. Army Engineer Waterways 

Experiment Station's Big Black Test Site, located about 16.09 km 

(10 miles) east-southeast of Vicksburg, Mississippi. The geology of the 

site is predominately sandy-silty loam. The test area within the over­

all test site was at one time under cultivation; therefore, the upper 

portion of the soil mantle is fertile topsoil. 

The moisture content at the time of the tests was determined by 

sampling to range from 18 percent near the surface to 28 percent at a 

depth of about 1.5 metres (4.92 feet). 

2.2 CHARGE AND SHOT GEOMETRIES 

A total of seven cylindrical charges wer~ prepared with the follow­

ing aspect ratios: 1, 2, 3, 4, 5, 6, and 8. The actual dimensions of 

the charges are listed in Table 2.1. In every case, the charge weight 

was 4. 54 kg (lQ pounds). 

All charges were initiated by high-energy blasting caps embedded 

in the charge at its center of gravity. 

The charge center of gravity was used as the point of reference for 

positioning all charges at their proper depth of burial (DOB). For 

these tests, the charges were positioned 0.8 metre (2.7 feet) below 

ground; this DOB corresponds to a scaled DOB of 0.513 m/kgl/ 3. 4 

(1.37 ft/lb113•
4

). 

Charge placement was accomplished in the following manner. A 

15-cm(6-inch)-diameter hand auger was used to drill the emplacement 

hole. In every instance, the emplacement hole depth was 0.8 metre 

(2.7 feet) plus H/2, where H designates the charge height (notations 

used in this report are listed in Appendix B). The charge initiator 

was then embedded in the charge (at its center of gravity) and the 

safe-ready charge was lowered into the emplacement hole. The void 
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space surrounding the charge was filled with native soil and compacted 

to approximately the same density as that of the in situ material (Fig­

ure 2.1). 

A polyethylene hole liner was then placed in the emplacement hole 

(above the charge) and the liner filled with water; all charges were 

stemmed in this same manner (Figure 2.1). The charge was then fired and 

appropriate measurements were made to document the crater size and shape. 

2.3 CRATER MEASUREMENTS 

Prior to each shot, mutually perpendicular axes were established 

through ground zero (GZ) (epicenter of each explosion). Since the test 

area was essentially a horizontal plane, it was not necessary to obtain 

preshot surface profiles along the alignments specified. Postshot sur­

veys were made along the alignments (crater diameters) and differences 

in elevation were determined at appropriate horizontal ranges. The data 

thus obtained enabled the plotting of apparent crater profiles along the 

north-south and east-west axes. 

Crater volumes were calculated from the apparent crater profiles. 

Each radial profile (half-crater profile) was considered an inderr:ndent 

data source. From these overll;l-id profil-es, an av-erage profile was de-

veloped and thus used to calculate the apparent crater volume. The 

crater volume computations were done by numerical integration of cylin­

drical shells formed by rotating vertical increments about the vertical 

axis through GZ. Details of the computer code that calculated the 

crater volumes are presented in Appendix A. 
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TABLE 2.1. CHARGE GEOMETRIESa 

H b 
H-Height Of Charge D-Diameter of Charge D 

cm 

15.4c 

24,4 

32.0 

38.7 

44.8 

50.7 

61. 5 

ft cm ft Dimensionless --
0.504 15.4 0.504 1 

0.801 12.2 o.4oo 2 

1. 05 10.7 0.350 3 

1.27 9.68 0. 318 4 

1. 48 8.96 0.294 5 

1.66 8.47 0.278 6 

2.02 7.68 0.252 8 

: All charges were right circular cylinders. 
Defined as the Aspect Ratio (AR) of the cylindrical charges. 

c Numerical values included in the first four columns were recorded 
to three significant figures. 
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Figure 2.1 Details of the charge emplacement. 
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CHAPTER 3 

EXPERIMENTAL RESULTS 

3.1 PRESENTATION 

During the course of the experimental program, seven detonations 

were accomplished. Orthogonal profiles of each of the seven craters 

formed by the detonations are presented in Figures 3.1 through 3.7. To 

deternine an average profile for any given shot, the two orthogonal pro­

files were each divided into half-crater profiles, thus forming four 

such profiles, viz., GZ-north, GZ-south, GZ-east, and GZ-west. These 

four half-crater profiles were then superimposed and an average profile 

determined. The dimensions given in Table 3.1 describe quantitatively 

the average or representative half-crater profile developed for each 

shot. For volumetric determinations, the average half-crater profile 

was revolved about a vertical axis through GZ, thus forming the three­

dimensional depression that constitutes the average crater. 

Table 3.2 presents the linear shape factors and the volumetric 

shape factors. Table 3.3 provides a quantitative measure.of the change 

in dimensions for- each H/D v:alue c.ompared to the dimension when the 

charge shape was defined by H/D = 1 . Finally, Table 3.4 presents 

relative parametric changes as a function of H/D by comparing changes 

in the crater shapes. 

3. 2 DISCUSSION 

3.2.1 General Observations. A comparison of the crater dimensions 

listed in Table 3.1 shows a variation that is bounded by the mean plus 

or minus a 20 percent variation from the mean. Since crater dimensions 

from identical shots are generally characterized by a scatter in the 

range of _!.20 percent, there appears to be no significant difference in 

the respective crater dimensions as the value of H/D varies from 1 

to 8. This observation is borne out by the fact that the crater shape 

parameters show a variation from the mean in the range of _!.15 percent 

(Table 3. 2 ) • 
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If the relative changes in the crater dimensions are examined as a 

function of H/D (Table 3.3), then one might conclude that there is a 

very slight decrease in radius and volume and a very slight increase in 

crater depth. 

Table 3.4, which compares in a relative fashion the crater shape 

factors listed in Table 3.2, exhibits only a very slight change in 

crater shape. When H/D varies from 1 to 8, the total change is in 

the range of -10 percent. 

Figure 3.8 shows the variation in the volumetric effectiveness 

factor as a function of H/D ; the same plot compares the experimental 

results of this series of tests with results from other sources (Refer­

ences 1 and 2). The scatter observed in the experimental results (plot­

ted points) precludes a definite statement that the experimental results 

are in agreement with References 1 and 2. The trend of the experimental 

results seems to agree with the downward trend noted by Reference 2 and 

agrees roughly with the Reference 1 results for H/D greater than 5. 

From the tabular data, particularly Tables 3.2-3.4, and from Fig­

ure 3.8, it is obvious that, for a constant DOB, major changes in crater 

size and volume do not occur when H/D values range from 1 to 8. 

3.2.2 Extrapolation of Results. Extrapolation of experimental 

results beyond the parametric range of the experiments is generally re­

garded as questionable. In some cases, where scaling laws are not vio­

lated regardless of the scale of the experiments, extrapolations prove 

quite accurate. In instances where scaling laws are violated to a 

degree that is somewhat dependent on various factors (as is true with 

the scaling of cratering experiments), the reliability of extrapolations 

is not predictable per se. In cratering experiments, the gravitational 

stresses (lithostatic pressures) scale as the length ratio while 

strength of the test medium and detonation pressures remain constant 

regardless of scale. Also, the seismic velocity of the test medium and 

the detonation velocity of the explosive remain constant; this advocates 

that time scale as the length scale. However, the acceleration due to 

gravity remains constant in both model and full-scale experiments. This 

requires that time scale as the square root of the length scale. Thus, 
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in cratering there are present conflicts in scaling that preclude blind 

extrapolation of results without regard to the discrepancies. 

Experience has shown that the several conflicts in scaling are 

minimized when the length scale (A) is proportional to the charge 

weight (W) raised to the 1/3.4 power, or 

A a: Wl/3.4 (3.1) 

Extrapolatinns of the experimental results obtuined during the course of 

this study should therefore be in proportion to the rule stated in Equa­

tion 3.1 above. In addition, extrapolations should not violate the 

following constraints if the observed results ure to yield valid results 

when extrapolated: 

1. The charge weight should not exceed a few thousand pounds. 

2. The aspect ratio should not exceed about 10. Higher aspect 

ratios may lead to a scaling law different from w113 · 4 , e.g., line 

charges follow a w1 l 2 scaling law. 

3. The scaled distance from the ground surface to th~ top of the 

charge should satisfy the following relation: 

where zt is the distance from the ground surface to the top of the 

charge in metres and W is the charge weight in kilograms. 

same token, the scaled depth to the charge center of gravity 

By the 
(Z /Wl/3.4) 

c 
should not exceed about 0.6 nor be less than 0.4. In order that this 

overall constraint hold, the charge height should generally be less 

than 0.4 (W)l/ 3 . 4 . 
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TABLE 3.1 APPARENT CRATER DIMENSIONS ASSOCIATED WITH CYLINDRICAL 
CHARGES HAVING DIFFERENT ASPECT RATIOSa 

Apparent Apparent Apparent 
Crater 

H b Crater Crater Volume, V , 
D Radius, r , Depth, d , a a a 

m3 ( ft 3) Dimensionless m (ft) m (ft) 

1 1.89 ( 6. 20) 0.914 (3.00) 5.01 (177) 

2 1. 77 (5.81) 0.792 (2.60) 3.96 (140) 

3 2.01 (6.59) 0.975 (3.20) 5.30 (187) 

4 1.80 ( 5. 91) 0.914 (3.00) 4.39 (155) 

5 1.65 (5.42) 0.975 (3.20) 3.99 (141) 
,,. 

1. 71 (5.62) 1.04 (3.41) 4.28 (151) 0 

8 1.80 (5.91) 0.975 (3.20) 4.56 (161) 

a All tabular values are given to three significant figures except 
for the H/D values, which are discrete. 

b Charge depth of burial was held constant at 0.8 metre or 2.7 feet. 
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TABLE 3.2 CRATER SHAPE FACTORSa 

H b (,r;:J d (r /d )c 
D a a 

Dimensionless Dimensionless Dimensionless 

1 2.07 o.489 

2 2.23 0.509 

3 2.06 o.427 
4 1.97 o. 473 

5 1.69 o.478 

6 1.64 o.448 

8 1.85 o.459 

a All tabular values are given to three significant figures except 
for the H/D values, which are discrete. 

b Charge depth of burial was held constant at 0.8 metre or 2.7 feet. 
~ Line1r shape factor. 

Volumetric shape factor. 
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TABLE 3.3 RELATIVE CHANGES IN CRATER DIMENSIONS AS A FUNCTION OF H/D 

H/D (r )l/(r ) a a a n 
Dimensionless Dimensionless 

1 1.00 

2 0.937 

3 1.06 

4 0.952 

5 o.873 

6 0.904 

8 0.952 

~ Derived from column 2, Table 3.1. 
Derived from column 3, Table 3.1. 

c Derived from column 4, Table 3.1. 

(d )l/(d ) b a an 
Dimensionless 

l. 00 

o.867 

1.07 

1.00 

l.07 

1.14 

1.07 

Volumetric 
Effectiveness Factor, v c 

e 
(V )/(V ) a a n 

Dimensionless 

1.00 

0.790 

1.06 

0.876 

0.796 

0.854 

0.910 



TABLE 3.4 CALCULATION OF RELATIVE PARAMETRIC CHANGES AS A 
FUNCTION OF H/D 

(r /d ) 
a 

a a 1 
H 
D 

(r /d ) a a n 
Dimensionless Dimensionless 

1 1. 00 

2 1.08 

3 0.995 

4 0.952 

5 0.816 

6 0.792 

8 0.894 

a Derived from column 2, Table 3.2. 
b Derived from column 3, Table 3.2. 
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2 
(V /nr d ) a a a 1 

(v /nr
2
d ) a a a n 

Dimensionless 

1.00 

1.04 

o.873 

0.967 

0.978 

0.916 

0.939 

b 
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Figure 3.1 Apparent crater profiles: H/D = 1 . 



Charge Weight - 4.54 Kg (10 lb) 

Explosive: C-4 

NQrth-South Profile 

East~West Profile 

1 2 

0 5 

0 

1 2 

I 
5 

Metres 

Feet 

Metres 

Feet 

Mean crater depth= 0.792 m (2.60 ft) 

Mean crater radius = 1.77 m (5.81 ft) 

Mean crater volume = 3.96 m3 (140 ft
3

) 

Figure 3.2 Apparent crater profiles: H/D = 2 . 
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Figure 3.4 Apparent crater profiles: H/D = 4 . 
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

4.1 CONCLUSIONS 

From the experimental results, it is obvious that changes in the 

crater size and shape are insignificant as applies to a given charge 

weight when the aspect ratio (H/D) of cylindrical charges varies from 

l to 8 (assumes a soil medium as opposed to desert alluvium or rock and 

ussumes a constant scaled depth of burial in the range of 0.5 m/kgl/ 3. 4 

(1.37 ft/lbl/ 3. 4)). This observation is supported also by References 1 

and 2 which indicate that only minor changes in crater volume occur in 

the range of H/D greater than 1 and less than 8. 

It therefore appears that drilling costs associated with charge 

emplacement in soil media can be significantly lessened when cylindrical 

charges with aspect ratios in the range of 5 to 8 are used. For any 

given size charge, the use of smaller diameter holes will serve to in­

crease the penetration rate, thereby reducing the drill time and thus 

the drilling cost. However, savings in drilling costs are an inter­

dependent function depending on penetration rate (p ) as a function 
r 

of hole diameter for any given medium, depth of hole (dh), and the fixed 

unit operating cost (per hour or day) of the rig and crew (C ). The 
u 

cost (C) of drilling a given hole can thus be determined from: 

In minimizing costs for any given excavation project, trade-offs in 

charge shape versus drilling effort must be carefully studied for cost 

reductions to be real and significant. 

4.2 RECOMMENDATIONS 

It is recommended that high-yield tests (charge weights on the 

order of hundreds of pounds) be performed in order to insure that the 

low-yield results described in this report are in fact valid for the 
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larger yields. Tests in the range of hundreds of pounds would provide 

confident scaling of results into the thousand-pound range. 

It is further recommended that similar experiments be carried out 

in desert alluvium and rock to establish whether or not the results 

presented in this report are applicable to widely differing media. 
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APPENDIX A 

CALCULATION OF APPARENT CRATER VOLUME1 

Postshot surveys of the cratered area established crater depths at 

regular intervals along four or·thogonal radials extending outward from 

GZ. For each crater, the fou1· orthogonal radials (half-crater pro­

files) were considered independent. The four half-crater profiles were 

then averaged to form the half-crater profile representative of the 

particular shot. The computed apparent crater volumes were calculated 

from each of the representative profiles. 

The method chosen to calculate the apparent crater volume treats 

the range (horizontal distance from GZ) as the independent variable. 

The primary reason for this choice is that range is a nondecreasing 

function and thus makes for a simpler culculational routine. 

Each range und the crater depth at that range (observed from the 

representative half-crater profile) are input parameters to the computer 

program. As shown in Figure A.l, each range lnterval and the depth as­

sociated with each end point of the interval form a trapezoid. The area 

of the trapezoid is given by: 

_ (a + b \ 
Area - h\ 2 f 

where h is the height and a and b are the bases of the trapezoid. 

Ir the depths associated with any t·.vo consecutive ranges are considered 

to be the bases and the interval between the ranges is considered to be 

the height, then a cross section of the crater can be viewed as a series 

or rectangles, each with a height of 

R - R n n-1 

and a base of 

1 Prepared by Max B. Ford, Weapons Effects Laboratory, U. S. Army 
Engineer Waterways Experiment Station. 
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By revolving each of the trapezoids about the vertical axis through 

GZ, the crater can now be considered as the summation of a series of 

concentric hollow cylinders or cylindrical shells, except for the inner­

most cylinder, which is a solid of revolution. This logic serves as the 

basis for calculating the apparent crater volumes. 

The volume of each cylindrical shell is calculated from the follow­

ing formula: 

The volumes of the cylindrical shells are then summed to give the total 

volume of the crater as calculated from the input measurement of that 

particular representative half-crater profile. 

The following computer program was written to calculate crater 

volumes using the above procedure. It is specifically for use on the 

Honeywell G 635 time-sharing system. 
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100C 
1 l 0C 
120C 
130C 
140C 
150C 
160C 
l 70C 
180C 
190 
200 
210 
220 
230 
240 
250 
260 
21e 
280 
290 
300 
310 
320 
330 

.34fZ 
350 
3-60 
370 
360 
390 
400 
410 
420 
430 
440 
450 
460 
470 
460 

PROGRAM TO CALCPLATE CRATER VOLtME 

X tISTANCES AND Y LEPTHS MAY hE TYPEL IN OR INPUT 
ON PA'PER TAPE.. STARTING AT CENTER OF CRATER Ol'Tl'ARL 
OF STARTING AT ONE SILE OF CRATER ANIJ PROCE.ELING ACROSS 
THE tIAMETER OF THE CRATER 

A'PRIL 1975.. MBF 

DIMENSION xc1e0> .. Y<100> .. zxc10e> .. ZYC100) 
10 CONTINt'E 

KOt'NT = 0 
St"MM2 = 0• 

20 CONTINUE 
PRINT .. ux DISTANCE. AT CENTE.R OF CRATER? .. 
?.EAt 40,, tI S 
DO 3 0 I = 1 " 1 0 0 

30 ZX<I> = - 100· 
PFINT .. "RANGE? .. LEPTH?" 
REAt· <5 .. 40,,ENL· = 50> CZXCI>.. ZYCI),, I= 1,, 101iD 

40 FO?MAT C '') 
50 CONTINUE 

IJO 8 0 I = 1 " 1 0 0 
IF C~X<I>.LT· - 90.> GO TO 100 
XC I> = ZXC I> 
YCI> II ZY<I> 

a11t c ONT rnt1E 
100 J • I - 1 

Nl'M = 1 
IF <DIS> 110 .. 160 .. 110 

110 CONTINUE 
St'M = 0 
DO 120 I = 1,, J 
IF CXCI>·GE.rIS> GO TO 130 

120 CONTINl1E 
130 CONTINUE 

NUM = I 
KNt'M=2 
KX = Nt1M 
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4 9 0 tO 14 0 I • 1 " N l'M 
500 XC I) • DIS - ZXCKX> 
510 YCI> • ZYCKX> 
520 KX • KX - 1 
530 140 CONTINtTE 
540 180 CONTINUE 
SS0C 
560C 
570C 
580C VOLl'ME CALCCLATIONS ARE PE.RFORME.L1 EE.LOP 
590C 
600C 
610 DO 150 1 =KNl'M.1 NUM 
620 YY • CYCI> + YCI-1>> I 2· 
630 V • 3el4159 * YY * CXCI)t2• - XCl-l>t2•> 
61&0 SllM • SUM + \' 
650 150 CONTINUE 
660C 
670C 
680C 
690C 
7 00 KOUNT•KOt~JT+ l 
710 St~M2•St~M2+SUM 
720 PRINT,, "VO!..l'ME THIS RAtlAL IS",, Sl'M 
730 IF CNtM.GE.J> GO TO 190 
740 160 CONTINrE 
7 50 DO 170 I • Nl'M.1 J 
760 XCI> • ZXCI> - tIS 
770 YCI> = ZYCI> 
780 170 CONTINUE 
7 90 KNUM = Nl'M + 
800 NUM•J 
810 Sl'M=0 
820 GO TO 180 
8 30 190 CONTINl'E 
840 ?FUNT,, "A,'ERAGE VOLt.'ME= 1 CONT 1Nl'E=0 EN t=-1" 
850 READ.1 M 
860 IF CM> 210,, 20.1 200 
870 200 AVOL = StTMM2 I KOUNT 
880 PRINT,, "AVERAGE \'0Ll1ME OF CRATER IS",, AVOL 
890 ?~UNT,, "END=0,, ANOTHER Rl1N= 1" 
900 nEAD.1 MM 
910 IF CMM·LE•0> GO TO 210 
920 GO TO 10 
930 210 CONTINCE 
940 STOP 
950 END 

REAtY 
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Figure A.l Methodology for calculating the apparent crater volume. 
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APPENDIX B: NOTATION 

Bases of trapezoid (Appendix A) 

Drilling cost 

Unit operating cost of drill rig and crew 

Apparent crater depth 

Emplacement hole depth 

Diameter of charge 

Height of trapezoid (Appendix A) 

Height of charge 

Aspect ratio of cylindrical charge 

Penetration rate 

Apparent crater radius 

Linear shape factor 

Apparent crater volume 

Volumetric shape factor 

'Vfillune:tric fil'f~ctiveness factor I{V L /(V ) ] ai an 

Charge weight 

Depth below ground to charge center of gravity (depth of 
burial, DOB) 

Depth below ground to top of charge 

Length scale 
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