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ABSTRACT 

The objective of the test program reported herein was to determine if a large metal ship­

ping container would provide a sufficient degree of protection from simulated nuclear weapon 

blast effects to make it suitable as a small protective shelter. 

This report describes the tests of two Container Express (CONEX) containers that were 

instrumented and subjected to blast loads in the Large Blast Load Generator (LBLG) facility 

at the U. S. Army Engineer Waterways Experiment Station (WES). 

The containers were buried in dense, dry sa.nd with 18 inches of sand over the roof and 

subjected to blast load pressures of approximately 11, 15, and 34 psi. A total of 45 channels 

of instrumentation were used to measure the following parameters: strain in the roof, side­

wall, and floor; vertical deflection of the roof; accelerations in the roof, sidewall, floor, and 

free field; blast pressure at the soil surface and free field; and pressure inside the container. 

For the first two tests, a container was placed base down in the LBLG and subjected to 

pressures of 11 and 34 psi, respectively. The initial test caused only moderate damage to the 

container; however, complete roof collapse resulted from the second test. For the final test, 

an inverted (base up) container was subjected to a pressure of 15 psi. Damage to the con­

tainer was moderate. 

Results of the test program indicate that the CONEX container could be utilized as a 

small protective shelter. If the container were buried with the base up, it is believed that it 

would withstand a pressure load of approximately 20 psi. 
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CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT 

British units of measurement used in this report can be converted to metric units as follows. 

inches 

feet 

Multiply 

cubic feet 

pounds 

tons (2,000 pounds) 

pounds per square inch 

kips per square inch 

pounds per cubic foot 

inches per second 

feet per second 

By 

2.54 

0.3048 

0.0283168 

0.45359237 

907.185 

0.070307 

70.307 

16.0185 

2.54 

0.3048 

7 

centimeters 

meters 

To Obtain 

cubic meters 

kilograms 

kilograms 

kilograms per square centimeter 

kilograms per square centimeter 

kilograms per cubic meter 

centimeters per second 

meters per second 



CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

The Container Express (CONEX) is a large metal shipping container that can hold mate­

rials weighing up to 5 tons.1 The CONEX was designed to speed the movement of cargo and 

to protect goods from loss, damage, and pilferage. Thousands of the containers have been 

shipped to Southeast Asia (SEA). As very few containers have been returned, it is evident 

that countless additional uses have been found for the CONEX in the Theater of Operations. 

For example, the metal containers are being converted into dispensaries, offices, supply rooms, 

command posts, and fighting fortifications. 

Since the CONEX is being successfully used to withstand the effects of conventional 

weapons, it was hypothesized that a standard container might be adequate to resist the airblast 

loads from nuclear weapon detonations. 

1.2 OBJECTIVE 

The objective of this study was to determine the response of a buried CONEX subjected 

to simulated nuclear weapon blast effects. The specific objective was to determine if the 

CONEX, as manufactured, would provide a sufficient degree of protection to make it suitable 

as a small protective shelter when subjected to airblast loading conditions characteristic of nu­

clear weapon detonations. 

1.3 SCOPE 

To accomplish the _objective _of _this_study, -three tests -were -conductd in the Large Bla~t 

Load Generator (LBLG) facility at the U. S. Army Engineer Waterways Experiment Station 

(WES) on CONEX containers buried m sand to a depth of 18 inches. The first CONEX was 

placed in the LBLG base down and subjected to surface pressures of 11 and 34 psi. A sec­

ond CONEX was then placed in the LBLG base up and subjected to a pressure of 15 psi. 

The structures for all tests were instrumented to record the following measurements: (1) steel 

A table of factors for converting British units of measurement to metric units is presented on page 7. 
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strains, (2) top, base, and sidewall acceleration, and (3) internal pressures. Additionally, free­

field acceleration, and soil stress and surface pressure measurements were recorded. 
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CHAPTER 2 

EXPERIMENTAL PROGRAM 

2.1 TEST APPARATUS 

The LBLG test device was designed primarily to test large model or prototype protective 

structures subjected to pressures simulating those generated by both kiloton and megaton nu­

clear devices. The structures can be subjected to dynamic loads to 500 psi at a rise time of 

approximately 2 to 4 msec and at durations ranging from milliseconds to several seconds. 

The LBLG (Figure 2.1) has two basic components, the central firing station (CFS) and 

the test chamber. The CFS is a massive, posttensioned, prestressed concrete reaction structure 

designed to resist the dynamic loads generated in the test chamber. The two test chambers 

are cylindrical steel bins approximately 23 feet in diameter that contain the test media and 

test structures. The test chamber (Figure 2.2) is composed of three 3-1/3-foot-high C rings 

that are stacked on a wheel-mounted platen. One B ring containing a baffle grid and 15 fir­

ing tubes is seated on the uppermost C ring. To complete the test chamber, one A ring 

equipped with quick-opening, blast-exhaust valves is seated on the B ring. 

The assembled test chamber is rolled into the tunnel of the CFS, the platen is lowered 

to rest on the base slab, and the A ring is elevated to bear against the ceiling of the CFS. 

The test device is described in detail in References 1 and 2. 

2.2 CONEX DESCRIPTION 

The CONEX (Figure 2.3) is a large, metal, box-shaped, reusable shipping container. Two 

-sizes, 1-35 -and 2-9-5 ft3, -are -available; however, only the larger size was £Onsidered for this test 

program. The load-carrying capacity of the large container is 10,000 pounds. Its tare weight 

is approximately 1,600 pounds. Access to the container is provided by 'two doors that close 

to form the container front and are secured with a quick-opening door handle. 

The container has internal dimensions of 8 feet 2 inches long, 6 feet wide, and 6 feet 

high. Outside dimensions are 8 feet 6 inches long, 6 feet 3 inches wide, and 6 feet 10-1/2 

inches high. Inside and outside volumes of the container are 295 and 365 ft3, respectively. 

The large container is fabricated from 18-gage-thick corrugated steel welded at all joints. 

A double wall thickness is provided at the container roof and floor. This double thickness is 
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obtained by spot-welding an 18-gage-thick plate to the top surface of the corrugated roof and 

floor. 

The container is mounted on 3/16-inch-thick steel skids, and forged-steel lifting lugs are 

provided to facilitate handling and storage. A 1/4-inch-thick steel bar, 6 inches wide by 

8 feet 2 inches long, is welded to the outside floor surface. This bar is centered between the 

skids and serves as a floor stiffener. 

2.3 INSTRUMENTATION 

The test structure and free-field gage locations remained the same for all three tests and 

are shown in Figures 2.4 through 2.6. Some of the transducers used are shown in Figure 2.7. 

2.3.1 Pressure Measurements. Strain-gage-type pressure transducers were used to deter­

mme free-field pressure, surface pressure, and pressure inside the structure. Eight gages were 

positioned at the ground surface and two inside the structure. The sand surface gages were 

mounted on wooden trusses buried flush within the sand (Figure 2.8). 

2.3 .2 Acceleration Measurements. Structure and free-field accelerations were measured at 

locations shown in Figures 2.4 through 2.6 with strain-gage-type accelerometers. Free-field ac­

celerometers were cast in sand-plaster mixtures with densities approximating those of the sand. 

2.3.3 Strain Measurements. Strains in the roof, floor, and one side of the CONEX 

were measured at locations shown in Figure 2.5 using foil-type strain gages (gage length, 

1/4 inch; gage resistance, 120 ohms; gage factor, 2.04). Twenty strains were measured by 

10 gages positioned on the inside and 10 on the outside container surfaces. At roof, floor, 

and sidewall inside and outside center spans, two single-element gages were placed at 90-degree 

angles to each other to indicate two-directional steel strain. To obtain a four-arm bridge cir­

cuit, the single active gages at eacn gage focation on tiie structure were matched- with three 

similar gages mounted on steel blocks located outside the test chamber. 

2.3.4 Deflection Measurements. Deflection of the CONEX roof was measured with a 

linear potentiometer. A steel pipe was mounted to the container floor to support the gage. 

The deflection gage was used only in the first test and had a capability of measuring deflec­

tions of 3-112 inches up or down. Figure 2.6 shows the deflection gage mounted on the 

structure. 

2. 3. 5 Soil Stress Measurements. Free-field soil stress measurements were made for all 
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tests. Soil stress was measured using diaphragm-pressure gages developed at WES (Refer­

ence 3). The soil pressure gages were placed at the structure roof, middle, and floor 

elevations. 

2.3.6 Data Recording Equipment. Data were recorded during the test with four high­

speed oscillographs operating at a chart speed of 160 in/sec for 5-second durations and four 

magnetic-tape recorders operating at recording speeds of 60 in/sec. 

2.4 TEST GEOMETRY AND PROCEDURES 

For each test, the CONEX container was placed in the center of the LBLG test cham­

ber in order that side effects would be minimized and a balanced load distribution obtained. 

The base of the container was approximately 2 feet from the test chamber bottom; therefore, 

for practical purposes, it was assumed that the base rested on a rigid foundation. After the 

CONEX had been placed in the LBLG, all electronic instrumentation was connected and 

electrically balanced. 

A local sand, designated Cook's Bayou sand, used for backfilling in all tests is described 

in detail in Reference 2. The sand was placed in the test chamber in 6-inch increments and 

compacted with a plate vibrator to a density of about 102 pcf, at which the angle of inter­

nal friction was approximately 37 degrees. The sand was placed to an elevation 18 inches 

above the containers for all tests. An automatic control system sequentially started the data 

recording devices, ignited the charge, and opened the blast valves to exhaust the pressure. 

For the first two tests, a CONEX was placed in the LBLG base down, as shown in Fig­

ure 2.8a. The third test geometry was identical with that illustrated for the two previous 

tests, but the container was inverted (Figure 2.8b). 
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Figure 2.3 Large CONEX. 
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Figure 2.6 Container instrumentation. 
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CHAPTER 3 

TEST RESULTS 

3.1 VISUAL OBSERVATION OF DAMAGE 

For the first test, the buried CONEX container was subjected to a surface pressure of 

11 psi. After the shot, the container was uncovered and the damage observed. The container 

roof had sustained a permanent deformation of 3.2 inches at the center. A crease had formed 

at the rear edge (west) of the roof and extended approximately 3 feet toward the center. 

Buckling of three corrugations on the inside surface of the roof was observed. No welding 

failures were noted, and overall damage to the structure was assessed as moderate. The nota­

ble damage sustained by the structure as a result of Test I can be observed in Figure 3 .1. 

A second test was conducted, and the structure was subjected to a surface pressure of 

34 psi. A severe shear-type failure of the structure roof occurred (Figure 3 .2a). In addition, 

inward deformation of the sides, back, and front was noted (Figure 3.2b). After the CONEX 

was uncovered, the roof, which had been blown to the floor, was removed. The damaged 

roof is shown in Figure 3.2c. Note that the inside corrugated layer was flattened by the 

blast. Damage to the structure bottom was minor (Figure 3.2d). 

A third test was conducted on an inverted CONEX placed in the LBLG. A pressure of 

15 psi was measured at the. surface. Damage to the structure was moderate. A level survey 

conducted on the container showed a 2.2-inch permanent deflection at the roof center 

(Figure 3.3). 

3.2 PRESENTATION OF DATA 

To facilitat~ data redm:ti0n, a!! recorded analog data_ were_ digitized_ aL a_ sampling_ rate_ of_ 

12 kc and processed on a central processor. Due to inconsistencies in the recorded stress-time 

histories for the free-field stress gages (SS gages), the records for these gages have been elimi­

nated. However, selected pressure, displacement, acceleration, and strain results are presented. 

3 .2 .1 Pressure Data. Typical surface pressure-time and internal pressure-time histories 

for the three tests are presented in Figures 3 .4 and 3 .5, respectively. The mean pressures 

shown in these figures were determined in the following manner: first, a straight line was 

constructed through the impulse-time histories (plots not shown) for all pressure records of 
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each test; second, the slope (impulse divided by time) of this straight line was considered to 

be the mean pressure for each gage signature; finally, the mean pressures for each test were 

arithmetically averaged. 

3.2.2 Acceleration Data. Structure and free-field accelerations along with the velocities 

and displacements are presented in Figures 3 .6 through 3 .21. The velocities and displacements 

were obtained by single and double integrations of the acceleration-time histories. A uniform 

baseline shift with a magnitude equal to the average acceleration was applied to each accelera­

tion trace to adjust for baseline offsets. 

3.2.3 Strain Data. Selected strain-time signatures for Tests 1 through 3 are shown in 

Figures 3.22 through 3.24. 

3.2.4 Deflection Data. Relative displacement between the CONEX roof and floor for 

Test 1 is shown in Figure 3.25. A summary of peak displacements at the center of the roof 

as recorded for Tests 1 and 3 is presented in Table 3.1. 

3.2.5 Structure Material Properties. Four tensile specimens were cut from different lo­

cations on the CON EX and tested statically. A composite stress-strain curve is shown in 

Figure 3 .26. 
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TABLE 3.1 PEAK DISPLACEMENTS OF CONEX ROOF 

Test No. Mean Pressure 

1 

3 

Dynamica 

psi inches 

11 4.9 

15 3.1 

a Double integration of accelerometer AS. 
b Preshot and posttest level survey. 
c Deflection gage CDl. 

23 

Peak Midpoint Displacement 

Permanentb Relativec 

inches inches 

3.2 3.5 

2.2 



a. Roof deflection and damage. 

b. Interior view of roof buckling. 

Figure 3.1 Damage to CONEX; Test 1. 
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a. Posttest view prior to excavation. 

b. Partially uncovered container (top is 
buried inside container). 

Figure 3.2 Damage to CONEX; Test 2 (Sheet 1 of 2). 
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c. CONEX top after removal (bottom layer was 
corrugated but was flattened by blast wave. 

d. Minor damage to bottom. 

Figure 3.2 (Sheet 2 of 2). 
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Figure 3.3 Damage to CONEX; Test 3. 
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Tests 1 through 3. 
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Tests 1 through 3. 
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Tests l through 3. 
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CHAPTER 4 

DISCUSSION OF RESULTS 

4.1 STRUCTURAL INTEGRITY 

Analysis of the strain data for Tests 1 and 3 as presented m Chapter 3 indicates that 

yielding occurred only at the structure roof. It was noted that yielding occurred on both the 

plate and corrugated roof sections in Test 1, whereas only the corrugated roof section yielded 

in Test 3. For both tests, the strains recorded on the floor and sidewall were considerably 

less than the ultimate yield strain. Since Test 2 was a repeat shot on the Test 1 structure, 

which had incurred permanent deformation, the results were not considered representative of 

the ultimate load-carrying capacity of the CONEX. However, it is believed that the Test 2 re· 

suits are representative of the most probable failure mode of the CON EX; consequently, the 

test data were included in this report but were not considered in the final analysis. 

A stiffness relation was developed to compare roof displacements resulting from Tests 1 

and 3. The stiffness relation is defined as: 

where 

K­l 

Ki stiffness for the ith test 

Pm mean pressure, psi 

{

maximum dynamic peak midpoint displacement of the roof for dynamic 
L':.max = inches 

permanent midpoint displacement of the roof for static Ki , inches 

Using the permanent displacement mean pressures shown in Table 3 .1, the static stiff-

ness can be determined as: 

Then the ratio 

K _ _!!__p~ 
1 - 3.2 inches 

15 psi 
2.2 inches 
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Hence, the inverted floor configuration (Test 3) yields a system that 1s twice as stiff as 

the ordinarily placed container (Test 1 ). 

In order to determine the dynamic stiffness, the dynamic displacements shown m 

Table 3.1 can be used in lieu of the permanent displacements. Hence, 

Ki 2.2 psi/in 

K3 4.7 psi/in 

yielding a ratio of 

2.1 

As m the static case, the inverted floor configuration is the stiffer of the two systems. 

The stiffness calculations are. based on the assumption that the floor displacements (Fig­

ure 3.18) are insignificant as compared with the roof midpoint displacements shown in 

Table 3.1. 

4.2 IN-STRUCTURE ENVIRONMENT 

In evaluating underground structures that are to be occupied by personnel, consideration 

must be given to the shock and acoustic environment. 

Figure 4.1 was extracted from a paper (Reference 4) on the effects of overpressures on 

the human ear. Recorded peak internal pressure from Test 1 was less than 2 psi; consequently, 

the probability of ruptured eardrums of occupants appears to be approximately 0.1 percent. 

The peak internal pressure from Test 3 was considerably less than that measured in Test 1. 

According to the information published in Reference 5 on the tolerance of humans to 

impacts, the magnitudes and durations of accelerations measured on the structure floor for 

Tests 1 and 3 are significantly below injury levels. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

Based on the results of this investigation, the following conclusions and recommendations 

were reached: 

1. If the CONEX is utilized as a small protective shelter, a definite structural advantage 

can be achieved by placing the structure upside down. This emplacement configuration would 

be desirable against conventional or nuclear weapon threats. 

2. For peak pressures up to at least 15 psi resulting from the detonation of a nuclear 

device, occupants of the CONEX would not experience adverse shock or acoustical 

environments. 

3. Based on the observed strains from this test series, it is believed that an inverted 

CONEX would withstand overpressures in excess of 15 psi; however, additional testing would 

be necessary to establish the ultimate load-carrying capacity of the shelter. 

4. These tests have shown that the CONEX is potentially an effective shelter against the 

blast effects of a nuclear device. Therefore, it is recommended that in future programs, con­

sideration be given to bunk arrangements, entrances, exits, ventilation, emplacement techniques, 

and other pertinent design and environmental criteria. 
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The objective of the test program reported herein was to determine if a large metal shipping con-
tainer would provide a sufficient degree of protection from simulated nuclear weapon blast effects to 
make it suitable as a small protective shelter. This report describes the tests of two Container Ex· 
press (CONEX) containers that were instrumented and subjected to blast loads in the Large Blast 
Load Generator (LBLG) facility at the U. S. Army Engineer Waterways Experiment Station. 
The containers were buried in dense, dry sand with 18 inches of sand over the roof and subjected 
to blast load pressures of approximately 11, 15, and 34 psi. A total of 45 channels of instrumenta-
tion were used to measure the following parameters: strain in the roof, sidewall, and floor; vertical 
deflection of the roof; accelerations in the roof, sidewall, floor, and free field; blast pressure at the 
soil surface and free field; and pressure inside the container. For the first two tests, a container was 
placed base down in the LBLG and subjected to pressures of 11 and 34 psi, respectively. The initial 
test caused only moderate damage to the container; however, complete roof collapse resulted from the 
second test. For the final test, an inverted (base up) container was subjected to a pressure of 15 psi. 
Damage to the container was moderate. Results of the test program indicate that the CONEX con-
tainer could be utilized as a small protective she! ter. If the container were buried with the base up, 
it is believed that it would withstand a pressure load of approximately 20 psi. 
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