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ABSTRACT

An approximate solution to the problem of trunsient longitudinal wave
propagation in a semi-infinite cylindrical body of elasto-plastic material
restrained radially by a stacked-ring shell and subjected to a normal pres-
sure al the end is obtained by a Galerkin technique using the radial coordi-
nate as an expansion parameter, In order to get equations applicable to
numerical computations the expansions are truncated to the leading term in
each variable., This truncation creates a mathematical problem when elastic

and plastic regions occur along the same radial line.

A finite-difference scheme is used to solve the differential equations
resulting from application and truncation of the Galerkin expansion. A
special method for handling the boundary between elastic and plastic regions
along the same radial line is developed in conjunction with this numerical

solution.

Numerical results of the finite-difference scheme are presented for
several variations in such parameters as shell stiffness and material

constants.

For the purpose of evaluating the results of the truncation to the lead-
ing term in each expansion, the analogous problem is formulated for a linear
inviscid fluid and solved twice, once with a truncation to the first term and
once carrying two terms in each expansion. The numerical results are pre-
sented for these two solutions so that the change in the solution caused by

the truncation can be evaluated.
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Shell mass parameter, Eq. (ITI-15).

Dimensicnless shell mass parameter,
Dimensionless mass parameters generated
by Galerkin method, Eqs. (A-10).

Material parameter related to angle of
internal friction, Eq. (B-11b).

Shell stiffness parameter, Eq. (II-15).

Dimensionless shell stiffness parameter.

Viscosity parameter in axial boundary
conditien, Egq. (IL-16).

Weighting coefficient in finite dif-
ference formulation, Eq. (V-3).

Dimensionless mass parameters defined
in two term truncation for fluid,
Egqs. (A-15).

Plastic shock velocity, Eq. (B-21).

Young's modulus of shell material.

Components of strain deviator.

Elastic and plastic parts of strain
deviator.

Yield function and plastic potential,
Eq. (II-la).

Yield function for compressive range
in uniaxial strain, Eq. (B-10),

Integrated bulk modulus function,
Eq. (B-7).

Shear modulus.

Shell thickness, Fig. 1.

*)

Other symbols are defined as they are used in the text.



First invarlant of stress, Eqs. (IL-2).

Second invariant of stress deviator,
Egqs. {II-2).

Bulk medulus function, Eqs. (II-7).

Coefficient of diffusion term in finite
difference formuluticn.

Bulk modulus at zero pressure, Eq. (B-la).

Material parameter defining cohesicrn,
Eq. (II-la).

Initial modulus in uniaxial strain, Eq. (B-20).
Initial modulus in triaxial test, Eq. (B-3a).

Zeros of yield function at the boundary in
one term truncation, Eq. {(V-26).

Undetermined functions defining pressure in
Galerkin method, Zas. (IV-2).

Dimernsionless undetermined functions defining
pressure in Calerkir method, Egs. (A-5),.

Mean pressure.
Parameter in bulk modulus function, Eq. (B-1la).
Confining pressure in triaxial test.

Pressure defining elastic point in uniarial
strain, Eq. (B-18).

Pressure defining vield point in uniaxial
strain.

Applied surface pressure, Fig. 1.
Dimensionless surface pressurz, Eas. (A-5).

Undetermined functions defining radial stress
deviator in Galerkin method, Egs. (IV-2).

Radial coordiuate, Fig. 1.

Radius ¢f shell, Fig. 1.
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Components of stress deviator.
Quantity representing shear, Egs. (II-18).

Undetermined functions defining shear stress
in Galerkin method, Egqs. (IV-2).

Time.

Undetermined functions defining radial
velocity in Galerkin method, Egs. (IV-2).

Dimensionless undetermined functions defining
radial velocity in Galerkin method, Egs. (A-5).

Radial component of displacement, Eq. (II-15).

Undetermined functions defining axial
velocity in Galerkin method, Eqs. (IV-2).

Dimensionless undetermined functions defining
axial velocity in Galerkin method, Egqs. (A-5).

Radial and axial components of velocity.

Quantity representing radial velocity,
Eqs. (II-18).

Undetermined functions defining axial stress
deviator in Galerkin method, Eqs. (IV-2).

Axial coordinate, Fig. 1.

Material parameter related to angle of
internal friction, Eq. (II-la).

Dimensionless material parameter, Eq. (B-3b).

Coordinate increments in finite difference
formulation, Fig. 2.

Dimensionless coordinate increments in
finite difference formulation.

Arbitrarily small quantity used in limit
process.

Components of strain.

Elastic and plastic parts of strain,

Dimensionless axial coordinate, Eqs. (A-5).
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Functions generated from bulk rodulus by
Galerkin method, Eq. (IV-10).

Bulk modulus functicn in finite differénce
formulation of one term truncation, Eq.. (V-12).

Undetermined functions defining the function
A in Galerkin method, Eqs. (IV-2).

Roots of yield condition on the boundary-.inm
finite difference formulation of one term
truncation, Eqs. (V-29a,b).

Function related to inelastic behavior,
Eqs. (II-8a,b).

Dummy variable of integration.
Density of elasto-plastic material.

Combined density of shell and elasto-plastic
material in one term truncation, Eq. (IV-19).

Density of shell material.

Axial stress at elastic point irn uaiaxial
strain, Eq. (B-19).

Components of stress.
Dimensionless time, Eqs. (A-5).

Integrated yield function Iin one term
truncation, Eq. (IV-18).

Integrated yield functiorn at the boundary
in one term truncation, Eq. (V-26),.



I INTRODUCTION.

To confirm the suitability of mathematical models for the
dynamic behavior of materials, it is necessary to compare ana-
lytical results with those of tests. As a first step, because
of better control and smaller cost, such tests will be labo-
ratory ones, To be able to make comparisons computation pro-
cedures for configurations suitable for dynamic tests must be
available. It is essential to study multidimensional situations,
for which a suitable, yet simple, configuration consists of a
cylindrical tube containing and restraining a cylindrical body
of the material. The restraining tube is inhevently necessary
if the material 1s a soilil, but for other materials the use of
a restraining tube permits variation of the basic parameters
of the tests; from nearly uniaxial strain for very rigid tubes,
to multidimensional situations for (radially) extensible tubes.
The variation of basic parameters in comparative tests is
obviously desirable for éonfidence in the results. Moreover,

a series of tests with different parameters might also be used,
not as a confirmation, but to determine the material constants

from dynamic tests,

Tests on soils of the nature described above have been
undertaken, e.g., Ref. [1], in continuous tubes and also by
confining the material by separate '"stacked rings", Ref. [2].
The latter arrangemepﬁ avoids longitudinal wave propagation {in
the tubes, a highly desirable simplification, and this paper

Presents an approach to analyzing longitudinal wave propagation



in a homogeneous and isotropic elasto-plastic material (of the
Coulomb type) restrained by such rings. The approachk can, how-
ever, equally be used for other material prescriptions. It is
crucial that the approach presented permits the treatment of
different material properties in regibns with moving, a priori
unknown boundaries. In the e;asto—plastic case treated, there
are regions where at a given instant the changes in strain aré
described by elastic relations, while in other regions plastic
relations apply. The location of these regions is not known
and changes with time. (Similar situations occur in materials
where loading and unloading of an elemgnt of the material
follows a different mathematical prescription such as postulated

in Ref. [3]-)

Problems of transient axisymmetric wave propagation in
cylindrical bodies of inelastic or nonlinear materials can be
treated only by purely numerical computations, or by approximate
approaches. Because of its influence on nearly all subsequent
literature, the earliest approximate approach for harmonic wave
propagation in an elastic cylindrical bar, Ref., [4], is mentioned.
By postulating the radlial dependence of the displacements and
introducing weighted average stresses, the approach reduces the
problem from three independent variables z, r and t to one in
the longitudinal ccordinate z and the time t. The result is a
system of two simultaneous second order partial differential
equations containing corrective terms for shear and radial

inertia, not present in the conventional single second order



differential equation for one dimensional wave propagation.
This paper was later followed, Ref. [5], by an analysis based
on a series expansion of the radial dependence of the dis-
placements, permitting higher order theories leading to a
larger number of simultaneous partial differential equations

in z and t.

While formulated in various ways, available treatments of
transient wave propagation in cylindrical bodies may be
classified as being first order theories as Ref. [4], or of
higher order. First order sclutions are available for the
elastic bar, Ref. [6], for a linearly viscoelastic bar, Ref.
[7], and for a nonlinearly strain rate dependent matev-ial,
Ref, [8]. The latter has been generalized, Ref. [9], for the
case of stacked rings and by the inclusion of a further term
in the axial displacement and the corresponding stross term,

so that the theory corresponds to Ref. [5].

The present paper will use the Galerhin approzch to
obtain approximate solutiéns which mav be carrieil to first
order terms corresponding to Ref. 4] or to a highexr approxi-
mation. It should be mentioned that an alternate approach by
pover series euxpansion of both displacenents and stresses in
the radial coordinate, capable of similar refinerent, was used
in Ref. [10] for the case of an elastic plastic rod. The use
of power series leads inherently to lowaer acc:iracv, and is

thus less efficient than the use of the “alerkin method em-

Ploying the same number of terms.



The present approach is as follows. In Section II the
differential equations and boundary and initial conditions of
the problem are formulated in elastic and plastic regions in
three independent variables, the two space variables r and z,
and the time t. The Galerkin approach to eliminate the variable
r is, howevef, not directly applied to the differential equations
because it is not pcssible to select functions in r which satisfy
the boundary conditions due to the stacked rings at the cylindri-
cal surface of the body. By converting the partial differential
equations in z, r and t in Section III into a set of integral
equations in r, but retaining partial differential equations in
z and t, the boundary conditions on r'--'ro no longer appear ex-
plicitly. Consequently, appropriate expansion functions can be .
selected without regard to requirements on the boundarv. This
leads, Section IV, to a system of hyperbeclic partial differential

equations in z and t.

Complications arise in Section III when the material in a
location z acts elastically for some values of r, plastically in
others, i.e., 1in locations where the interface between elastic
and plastic regions intersects the plane z = constant. It is
crucial that an approach to overcome this difficultv is
developed in conjunction with the finite difference solution of

the system of partial differential equations.

A typical example is treated using an elasto-plastic

material with a ncnlinear (hardening) pressure-volume relation.



The propertics of this material are taken from static tests as
described Iin Appendix B. The pressure input at the end of the
tube is selected in one case as gradually increasing to a peak
value, a situation for which a test is available. As a second
example a pressure jump with subsequently decaying pressure 1s
applied. In both examples the computation used only one ex-
pansion term for each of the ;even dependent variables. To
judge the reasonableness of the use of only one term in the
examples, Appendix A gives compafative results using one and

two terms for a liquid.



11 FORMULATIOMN OF DIFFERENVIAL EQUATIONS.

The purpose of this aralysis is the study of longitudinal
wave propagation in a semi-infinite circular cecylindrical body
of elasto-plastic material, Fig. 1, It is intended to consider.
only the rotation2lly symmetric case where the end surface z=0
i1s subjected Fo a uniform applied pressure po(t), while the
cylindrical surface cf the body is restrained against radial
motion by a thin elastic shell consisting of narrow rings which
are (in the z~-direction) not in contact with each other. The
type of shell described represents an experimental arrangement
of stacked rings intended to prevent longitudinal wave propagation
in the containing shell. The analysis is based on the premise
that the strains and velocities are small enough to justify the
use of linearized equations of motion, and of linearized relations

between strain rates and velocities.

a) Constitutive Relations.

The elasto-plastic material considered here is described by

the yield function and plastic potential
F=J, - (k - aJ )2 ’ (II-1a)
2 1 as

subject to the requirement

k - ad; >0 (I1I-1b)

both proposed in Ref. [1ll] for granular materials. The



quantities J., and J, are the invariants

1 2
I, =0 I, =+ s s (11-2)
1 kk ? 2 2 Tijij
where oij are the stresses and sij are the stress deviators.

The constants k and o are properties of the material, with
k a measure of the cohesion and a related to the slip angle.

Their values are restricted, Ref. [1l1l], to

>a >0 (I11-3)

qlw
N

The state of stress in the medium must satisfy nct only

the inequality (1b) but also the inequality
F <0 (I11-4)

The behavior of the material is then described by the

following two statements:

(1) When in an element in space and during an interval
in time the inequality sign in Eq. (4) applies, or when the

equality sign applies in conjunction with F < 0, then the

.

medium is acting elastically and the actual strain rates éij

are equal to those obtained from the elastic relations,

. +E =
Eij = bij (I1-5)

(1i) When, however, the equality sign in Eq. (4) applies
while che value of the yield function does not change, F=0,

the medium yields or may yield, and the strain rates are the

p

sum of the elastic values éfj and a plastic contribution éij ,



. .E . : !
eij = ?‘ij‘+ Sij (II-6)

. . E
The elastic stvrain rates Eij can be separated into the
. M +E .E
sum of a volumetric and of a deviatcric part, €k and ey -
: J

To express the hardening behavior observed in uniaxial tests

fota

on soil, the bulk mcdulus K = K(pj) will be considered as an
appropriate function of the mean pressure p = —Jl/3, while
the modulus of rigidity G is a constant. The elastic re-

lations are then

-E 1

xk T T X P %13 T 26 %ij (11-7)
‘The -plastic -strain rates are obtained in the con-
ventional manner from the plastic potential,
éP = _9dF
Rt
ij Oij
with the result
£ = 6ai(k + 3ap) ¥ s | (I1-8a)
kk N S 13 2

where A is an open function of time and space, restricted by
A >0 ' (I1-8b)

The energy dissipation in any element at any instant is
proportional to kA. The value of k being positive, energy
will be actually dissipated only if X > 0, the special case

when A vanishes is réferred to as neutral.

The behavior of the material in elastic regions is

described by Egqs. (5) and (7), while in plastic regions



Eqes. (4), (6), (7) and (8) hold. 1In the solution to be

obtained elastic and plastic regions will, in general, both
occcur., They are, in general, separated by one or more distinct*)
boundary surfaces of a priori unknown and time dependent location.

The occurrence of moving boundaries introduces complexities into

the solution, a matter to be discussed later.

A comment concerning the inmequality (lb), requiring

k - aJl'z 0 must be made. It should be understood that the
constitutive relations given are valid only if the inequality
holds, no relations are proposed here which would apply in the
excluded region, in which the material has disintegrated. If
it 1s found that a solution begins to violate the inequality
at a certain time, the results‘at subsequent times are meaning-
less. 1In such cases the present approach leads to no result.
(The situation is quite similar to the one¢ in hydrodyunamics,
where the conventional solutions lose validity at the onset of
cavitation.) Equation (1lb) is not part of the eguations to be

solved, but is only to be applied as a final check to confirm

the validity of results obtained without its use.

b) Differential Equations in Plastic Regions.

Due to the axial symmetry there are just four meaningful

relations between strain rates and velocities,

In special situations not expected in the problem to be
treated here, the distinct boundaries may degenerate into
neutral regions within which elastic relations, or plastic
ones with A=0, may be used interchangeably.
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In plastic regions Eqs. (10), (12) and the time derivative
of Eq. (11) may be considered tc be a set of seven quasi-
linear differential equations on seven dependent variables,

the four quantities defining the state of stress, s s S s

rr zz

Srz and p, the two velocities Ve and v, and a variable L
defined by L=\A. 1In such a formulation, the yield condition Eq.
(1l1l) must be added as an initial condition at the instant t

when plastic action starts in a particular location,

c) Differential Equations in Elastic Regions.

"
®
b
o
[ d
f-‘o
[}
5
I

In elastic regions the

F <O (I1-13a)

or

F =0 and F < 0 (II-13b)

apply in lieu of Eq. (11). In such regions the six quasi-
linear differential equations (10) and (12) apply provided

AZ0 is introduced into Eqs. (10).

d) Boundary Conditions.

In the problem to be treated, Fig. 1, a uniform pressure
Po(t) is applied for t > 0 at the loaded end of the cylindri-

cal body, z=0, while the shear stress at z=0 vanishes,

[szz - p]z=0 - ipo(t)

(II-14)

[Srz]z=0 =0

where p,(t) = 0 if ¢t < 0.
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The cylindrical surface r = r, is restrained by a shell
consisting of "stacked elastic rings'". The latter are assumed
not to interact with one another but tg be able to move
radially and axially in response to the stress exerted by the
adjacent material. In the radial direction it will be assumed
that contact between the material of the cylindrical body and
the rings is maintained, so thaf the radial displacement of

any ring is equal to the displacement [u_] of the adjoining

r r=r
[o]

material. The radial motion due to the radial stress

crr =s__ P is thus described by the differential equation

o

{I1-15)

8 - p + Bu_ + Au_] =
rr r rir=

where

ps and Es being the density and Young's modulus of the
material of the rings, respectively, and h their thickness
in the radial direction. The relations concerning axial

motion given below apply for a shear stress[s } caused
r=r
o

by viscous friction. If the axial velocity of the shell is

Vez the shear stress is

[srz]r=r =Clv, - [VZ]r=r°) (I1I-16)

where C > 0. Using the equation of motion of the rings to

eliminate v__ gives finally

(8, + 5 s.,+Cv] =0 (11-17)

rz z r=r
o

>0



The two ordinary differential equations (15) and (17) are the

required boundary conditions.

In addition to these boundary conditions at z=0 and
r = r, o the solution must satisfy requirements at the boundary
r=0. 1In this location all quantities must he finite and, for
reasons of continuity, the quantities S, and v, must vanish.
In view of the manipulation to be performed later, it is

convenient to replace Sz and V. by new variables S 2z and Voo

s = T 5 . v. = r vV (I1I-18)

rz rz

This substitution ensures that srz and vr vanish at r=0 and

k]

thus permits the simplef statement that all unknowns p, srr

S < > - p
2z * Spz * YV, s YV, and A must remain finite at r=0.

The boundary conditions at the external surfaces of the
cylindrical body, Eqs. (14), (15) and (17), and the require-
ments at r=0 apply without regard whether the elastic, or

Plastic differential equations apply in the adjoining material.

However, additional conditions must be formulated at the

internal boundaries separating elastic and plastic regions.

At such boundaries, which Iin general vary with time, two
possibilities must be distinguished. In the first case no
discontinuities in stresses, velocities or displacements occur,
and the appropriate conditions are simply continuity of these
quantities with the added requirement that the stresses at the

boundaries satisfy Eq. (11). In the second case, when dis-



continuities occur, the latter may occur only in the components
of the direct stress and of the particle velocity normal to the
bounding surface, and/or in the components of shear stress and
of the particle velocity in the tangent plane to the bounding
surface. The respective stresses, particle velocities and ;he
local velocity of propagation of the discontinuity must satisfy
appropriate Rankine-Hugoniot relations. The numerical solutions
to be obtained later are based on finite difference methods where
discontinuities are smoothed out, so that the relations at dis-
continuities will not be required and the further treatment will
consider only continuity of stresses, particle velocities and
displacements. (It is noted that the requirement of continuity

does not include the quantity A.)



IIT FORMULATIOXN OF INTEGRO-DIFFERENTIAL EQUATIONé.

The boundary value problem in the three independent
variables z, r and t posed by the equations fcrmulated in the
preceding section can be solved numerically by finite difference
methods in a routine manner, the only drawback being the
necessity for a large enough coﬁputer and the required compu-
tation time. As an alternative the present paper will proceed
with a more approximate numerical solution based on the Galerkin
method. By expanding the solution in terms of suitably selected
functions of r, the problem will be converted into one with only
two independent variables. In comparison with the solution of
the equations in three independent variables, this approach 1is
of course of advantage only in situations where one or two ex-

Pansion functions give sufficient accuracy.

If one could choose simple expansion functions which
satisfy the boundary ccnditions, the operations necessary for
. the use of the Galerkin method could be performed in a straight-
forward manner on the differential equations derived in the
Preceding section. However, the boundary conditions at r = ro s
Eqs. (II-15) and (I1-17), are differential equations with
Tespect to time, so that expansion functions cannot be chosen
in such a manner. Procedures when the expansion functions do
not satisfy the boundary conditions of the differential equations
are discussed in Ref. [12] for the method of weighted residuals*)

but the approach still requires essentially arbitrary decisions

by the analyst concerning the weighting.

T .
) This method is more general than the Galerkin one and
contains the latter as a special case.



The complications resulting from expansion functions which

do not satisfy boundary conditions disappear if the equations

to be solved are integral equations,

in which case the boundary

conditions required for differential equations no longer appear

explicitly.

To use this approach the results obtained in

Section II are converted into an equivalent system of integral

equations with respect to r, retaining differential equaﬁions

with respect to z and

+

The new formulation is obtained by

integration of the differential equations over the area of the

cross~-section and integration by parts,
with respect to r disappear.
the integration by parts are then

boundary conditions at r = r,

finiteness at r=0.

- . e A + - +
r(srr P err

+ B[2€vz - £

+ A[ZEG; - &

+
r{

o
wi

The resulting

rA

3
26

Gr)

[o}

[

The
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0
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0
r
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rv, = I (vz - £ v+ g G S¢. T £E° 2X srz)dE (111-6)
0

Differentiation with respect to z and t are respectively
denoted by primes and dots, while £ is a dummy variable of
integration replacing the radial coordinate in the integrands.
These six equations apply in conjunction with the yield con-

dition

: 2 - Z
F(cij) = s + SerSus + S, + r 5., (k + 3ap) 0 (I11-7)

and the requirements A'> 0, Eq. (I1-8b) and (k + 3ap) > O,

Eq. (II-1b).

The derivation of Egqs. (1) to (6) is symbolically

described by the statements
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where the numbers in braces { } denote the various equations.
The expressions (1) to (7) being based on the differential

equations in plastic regions, the expressions are naturally



valid only in locations z whevre the material is plastic feor

all values of 0 < r < r .

It can be demonstrated by reversing the process of
derivation outlined symbolically that the integral formulation,
Eqs. (1) to (6), is entirely equivalent to the earlier differ-
ential formulation, provided the integrands are continuous
functions of r for 0 <r < €, and that ;r and v, have finite

limits for r = 0.

The above integro-differential equations remain subject
to the boundary conditions (II-14) at z=0 and to initial con-

ditions representing a state of rest at t=0.

In elastic regions, i.e., in locations z where in the time
interval considered the material acts elastically for all values
of r, the appropriate integral equations are obtained from
Eqs. (1) to (6) by substitution of A Z 0. In addition to the
Previously stated initial conditicns for t < 0 and boundary
cornditions for z=0, the results must satisfy (k + 3ap) > 0

and one of the twe altérnate restricticns F < 0, or F =0 and

F > 0.

The derivation of the irtegro-differential equations (1)
te (6) in plastic regions and of the similar but simpler set
in elastic regions, apply respectively, only if the material
in the particular 1océtion z and in the interval of time con-

sidered acts plastically or elastically, respectively for all
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values of r. It is thus necessary to consider the situation
where the material acts plastically for some range of r and
elastically in the remainder of the range 0 < r < r, - To

make a valid staztement in such situations it is noted that

the differential equations in Section II are hyp=rbolic, so

that the solution, i.e., the values of the stresses and
velocities at any time t define the continuation of the solution
during the subsequent (differential) interval dt. It is further
noted that this continuation of the solution does not explicitly
depend on the question of plastic or elastic action of the
material for earlier values of the time. The numerical solution
of the problem will be based on finite difference procedurés in
z and t, the latter being of consequence hare. Assume that the
solution up to scme value of t has been found. Using the values
of the stresses and velocities at this time t as initial values,
one can find a preliminary '"plastic" solution [P] for t + At
based on Egqs. (1) to (7). Similarly, one can find a preliminary
"elastic" solution [E] for t + At based on Eqs. (1) to (6) with
A £ 0. These two preliminary solutions are each actually valid
in locations r where the respective secondary requirements are
satisfied. The solution [P] is valid only in locations r where
Eq. (1I-8b) holde, while [E] is valid only for values r where
one of the two restrictions, Eqs. (II-13a,b), is satisfied. In
the expectation that the problem treated has a unique solution*)
the ranges in r for the solutions [P] and [E] should cover all

values 0 < r < r, completely and without overlap. However, this

*)

While an approach te a proof of uniqueness may be found in
Ref. [13], no theorem on existence of solutiouns in dynamic
elasto-plastic problems is available.



ideal requirement is not likely to be satisfied in an approximate
analysis using finite steps and a truncated expansion. This
detail which requires an approximation will be discussed later

in Section IV. Using portions of the solutions [P] and [E] an
approximate numerical solution can, however, be obtained for all
values of r, even when the material acts plastically in some

locations, elastically in others.

The procedure outlined above can be simplified by making
the assumption that the separation of elastic and plastic regions
is always aiong a plane normal to the z-axis. As discussed at
the very end of Section IV this simplification is appropriate if
a very simple analysis is made where only one term of the ex-
pansion for each unknown is used when applving the Galerkin

method.



Iv REMOVAL OF THE INDEPINDENT VARIABLE r THROUGH USE OF THE
GALERKIN METHOD.

The removal of the independent variable r by the Galerkin
method is achieved by expanding the unkaoswns in terms of
appropriate functions of r, leading to partial differential
equations for the expansicn coefficients, which are functions
of z and t. The expansion functions selected are even powers

of r, i.e., ro, rz

s »++ + The reason for the omission of odd
powers is the fact that the differential equations (IT1-10) and
(I1I-12) aftér substitution of s = rs and v_ = rv permit a
rz rz r r
~ *

—solution for _all unknowns in form of power series in even
powers of r. Such a solution is suitable when the boundary
conditions at z=0 are even in r, which is the case in the
present problem. It is thus expected that immediate omission

of the odd powers of r in the Galerkin approach will give

better results for the limited number of terms used.

It must be stressed here that the elimination of the
variable r by the Galerkin method can only be applied to
equalities, such as Egs. (TII-1) to (III-7), but that the
secondary conditions expressed by the irequalities, Eqs. (II-1lb),
(1I-8b) and (LT-12a,b), must be retained as funcrions of r
unless one is willing to accept a further approximation with
some potential error inm the results. Consider as an zxample
the inequality X > 0, using the set of expansion functions

21
r~,1i=20,1, 2, ... . While A > 0 permits the conclusion

*) -

Due to the well behaved nature of the problem such a
series can be expected to be convergent,



k(r)r2i+1 dr > 0 (1v-1)

one cannot draw the conclusion that the existence of the in-
equalities (1) iasures X > 0, even in the limit when Eq. (1)

hold for all values of £ = 0, 1, 2, ..., =

a) Application of Galerkin Method.

To remove the variable r, the truncated expansions

n
p(r,z,t) = z p2i P .(z,t) \
i=0 - ’
n
srr(r,z,t) = Z r21 Ri(z,t)
i=0
E 21
s (r,z,t) = r Z,(z,t)
zZ2Z i=0 1
- T 24
s_(r,z,t) = J " T (z,t) \  (IV-2)
rz i
i=0
2 21
v (r,z,t) = ) r°T v, (z,t)
z 1=0 i
- T2
vr(r,z,t) = :ﬁor Ui(z,t)
n
2
A(r,z,t) =} el A (z,0) J
i=0

are introduced into Eqs. (III-1) to (III-7) in fully plastic
locations z and into Eqs. (ITII-1) to (III-6) with X £ 0 in
fully elastic locations z. The equations defining the new unknowns

Pi s Ry, 2y, T, VY, Uy and Ai are obtained by multiplying



ul
the respective equations by r and integrating over the
area dA = rdr of the cross section, the values of m being

0, 2, 4, ..., 2n. The resulting system in plastic locations

n 2t . : RS CIRTYS D 3
120 (2i+m+3) {(m+l) Ri - Zi - (m+3) Pi + —73315137_ (_Ti + pUi) +
r°(2i+m+3) 82 : ,
* (Zitm+b4y (B + A ;:3)[(m+2) L T

a rij(2i+m+4)

) 3j=o (21+23+m+4) Aizj]} =0 (1v-3)
. 21
0 2i+m+5 C . B | , ' ' .
Lo 2itars) Givmrs G F 30 ((*2) Ty - 2 + Py + o0, ] +
. = . '
P g% [(m+3)(21+m+;) vy + % G
° (2i+m+3) x) ‘
n rij(2i+m+5)
* 2 Giragen Myl s (1v-4)
21
n ro L] 3 .
{ + — - — -
(Lo TZEF2) (Zitmrh) {irD) vy - vy - 55 Ry
a r232142) Qurnta)
) 3j£0 (zi+2j+2; (zi+25+nthy MiRyl = 0 (1v-5)
21
n 10 ' 3 .
iEO (iv3) (ismrd)y [(21+2) Uy - 20, + 50 2.+
0 er(Zi+2)(Zi+m+4)
* 3j£0 (Ziv23+2) (2% 23m75y MiZgb = 0 (1V-6)
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21i
n T ' 1 .
2i42) U, + V, + — P -
(4o (21+2) (2i+m+d) fQaie2) v, 1k, i
n rgj(21+2)(2i+m+4)
- 6uj§0 (773D (airasrarhy Mi(R8yy + JaR ) =0
(1v-7)
2i
n r . . '
o (2i+3) (2i+m+5) 21 vV o+ U - 1 -
g=g (FAFD L) iy (auaneye? 2 L 6
n o r23(2143) (21+mes)
- zjzo (2i+23+3) (2i+23+m+5) AiTj} =0 (Iv-8)
n n r§i+2j r§(21+2j+m+2)
Lo 4o CRLFTIaRD) {RjRy + RyZ, + 2,20 + —mmsery 14Ty -
- 3 - - -
(kdoi + “aPi)(kaoj + 3tu)} \ (1v-9)
where
r r
[
. . 24+1
1 (23+2) (23+m+4) m+1 £
i zgimiam = n ag} dar (1v-1¢)
mj r _ 21
o K(x = ) & Fi)
0 0 i=0
The boundary conditions are
(2, - Pyl o = P (8) 8 (IV-11la)
(Tyl,.0 =0 (1v-11b)

where 60 is Kronecker's delta, while the initial conditions

i

require that all unknowns and their partial derivatives of

all orders vanish for t < 0, z > 0.



The appropriate equations in elastic regions are Eqs. (IV-3)

to (IV-8) with Ai = 0.

Solutions obtained from the respective equations in plastic
or elastic locations are valid only 1f the appropriate secondary
requiréments are satisfied. Thus, the plastic solution 1is valid
only in locations z where Eqs. (IV-2) give X > 0 for all values
of r, while fhe elastic solution applies only in locations z
where the sclution satisfies Eq. {(II-13a) or Eqs. (II-13b) for
all values of r, As discussed in the last two paragraphs of
ASectionglllithLg,mili in general be locations z where neither
of the above two requirements 1s satisfied. In such locations z
the plastic and elastic solutions are each valid 1in parts of the
range in r, the range to be determined after each time step At
of the numerical integration. Further, as noted in Section II,
results are only meaningful if they satisfy the requirement

k + 3ap > 0, which follows from Eq. (II-1b).

b) Special Case of Truncation to rn=0.

The simplest solution is obtained if only one term of the
expansion is used for each unknown. The solution on this simple
basis gives the exact solution for an infinitely rigid containing
tube and may therefore be considered reasonable if the tube is
sufficiently rigid, a suitable criterion to be develbped later.
After simplification, the following equations are obtained in

plastic locations:
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SRO - SPO - To + SrOBUo + r, on = 0 (Iv-12)
C 3 ! ! .o 4C .
= 4+ = + + + == = -
(A + at)(21‘O ZRO PO + pvo) . Vo 0 (Iv-13)
3 - ' \ !
3C Ro + Vo - UO + 3/ oRo = 0 (Iv-14)
1 3 . - -
W‘;—) Po + Jo + 2U0 6(1/\0(1( + 30.?0) = 0 (Iv-15)
1 !
A To - U + 20T =0 (1V-16)
Z + 2R =0 (Iv-17)
o o
- 2 2 2
¢ = 6RT + 7 TT - 2(k + 3aP Y° =0 (Iv-18)
o o o
where
B = p + _i_A (IV-19)
0
The manipulations leading from Eqs. (3) to (9) to Eqs. (12)
to (18) are indicated below. Each equation is reduced to the

first term by the substitution m=n=0. The rasult of the
elimination of Uo and V; between Eqs. (5) and (6) is in-
tegrated with respect to time and noting the original state
of rest, leads to Eq. 617). It is noted that this equation
implies that in this approximation S,z + Zsrr = 0, which is
exactly true if the restraining tube is absolutely rigid.
This result is due to the low order of the truncation, but
s8hould be a good approximation for the case of very strong

restraint. The remaining operations, including the use of

Eq. (17) to eliminate Zo , are represented symbolically by:
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v - 12} = [5{1v - 3} + 10r (B + A =) {1V - 6}], _
{ ! { ° at? 2o = "2Rg

{1v - 13} = (4{1v - &4} + 12r_C g% [1v - s}]z°

- -2
{1v - 14} = -8{1v - 5}

{1v - 15} = 8{1v - 7}

{1v - 16} = -15{1v - 8]

{1v - 18} = (4{1v - 9}120 .

The system of equations (12) to (18) is subject to the boundary

conditions

[2R_ + P ), _o = P (%) | - (IV-20a)

(T =0 (1v-20b)

o]z=0

and to initial conditions corresponding to a state of rest

at t=0,.

In elastic regions Eqs. (12) to (17) apply with Ao = 0,
while the secondary conditions, Eq. (II-13a) or Eqs. (II-13b),

must be satisfied, the function F being in this case:

F = 3R> + r2T% - (k + 3ap_)> (1v-21)
o ) o
c) Boundaries between Elastic and Plastic Solutions.

As a result of the truncation, the extent of elastic
and plastic regions obtained from the elastic and from the

plastic equations does not quite agree. This requires



discussion to resolve the inconsistency by a suitable approxi-
mate procedure, For the particularly important case when only
the terms n=0 are used, suitability of the elastic solution
obtained by forward integration for a given valiue t in a
location z 1s to be checked by Eq. (21). This check may in-
dicate that the yield relation is satisfied for some valves of
r, but not for others, because Eq. (21) contains a term de-
pending on r. On the other hand, the value A obtained from

the plastic analysis in this approximation is necessarily a
constant, A.Z Ao , so that the plastic analysis in this location
Z would seem to be acceptable for all values of r if’Ko > 0,

or not at all if Ao < 0. This difficulty can be resolved
regardless of the order of the truncation, n=0 cr n > 0, by
accepting the elastic sclution [E] wherever Eq. (II-13a) or
Eqs. (1I-13b) are satisfied and using the plastic one, [P], in
all other locations, regardless of the sign of A. The arbi-
trary preference given to the result of the elastic soluticn
[E] is motivated by convenience, caused by the fact that
numerical solutions derived in Section V furnish the plastic
Ssolution as the elastié solution followed by a corrective step.
If the procedure recommended above leads in a location z and

at a time t to an elastic solution for some range of r and to

a plastic one in the remainder, series with different coef-
ficients will apply for the unknowns defined by Eqs. (2). To
continue the forward integration in time, the series for each
of the quantities in (2] and [P] wmust be reconciled by expansion

[E], p[P]

of the result. For example, if the pressure p in the

elastic and inelastic regicas, respectively, in a two tern
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expansion at a point z, t are found to be

2_I[E
pl®l - PgE] MRS ] o<t <l (1Iv-22a)
P P] 2_[p
NES N Pg For P£ ] Pl (1V-22b)
- - o
then a ﬁew expansion for the pressure
p =P + r?p 0 <r<r (1v-23)
"o 1 - - 0
is to be obtained by appropriate fitting of Po and Pl . The

coefficients Po , Pl in the last equation are then to be
used in the numerical amalysis to find the unknowns at the

next time step.

A somewhat simpler procedure can be employed when only
the terﬁs n=0 are used. Still basing the decision on the
elastic analysis one can decide not to apply Eq. (21) as a
function of r as a criterion, but to base the decision on

the mean value of F. The elastic solution will then apply

if

2 2.2 2
d = 6Ro + roTo - 2(k + 3 Po) <0 (Iv=-24)

This procedure 1s in the spirit of a cne term Galerkin
solution and eliminates locations where Egs. (22) and (23)
have to be applied. The moving boundaries betwveen elastic
and plastic regions become in this approximation planes

at right angles to z. This simplified approach was used

in the examples in Section YI.
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\J FINITE DIFFERENCE FORMULATION.

A finite difference solution of Eqs. (IV-12) to (IV-20)
'generated by the Galerkin method with n=0 is presented in

this section. The computation technique consists of a process
of forward integration in time based on the elastic relations,
followed by a check on the valiaity of the stresses obtained
at each time step and a correction of these trial values to
conform to the plastic reiations, where necessary. The
differencing scheme is therefore motivated primarily by the
elagstic relations, with the terms deﬁending on KO represented
in such a manner that the correction algorithm becomes simple

and convenient.

a) Difference Equations.

In elastic regions the problem is fully hyperbolic with
real characteristics and the correct number of linearly in-
dependent characteristic vectors. In such a case, for a
system in two independent variables governing stress wave
propagation, a standaré technique consists of using a
staggered grid with stresses and velocities evaluated at
alternate points in time and space and central differences
used to approximate derivatives. To this end, the first

quadrant of the z-t plane is divided by a double rectangular

8rid, evenly spaced in the z and t directions by %f and %f s
as shown in Figure 2. The superscript n is used to indicate

a time level and the subscript j a point in space with n=)%
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corresponding to t=0 and j=1 tc 2=0, so that for a generic

dependent variable D(z,t),
D? = D[(j-1)Az, (n-3)At] (v-1)

The stresses are computed at points (jAz, nAt) and the
velocities at points [(j+%)Az,(n+%)At], j and n representing

integral values.

The computation scheme will be applied to a material
with a nonlinearity of the hardening type which tends to
steepen'loa&ing profiles and subsaquently generate loading
shocks. In a simple centered scheme such as described
above, steep fronts are followed by strong numerical oscil-
lations which mask the profile of the true solution. Tc
eliminate these oscillations and render computation with
discontinuous loading histories possible, a device similar
to that proposed by Lax for equatione in conservation form,
Ref. [14]1, is used. The procedure used here consists of

replacing the simple centered time difference

3D n+k " 1 n+1l n — 2 R
315 = it (Dj - Dj) + 0(&t"™) (V-2)
by the form
3D.n+h _ 1 .o+l 1 .. n n 2
[ac]j At [Py 2+ c, (Dyyy * €pPy + Dj—l)] +0(G) (V-3
where CD > 0 is an arbitrary parameter. The effect of this

modified scheme is to introduce a "diffusion term" pro-

—_n
portional to (&z°/At) into the relations as can be seen from
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1 n+l 1 n n n - (8D n+k
ac (°y - 7% c, (Dyy1 * CpDy RS T P
_ £ 1 [92D1n+% v ol Y V-4)
At 2 + C 273 : !
D 3z
Using the form, Eq. (3),in the constitutive equationes (IV-14)
to (IV-16) and deleting the zero subscripts indicatinz the
order of the truncation fcr the sake of simplicity, the
finite difference form of equations (IV-12) to (IV-18) is
n+l n 1 n n GAt n+i n+k
- +o— - 2= + -
Rj Rj 7+ ¢, (Rj+1 2R + Rj + = (Uj_’_;5 Uj %
2GAt n+k n+l n+l _n+l '
- — (V -V - 2GAc A V-5
38z Vyey T Vyay) “hy Ry (V=)
n+l n 1 n n n n+s n+%
P = P+ - 2B, + P - k, At(U + -
3 e T o IRl PO g
k% At
o ™ L gy L 6D A AT (k + 30p7E Vb
sz ey T Ve g A8 by TR
n+l n 1 n n n GAt n+% n+%
- ' - + e——
Tj Tj t T G (1j+1 ZTj t Ty az U FESVER !5
- 2che ATFE LT (yly)
h] 3
Zn+l - - Rn+1 V-8
i 2 3 ( )
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n+3/2 53At° n+y on-l
o}
Y 5At n+1 n+l n . on .
“l: [RIT] + RYTD =T, + 'R+
[o]
5At n+1l n+1l. n n
-+ 22 3 [(Rj+1 + Py -)—(Pj+1 + Pj)] +
Se
At n+l n+l i ! n
Yo, e T Ty T o Tl )
n+3/2 _ ., L CAt . 4A . .-1 j, . n+k _ . cAt ka n-k
N e A C e 7l G roe DR
2At CAt n+1 n+1. Cht. ,.n n
Ty [(1 +_2Av)(Rj+l —‘Rj. lf(l - 32 ;(3j+1 - Rj)] -
At CAt n+1l n+1 CAt n n’
- 4 &8ty - (1 - =8t - -
chz [(r + 24 >‘Pj+1 ?j )-(1 TA )(Pj+1 Pj)]
At -, CAt, . n+l n+1 cAt, ,.n n
- o Q@+ Ty F T )= - (T T (V-10)
n+l _ n+l n+1l a+l, _ a+l,.2 . 2 nil 2
R T R O
- 2(k + 3aP?+1)2 =0 (V-11)
where -
«? = xeeh (v-123
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and CD > 0 is an arbitrary value to be chosen small enough

to lead to reasonably smooth numerical results. Consistent
with this requirement, CD should, however, be selected as

large as possible, to avoid significant energy losses due to
the artificially introduced dissipative terms. For simplicity,
the dissipative terms in Eqs. (5), (6) and (7) and the non-
linear function Kk which depends.on the bulk modulus K(p) have
been written at (n+l,3j) and at (n,j), respectively. This is

not consistent with the centered scheme, but 1is convenient

for the computation.

Equations (5) to (11) apply in plastic regions in con~-
junction with the restrictions, Eqs. (II-1b) and (II-8b),
while the first six of these relations, Eqs. (5) to (10) with
A = 0 hold in elastic regions subject to the restriction ex-
pressing the requirement that the stresses remain below yield.
In the present simplified approximation the yield condition
will not be usa2d as a function of r, but as indicated in the
discussion leading to Eq. (IV—24) only the value ¢ defined
by this equation will be uséd as a criterion. The appropriate

condition in finite difference form is thus

n+l - 6(Rr.1+1)2 + r2 (

Tn+1 2 nt+l,2
] h| o h|

¢ YT - 2(k + 3an

The process of construction of the solution 1s as follows.
Using the stresses at the time n and velocities at (n+¥) the
four equations (5) to (8) for elastic regions (i.e., with

A§+1 Z 0) are solved for the stresses at the time (n+l).

)* <o (V-13)
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)

: *
For points j where Eq. (13) is satisfied the stresses are

accepted and Eqs. (9) and (10) are used tc find velocities at

(n+3/2). TIf Eq. (13) is not satisfied the correction algorithm

k&) - . .
indicated below is used to find the stresses at the time

(n+1).

+ -
Equations (5) to (10) with‘A; 12 0 can be viewed as a

(vectorial) finite difference operator at the time level (n+%).

Its application requires knowledge of R, P and T at the nth

time level and U and V at the (n+1§)th and the (n—%)th and at
_all the relevant space points. The operator therefore

represents a two-leval implicit nonlinear finite difference
scheme and a stability analysis according to the methods of
Richtme&er and Morton, ﬁef. [16], gives the necessary local

criteria

‘ — — ? —
At 31 , .n _ 4G I S At Y G —2l
Az p(Kj+3)iV1 2+CD’Az/p 5yl‘z+c

applicable at each time level and space point.

b) Correction Algorithm at Intericr Points 1.

At interior stress pcints (n,j) where the elastic

stresses violate Eq. (13) the elastic stresses,

(V-14)

*)
The secondary requirement k + 30LPn+l > 0 must be satisfied
in elastic and plastic regions., f it is not, a situation
not further considered here, the above relations deo no
longer hcld, because the material has disintegrated.

*:‘c)

The manner of corraction is a generalization of the

approach used in Raf. [15] for the much simpler case of a

von Mises material.
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n+l _ _n 1 n n n GAt n+ n+k
= — - + 2=
By F Ry ramey My 7 2Ry Y R T Uy ¢ Uy
_ 2GAt o+l _ oty _
e (vj+% j %) (V-15)
=n+l _ _n o1 n n n n n+l n+k
P = p, + 2P, + P - Kk, At (U + -
3 I e e T R B TR bt
n
K, At
R o+l nt) V-1
s (vj“’ vj_%) ( 6)
=n+l _ _n 1 n n n GAt n+% n+%
T E T, 4 o——— (T - 2T, + + V-
h] h| 2 + car( j+1 j Tj-l) 2z ! I+ T j -3 (v-17)
ﬁre used as trial values. Substitution of the values
§;+l R §;+l , T;+l into Eqs. (5), (6) and (7) gives the
equivalent equations
1 + 26 At Aj
T;1+1 - 1 e T;1+1 (V-19)
1 + 2G At A
+1 . 1 =n+1l
(k + 3ap?7%) = (k + 3aB77%)  (v-20)
i 1 - 18a? k" ar ADH? j
k| ]
where R;+l R T?+l and P?+l are the actual stresses allowing
for plastic effects. When Eqs. (18), (19) and (20) are
n+1l n+1l n+l

substituted into Eq. (11), ®(R 13 T ) =0, a

3 * 3 >

+
quadratic equation for A? 1 is obtained. It has two roots
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2(k + 3a B"7h)
antl o L ]
i 26At 92 P o (R7TL pntl Tn+1;ﬁ
l -+ —_T—i l + j ! j ’ j
-6 2(k + 3a ??*l)z

where the upper or lower signs are to be used consistently.

The correction procedure is tc be used when the elastic

=n+ - _
values violate Eq. (13), i.e., when &(R" 1 potl Tn+l) > 0.

i3 s

For this case the square roots in the preceding equation are

-larger than unity so that the upper signs in this equation

+
always furnish a value A? 1 which satisfies the requirement
+1 o 9a2K?
A? > 0. However, when the term —_E—l is larger than unity
(cr close to unity) the lower signs also furnish a positive
n+l . . .
value Aj . This value is 1inappropriate and should be

disregarded. The inapplicability of the value obtained on
the basis of the lower signs can be demonstrated by studying
the consequences of decreasing the time step At to the limit

At » 0.

As a demonstration consider, for simplicity, Eqs. {15)

to (17) with C_ + = , and a solution such that the yield

D
. L : s , . n L0 n
condition is just satisfied for (n,j), ¢(Rj , Pj , Tj) = 0,
=n+l <n+ =n+1 ‘ '
while ¢(R; , P?“%, T; ) = € > 0. If the time step is

decreased, the value of the yield function at the time (n+1l)
will beccme smaller, € = 0(At). Using the upper signs one

finds



n+1

Lim [At Aj

At+0

Lin £
] = e=>0 [ 2 n n 2] =0
j)

8(%a Kj + G)(k + 3aP

while use of the lower signs gives

Lim

n+l, _ Lin
At+0

[At Aj £+0 -+ 6(g)] = 3

- G) 90 K

[— 1
(9GZK?

3

which is a finite positive value if 9a2

(15) to (20) indicate that ‘or A4t A?+l + 0 the increments

+1
Rn+1 - rRY , Pn+l - " and T? g T? become, in the limit,
i B k| 3 hj 3
smaller and smaller as required. If, however, At A?+1

n . .
Kj > G. Equations

in

- =n+ -
the 1limit is finite, then R?+l - " Pl LI Pn and T?+l "

i j i T
n+1 n

tend to zero, but not P, - P, , etc

., because the factors
on the right hand sides of Eqs. (18) to (20) differ in the

limit from unity.

The corrected stresses are thus to be computed from

¢(§;+l, Fr'1+1 =n+1

1+ 1. -1
2(k + 30 P

(v-21)

o(ig‘”, B"

G / 2(k + 2 T

c) Correction algorithm at the Boundary j=1.

At the boundary j=1 (z=0) a similar correction algorithm
must be formulated to satisfy the bouundary conditions corre-

sponding to Eqs. (IV-20a,h)



n 2 _ _n
ZRl + Pl = P,
n -
Tl = 0
where pz = po[(h—%)At]. For this purpose the constitutive

equations (5), (6) and (7) with CD + © and the yield con-
dition, Eq. (11), at j=1 are used and the grid is extended

one half-step beyond z=0 to include j=)%. Substituticn of

n+k n+l

Eqs. (22a,b) and elimination of (V -V ) gives the
3/2 L
relation
St 4G/ 3
S ntl _ ,ny . n+¥l _ n n+ls
(] () P)-(p, p,) + 4Gat Uy/z
K
1
~ 2cae AML ™ 4 ogak - (1 - 120%) PP -
1 o 1
Using an elastic trial value
.
P12 Pl o ———— [4car U??E - M- Y
(k; + 46/3)
reduces Eq. (23) to the form
kD :
=n+ T +
oL 2y seae ATTE ™ 4 sak)
1 L 4G/ 3 1 o
n+1l 1 )
P =
1 B
1+ (—2— 2cae A3 (1 - 1247
K, + 4G/3
1
The yield condition at the boundary becomes
n+l _ n+l, _ 3 B 2 n+1l n+1l
¢, T E () =3 (1 12070 (B "7 - P )(R " - P) <0

0

(V-22a)

(V-22b)

(Vv-23)

(Vv-24)

(v-25)

(v-26)
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where the quantities

3p2™h - /D)

P, = (V-27a)
3(1 + av1l2)
(3p2+1 + k/17)

P, = (V-27b)
3(1 - o/12)

satisfy the inequality

A(3apn+1 + k)
P, - P = 2 = > 0 (Vv-28)
‘ Y3(1 - 12a°)
for (3ap™*t + k) > 0, -1~ > 4 > 0. Finally, substitution
° W)
of Eq. (25) into Eq. (26) gives two roots for A;+1 .
=n+
1 R GHRRCVEINC SR Iy 1y
LSRR Y: i n (P =P (V-29a)
(1 - 120%) «) b a
(«™ + 4G/3) ML op )
Ls ! 1 - 1 b (V-28b)
1b - GBr 1,02, K; (P, - P)
where use of An+l in Eq. (25) gives pitl P. , whereas
1l a 1 a
n+l n+l
Al p 8ives Pl = Pb

From the form of Eg. (26) and the inequality Eq. (28) it

is seen that only if the elastlic trial value computed from

=n+1l

Eq. (24) is outside the runge Pa < Pl < Pb will the yield
condition Eq. (26) be violated, that is ¢b(§T+l) > 0 and a
correction of the trial value be required. When ?;+1 > Pb ,
of the two roots given by Egs. (2%a,b) only A2+; is positive
and its use in Eq. (25) gives PT+1 = Py . If §?+l <P_,



A;+; is the positive root and leads to P:+1 =P . Thus, in
a
either case, the sclution satisfies An+l > 0.

1
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Vi DISCUSSION OF TYPICAL NUMERICAL RESULTS AND CONCLUSION.

a) Material Case 1.

Results for a group of situations were obtained using the
material properties listed as Case 1 in Appendix B and a

gradually rising input pressure
po(t) = 300[1 - exp(-1000t)] (VI-1)

in psi and seconds. The analysis was made in all cases for
stacked rings with a radius r,o= 24 in., but three radically
different values for the parameter B representing the shell

stiffness were used,

Bl = 7.95 x 105 lb/in3 , 32 = 2,93 x 104 lb/in3
By = 5.35 x 103 1b/1n>
- ~h 2 4
The mass of the rings was not varied, ps = 7.5 x 10 lb.sec”/in

The analysis was made for the value C=C, defined in
Eq. (II-16), implying that there is no longitudinal inter-
action between rings and filler material. The values of 82
and Pg correspond to steel rings of 9/16 in. thickness and
24 in. radius, a case for which a test, Ref. [1], is available.
The valuevB1 is very much larger than B2 » so that transverse

strains for the former are severely inhibited and the situation

for B, can be expected to be very close to uniaxial strain.

1
The value B3 on the other hand represents a situation where the
lateral restraintis an order of magnitude less than for B, and

2

longitudinal and transversc strains can be expected to be of

comparable magnitude.
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Under uniaxial strain, See Figs. B-1 and B-2, the material
description implies hardening with increase in pressure. As a
result, a progressing shock front occurs in all examples, even

for the gradually rising input po(t).

When formulating the finite difference scheme a "diffusion
term'" defined by the arbitrary parameter.CD Qas introduced.
After some exéerimentation it was found that numerical results
in which the shock fronts are steep, while subsequent oscil-
lations (due to the numerical approach) are not excessive,
could be obtained for At = 5.0 x 10 6 sec., Az = 6,25 i1n. if

values of CD on the order of 30 were usa2d. A short discussion

of the effact of varying CD is given in Appendix C.

All results shown used vne term of the expansion for each
gnknown. The matter of adequacy of this truncation is dis-
cussed later. As a result of the truncation the axial stress
is uniform for all values of r, while the radial velocity, e.g.,

varies as r, etc.

Numerical computations were made on a CDC 6600. Figures
3, 4 and 5 show the axial stress histcries in three locations,

z = 15, 25 and 75 in., for the three values B 3, and B

L "2 3°
respectively. The shccks are clearly visible and the strength
increases with z in Figs. 3 and 4 as expected. This is not so
for thé weakest shell, Fig. 5; where the shock strength at 75 in.
has decreased. (It will be seen later that the truncation used

can not be considered adequate for this case and the unexpected

decrease may be due tc this inadequacy.) In Figs. 4 and 5

/ o



oscillations with periods in cxcess of 1 msec. are clearly
visible. Their periods, respeccrively, agree with estimates
for the periods of radial oscillations of the shell filled
with the material. These oscillations are thus not caused by
the numerical scheme, but are real. The same type of oscil-
lation (while present) is not easily discernible in Fig., 3
for the very stiff shell. Such oscillations do not occur in
wave propagation in uniaxial strain and the smallness of the
oscillations is due to the fact that the value Bl is suf=-
ficiently 1arée to approximate the uniaxial situation well.
In addition to these oscillations there are others of much
higher frequencies just after the arrival of the shocks.

These oscillations are of purely computational origin. Their

magnitude is controlled by the value of CD

The time-histories for axial velocities are quite similar
to those for the axial stresses and were not shown. Typical
results for the radial veloéities at r = r_are shown for the
stiffness B, in two locations z, Fig. 6. The results show

2

decaying oscillations corresponding to those in Fig. 4.

Typical plots of shear stress for the three values Bi
are shown in Fig. 7. Due to the truncation the distribution
of the shear stresses is necessarily poorly approximated.

They are proportional to the location r, i.e., the boundary
condition Sp, = 0 for r = r, is not, and can not be satisfied.

The result obtained is only a "best fit'" of the actual dis-

tribution. The shear stresses, which are much smaller than
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the radial ones, oscillate with respect to some ultimate, non-
vanishing value. As expected, the magnitude of shear stresses
and oscillations increases as the rings become softer. The period

of oscillation agrees with that in the axial stresses for the

5 3

values B, and By - For the stiffness B, = 7.95 x 10~ 1b/in”,

1
Fig. 3 does not show oscillations clearly, while Fig. 7 indicates

oscillating shear stresses below 4 lb/inz. As mentioned before,

the corresponding variations in Fig. 3 are too small to be

visible.

Situations with an immediat

[t

pressure rise in p (r)
followed by an exponential decay can also be handled. As an
example, Fig. 8 shows the applied axial stress po(t) and the
resulting axial stress at z = 15 in. and 75 in. for

32 = 2,93 x 104 lb/in3. It must be emphasized that the material
model used is for this input entirely unrealistic. The response
in this case involves important unloading situations, while the

material model was not fitted for unloading. Figure 8 is thus

purely academic.

b) Comparisons cf Results for Materials of Cases 1 and 2 and

of a Test.

A test result gilving the axial stress at a distance
z = 15 in. is available, Ref. [1l], for the tube stiffness
B, = 2.93 x 104 lb/in3. The measured input pressure and the

time-history of po(t) according to Eq. (1) are shown in Fig. 9,

indicating that the difference is modest. Figure 10 shows the



test result and the computed results at z = 15 in., for the
materials of Cases 1 and 2, the properties of which are listed

in Appendix B. Both analytical results agree well with the test.

The agreement between the calculations for Cases 1 and 2 at
2z = 15 in. shows that the resultsg in this location depend es-
sentially on the behavior in uniaxial strain, where both cases
lead to nearly identical stress-strain curves, (see Figs. B-1
and B-2). Differences between the materlals, however, become
apparent in the results further from the loaded end of the tube,
at z = 75 in., also shown in Fig. 10. Arrival times and the
corresponding jumps in stress differ noticeably, but not radi-
cally. This indicates that the effect of differences in triaxial
behavior increases with z, a trend which will hold in other cases

too.

While the agreement between the test and the computation is
gratifying, its importance must not be exaggerated. The fact
that both sets »f material parameters give good results indicates
a lack of sensitivity in this location, provided the behavior in
uniaxial strain is weli expressed by the parameters. The
agreement should also not be used to claim confirmation of the
elasto-plastic model used. Any other model representing the uni-
axial stress-strain curve well would have given good results ton.
There is one conclusion of some importance, however, which can be
drawn from the agreement of test results and analysis. The latter
matched, in Cases 1 and 2, the uniaxial static test. The adequacy

of the static test as a basis for a dynamic analysis indicates
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that effects of strain rate in this range, and for this material,

are not important.

A sharper tool for an experimeéntal decision on the adequécy
of any material model could be made by observing not only the axial
stress, but also the radial motion of the restraining rings. To
demonstrate the streong dependence of the radial motion on the
material propérties, Fig. 6 shows also a plot of the radial
velocity at z = 15 in. and 75 in. for the material of Case 2. The

velocities are only about 507% of those for Case 1.

c) Considerations Concerning Truncatioa.

An cbvious, but uneconcmical way to determine the sufficiency
of a truncation is to make an alternative computation for the

actual problem with an increased number of terms.

However, estimates of adequacy can be made with less effort,
based on simplifications of the material properties. In Ap-
pendix A, the differentizl equations for a tube filled with a
linear elastic inviscid fluid are obtained from the general

relations in Sections II, III and 1IV.

Applying these relatively simpie relations and comparing
the results from truncations to one and iwo terms, gives an under-
standing of the situatioan. The nondimensional analysis in Ap-
pendix A depends on the shape of the input function EO(T) and

on the two parameters
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The last parameter expresses the influence of the mass of the
containing rings and is on physical grounds of minor importance,
because this mass 1is a small fraction of the mass of the enclosed
material. There is, further, no reason to expect a radical de-
pendence on EO(T) when the time constants describing the load
hiscories are of similar order of magnitude. The situation for
the fluid, considered in Appendix A, thus depends principally on

the nondimensional parameter B.

To use the result obtained for a fluid Iin Appendix A as a
guide for a nonlinear solid, it is necessary to use an apﬁropri-
ate equivalent value Ee for the parameter B. If a tube is so
stiff that the transverse strains Er vanish, the truncation to
one term inherently gives the exact solution. As the transverse
strains increase, or more precisely as the vatio Er/E:z increases,
the solutica using one terr will become progressively less
accurate. The value sr/ez seems therefore a suitable gage and
the equivalent value ie should be selected so that the ratios
erlez in fluid and solid agree. As there are no strain rate
effects only a static comparison is required, but the non-
linearity in the solid requires the selection of a representative
stress level. For the material properties designated as Case 1

and a stress level of 200 psi the values

B n 718 , B . N 26.2

el e » B Nvo4L5

el

were obtained for the three shell stiffnesses Bi defined
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previously. (The correspending values Ee for the material of

o]
[}

Case 2 are somewhat lacger, e.g., 55.) The knowledge of

el

the values Ee permits ccmparison with the results for the fluid,
which were obtained from

B1 = 211¢ , B, = 77.7 , B3 = 14.2

The results using one term were quite satisfactory for El

and 52 , while the results for the smallest value §3 = 14.2 were
meaningful, but not really good, particularly for the largest
value of ¢ = 3.0. This leads to the conclusion that all results
for the stiff tube, B = 7.95 x 10° 1b/in°, can be accepted as
reliable. For the value B, = 2.93 x 104 lb/in3, the results at

z = 15 ia, and 25 in. can be accepted, but the results at 75 in.

are likely to deviate appreciably. The results for
B3 = 5.35 x 103 1b/in3 may be inaccurate, but still meaningful
at z = 15 in., but are questionable at z = 75 in. The insuf-

ficiency of the truncation may be the cause for the drop in the

shock strength from z = 25 in. to z = 75 in. iﬁ Fig. 5.

The value Eez for the material of Case 2 being larger than
for Case 1, the results shown are at least as good as for the

material of Case 1.

d) Conclusion.

A scheme has been presented which permits the analysis of
wave propagation problens in tubes filled with an elasto-plastic

material. The approach permits the treatment of cases where the



material behaves differently, elastically or plastically, in

different regions which move with time in an a priori unknown

manner.

The method is applicable to other materials. For example,
it is possible to modify the model used to allow for hysteresis
by using different pressure-volume relationships for loading
and unloading. Tt is also possible to apply the approach to
elasto-plastic materials with different yield conditions, to
materials of the type considered in Ref. [3], or to viscous or

visco-plastic materials.

The arrangement considered is suitable for tests, so that
the analysis proposed permits a check on the appropriateness of
material models and corresponding parameters obtained from other
tests. It may also be possible to use the analysis in con-
junction with dynamic tests to obtain the values of the

parameters required for a theoretical description of a material.
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APPENDIX A -~ Linear Inviscid Fluid - Influence of Truncation.

For the purpose of ubtaining a judgment on the validity
of the truncation used in the body of the report, this appendix
considers the special case of a linear inviscid fluid in the
gsame configuration, For thi+ case, numerical soluticrs based
on truncitions with one and with twc terms are compareld., In
this simple case the analysis vrequires little effort, yet is
very helpful. The appropriate equations for a linear inviscid
fluid can be obtiinad as a :pecial case of the rselaticns found

in Se~tion IV in elastic regions.

a) Equations for a Linear Inviscid Fluid.

In an inviscid £luid, several of the variables vanish,

and ~he corresp nding equations ottained by the Saleriin
methnd will not appear. Tie value $=0 is to b+ uged for the

modulus of rigidity, while the linearityv leads to
K(p) = K, = constant
so that Eq. (IV 10) becomes w_ . = K
mj o

As a result nf these simplifications, Eq. (IV-7) beromes

21
s “o o ian ' 1 .
20 (Zi‘l"_"-ff’.i-i-m"."loﬁ [(2i+2) in + Vi + ‘{\— Pi] = 0; m=0,2,...,2n
= (o]

(A-1la)



This form can furthev be simplified by noting that the

expression in brackets does not contain the subscript m and

21
r

o
the coefficients (Zi%2) (Zi+msD) form the elements of a square

nonsingular matrix. Consequently, the equations uncouple

. N .
(2442) U, + v, + iL B, = 0 ; £20,1,2,...,n (A-1b)
S o

Equation (IV-3) contains the indeterminate quantity

?é . By the artifice of evaluatinglthis quantity from
_Eq. (IV~6) and noting that the equations again uncouple, one
finds

=z, = 2V, - (21+2) U

26 1 i i

Substitution of this relation into Eq. (IV-3) gives

2
21 (m+3) - P s
o 1= Giemesy By * T BUy + [T A+ Grmesy) Uyl = 0

n
!
i=0

m=0,2,...,2n (A-2)

Finally, in Eq. (IV-4) attention must be given to the
constant C, introduced 'in Section III in the process of
incorporating the tangential boundary condition at r = r
represented by Eq. (II-17). Unless C is taken as zero,
Eq. (IV-4) will contain the implication that the fluid at
r o= and the étacked rinz shell have the same axial
velocity, which is not a proper bouandary condition for an
inviscid fluid. When C=0 is introduced, Eqs. (IV-4), which

uncouple again, beccme



d ! .
3¢ (Pi + OVi) =0 i=0,1, 2, ... , n
This form can be simplified by integration from an initial

state of rest and zero pressure,
P, +pV, =0 ;3 1=0,1,2, ... ,n (A-3)

The formulation is completed by the specification of an
initial stress-fruvn state of rest at t=0 and of the boundary

condition,

(P,) 00 = P () 8 & i=0,1,2, ... ,n (A-&)

2=0 i

b) Nondimensional Governing Equations.

By the introduction of the dimensionless variables

g = z/r0
T = = /K /p

r o

[o) .
= 21
Pi =T Pi/K

. ) (a-5)
- i frme—
vi ro- vi Q/Ko
- 2i+1 e
U, = r] u, Yp/K,
- 1 - ST
po(T) = Ko po(l‘o Q‘ko) J

Equations (1b), (2), (3) and (4) are transformed to

(-4
.

Food, )
= — 4+ (2i42 = :
1 + z ( Z) Ui 0 3

1

£ =0, 1, ... , n (A-5)

(-3



where

c)

desired the equations are obtained from Egs.

n=1l,

(m+3) i o=
(2i+m+3) 9ot i
v, 3P,
N SUN S,
91T 9L ?
[Pi];=0 PO(T) 50
- rOB -
B = K ’ Ami
(o]

Truncations.

If a truncation to two terms for

The result is

ap v
(o] _____2_
9T 9z
R T
220 3P
°=C 0
1
aT2 11 91
2%y 2P
1_. 2
312 21 3T
av 3P
O=_ [o]
oT 9z
on 8Pl

[+%]
-

Q
oY

pfo

<+

(2i4+m+5)

each variable is

(6)-(9) for

2n

(A-7)

(A-8)

(A-9)

(A-10)

(A-11la)

(A-11b)

(A-12a)

(A-12b)

. (A-13a)

(A-13b)



(Polrag = 2, (0 (A-142)

[Pyl = O (A-14b)
where

Cip = (Ayy — A/ (Agphy = Agihsg) 1

3 - 5 = V7 % - =
Cia = (5 Ay = F A1)/ (Agp8,0 = AgiAsg)
) ) o o Y (A-15)
Cop = (Agg = Ayp)/(Agghyy = Agpd,0)

3 - - - - -
00 = 5 Ax0)/ (Agphyy - Agph,g)

- (23
Crp = (5 A

The system for the truncation using one term consists

of Eqs. (lla), (12a), (1l3a) and (l4a) in which the terms

with 51 , ﬁ] and Vl are removed. The definition of C11 becomes
€1 = 1/A00
d) Finite Difference Fquations.

The finite differencé form of Eqs. (11) to (14) is
generated In the manner described in Section V. A staggered
grid in both time and space with constant mesh size 1s used,
with derivatives approximated by central dJdifferences except
for the time derivatives in the constitutive equatious,

Eqs. (l1la,b), which are acproximated by the form Eq. (V-3).

The resulting ~quations for the truncation to two terms are



=n+1
Pn
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o §+¥%

[={]

1 3+%

Poj

ot
o
e

n+ 3/2 -

n+ 3/2 -

(2 -

L Pt L0 (A-162a)
To S-i
g (A-16b)
ULy
By
=0
Yy -
Pyoy
(A-17a)
By )
=N
Py J.)
(A-17b)



=n + 3/2 sn+l AT sn+l sn+l

Yo g+ T Vo gen T a7 Cooyar T Fo ) (A-182)
=1 + 3/2 _ sn+lk At ,=n+1 =n+1 _

Vi g T V1 ogey TR Ppoger TP ) (A-18b)
?2 ;= P, l(n-k) A1) (A-19a)
=n

Pl =0 . (A-19b)

The equations for the truncarion to the leading terms are
obtained by the procedure described in the case of the

differential egquations.

Equations (l16a) to (1l8b) represent a two level implicit
linear finite difference operator whose application requires

the knowledge of 50 and P, at the time level n, V \' U

1 o> 1" 7o
and ﬁl at (n+%) and ﬁo and ﬁl at (n-%), and at all relevant

space points. The stability criterion becomes, Pef., [16],

]/ 2
1= TG, (A-20)

e) Discussion of Results.

[>|l>
adie]

Figures A-I, A-2 and \A-3 show typical time histories of

s (1)

the dimensionless pressure Po obtained for a unit step

input if the series are truncated to one term, In this case

the values of the pressurc at r=0 and at r=r_ are identical,

5(1)

and P0 is thus the mean pressure. The values §22) and 5(2)

ro
are also plotted, representing the dimensionless prassures at
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r=0 and r=ro , respectively, when two terms in the truncation

‘are retained. The mean value of the pressure, in this case,

S(2) _ 5(2) .1 5(2) _ 1 5(2) , 5(2)
is Pm Po + 5 P1 > [P° + Pro ]. The latter is a
suitable basis for comparison with §§1).

Three sets of results for different values of the non-
dimensional stiffness B are given. Comparing first the
results for the same value of B, but in different locations,
i1t 1is seen that the differences increase with g, i.e., with
distance from the input end. From Fig. A-2 4t is also
apparent that in each location the oscillations and the

differences decay with time.

The order of magnitude of the difference in the same

location increases as the stiffness parameter B of the shell
decreases. It serves no purpose to guote percentages for the
various cases. For the stiffest shell, §l = 2110, the

truncation using one term is clearly an excellent approxi-

mation. For the cases § = 77.7 and B, = 14.2, the results
2 3 ’
for fél) and 5;2) differ moderately. 1In these cases, appre-

ciable differences between the pressure at r=0 and at r=r
occur, particularly shortly after arrival of the signal, the
situation being particularly unfavorable for §3 and forllarge

values of T.

The problem of the fluid filled tube for a step velocity

input has been treated in Ref. [17] by transform methods,



leading to a series solution. Numerical results were obtained
for two cases, corresponding to B=2 and B=10. From the
Reference it is krown that the jump in pressure at arrival
time in all locations is equal to the initial pressure, and
the location and magnitude of this jump are indicated in

Figs. A-1 to A-3 for comparisen purposes.
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APPENDIX B - Estimate for the Magnitude of the Material Constants.

In order to select values of material constants to be used
in the numerical examples, a fit was made using some available
quasi-static test déta on sand*). The data used were results of
uniaxial and triaxial tests, and measurements of the velocities

of the shock waves. , .

It must be stressed that no claim is made that the sets of
values for the material constants given are of consequence in
actual situations, which will vary greatly. The fits were made

solely to get "reasonable'" values for the various properties.

In view of the intended application to situatfoms in which,
at least grossly, the stress levels increase with time, only
experimental data for initial loading were used for the fit.
Further, also because the situatlon for stiff tubes 1is closer
to uniaxial tests than to t:iaxial ones, the fit to the former

was emphasized.

In addition to the values of k, & and G, the function
K(p) 1s to be selected. For practical applications a function

with three open parameters, such as

K(p) = K (1 + p/P)" (B-1a)

wvhere K, > 0, t >0 and 1 > n > 0 permits an adequate fit.

This furnction leads to an expression for p in terms of ekk

which is a parabola of order 1/(1l-n).

*) Data on Cook's Bayou Yo. 1l sand, Refs. [18] and [19],
obtained from the U.S. Army Engineer Waterways Experiment
Station, Vicksburg, Miss.



Because of the exploratory nature of the present study
the value n=)% was chosen immediately, to simplify the fitting

process,

K(p) = K _(1 + p/S)% (B-1b)

A representative value for the density, p = 1.573 x 10—41b.sec2/in4

was selected. 1In addition it was assumed that the value of the
constant k, representing cohesion, would be sufficiently small
_compared to the stress level te permit the use of the limiting

value k = 0 for the fit.

By trial two sets of material constants were determined,

as follows:

2

& = 3.09 x 10° G = 9560 1b/in>
Case 1 2 - 2

Ko = 9050 1b/in p = 8.31 1b/in

@ = 0.199 G = 18300 1b/in>
Case 2 2 _ 2

K, = 2960 1b/in 5 = 1.56 1b/in

As will be seen subsequently, Case 1 fits the uniaxial test

up to 300 1b/in2 extremely well, but gives very poor correla-
tion with failure strength in the triaxial tests. Case 2 still
fits the uniaxial test quite well., It approaches the triaxial
ones somewhat better, but not really well. (This is inherent
in the model employed.) The sets of parameters differ appre-
ciably, and some results wera run for both cases in order to

determine the sensitivitv of the results.
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The fitting process, and the comparison of the fit
obtained require a few analytical relations which are derived

below.

a) Triaxial Test.

The triaxial test consists of a hydrostatic loading
phase up to some value P, of the confining pressure, followed
by an axial loading phase during which the specimen is loaded
axially at a constant confining pressure. If O denotes the
change of axial stress above its value -P. at the termination

of the hydrostatic phase, O, =9 = P, » O, = 0gg ™ “P, » OF

c

P=P, - c/3, S,, = -ZSrr = -ZSee = 20/3. The elastic con-

stitutive relations, Egs. (II-7), give the axial strain rate
. '-1 1 3p, - 0O . .
€.z 136 T\t o (8-2)
L ) 3p

In the fi'ting process the initial triaxial modulus

was utilized. Ulsing Eq. (2) gives

36(1 + p_/5)"
Mo = 3 ~ (B-~3a)
EE + (1 + pc/p)

where

B = 3K°/ZG (B~3b)



b) Uniaxial Test.

The counstrained compression test may be ideally con-
sidered as a state of purely uniaxial strain. For the assumed
model of the material there will be initial elastic behavior
for all values of the pressure, or only up to a yield point py .
In the latter case which is of sole interest here, the elastic
phase 1is followed by a plastic one up to an "elastic point"” Pg *
Under further loading the material re-elasticizes and a second

elastic phase follows.

Elastic behavior for stress levels p > Pg does not occur
in the elasto-plastic material with a linear relation between
p and €y a8 originally considered in Ref. [11]. The situa-
tion here is caused by the fact that the modulus cf rig;dity,
G, is a constant, while th2 bulk modulus K is stress-dependent,
the combination being equivalent to a stress-dependent
Poisson's ratio v. When, for large p, the value V becomes
sufficiently large, an increase in axial stress causes

sufficiently large transverse stresses which prevent further

yielding.

1) Elastic Phase p < P,

As a result of the radial constraint and of symmetry

€ = fg = 0, while the rates of changz of the stress

deviators and of the pressure are related by

§ = =23 = -2%, = -

(B-4)
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The axi{ial strain rate is therefore

6 = X . _ 1 _ .
zz 2G Tzz 3K(p) P K(p) P

Integration of Eqs. (4) and (5) from an unstrained and

unstressed initial state gives

- .. . Ac
S22 “28., ¢ -2899 B 3 £(p)

€, = -f(p)

where f(p) is the integral
P

£(p) =J—%—;ds= 2 [<1+p/5)”- 1]
0

~
Oxi’ﬂl

2) Compressive Yield Point.

Substitution of Eq. (6a) into Eq. (II-4) gives

2 .
Iy - 2 : - X
F(oij) = £ (p) (k + 3ap)” < 05 p 2> - 37

The yield point is a root p of F=0,

28 £(p) = *(k + 3ap); p > - f%
V3

For the compressive case p > 0, f£(g) > 0 so that only the
upper sign in Eq. (9) is relevant. Let an auxiliary yield

function for the compressive range be defined by

26
F (p) = = £(p) - (k + 3ap)
¢ 3

(B-5)

(B-6a)

(B-6b)

(B-7)

(B-8)

(B-9)

(B-10)



For p > 0, the function F(0,,), Eq. (8), has the same sign as

ij
Ec so that the material remains elastic as long as ;c < 0.
The compressive yield point py is the smaller positive
root py , 1f any, of Ec(p) = 0. To assure yield this root
must not be a double root, otherwise Ec < 0 would not be
violated for p > py . Examination of the coefficients of
the equaticn defining py gives the necessary and sufficient

condition for the existence of a meaningful compressive

yield point,

- .
Ba <(1 + Bkﬁ) - (1 + Bkﬁ) -1 (B-11a)

vhere
a = a/3 (B-11b)

In the limiting case k - 0, the vield point becomes

py = 0 and the restriction, Eq. {(1la),
Ba < 1 (B-11lc)

If Eq. (lle¢) holds, thé material in the constrained com-
pression test yields immediately. There 1s no initial elastic
phase, and loading begins in the plastic phase. TIf Ba >1

the material in the constrained compression test never

becomes plastic.



3) Plastic Phase {For k=0).

For reasons of brevity only the case k=0 is considered

from here on,.

In the plastic phase the elastic strain rates are,

Eqs. (1I-7),

- E LE 1 .E 1. 1. _
€19 = 853 * 3 C %43 T 36 515 T () P Siy (B-12a)
The plastic strain rates for k=0 are, Eqs. (II-8a),
eP 2P 4 2P s s #2272 ap & (B-12b)-
1j 13 73 "kk °ij i3 i3 ¢
so that
E *P 1 . 1 .
€13 = €13 T f14 7 3¢ %13 T 3W(py P %13 *
+ X s + 2a2 Ap § (B-12¢)
1] i3
Using cylindrical coordinates the constrained compression
test implies € . " €pp = Erp = Cg, = Eyp T 0, and Egs. (12¢)
give
. ) 1 . 2
zz = 26 %zz T 3K(p) F + A S,z T 237 Ap (B-13a)
. 1 . 1 . 2
€rr = 26 Srr T 3Ry P Y A st 2at Ap =0 (B-13b)
Symmetry requires § = S50 = - S,, v S.9 = 89, = érz = 0,
which can be integrated, S,y = Sggy = -1 S,z * Syg = Sgp = S.z = 0.

The vield condition for k=0 becomes therefore S,, = 2 2ap.

For the compressive case S < 0 so that

= 9
S, 2ap _ (B=-14)
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-~ (14Y ar = - .
Substitution of Eq. (14) and of Sy 3 S,z in Eq. (13b)
gives
2G
la - 35751 .
A = - _..____3_1.(._‘.2)_. B (B-ls)

2a(l + 2a)G p
and substitution of Eq. (15) into Eq. (13a)

3
zz' _ G(1 + 2a)

2 G .

[a® + m] p (B-16)

Integration of Eq. (16) from the yield point, and use of
Eq. (l4) relating S,z and p results finally in the desired
relation between €, anﬁ*dz

Z zZ

- U '
€, - 3 - aZGzz + (1 +82a)n [1 _ b[ _ z2z _]
G(1 + 2a) L (L + 2a)p

where, as previously defined, B = 3K°/2G, a = a/3.

(B-17)

4) Elastic Point.

The validity of Eq. (17) is subject to the restriction,

Eq. (II-80b), requiring that X computed from Eq. (15) satisfy
A >0

Since for compressive loading p/p > 0 and a,G > 0 this

restriction is equivalent to

1

p<op (B-18)



where Pg is the pressure defining the elastic point.

corresponding axial stress 1is

°E = -(1 + 2a)pE =

For p > Pp Eq.

cremental relations must be used.

implies Pg > 0 so that the plastic

extent.

of this appendix the plastic range extends up to O

in Case 1 and CE

5)

Initial Tangent Modulus.

-(1 +

81 --

(17) is no longer

The

1

2a)p |
(aB)?

- 1)

valid and elastic in-

Note that Eq. (1lle¢)

range is always of finite

For the material constants listed at the beginning

E

~ 375 psi in Case 2.

Equation (17) gives the initial tangent modulus

dczz
Mco = | de
zz

I...

z2z

2BG(1 + 2al2
3(1 + 2a2B)

The knowledge of this result is convenient for the fitting

process.

6) Plastic Shock Velocity.

Provided the pressure level is below the limit defined

by Eq.

(18) a piane plastic shock will propagate into the

undisturbed material at a velocity ¢ obtained from the

Rankine-Hugoniot relations,

(B-19)

~ 1600 psi

(B-20)
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S S
=2 _ 1%z _ g + 2a)° 922
¢ T o 30
zz ) - ]
a2 czz + e +B~a L 1l - 1l - 922
(1 + 2a)p
(3-21)

where ciz and E:z are the normal stress and strain behind

the shock.

c) Discussion of the Fit Obtained.

To demonstrate the fit obtained Figs. B~1 and B-2 show
the fit for the uniaxial test. Both fit reasonably well,
*)

but Case 1 is superior in the stress range up to 300 psi

of interest in the dynamic test discussed in Section VI.

Figure B-3 shows curves for the computed values for the
initial triaxial tangent modulus MTo for both cases, in com-
parison to three available test points. The test points
show large scatter, possibly due to differences in the
material tested. Cases 1 and 2 fit respectively the low and

high values of MTo .

An additional comparison can be made of the triaxial failure
predictions from the theoretical medels, Fig. B-4. Case 1
is extremely poor, and even Case 2 has a large error. It is
a known shortcoming of the plastic model that the failure
stresses are not well.predicted. It must be stressed, how-

ever, that in dynamic situations the material is constrained,

*
) In Case 1 the initial slope Mco of the test and of the

computed :urve have been made to agree.
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and the deviation near faillure may not be important, pro-
vided the portions of the triaxial test at lower stresses

£it reasonably.

The above reasoning is not intended to make the claim
that Case 1 should be used as a realistic model. The case
was selected because it gives an excellent fit in Fig. B-1l.
By use of the more general relation for K(p) given in
Eq. (la) it is possible to obtain a fit as good as in Case 1,
and represent the failure stress to the degree obtained for

Case 2,

A comparison can also be made of the shock velocities
in tests and as computed for Cases 1 and 2. The results for
both cases, Fig. B-5, are of the same order of magnitude as

found in the tests.
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APPENDIX C - Selection of the Value of CD in the Numerical

Integration,

If the exact solution contains shocks, the solution by
finite differences without artifices usually shows large
oscillations, which may be s> severe that the results are
useless, Figure C~1 shows a typical result of this type
obtained from the relations in Section V when the terms with
CD are omitted. To eliminate such situations the scheme
presented in Section V uses a diffusion term which reduces
the oscillations go an acceptable Ievel. The approach

requires the choice of a "suitable" value of the parameter

CD occurring in the relations derived in Secticn V,

As the terms containing C, modify the problem, it is

D
necessary to make their effect as inconsequential as possible.
Due to the manner in which it enters the relations, CD should
be selected as large as compatible with the purpose of elimi-

nation of oscillations caused by the finite difference scheme.

The choice of an appropriate value CD must be made by
trial for each particular set of values At and Az, and may
also be infiuenced by the locatrion z where the results are
desired. The dependence of the value of the parameter to be
selected on the increments can be reduced by considering the

results as a function of the combination

. (A)?
D (2 + CD) At

which occurs in Eq. (V-4). The value KD should be selected



as small as possible.

The dependence can be seen in Fig. C-2, showing the
longitudinal stress T,z for the two values KD ~ 3100 and
60 inzlsec., respectively. (For the spacing used the cor-

responding values C_ were 2 and 50.) For the larger value

D

KD (smaller CD) the result is very smooth, but the rise in
pressure (which should be a shock) is very gradual, and
occurs in about 30 space steps. If KD is reducea (CD is
increased) the front becomes steeper, but there is a limit.
The rise can not'Be reduced to less than a distance of about
3 space steps. This is roughly the situation for KD 60

(CD = 50) in Fig. C-2. However, as the above mentioned limit
is approached, oscillations of computational nature aprpear,
and it is necessary to compromlse between the desire for a

rapid rise (and small overall effects of the artificial terms)

and the desire for smooth results.
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