

CONTRACT REPORT N-70-2

STRESS WAVES IN A SOIL-FILLED CYLINDRICAL SHELL

by

J. Kovarna, H. H. Bleich

May 1970
Sponsored by Defense Atomic Support Agency
Conducted by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi
Under Contract No. DACA39-67-C-0021
By Paul Weidlinger, Consulting Engineer, New York, New York

STRESS WAVES IN A SOIL-FILLED CYLINDRICAL SHELL

by

J. Kovarna, H. H. Bleich

May 1970

Sponsored by Defense Atomic Support Agency

Conducted by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

Under Contract No. DACA39-67-C-002I

by Paul Weidlinger, Consulting Engineer, New York, New York

FOREWORD

This report was prepared by the firm of Paul Weidlinger, Consuiting Engineer, of New York, New York, as an independent study under Contract DACA39-67-C-002l with the U. S. Army Engineer Waterways Experiment Station under the sponsorship of the Defense Atomic Support Agency.

The contract was monitored technically by Mr. R. E. Walker, Project Manager, under the direction of Mr. W. J. Flathau, Chief of the Protective Structures Branch, and under the general direction of Mr. G. L. Arbuthnot, Jr., Chief of the Nuclear Weapons Effects Division, Waterways Experiment Station.

Contracting officers were COL John R. Oswalt, Jr., CE, and COL Levi A. Brown, CE, Directors of the Waterways Experiment Station.

Abstract

An approximate solution to the problem of transient longitudinal wave propagation in a semi-infinite cylindrical body of elasto-plastic material restrained radially by a stacked-ring shell and subjected to a normal pressure at the end is obtained by a Galerkin technique using the radial coordinate as an expansion parameter. In order to get equations applicable to numerical computations the expansions are truncated to the leading term in each variable. This truncation creates a mathematical problem when elastic and plastic regions occur along the same radial line.

A finite-difference scheme is used to solve the differential equations resulting from application and truncation of the Galerkin expansion. A special method for handling the boundary between elastic and plastic regions along the same radial line is developed in conjunction with this numerical solution.

Numerical results of the finite-difference scheme are presented for several variations in such parameters as shell stiffness and material constants.

For the purpose of evaluating the results of the truncation to the leading term in each expansion, the analogous problem is formulated for a linear inviscid fluid and solved twice, once with a truncation to the first term and once carrying two terms in each expansion. The numerical results are presented for these two solutions so that the change in the solution caused by the truncation can be evaluated.

TABLE OE CONTENTS

Page
List of Major Symbols. 1
I. Introduction. 1
II Formulation of Differential Equations 6
a) Constitutive Relations 6
b) Differential Equations in Plastic Regions 9
c) Differential Equations in Elastic Regions 11
d) Boundary Conditions 11
III Formulation of Integro-Differential Equations 15
IV Removal of the Independent Variable Through Use of the Galerkin Method. 22
a) Application of Galerkin Method 23
b) Special Case of Truncation to $\mathfrak{n}=0$ 26
c) Boundaries between Elastic and Plastic Solutions. 28
V Finite Difference Formulation 31
a) Difference Equations 31
b) Correction Algorithm at Interior Points j. 36
c) Correction Algorithm at the Boundary $\mathrm{j}=\mathrm{l}$. 39
VI Discussion of Typical Numerical Results and Conclusion. 43
a) Material Case 1 43
b) Comparison cf Results for Materials of Cases 1 and 2 and of a Test 46
c) Considerations Conceraing Truncation 48
d) Conclusion 50
Appendix $\dot{-}$ - Linear Inviscid Fluid - Influence of Truncation 61
a) Equations for a Linear Inviscid Fluid 61
b) Nondimensional Governing Equations 63
c) Truncations 64
d) Finite Difference Equations 65
e) Discussion of Results 67
Appendix B - Estimate for the Magnitude of the Material Constants. 73
a) Triaxial Test 75
b) Uniaxiai Test. 76
1). Elastic Phase $p<p_{y}$ 76
2) Compressive Yield Point 77
3) Plastic Phase (for $k=0$) 79
4) Elastic Foint 80
5) Initial Targent Modulus 81
6) Plastic Shock Velocj.ty 81
c) Discussion of the Fit obtained 82
Appendix C - Selection of the Value of C_{D} in the Numerical Integration 89
References 93

IIST OF MAJOR SYMBOLS*)

$A=\rho_{S} h$
$\bar{A}=\frac{A}{\rho r_{0}}$
$\bar{A}_{m 1}=\frac{A}{\rho r_{0}}+\frac{1}{2 i+m+5}$
$a=\alpha \sqrt{3}$
$B=\frac{E_{s} h}{r_{0}^{2}}$
$\bar{B}=\frac{\mathrm{Br}_{\mathrm{o}}}{\mathrm{K}_{\mathrm{o}}}$
C
C_{D}
$C_{11}, C_{12}, C_{21}, C_{22}$
\bar{c}
E_{s}
${ }^{\text {ij }}$
$e_{i j}^{E}, e_{i j}^{P}$
$F, F\left(\sigma_{i j}\right)$
$\bar{F}_{c}(p)$
$f(p)$

G
h

Shell mass parameter, Eq. (II-15).
Dimensionless shell mass parameter.

Dimensionless mass parameters generated by Galerkin method, Eqs. (A-10).

Material parameter related to angle of internal friction, Eq. (B-1lb).

Shell stiffness parameter, Eq. (II-15).

Dimensionless shell stiffness parameter.

Viscosity parameter in axial boundary condition, Eq. (II-16).

Weighting coefficient in finice difference formulation, Eq. (V-3).

Dimensionless mass parameters defined in two term truncation for fluid, Eqs. (A-15).

Plastic shock velocity, Eq. (B-2l).
Young's modulus of shell material.
Components of strain deviator.
Elastic and plastic parts of strain deviator.

Yield function and plastic potential, Eq. (II-1a).

Yield function for compressive range in uniaxial strain, Eq. (B-10).

Integrated bulk modulus function, Eq. (B-7).

Shear modulus.
Shell thickness, Fig. 1 .

$J_{1}=\sigma_{k k}$	First invariant of stress, Eqs. (II-2).
$J_{2}=\frac{1}{2} s_{i j} s_{i j}$	Second invariant of stress deviator, Eqs. (II-2).
$K(p)$	Bulk modtlus function, Eqs. (II-7).
($\widehat{\Delta z}^{2}$	
$K_{D}=\frac{\left(2+C_{D}\right) \Delta t}{}$	Coefficiert of diffusion term in finite differemee formulation.
K_{0}	Bulk modulus at zero pressure, Eq. (B-1a).
k	Material parameter defining cohesicn, Eq. (II-1a).
$\mathrm{Mco}_{\mathrm{CO}}$	Initial modulus in uniaxial strain, Eq. ($B-20$).
M_{To}	Initial modulus in triaxial test, Eq. ($\mathrm{B}-3 \mathrm{a}$) .
$\mathrm{P}_{\mathrm{a}}, \mathrm{P}_{\mathrm{b}}$	Zeros of yield function at the boundary in one term truncation, Eq. (V-26).
$P_{i}(z, t)$	Undeternined functions defining p=essure in Galerkin method, Eas. (IV-2).
$\bar{P}_{i}(\zeta, t)$	Dimensionless undetermined functions defining pressure in Galerkir. nethod, Ees. (A-5).
$p=-\frac{1}{3} J_{1}$	Mean pressure.
\bar{p}	Parameter in bulk modulus function, Eq. ($B-1 a)$.
P_{c}	Confining pressure in triaxial test.
P_{E}	Pressure defining elastic point in uniarial strair, Eq. (B-18).
p_{y}	Pressure defining vield point in uniaxial strair.
$\mathrm{P}_{\mathrm{c}}(\mathrm{t})$	Applied surface pressure, Fig. 1.
$\bar{p}_{0}(\tau)$	Dimensionless surface pressure, ícs. ($\mathrm{A}-5$) .
$\mathrm{R}_{\mathrm{i}}(z, t)$	Undetermined functions defining radial stress deviator in Galerkin method, Eqs. (IV-2).
r	Radial coordinate, Fig. 1 .
$r 0$	Radius of shell, Fig. 1.

${ }^{\text {i }}$ [Components of stress deviator.
$\bar{s}_{I Z}=s_{S_{Z}} / r$	Quantity representing shear, Eqs. (II-18).
$T_{1}(z, t)$	Undetermined functions defining shear stress In Galerkin method, Eqs. (IV-2).
t	Time.
$U_{i}(z, t)$	Undetermined functions defining radial velocity in Galerkin method, Eqs. (IV-2).
$\overline{\mathrm{U}}_{i}(\zeta, \tau)$	Dimensionless undetermined functions defining radial velocity in Galerkin method, Eqs. (A-5).
${ }_{\mathbf{u}}$	Radial component of displacement, Eq. (II-15).
$V_{i}(z, t)$	Undetermined functions defining axial velocity in Galerkin method, Eqs. (IV-2).
$\overline{\mathrm{V}}_{i}(\zeta, \tau)$	Dimensionless undetermined functions defining axial velocity in Galerkin method, Eqs. (A-5).
$\mathbf{v}_{\mathbf{r}}, \mathrm{v}_{\mathbf{z}}$	Radial and axial components of velocity.
$\bar{v}_{\mathbf{r}}=\mathrm{V}_{\mathbf{r}} / \mathbf{r}$	Quantity representing radial velocity, Eqs. (II-18) .
$Z_{i}(2, t)$	Undetermined functions defining axial stress deviator in Galerkin method, Eqs. (IV-2).
z	Axial coordinate, Fig. 1.
α	Material parameter related to angle of internal friction, Eq. (II-la).
$\beta=\frac{3 K_{O}}{2 G}$	Dimensionless material parameter, Eq. ($B-3 \mathrm{~b}$).
$\Delta t, \Delta z$	Coordinate increments in finite difference formulation, Fig. 2 .
$\Delta \zeta, \Delta \tau$	Dimensionless coordinate increments in finite difference formulation.
ε	Arbitrarily small quantity used in limit process.
$\varepsilon_{1 f}$	Components of strain.
$\varepsilon_{i j}^{E}, \varepsilon_{i j}^{P}$	Elastic and plastic parts of strain.
ζ	Dimensionless axial coordinate, Eqs. ($A-5$).

$K_{m j}$	Functions generated from bulk rodulus by Galerkin method, Eq. (IV-10).
$k_{j}^{n}=K\left(P_{j}^{n}\right)$	Bulk modulus function in finite difference formulation of one term truncation, Eq.. (V-12).
$\Lambda_{i}(z, t)$	Undetermined functions defining the Eunction λ in Galerkin method, Eqs. (IV-2).
$\Lambda_{1-1}^{n+1}, \Lambda_{1}^{n+1}$	Roots of yield condition on the boundary.in finite difference formulation of one term truncation, Eqs. (V-29a,b).
$\lambda \geq 0$	Function related to inelastic behavior, Eqs. (II-8a,b).
ξ	Dummy variable of integration.
p	Density of elasto-plastic material.
$\bar{\rho}=\rho+\frac{5 A}{r_{0}}$	Combined density of shell and elasto-plastic material in one term truncation, Eq. (IV-19).
ρ_{s}	Density of shell material.
$\sigma_{E}=-(1+2 a) p_{E}$	Axial stress at elastic point in uniaxial strain, Eq. (B-19).
$\sigma_{1 j}$	Components of stress.
τ	Dimensionless time, Eqs. ($A-5$).
Φ	Integrated yield function in one term truncation, Eq. (IV-18) .
Φ_{b}	Integrated yield function at the boundary in one term truncation, Eq. (V-26).

INTRODUCTION.

To confirm the suitability of mathematical models for the dynamic behavior of materials, it is necessary to compare analytical results with those of tests. As a first step, because of better control and smaller cost, such tests will be laboratory ones. To be able to make comparisons computation procedures for configurations suitable for dynamic tests must be available. It is essential to study multidimensional situations, for which a suitable, yet simple, configuration consists of a cylindrical tube containing and restraining a cylindrical body of the material. The restraining tube is inherently necessary if the material is a soil, but for other materials the use of a restraining tube permits variation of the basic parameters of the tests, from nearly uniaxial strain for very rigid tubes, to multidimensional situations for (radially) extensible tubes. The variation of basic parameters in comparative tests is obviously desirable for confidence in the results. Moreover, a series of tests with different parameters might also be used, not as a confirmation, but to determine the material constants from dynamic tests.

Tests on soils of the nature described above have been undertaken, e.g., Ref. [1], in continuous tubes and also by confining the material by separate "stacked rings", Ref. [2]. The latter arrangement avoids longitudinal wave propagation in the tubes, a highly desirable simplification, and this paper presents an approach to analyzing longitudinal wave propagation
in a homogeneous and isotropic elasto-plastic material (of the Coulomb type) resirained by such rings. The approach can, however, equally be used for other material prescriptions. It is crucial that the approach presented permits the treatment of different material properties in regions with moving, a priori unknown boundaries. In the elasto-plastic case treated, there are regions where at a given instant the changes in strain are described by elastic relations, while in other regions plastic relations apply. The location of these regions is not known and changes with time. (Similar situations occur in materials where loading and unloading of an element of the material follows a different mathematical prescription such as postulated in Ref. [3].)

Problems of transient axisymmetric wave propagation in cylindrical bodies of inelastic or nonlinear materials can be treated only by purely numerical computations, or by approximate approaches. Because of its influence on nearly all subsequent literature, the earliest approximate approach for harmonic wave propagation in an elastic cylindrical bar, Ref. [4], is mentioned. By postulating the radial dependence of the displacements and introducing weighted average stresses, the approach reduces the problem from three independert variables z, r and to one in the longitudinal coordinate z and the time t. The res:lt is a system of two simultaneous second order partial differential equations containing corrective terms for shear and radial inertia, not present in the conventional single second order
differential equation for one dimensional vave propagation. This paper was later followed, Ref. [5], by an analysis based on a series expansion of the radial dependence of the displacements, permitting higher order theories leading to a larger number of simultaneous partial differential equations in z and t.

While formulated in various ways, available treatments of transient wave propagation in cylindrical bodies may be classified as being first order theories as Ref. [4], or of higher order. First order sclutions are available for the elastic bar, Ref. [6], for a linearly viscoelatic bar, Ref. [7], and for a nonlinearly strain rate dependent material, Ref. [8]. The latter has been generalized, Ref. [9], for the case of stacked rings and by the inclusion of a further term in the axial displacement and the corresponding strass term, so that the theory corresponds to Ref. [5].

The present paper will use the Galerinin approzch to obtain approximate solutions which may be carriel to first order terms corresponding to Ref. ! 4] or to a higher approximation. It should be mentioned that an alternate approach by pover series expansion of both displacenents and stresses in the radial coordinate, capable of similnr refinement, was used in Ref. [10] for the case of an elastic plastic rod. The use of power serie; leads inherently to lowa acc:acy, and is thus less efficient than the use of the calerkin method employing the same number of terms.

The present approach is as follows. In Section II the differential equations and boundary and initial conditions of the problem are formulated in elastic and plastic regions in three independent variables, the two space variables r and z, and the time t. The Galerkin approach to eliminate the variable r is, however, not directiy applied to the differential equations because it is not possible to select functions in r which satisfy the boundary conditions due to the stacked rings at the cylindrical surface of the body. By converting the partial differential equations in z, r and t in section $I I I$ into a set of integral equations in r, but retaining partial differential equations in z and t, the boundary conditions on $r=r_{o}$ no longer appear explicitly. Consequently, appropriate expansion functions can be. selected without regard to requirements on the boundary. This leads, Section $I V$, to a system of hyperbcifc partial differential equations in z and t.

Complications arise in Section III when the material in a location z acts elastically for some values of refastically in others, i.e., in locations where the interface between elastic and plastic regions intersects the plane $z=$ constant. It is crucial that an approach to overcome this difficulty is developed in conjunction with the finite difference solution of the system of partial differential equations.

A typical example is treated using an elasto-plastic material with a nonlinear (hardening) pressure-volume relation.

The properties of this material are taken from static tests as described in Appendix B. The pressure input at the end of the tube is selected in one case as gradually increasing to a peak value, a situation for which a test is available. As a second example a pressure jump with subsequently decaying pressure is applied. In both examples the computation used only one expansion term for each of the seven dependent variables. To judge the reasonableness of the use of only one term in the examples, Appendix A gives comparative results using one and two terms for a liquid.

II FORMULATION OF DIFFERENIIAL EQUATIONS.

The purpose of this aralysis is the study of longitudinal wave propagation in a semi-infinite circular cylindrical body of elasto-plastic material, Fig. 1. It is intended to consider only tine rotationally symmetric case where the end surface $z=0$ is subjected to a uniform applied pressure $p_{0}(t)$, while the cylindrical surface of the body is restrained against radial motion by a thin elastic shell consisting of narrow rings which are (in the z-direction) not in contact with each other. The type of shell described zepresents an experimental arrangement of stacked rings intended to prevent longitudinal wave propagation In the containing shell. The analysis is based on the premise that the strains and velocities are small enough to justify the use of linearized equations of motion, and of linearized relations between strain rates and velocities.

a) Constitutive Relations.

The elasto-plastic material considered here is described by the yield function and plastic potential

$$
\begin{equation*}
F=J_{2}-\left(k-\alpha J_{1}\right)^{2} \tag{II-1a}
\end{equation*}
$$

subject to the requirement

$$
\begin{equation*}
k-\alpha J_{1} \geq 0 \tag{II-1b}
\end{equation*}
$$

both proposed in Ref. [11] for granular materials. The
quantities J_{1} and J_{2} are the invariants

$$
\begin{equation*}
J_{1}=\sigma_{k k} \quad, \quad J_{2}=\frac{1}{2} s_{i j} s_{i j} \tag{II-2}
\end{equation*}
$$

where $\sigma_{i j}$ are the stresses and $s_{i j}$ are the stress deviators. The constants k and α are properties of the material, with k a measure of the cohesion and α related to the slip angle. Their values are restricted, Ref. [11], to

$$
\begin{equation*}
k>0 \quad, \quad \frac{1}{\sqrt{12}}>\alpha \geq 0 \tag{II-3}
\end{equation*}
$$

The state of stress in the medium must satisfy not only the inequality (lb) but also the finequality

$$
\begin{equation*}
F \leq 0 \tag{II-4}
\end{equation*}
$$

The behavior of the material is then described by the following two statements:
(1) When in an element in space and during an interval in time the inequality sign in Eq. (4) applies, or when the equality sign applies in conjunction with $\dot{F}<0$, then the medium is acting elastically and the actual strain rates $\dot{\varepsilon}_{i j}$ are equal to those obtained from the elastic relations,

$$
\begin{equation*}
\dot{\varepsilon}_{i j}=\dot{\varepsilon}_{i j}^{E} \tag{II-5}
\end{equation*}
$$

(ii) When, however, the equality sign in Eq. (4) applies while che value of the yield function does not change, $F=0$, the medium yields or may yield, and the strain rates are the sum of the elastic values $\dot{\varepsilon}_{i j}^{E}$ and a plastic contribution $\dot{\varepsilon}_{i j}^{p}$,

$$
\begin{equation*}
\dot{\varepsilon}_{i j}=\dot{\varepsilon}_{i j}^{E}+\dot{\varepsilon}_{i j}^{P} \tag{II-6}
\end{equation*}
$$

The elastic strain rates $\dot{\varepsilon}_{i j}^{E}$ can be separated into the sum of a volumetric and of a deviatoric part, $\dot{\varepsilon}_{k k}^{E}$ and $\dot{e}_{i j}^{E}$. To express the hardening behavior observed in uniaxial tests on soil, the bulk modulus $K=K(p)$ will be considered as an appropriate function of the mean pressure $p=-J_{1} / 3$, while the modulus of rigidity G is a constant. The elastic relations are then

$$
\begin{equation*}
\dot{\varepsilon}_{k k}^{E}=-\frac{1}{K(p)} \dot{p} \quad, \quad \dot{e}_{i j}^{E}=\frac{1}{2 G} \dot{s}_{i j} \tag{II-7}
\end{equation*}
$$

The plastic strain rates are obtained in the conventional manner from the plastic potential,

$$
\dot{\varepsilon}_{i j}^{P}=\lambda \frac{\partial F}{\partial \sigma_{i j}}
$$

with the result

$$
\begin{equation*}
\dot{\varepsilon}_{k k}^{P}=6 \alpha \lambda(k+3 \alpha p) \quad, \quad \dot{e}_{\dot{j} j}^{p}=\lambda s_{i j} \tag{II-8a}
\end{equation*}
$$

where λ is an open function of time and space, restricted by

$$
\begin{equation*}
\lambda \geq 0 \tag{11-8b}
\end{equation*}
$$

The energy dissipation in any element at any instant is proportional to $k \lambda$. The value of k being positive, energy will be actually dissipated only if $\lambda>0$, the special case when λ vanishes is referred to as neutral.

The behavior of the material in elastic regions is described by Eqs. (5) and (7), while in plastic regions

Eqs. (4), (6), (7) and (8) hold. In the solution to be obtained elastic and plastic regions will, in general, both occur. They are, in general, separated by one or more distinct*) boundary surfaces of a priori unknown and tine dependent location. The occurrence of moving boundaries introduces complexities into the solution, a matter to be discussed later.

A comment concerning the inequality (lb), requiring $k-\alpha J_{1} \geq 0$ must be made. It should be understood that the constitutive relations given are valid only if the inequality holds, no relations are proposed here which would apply in the excluded region, in which the material has disintegrated. If it is found that a solution begins to violate the inequality at a certain time, the results at subsequent times are meaningless. In such cases the present approach leads to no result. (The situation is quite similar to the one in hydrodynamics, where the conventional solutions lose validity at the onset of cavitation.) Equation (1b) is not part of the equations to be solved, but is only to be applied as a final check to confirm the validity of results obtained without its use.
b) Differential Equations in Plastic Regions.

Due to the axial symmetry there are just four meaningful relations between strain rates and velocities,

[^0]\[

$$
\begin{align*}
& \dot{\varepsilon}_{r r}=\frac{\partial v_{r}}{\partial r} \\
& \dot{\varepsilon}_{\theta \theta}=\frac{v_{r}}{r} \\
& \dot{\varepsilon}_{z z}=\frac{\partial v_{z}}{\partial z} \tag{II-9}\\
& \dot{\varepsilon}_{r z}=\frac{1}{2}\left(\frac{\partial v_{r}}{\partial z}+\frac{\partial v_{z}}{\partial r}\right)
\end{align*}
$$
\]

Introduction of the constitutive relations and elimination of $s_{\theta \theta}=-\left(s_{r r}+s_{z z}\right)$ gives

$$
\begin{align*}
& 2 \frac{\partial v_{r}}{\partial r}-\frac{v_{r}}{r}-\frac{\partial v_{z}}{\partial z}=\frac{3}{2 G} \frac{\partial s_{r r}}{\partial t}+3 \lambda s_{r r} \tag{II-I0a}\\
& -\frac{\partial v_{r}}{\partial r}-\frac{v_{r}}{r}+2 \frac{\partial v_{z}}{\partial z}=\frac{3}{2 G} \frac{\partial s_{z z}}{\partial t}+3 \lambda s_{z z} \tag{II-10b}\\
& \frac{\partial v_{r}}{\partial r}+\frac{v_{r}}{r}+\frac{\partial v_{z}}{\partial z}=-\frac{1}{K(p)} \frac{\partial p}{\partial t}+6 \alpha \lambda(k+3 \alpha p) \tag{II-10c}\\
& \frac{\partial v_{r}}{\partial z}+\frac{\partial v_{z}}{\partial r}=\frac{1}{G} \frac{\partial s_{r z}}{\partial t}+2 \lambda s_{r z} \tag{II-10d}
\end{align*}
$$

The relation $\mathrm{F}=0$ which must be satisfied in plastic regions becomes

$$
\begin{equation*}
F\left(\sigma_{i j}\right)=s_{r r}^{2}+s_{r r} s_{z z}+s_{z z}^{2}+s_{r z}^{2}-(k+3 \alpha p)^{2}=0 \tag{II-11}
\end{equation*}
$$

In addition there are two equations of motion,

$$
\begin{align*}
& \frac{\partial s_{r r}}{\partial r}+\frac{2 s_{r r}}{r}+\frac{\partial s_{r z}}{\partial z}+\frac{s_{z z}}{r}-\frac{\partial p}{\partial r}=\rho \frac{\partial v_{r}}{\partial t} \tag{II-12a}\\
& \frac{\partial s_{r z}}{\partial r}+\frac{s_{r z}}{r}+\frac{\partial s_{z z}}{\partial z}-\frac{\partial p}{\partial z}=\rho \frac{\partial v_{z}}{\partial t} \tag{II-12b}
\end{align*}
$$

In plastic regions Eqs. (10), (12) and the time derivative of Eq. (11) may be considered to be a set of seven quasilinear differential equations on seven dependent variables, the four quantities defining the state of stress, $\mathrm{s}_{\mathrm{r}} \mathrm{r}, \mathrm{s}_{\mathrm{zz}}$, $s_{r z}$ and p, the two velocities v_{r} and v_{z} and a variable L defined by $\dot{L}=\lambda$. In such a formulation, the yield condition Eq. (11) must be added as an initial condition at the instant t when plastic action starts in a particular location.
c) Differential Equations in Elastic Regions.

In elastic regions the relations

$$
\begin{equation*}
F<0 \tag{II-13a}
\end{equation*}
$$

or

$$
F=0 \text { and } \dot{F}<0
$$

apply in lieu of Eq. (11). In such regions the six quasilinear differential equations (10) and (12) apply provided $\lambda \equiv 0$ is introduced into Eqs. (10).

d) Boundary Conditions.

In the problem to be treated, Fig. 1, a $u n i f o r m$ pressure $p_{0}(t)$ is applied for $t \geq 0$ at the loaded end of the cylindrical body, $z=0$, while the shear stress at $z=0$ vanishes,

$$
\begin{gather*}
{\left[s_{z z}-p\right]_{z=0}=-p_{0}(t)} \\
{\left[s_{r z}\right]_{z=0}=0} \tag{II-14}
\end{gather*}
$$

where $p_{0}(t)=0$ if $t<0$.

The cylindrical surface $r=r_{0}$ is restrained by a shell consisting of "stacked eiastic rings". The latter are assumed not to interact with one another but to be able to move radially and axially in response to the stress exerted by the adjacent material. In the radial direction it will be assumed that contact between the material of the cylindrical body and the rings is maintained, so that the radial displacement of any ring is equal to the displacement $\left[u_{r}{ }^{\prime}{ }_{r=r}\right.$ of the adjoining material. The radial motion due to the radial stress $\sigma_{r y}=s_{r r}-p$ is thus described by the differential equation

$$
\begin{equation*}
\left[s_{r r}-p+B u_{r}+A \ddot{u}_{r}\right]_{r=r}=0 \tag{II-15}
\end{equation*}
$$

where

$$
A=\rho_{s} h \quad, \quad B=\frac{E_{s} h}{r_{0}^{2}}
$$

ρ_{s} and E_{s} being the density and Young's modulus of the material of the rings, respectively, and h their thickness in the radial direction. The relations concerning axial motion given below apply for a shear stress $\left[{ }^{s} r z\right]_{r=r}$ caused by viscous friction. If the axial velocity of the shell is $v_{s z}$, the shear stress is

$$
\begin{equation*}
\left[s_{r z}\right]_{r=r}=C\left(v_{s z}-\left[v_{z}\right]_{r=r_{0}}\right) \tag{II-16}
\end{equation*}
$$

where $C \geq 0$. Using the equation of motion of the rings to eliminate $v_{s z}$ gives finally

$$
\begin{equation*}
\left[\dot{s}_{r z}+\frac{C}{A} s_{r z}+C \dot{v}_{z}\right]_{r=r_{0}}=0 \tag{II-17}
\end{equation*}
$$

The two ordinary differential equations (15) and (17) are the required boundary conditions.

In addition to these boundary conditions at $z=0$ and $r=r_{0}$, the solution must satisfy requirements at the boundary $r=0$. In this location all quantities must be finite and, for reasons of continuity, the quantities $s_{r z}$ and v_{r} must vanish. In view of the manipulation to be performed later, it is convenient to replace $\mathrm{s}_{\mathrm{r} z}$ and v_{r} by new variables $\overrightarrow{\mathrm{s}}_{\mathrm{r} z}$ and \vec{v}_{r},

$$
\begin{equation*}
s_{r z}=r \bar{s}_{r z} \quad, \quad v_{r}=r \bar{v}_{r} \tag{II-18}
\end{equation*}
$$

This substitution ensures that $s_{r z}$ and v_{r} vanish at $r=0$ and thus permits the simpler statement that all unknownsp, ${ }^{s} r$, $s_{z z}, \bar{s}_{r z}, v_{z}, \bar{v}_{r}$ and λ must remain finite at $r=0$.

The boundary conditions at the external surfaces of the cylindrical body, Eqs. (14), (15) and (17), and the requirements at $r=0$ apply without regard whether the elastic, or plastic differential equations apply in the adjoining material.

However, additional conditions must be formulated at the internal boundaries separating elastic and plastic regions.

At such boundaries, which in general vary with time, two possibilities must be distinguished. In the first case no discontinuities in stresses, velocities or displacements occur, and the appropriate conditions are simply continuity of these quantities with the added requirement that the stresses at the boundaries satisfy Eq. (11). In the second case, when dis-

Abstract

continuities occur, the latter may occur cnly in the components of the direct stress and of the particle veiocity normal to the bounding surface, and/or in the components of shear stress and of the particle velocity in the tangent plane to the bounding surface. The respective stresses, particle velocities and the local velocity of propagation of the discontinuity must satisfy appropriate Rankiue-Hugoniot relations. The numerical solutions to be obtained later are based on finite difference methods where discontinuities are smoothed out, so that the relations at discontinuities will not be required and the further treatment will consider only coutinuity of stresses, particle velocities and displacements. (It is noted that the requirement of continuity does not include the quantity λ.)

The boundary value problem in the three independent variables z, r and t posed by the equations formulated in the preceding section can be solved numerically by finite difference methods in a routine manner, the only drawback being the necessity for a large enough computer and the required computation time. As an alternative the present paper will proceed with a more approximate numerical solution based on the Galerkin method. By expanding the solution in terms of suitably selected functions of r, the problem will be converted into one with only two independent variables. In comparison with the solution of the equations in three independent variables, this approach is of course of advantage only in situations where one or two exPansion functions give sufficient accuracy.

If one could choose simple expansion functions which satisfy the boundary conditions, the operations necessary for the use of the Galerkin method could be performed in a straightforward manner on the differential equations derived in the preceding section. However, the boundary conditions at $r=r o$, Eq̧. (II-15) and (II-17), are differential equations with respect to time, so that expansion functions cannot be chosen in such a manner. Procedures when the expansion functions do not satisfy the boundary conditions of the differential equations are discussed in Ref. [12] for the method of weighted residuals*), but the approach still requires essentially arbitrary decisions by the analyst conceraing the weighting.

[^1]The complications resulting from expansion functions which do not satisfy boundary conditions disappear if the equations to be solved are integral equations, in which case the boundary conditions required for differential equations no longer appear explicitly. To use this approach the results obtained in Section $I I$ are converted into an equivalent system of integral equations with respect to r, retaining differential equations with respect to z and t. The new formulation is obtained by integration of the differential equations over the area of the cross-section and integration by parts, so that derivatives with respect to r disappear. The boundary terms resulting from the integration by parts are then eliminated by use of the boundary conditions at $r=r_{0}$ and by the requirement of finiteness at $r=0$. The resulting system in plastic regions is $-r\left(\dot{s}_{r r}-\dot{p}+r B \bar{v}_{r}+r A \ddot{v}_{r}\right)=\int_{r}^{r}\left\{\left[-\dot{s}_{r r}-\dot{s}_{z z}-\dot{p}-\xi^{2} \dot{\bar{s}}_{r z}^{\prime}+\xi^{2} \rho \ddot{v}_{r}\right\}+\right.$ $+B\left[2 \xi v_{z}^{\prime}-\xi \frac{3}{2 G} \dot{s}_{z z}-\xi 3 \lambda s_{z z}\right]+$ $\left.+A\left[2 \xi \ddot{v}_{z}^{\prime}-\xi \frac{3}{2 G} \ddot{s}_{z z}-\xi 3\left(\ddot{\lambda} s_{z z}+2 \dot{\lambda} s_{z z}+\lambda \ddot{s}_{z z}\right)\right]\right\} d \xi$
(III-I)

$$
\begin{align*}
& -r\left(\dot{\bar{s}}_{r z}+r \frac{C}{A} \bar{s}_{r z}+C \dot{v}_{z}\right)=\int_{r}^{r}\left\{\left[-\xi_{z z}^{\prime} \dot{s}_{z z}^{\prime}+\dot{\xi}^{\prime}+\xi \rho \ddot{v}_{z}\right]+\right. \\
& +\frac{\mathrm{C}}{\mathrm{~A}}\left[-\xi \mathrm{s}_{z z}^{\prime}+\xi \mathrm{p}{ }^{\prime}+\xi \rho \dot{v}_{z}\right]+ \\
& \left.+C \frac{\partial}{\partial t}\left[v_{z}-\xi^{2} \bar{v}_{r}^{\prime}+\xi^{2} \frac{1}{G} \dot{\bar{s}}_{r z}+\xi^{2} 2 \lambda \bar{s}_{r z}\right]\right\} d \xi \tag{III-2}
\end{align*}
$$

$$
\begin{align*}
2 r \bar{v}_{r} & =\int_{0}^{r}\left(3 \xi \bar{v}_{r}+\xi v_{z}^{\prime}+\xi \frac{3}{2 G} \dot{s}_{r r}+\xi 3 \lambda s_{r r}\right) d \xi \tag{III-3}\\
r^{2} \bar{v}_{r} & =\int_{0}^{r}\left(\xi 2 v_{z}^{\prime}-\xi \frac{3}{2 G} \dot{s}_{z z}-\xi 3 \lambda s_{z z}\right) d \xi \tag{III-4}\\
r^{2} \bar{v}_{r} & =\int_{0}^{r}\left[-\xi v_{z}^{\prime}-\xi \frac{1}{K(p)} \dot{p}+\xi 6 \alpha \lambda(k+3 \alpha p)\right] d \xi \tag{III-5}\\
r v_{z} & =\int_{0}^{r}\left(v_{z}-\xi^{2} \bar{v}_{r}^{\prime}+\xi^{2} \frac{1}{G} \dot{\bar{s}}_{r z}+\xi^{2} 2 \lambda \bar{s}_{r z}\right) d \xi \tag{III}
\end{align*}
$$

Differentiation with respect to z and t are respectively denoted by primes and dots, while ξ is a dummy variable of integration replacing the radial coordinate in the integrands. These six equations apply in conjunction with the yield condition

$$
\begin{equation*}
F\left(\sigma_{i j}\right)=s_{r r}^{2}+s_{r r} s_{z i}+s_{z z}^{2}+r^{2} s_{r z}^{2}-(k+3 \alpha p)^{2}=0 \tag{III}
\end{equation*}
$$

and the requirements $\lambda \geq 0$, Eq. $(I I-8 b)$ and $(k+3 \alpha p) \geq 0$, Eq. (II-Ib).

The derivation of Eqs. (1) to (6) is symbolically described by the statements

$$
\begin{aligned}
\{I I I-1\}=\frac{\partial}{\partial t} \int_{r}^{r} 0 & I I-12 a\} \xi d \xi+B \int_{r}^{r}\{I I-10 b\} \xi d \xi+ \\
& +A \frac{\partial^{2}}{\partial t^{2}} \int_{r}^{r} 0
\end{aligned}\{I I-10 b\} \xi d \xi-\frac{\partial}{\partial t}\{I I-15\},
$$

$$
\{I I \tau-2\}=\frac{\partial}{\partial t} \int_{r}^{r}\{I I-12 b\} \xi d \xi+\frac{C}{A} \int_{r}^{r}\{I I-12 b\} \xi d \xi+
$$

$$
+c \frac{\partial}{\partial t} \int_{r}^{r} 0
$$

$$
\{I I I-3\}=\int_{0}^{r}\{I I-10 a\} \xi d \xi
$$

$$
\{I I I-4\}=\int_{0}^{r}\{I I-10 b\} \xi d \xi
$$

$$
\{I I I-5\}=\int_{0}^{\mathrm{r}}\{I I-10 \dot{c}\} \xi d \xi
$$

$$
\{I I I-6\}=\int_{0}^{r}\{I I-10 d\} \xi d \xi
$$

where the numbers in braces \{ \} denote the various equations. The expressions (1) to (7) being based on the differential equations in plastic regions, the expressions are naturally
valid only in locations z shere the material is plastic for all values of $0 \leq r \leq r_{c}$.

It can be demonstrated by reversing the process of derivation outlined symbolically that the integral formulation, Eqs. (1) to (6), is entirely equivalent to the earifer differential formulation, provided the integrends are continuous functions of r for $0 \leq r \leq r_{o}$, and that \bar{v}_{r} and v_{z} have finite limits for $r \rightarrow 0$.

The above integro-differential equations remain sutject to the boundary conditions (II-14) at $z=0$ and to initial conditions representing a state of rest at $t=0$.

In elastic regions, i.e., in locations z where in the time interval considered the material acts elastically for all values of r, the appropriate integral equations are obtained from Eqs. (1) to (6) by substitution of $\lambda \equiv 0$. In addition to the previously stated initial conditions for $t \leq 0$ and boundary corditions for $z=0$, the results must satisfy $(k+3 \alpha p) \geq 0$ and one of the two alternate restrictions $F<0$, or $F=0$ and $\dot{F}>0$.

The derivation of the irtegro-differential equations (1) to (6) in plastic regions and of the similar but simpler set in elastic regions, apply respectively, only if the material in the particular location z and in the interval of time considered acts plastically or alastically, respectively for all
values of r. It is thus necessary to consider the situation where the material acts plastically for some range of r and elastically in the remainder of the range $0 \leq r \leq r_{0}$. To make a valid statement in such situations it is noted that the differential equations in Section II are hyperbolic, so that the solution, i.e., the values of the stresses and velocities at any time t define the continuation of the solution during the subsequent (differential) interval dt. It is further noted that this continuation of the solution does not explicitly depend on the question of plastic or elastic action of the material for earlier values of the time. The numerical solution of the problem will be based on finite difference procedures in z and t, the latter being of consequence hare. Assume that the solution up to some value of t has been found. Using the values of the stresses and velocities at this time t as initial values, one can find a preliminary "plastic" solution [P]for $t+\Delta t$ based on Eqs. (1) to (7). Similarly, one can find a preliminary "elastic" solution [E] for $t+\Delta t$ based on Eqs. (1) to (6) with $\lambda \equiv 0 . \quad$ These two preliminary solutions are each actually valid in locations r where the respective secondary requirements are satisfied. The solution [P] is valid only in locations rere Eq. (II-8b) holds, while [E] is valid only for values r where one of the two restrictions, Eqs. (II-13a,b), is satisfied. In the expectation that the problem treated has a unique solution*) the ranges in r for the solutions [P] and [E] should cover all values $0 \leq r \leq r$ completely and without overlap. However, this

[^2]ideal requirement is not likely to be satisfied in an approximate analysis using finite steps and a truncated expansion. This detail which requires an approximation will be discussed later in Section $I \mathbb{V}$. Using portions of the solutions [P] and [E] an approximate numerical solution can, however, be obtained for all values of r, aven when the material acts plastically in some locations, elastically in others.

The procedure outlined above can be simplified by making the assumption that the separation of elastic and plastic regions is always along a plane normal to the z-axis. As discussed at the very end of Section IV this simplification is appropriate if a very simple analysis is made where only one term of the expansion for each unknown is used when applying the Galerkin method.

The removal of the independent variable r by the Galerkin method is achieved by expanding the unknowns in terms of appropriate functions of r, leading to partial differential equations for the expansion coefficients, which are functions of z and t. The expansion functions salected are even powers of $r, i . e ., r^{0}, r^{2}, \ldots$. The reason for the omission of odd powers is the fact that the differential equations (II-10) and (II-12) after substitution of $s_{r z}=r_{r z}$ and $v_{r}={ }_{r} \bar{v}_{r}$ permit a solution for all unknown in form of power series*) in even powers of r. Such a solution is suitable when the boundary conditions at $z=0$ are even in r, which is the case in the present problem. It is thus expected that immediate omission of the odd powers of r in the Galerkin approach will give better results for the limited number of terms used.

It must be stressed here that the elimination of the variable r by the Galerkin method can only be applied to equalities, such as Eqs. (III-1) to (III-7), but that the secondary conditions expressed by the irequalities, Eqs. (II-1b), (II-8b) and (It-13a,b), must be retained as functions of r unless one is wiliing to accept a further approximation with some potential error in the results. Consider as an example the inequality $\lambda \geq 0$, using the set of expansion functions $r^{2 i}, i=0,1,2, \ldots$. While $\lambda \geq 0$ permits the conclusion

[^3]\[

$$
\begin{equation*}
\int_{0}^{r_{0}} \lambda(r) r^{2 i+1} d r \geq 0 \tag{IV-1}
\end{equation*}
$$

\]

one cannot draw the conclusion that the existence of the inequalities (1) insures $\lambda \geq 0$, even in the limit when Eq. (1) hold for all values of $i=0,1,2, \ldots, \infty$.
a) Application of Galerkin Method.

To remove the variable r, the truncated expansions

$$
\begin{aligned}
p(r, z, t) & =\sum_{i=0}^{n} r^{2 i} P_{i}(z, t) \\
s_{r r}(r, z, t) & =\sum_{i=0}^{n} r^{2 i} R_{i}(z, t) \\
s_{z z}(r, z, t) & =\sum_{i=0}^{n} r^{2 i} z_{i}(z, t) \\
\bar{s}_{r z}(r, z, t) & =\sum_{i=0}^{n} r^{2 i} T_{i}(z, t) \\
v_{z}(r, z, t) & =\sum_{i=0}^{n} r^{2 i} v_{i}(z, t) \\
\bar{v}_{r}(r, z, t) & =\sum_{i=0}^{n} r^{2 i} U_{i}(z, t) \\
\lambda(r, z, t) & =\sum_{i=0}^{n} r^{2 i} \Lambda_{i}(z, t)
\end{aligned}
$$

are introduced into Eqs. (III-1.) to (III-7) in fully plastic locations z and into Eqs. (III-1) to (III-6) with $\lambda \equiv 0$ in Eully elastic locations z. The equations defining the new unknowns $P_{i}, R_{i}, Z_{i}, T_{i}, v_{i}, U_{i}$ and Λ_{i} are obtained by multiplying
the respective equations by r^{m} and integrating over the area $d A=r d r$ of the cross section, the values of m being $0,2,4, \ldots, 2 n$. The resulting system in plastic locations is

$$
\sum_{i=0}^{n} \frac{r_{0}^{2 i}}{(2 i+m+3)}\left\{(m+1) \dot{R}_{i}-\dot{z}_{i}-(m+3) \dot{P}_{i}+\frac{r_{0}^{2}(2 i+m+3)}{(2 i+m+5)}\left(-\dot{T}_{i}^{\prime}+\rho \ddot{U}_{i}\right)+\right.
$$

$$
\begin{align*}
& +\frac{r_{0}(2 i+m+3)}{(2 i+m+4)}\left(B+A \frac{\partial^{2}}{\partial t^{2}}\right)\left[(m+2) U_{i}+2 V_{i}^{\prime}-\frac{3}{2 G} \dot{z}_{i}-\right. \\
& \left.\left.-3 \sum_{j=0}^{n} \frac{r_{0}^{2 j}(2 i+m+4)}{(2 i+2 j+m+4)} \Lambda_{i} z_{j}\right]\right\}=0 \tag{IV-3}
\end{align*}
$$

$\sum_{i=0}^{n} \frac{r_{0}^{2 i}}{(2 i+m+5)}\left\{\frac{2 i+m+5}{2 i+m+4}\left(\frac{C}{A}+\frac{\partial}{\partial t}\right)\left((m+2) T_{i}-Z_{i}^{\prime}+P_{i}^{\prime}+\rho \dot{V}_{i}\right\}+\right.$

$$
\begin{align*}
+==_{0} c & \frac{\partial}{\partial t}\left[\frac{(m+3)(2 i+m+5)}{(2 i+m+3) r_{0}^{2}} v_{i}+\frac{1}{G} \dot{T}_{i}-U_{i}^{\prime}+\right. \\
& \left.\left.+2 \sum_{j=0}^{n} \frac{r_{0}^{2 j}(2 i+m+5)}{(2 i+2 j+m+5)} \Lambda_{i} T_{j}\right]\right\}=0 \tag{Iv-4}
\end{align*}
$$

$\sum_{i=0}^{n} \frac{r_{0}^{2 i}}{(2 i+2)(2 i+m+4)}\left\{(4 i+1) U_{i}-v_{i}^{\prime}-\frac{3}{2 G} \dot{R}_{i}-\right.$

$$
\begin{equation*}
\left.-3 \sum_{j=0}^{n} \frac{r_{0}^{2 j}(2 i+2)(2 i+m+4)}{(2 i+2 j+2)(2 i+2 j+m+4)} \Lambda_{i} R_{j}\right\}=0 \tag{IV-5}
\end{equation*}
$$

$\sum_{i=0}^{n} \frac{r_{o}^{2 i}}{(2 i+2)(2 i+n+4)}\left\{(2 i+2) U_{i}-2 V_{i}^{\prime}+\frac{3}{2 G} \dot{z}_{i}+\right.$

$$
\begin{equation*}
\left.+3 \sum_{j=0}^{n} \frac{r_{0}^{2 j}(2 i+2 j(2 i+m+4)}{(2 i+2 j+2)(2 i+2 j+m+4)} \Lambda_{i} z_{j}\right\}=0 \tag{IV-6}
\end{equation*}
$$

$\sum_{i=0}^{n} \frac{r_{0}^{2 i}}{(2 i+2)(2 i+m+4)}\left\{(2 i+2) u_{i}+v_{i}^{\prime}+\frac{1}{k_{m i}} \dot{p}_{i}-\right.$
$\left.-6 \alpha \sum_{j=0}^{n} \frac{r_{0}^{2 j}(2 i+2)(2 i+m+4)}{(2 i+2 j+2)(2 i+2 j+m+4)} \Lambda_{i}\left(k \delta_{o j}+3 \alpha P_{j}\right)\right\}=0$
$\sum_{i=0}^{n} \frac{r_{0}^{2 i}}{(2 i+3)(2 i+m+5)}\left\{\frac{(2 i+3)(2 i+m+5) 2 i}{(2 i+1)(2 i+m+3) r_{0}^{2}} V_{i}+U_{i}^{\prime}-\frac{1}{G} \dot{T}_{i}-\right.$
$\left.-2 \sum_{j=0}^{n} \frac{r_{0}^{2 j}(2 i+3)(2 i+m+5)}{(2 i+2 j+3)(2 i+2 j+m+5)} \Lambda_{i}{ }_{j}\right\}=0$
$\sum_{i=0}^{n} \sum_{j=0}^{n} \frac{r_{0}^{2 i+2 j}}{(2 i+2 j+m+2)}\left\{R_{i} R_{j}+R_{i} Z_{j}+Z_{i} Z_{j}+\frac{r_{o}^{2}(2 i+2 j+m+2)}{(2 i+2 j+m+i)} T_{i} T_{j}-\right.$

$$
\begin{equation*}
\left.-\left(k \delta_{o i}+3 \alpha P_{i}\right)\left(k \delta_{o j}+3 \alpha P_{j}\right)\right\}=0 \tag{IV}
\end{equation*}
$$

where
$\frac{1}{K_{m j}}=\frac{(2 j+2)(2 j+m+4)}{r_{0}^{2 j+m+4}} \int_{0}^{r} r^{m+i}\left\{\int_{0}^{r} \frac{\xi^{2 j+1}}{K\left(x=\sum_{i=0}^{n} \xi^{2 i} F_{i}\right)} d \xi\right\} d r$

The boundary conditions are

$$
\begin{align*}
& {\left[Z_{i}-P_{i}\right]_{z=0}=-p_{0}(t) \delta_{o i}} \tag{IV-11a}\\
& {\left[T_{i}\right]_{z=0}=0} \tag{IV-11b}
\end{align*}
$$

where $\delta_{o i}$ is Kronecker's delta, while the initial conditions require that all unknown and their partial derivatives of all orders vanish for $t \leq 0, z>0$.

The appropriate equations in elastic regions are Eqs. (IV-3) to (IV-8) with $\Lambda_{i} \equiv 0$.

Solutions obtained from the respective equations in plastic or elastic locations are valid only if the appropriate secondary requirements are satisfied. Thus, the plastic solution is valid only in locations z where Eqs. (IV-2) give $\lambda \geq 0$ for all values of r, while the elastic solution applies only in locarions z where the solution satisfies Eq. (II-l3a) or Eqs. (II-l3b) for all values of r. As discussed in the last two paragraphs of Section III there will in general be losations z where neither of the above two requirements is satisfied. In such locations z the plastic and elastic solutions are each valid in parts of the range in r, the range to be determined after each time step Δt of the numerical integration. Further, as noted in Section II, results are only meaningful if they satisfy the requirement $k+3 \alpha p \geq 0$, which follows from Eq. (II-lb).
b) Speciai Case of Truncation to $n=0$.

The simplest solution is obtained if only one term of the expansion is used for each unknown. The solution on this simple basis gives the exact solution for an infinitely rigid containing tube and may therefore be considered reasonable if the tube is sufficiently rigid, a suitable criterion to be developed later. After simplification, the following equations are obtained in plastic locations:

$$
\begin{align*}
& 5 \dot{R}_{0}-5 \dot{P}_{0}-r_{0}^{2} \dot{T}_{0}^{\prime}+5 r_{0}^{B U} U_{0}+r_{0}^{2} \bar{\rho} \ddot{U}_{0}=0 \tag{IV-12}\\
& \left(\frac{C}{A}+\frac{\partial}{\partial t}\right)\left(2 T_{0}+2 R_{0}^{\prime}+P_{0}^{\prime}+\rho \dot{V}_{0}\right)+\frac{4 C}{r_{0}} \dot{V}_{0}=0 \tag{IV-13}\\
& \frac{3}{2 G} \dot{R}_{0}+V_{0}^{\prime}-U_{0}+3 A_{0} R_{0}=0 \tag{IV-14}\\
& \frac{1}{K\left(P_{0}\right)} \dot{P}_{0}+V_{0}^{\prime}+2 U_{0}-6 \alpha \Lambda_{0}\left(k+3 \alpha F_{0}\right)=0 \tag{IV-15}\\
& \frac{1}{G} \dot{T}_{0}-U_{0}^{\prime}+2 \Lambda_{0} T_{0}=0 \tag{IV-16}\\
& Z_{0}+2 R_{0}=0 \tag{Iv-17}\\
& \Phi \equiv 6 R_{0}^{2}+r_{0}^{2} T_{0}^{2}-2\left(k+3 \alpha P_{0}\right)^{2}=0 \tag{IV-18}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{\rho}=\rho+\frac{5 A}{r_{0}} \tag{IV-19}
\end{equation*}
$$

The manipulations leading from Eqs. (3) to (9) to Eqs. (12)
to (18) are indicated below. Each equation is reduced to the first term by the substitution $m=n=0$. The result of the elimination of U_{o} and V_{o}^{\prime} between Eqs. (5) and (6) is integrated with respect to time and noting the original state of rest, leads to Eq. (17). It is noted that this equation implies that in this approximation $s_{z z}+2 s_{r r}=0$, which is exactly true if the restraining tube is absolutely rigid. This result is due to the low order of the truncation, but should be a good approximation for the case of very strong restraint. The remaining operations, including the use of Eq. (17) to eliminate Z_{o}, are represented symbolically by:

$$
\begin{aligned}
& \{I V-12\}=\left[5\{I V-3\}+10 r_{0}\left(B+A \frac{\partial^{2}}{\partial t^{2}}\right)\{I V-6\}\right]_{Z_{0}}=-2 R_{0} \\
& \{I V-13\}=\left[4\{I V-4\}+12 r_{0} C \frac{\partial}{\partial t}\{I V-8\}\right]_{0}=-2 R_{0} \\
& \{I V-14\}=-8\{I V-5\} \\
& \{I V-15\}=8\{I V-7\} \\
& \{I V-16\}=-15\{I V-8\} \\
& \{I V-18\}=[4\{I V-9\}]_{Z_{0}}=-2 R_{0}
\end{aligned}
$$

The system of equations (12) to (18) is subject to the boundary conditions

$$
\begin{align*}
& {\left[2 R_{0}+P_{0}\right]_{z=0}=p_{0}(t)} \tag{IV-20a}\\
& {\left[T_{0}\right]_{z=0}=0} \tag{IV-20b}
\end{align*}
$$

and to initial conditions corresponding to a state of rest at $t=0$.

In elastic regions Eq. (12) to (17) apply with $\Lambda_{0}=0$, while the secondary conditions, Eq. (II-13a) or Eq. (II-13b), must be satisfied, the function F being in this case:

$$
\begin{equation*}
F=3 R_{0}^{2}+r^{2} T_{0}^{2}-\left(k+3 \alpha P_{0}\right)^{2} \tag{IV-21}
\end{equation*}
$$

c) Boundaries between Elastic and Plastic Solutions.

As a result of the truncation, the extent of elastic and plastic regions obtained from the elastic and from the plastic equations does not quite agree. This requires
discussion to resolve the inconsistency by a suitable approximate procedure. For the particulatly important case when only the terms $n=0$ are used, suitability of the elastic solution obtained by forward integration for a given vaiue t in a location z is to be checked by Eq. (21). This check ray indicate that the yield relation is satisfied for some values of r, but not for others, because Eq. (21) contains a term depending on r. On the other hand, the value λ obtained from the plastic analysis in this approximation is necessarily a constant, λ, Λ_{0}, so that the plastic analysis in this location z would seem to be acceptable for all values of rif $\hat{\Lambda}_{0} \geq 0^{0}$, or not at all if $\Lambda_{0}<0$. This difficulty can be resolved regardless of the order of the truncation, $n=0$ or $n>0$, by accepting the elastic solution [E] wherever Eq. (II-13a) or Eqs. (II-13b) are satisfied and using the plastic one, [P], in all other locations, regardess of the sign of λ. The arbitrary preference given to the result of the elastic solution [E] is motivated by convenience, caused by the fact that numerical solutions derived in Section V furrish the plastic solution as the elastic solution folloved by a corrective step. If the procedure recommended above leads in a location z and at atime to an elastic solution for some range of r and to a plastic one in the renainder, series with different coefficients will apply for the unknowns defined by Eçs. (2). To continue the forward integration in time, the series for each of the quantities in [E] and [P] must be reconciled by expansion of the result. For example, if the pressure $p^{[E],} p^{[P]}$ in the elastic and inelastic regions, respectively, in a two tera
expansion at a point z, t are foind to be

$$
\begin{array}{ll}
p^{[E]}=P_{o}^{[E]}+r^{2} P_{1}^{[E]} & 0 \leq r<r^{[P]} \\
p^{[P]}=P_{0}^{[P]}+r^{2} P_{1}^{[P]} & r^{[P]} \leq r \leq r_{0} \tag{IV-22b}
\end{array}
$$

then a new expansion for the pressure

$$
\begin{equation*}
p=p_{0}+r^{2} p_{1} \quad 0 \leq r \leq r_{0} \tag{IV-23}
\end{equation*}
$$

is to be obtained by appropriate fitcing of P_{o} and P_{1}. The coefficients P_{0}, P_{i} in the last equation are then to be used in the numerical amalysis to find the unknown at the next time step.

A somewhat simpler procedure can be employed when only the terms $n=0$ are used. Still basing the decision on the elastic analysis one can decide not to apply Eq. (21) as a function of r as a criterion, but to base the decision on the mean value of F. The elastic solution will then apply if

$$
\begin{equation*}
\Phi \equiv 6 R_{0}^{2}+r_{o}^{2} T_{o}^{2}-2\left(k+3 P_{o}\right)^{2} \leq 0 \tag{IV-24}
\end{equation*}
$$

This procedure is in the spirlt of a one term Galerkin solution and elininates locations where Eqs. (22) and (23) have to be applied. The moving boundaries between elastic and plastic regions become in this approximation planes at right angles to 2 . This simplified approach was used in the examples in section $y f$.

A finite difference solution of Eqs. (IV-12) to (IV-20)
generated by the Galerkin method with $n=0$ is presented in this section. The computation technique consists of a process of forward integration in time based on the elastic relations, followed by a check on the validity of the stresses obtained at each time step and a correction of these trial values to conform to the plastic relations, where necessary. The differencing scheme is therefore motivated primarily by the elastic relations, with the terms depending on $\hat{\Lambda}_{0}$ represented in such a manner that the correction algorithm becomes simple and convenient.

a) Difference Equations.

In elastic regions the problem is fully hyperbolic with real characteristics and the correct number of linearly independent characteristic vectors. In such a case, for a system in two independent variables governing stress wave propagation, a standard technique consists of using a staggered grid with stresses and velocities evaluated at alternate points in time and space and central differences used to approximate derivatives. To this end, the first quadrant of the $z-t$ plane is divided by a double rectangular grid, evenly spaced in the z and t directions by $\frac{\Delta z}{2}$ and $\frac{\Delta t}{2}$, as shown in figure 2. The superscript in is used to indicate a time level and the subscript f a point in space with $n=\frac{1}{2}$
corresponding to $r=0$ and $j=1$ tc $z=0$, so that for a generic dependent variable $D(z, t)$,

$$
\begin{equation*}
D_{j}^{n}=D\left[(j-1) \Delta z,\left(n-\frac{1}{2}\right) \Delta t\right] \tag{V-1}
\end{equation*}
$$

The stresses are computed at points (j $\Delta z, n \Delta t$) and the velocities at points $\left[\left(j+\frac{1}{2}\right) \Delta z,\left(n+\frac{1}{2}\right) \Delta t\right]$, j and n representing integral values.

The computation scheme will be applied to a material with a nonlinearity of the hardening type which tends to steepen loadjng profiles and subsequentiy generate loading shocks. In a simple centered scheme such as described above, steep fronts are followed by strong numerical oscillations which mask the profile of the true solution. Tc eliminate these oscillations and render computation with discontinuous loading histories fossible, a device similar to that proposed by Lax for equations in conservation form, Ref. [14], is used. The procedure used here consists of replacing the simple centered time difference

$$
\begin{equation*}
\left[\frac{\partial D}{\partial t}\right]_{j}^{n+\frac{1}{2}}=\frac{1}{\Delta t}\left(D_{j}^{n+1}-D_{j}^{n}\right)+0\left(\overline{C t}^{2}\right) \tag{V-2}
\end{equation*}
$$

by the form
$\left[\frac{\partial D}{\partial t}\right]_{j}^{n+\frac{1}{2}}=\frac{1}{\Delta t}\left[D_{j}^{n+1}-\frac{1}{2+C_{D}}\left(D_{j+1}^{n}+C_{D}^{D} D_{j}^{n}+D_{j-1}^{n}\right)\right]+O\left(\frac{\overline{\Delta z}^{2}}{\Delta t}\right) \quad(V-3)$
where $C_{D}>0$ is an arbitrary parameter. The effect of this modified scheme j.s to introduce a "diffusion term" proportional to $\left(\overline{\Delta z}^{2} / \Delta t\right)$ into the relations as can be seen from
the Taylor expansion
$\frac{1}{\Delta t}\left[D_{j}^{n+1}-\frac{1}{2+C_{D}}\left(D_{j+1}^{n}+C_{D} D_{j}^{n}+D_{j-1}^{n}\right)\right]=\left[\frac{\partial D}{\partial t}\right]_{j}^{n+\frac{1 / 2}{}}-$

$$
\begin{equation*}
-\frac{\overline{\Delta z}^{2}}{\Delta t} \frac{1}{2+C_{D}}\left[\frac{\partial^{2} D}{\partial z^{2}}\right]_{j}^{n+1 / 2}+0\left(\overline{\Delta z}^{2}, \overline{\Delta t}^{2}\right) \tag{v-4}
\end{equation*}
$$

Using the form, Eq. (3), in the constitutive equations (IV-14)
to (IV-16) and deleting the zero subscripts indicating the order of the truncation for the sake of simplicity, the finite difference form of equations (IV-12) to (IV-18) is

$$
\begin{gather*}
R_{j}^{n+1}=R_{j}^{n}+\frac{1}{2+} C_{D}\left(R_{j+1}^{n}-2 R_{j}^{n}+R_{j-1}^{n}\right)+\frac{G \Delta t}{3}\left(U_{j+\frac{1}{2}}^{n+\frac{1}{2}}+U_{j-\frac{1}{2}}^{n+\frac{1}{2}}\right)- \\
-\frac{2 G \Delta t}{3 \Delta z}\left(V_{j+1 / 2}^{n+1 / 2}-v_{j-1 / 2}^{n+1 / 2}\right)-2 G \Delta t \Lambda_{j}^{n+1} R_{j}^{n+1} \tag{v-5}
\end{gather*}
$$

$P_{j}^{n+1}=p_{j}^{n}+\frac{1}{2+C_{D}}\left(P_{j+1}^{n}-2 P_{j}^{n}+P_{j-1}^{n}\right)-\kappa_{j}^{n} \Delta t\left(U_{j+\frac{1}{2}}^{n+\frac{1}{2}}+U_{j-\frac{1}{2}}^{n+\frac{1}{2}}\right)-$

$$
\begin{equation*}
-\frac{\kappa_{j}^{n} \Delta t}{\Delta z}\left(v_{j+\frac{1}{2}}^{n+\frac{1}{2}}-v_{j-\frac{1}{2}}^{n+\frac{1}{2}}\right)+6 \alpha \kappa_{j}^{n} \Delta t \Lambda_{j}^{n+1}\left(k+3 \alpha P_{j}^{n+1}\right) \tag{V-5}
\end{equation*}
$$

$$
T_{j}^{n+1}=T_{j}^{n}+\frac{1}{2+C_{D}}\left(I_{j+1}^{n}-2 T_{j}^{n}+T_{j-1}^{n}\right)+\frac{G \Delta t}{\Delta z}\left(U_{j+1 / 2}^{n+\frac{1}{2}}-U_{j-1 / 2}^{n+\frac{1}{2}}\right)-
$$

$$
\begin{equation*}
-2 G \Delta t \Lambda_{j}^{n+1} T_{j}^{n+1} \tag{v-7}
\end{equation*}
$$

$$
\begin{equation*}
z_{j}^{n+1}=-2 R_{j}^{n+1} \tag{v-8}
\end{equation*}
$$

$$
\begin{align*}
U_{j+\frac{1}{2}}^{n+3 / 2}=\left(2-\frac{5 B \overline{\Delta t}^{2}}{r_{0} \bar{\rho}}\right) & U_{j+\frac{1 / 2}{n+\frac{1}{2}}}-U_{j+\frac{1 / 2}{n}}^{n-\frac{1}{2}}- \\
& -\frac{5 \Delta t}{2 r_{0}^{2} \bar{\rho}}\left[\left(R_{j+1}^{n+1}+R_{j}^{n+1}\right)-\left(R_{j+1}^{n}+R_{j}^{n}\right)\right]+ \\
& +\frac{5 \Delta t}{2 r_{0}^{2} \bar{\rho}}\left[\left(P_{j+1}^{n+1}+P_{j}^{n+1}\right)-\left(P_{j+1}^{n}+P_{j}^{n}\right)\right]+ \\
& +\frac{\Delta t}{\bar{\rho} \Delta z}\left[\left(T_{j+1}^{n+1}-T_{j}^{n+1}\right)-\left(T_{j+1}^{n}-T_{j}^{n}\right)\right] \tag{v-9}
\end{align*}
$$

$$
\begin{aligned}
v_{j+\frac{1}{2}}^{n+3 / 2} & =\left[1+\frac{C \Delta t}{2 A}\left(1+\frac{4 A}{\rho r_{0}}\right)\right]^{-1}\left\{2 v_{j+\frac{1 / 2}{2}}^{n+\frac{1}{2}}-\left[1-\frac{C \Delta t}{2 A}\left(1+\frac{4 A}{\rho r_{0}}\right)\right] v_{j+\frac{1 / 2}{n}}^{n-\frac{1}{2}}-\right. \\
& -\frac{2 \Delta t}{\rho \Delta z}\left[\left(1+\frac{C \Delta t}{2 A}\right)\left(R_{j+1}^{n+1}-R_{j}^{n+1}\right)-\left(1-\frac{C \Delta t}{2 A}\right)\left(R_{j+1}^{n}-R_{j}^{n}\right)\right]- \\
& -\frac{\Delta t}{\rho \Delta z}\left[\left(1+\frac{C \Delta t}{2 A}\right)\left(P_{j+1}^{n+1}-P_{j}^{n+1}\right)-\left(1-\frac{C \Delta t}{2 A}\right)\left(P_{j+1}^{n}-P_{j}^{n}\right)\right]- \\
& \left.-\frac{\Delta t}{\rho}\left[\left(1+\frac{C \Delta t}{2 A}\right)\left(T_{j+1}^{n+1}+T_{j}^{n+1}\right)-\left(1-\frac{C \Delta t}{2 A}\right)\left(T_{j+1}^{n}+T_{j}^{n}\right)\right]\right\}(V-10)
\end{aligned}
$$

$$
\Phi_{j}^{n+1} \equiv \Phi\left(R_{j}^{n+1}, P_{j}^{n+1}, T_{j}^{n+1}\right)=6\left(R_{j}^{n+1}\right)^{2} \div r_{0}^{2}\left(T_{j}^{n+1}\right)^{2}-
$$

$$
\begin{equation*}
-2\left(k+3 a P_{j}^{n+1}\right)^{2}=0 \tag{v-11}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{j}^{n}=K\left(P_{j}^{n}\right) \tag{V-12}
\end{equation*}
$$

and $C_{D}>0$ is an arbitrary value to be chosen smallenough to lead to reasonably smooth numerical results. Consistent with this requirement, C_{D} should, however, be selected as large as possible, to avoid significant energy losses due to the artificially introduced dissipative terms. For simplicity, the dissipative terms in Eqs. (5), (6) and (7) and the nonlinear function K which depends on the bulk modulus $K(p)$ have been written at $(n+1, j)$ and at (n, j), respectively. This is not consistent with the centered scheme, but is convenient for the computation.

Equations (5) to (11) apply in plastic regionsin conjunction with the restrictions, Eqs. ($I I-1 b$) and (II-8b), while the first six of these relations, Eqs. (5) to (10) with $\Lambda=0$ hold in elastic regions subject to the restriction expressing the requirement that the stresses remain below yield. In the present simplified approximation the yield condition will not be usad as a function of r, but.as indicated in the discussion leading to Eq. (IV-24) only the value Φ defined by this equation will be used as a criterion. The appropriate condition in finite difference form is thus

$$
\begin{equation*}
\Phi_{j}^{n+1}=6\left(R_{j}^{n+1}\right)^{2}+r_{o}^{2}\left(T_{j}^{n+1}\right)^{2}-2\left(k+3 \alpha P_{j}^{n+1}\right)^{2} \leq 0 \tag{V-13}
\end{equation*}
$$

The process of construction of the solution is as follows. Using the stresses at the time n and velocities at ($n+\frac{1}{2}$) the four equations (5) to (8) for elastic regions (1.e., with $\left.\Lambda_{j}^{n+1} \equiv 0\right)$ are solved for the stresses at the time $(n+1)$.

For points j where Eq. (13) is satistied*) the stresses are accepted and Eqs. (9) and (10) are used tc find velocities at ($n+3 / 2$). Tf Eq. (13) is not satisfied the correction algorithm indicated** below is used to find the stresses at the time $(n+1)$.

Equations (5) to (10) with $\Lambda_{j}^{n+1} \equiv 0$ can be viewed as a (vectorial) finite difference operator at the time level ($n+\frac{1}{2}$). Its application requires knowledge of R, P and T at the $n^{t h}$ time level and U and V at the $\left(n+\frac{1}{2}\right)^{t h}$ and the $\left(n-\frac{1}{2}\right)^{t h}$ and at all the relevant space points. The operator therefore represents a two-leval fmplicit nonlinear finite difference scheme and a stability analysis according to the methods of Richtmeyer and Morton, Res. [16], gives the necessary local criteria
$\frac{\Delta t}{\Delta z} \sqrt{\frac{1}{\rho}\left(\kappa_{j}^{n}+\frac{4 G}{3}\right)} \leq \sqrt{1-\frac{2}{2+C_{D}}}, \frac{\Delta t}{\Delta z} \sqrt{\frac{G}{\rho}} \leq \sqrt{1-\frac{2}{2+C_{D}}}(V-14)$ applicable at each time level and space point.
b) Correction Algorithm at Interior Points i.

At interior stress pcints (n,j) where the elastic
stresses violate Eq. (i3) the elastic stresses,
*)
The secondary requirement $k+3 \alpha p_{j}^{n+1} \geq 0$ must be satisfied in elastic and plastic regions. If it is not, a situation not further considered here, the above relations do no longer hcld, because the material has disintegrated.

**)

The manner of corraction is a generalization of the approach used in Ret. [15] Eor the much sinpler case of a von Mises material.
$\bar{R}_{j}^{n+1} \equiv R_{j}^{n}+\frac{1}{2+C_{D}}\left(R_{j+1}^{n}-2 R_{j}^{n}+R_{j-1}^{n}\right)+\frac{G \Delta t}{3}\left(U_{j+\frac{1 / 2}{}}^{n+\frac{1}{2}}+U_{j-\frac{1}{2}}^{n+\frac{1}{2}}\right)-$

$$
\begin{equation*}
-\frac{2 G \Delta t}{3 \Delta z}\left(v_{j+\frac{1}{2}}^{n+\frac{1}{2}}-v_{j-\frac{1}{2}}^{n+\frac{1}{2}}\right) \tag{v-15}
\end{equation*}
$$

$\bar{P}_{j}^{n+1} \equiv p_{j}^{n}+\frac{1}{2+C_{D}}\left(P_{j+1}^{n}-2 P_{j}^{n}+P_{j-1}^{n}\right)-K_{j}^{n} \Delta t\left(U_{j+\frac{1}{2}}^{n+\frac{1}{2}}+U_{j-\frac{1}{2}}^{n+\frac{1}{2}}\right)-$

$$
\begin{equation*}
-\frac{k_{j}^{n} \Delta t}{\Delta z}\left(v_{j+\frac{1}{2}}^{n+\frac{1 / 2}{2}}-v_{j-\frac{1}{2}}^{n+\frac{1 / 2}{2}}\right) \tag{v-16}
\end{equation*}
$$

$\bar{T}_{j}^{n+1} \equiv T_{j}^{n}+\frac{1}{2+C_{D}}\left(T_{j+1}^{n}-2 T_{j}^{n}+T_{j-1}^{n}\right)+\frac{G \Delta t}{\Delta z}\left(U_{j+\frac{1}{2}}^{n+\frac{1}{2}}-U_{j-\frac{1}{2}}^{n+\frac{1}{2}}\right)(V-17)$
are used as trial values. Substitution of the values $\bar{R}_{j}^{n+1}, \bar{P}_{j}^{n+1}, \bar{T}_{j}^{n+1}$ into Eq. (5), (6) and (7) gives the equivalent equations

$$
\begin{align*}
& R_{j}^{n+1}=\frac{1}{1+2 G \Delta t \Lambda_{j}^{n+1}} \bar{R}_{j}^{n+1} \tag{V-18}\\
& T_{j}^{n+1}=\frac{1}{1+2 G \Delta t} \frac{1}{\Lambda_{j}^{n+1}} \bar{T}_{j}^{n+1} \tag{V-19}\\
& \left(k+3 \alpha P_{j}^{n+1}\right)=\frac{1}{1-18 \alpha^{2} \kappa_{j}^{n} \Delta t \Lambda_{j}^{n+1}}\left(k+3 \alpha \bar{P}_{j}^{n+1}\right) \tag{v-20}
\end{align*}
$$

where R_{j}^{n+1}, T_{j}^{n+1} and P_{j}^{n+1} are the actual stresses allowing for plastic effects. When Eq. (18), (19) and (20) are substituted into Eq. (11), $\Phi\left(R_{j}^{n+1}, P_{j}^{n+1}, T_{j}^{n+1}\right)=0, a$ quadratic equation for Λ_{j}^{n+1} is obtained. It has two roots

$$
\Lambda_{j}^{n+1}=-\frac{1}{2 G \Delta t} \frac{1 \overline{1} \sqrt{1+\frac{\Phi\left(\bar{R}^{n+1}, \bar{p}_{j}^{n+1}, \bar{T}_{j}^{n+1}\right)}{2\left(k+3 \alpha \bar{p}_{j}^{n+1}\right)^{2}}}}{1 \pm \frac{9 \alpha^{2} k_{j}^{n}}{G} \sqrt{1+\frac{\Phi\left(\bar{R}_{j}^{n+1}, \bar{P}_{j}^{n+1}, \bar{T}_{j}^{n+1}\right)}{2\left(k+3 \alpha \bar{P}_{j}^{n+1}\right)^{2}}}}
$$

where the upper or lower signs are to be used consistently.

The correction proeedure is tc be used when the elastic values violate Eq. (13), i.e., when $\Phi\left(\overline{\mathbb{R}}_{j}^{n+1}, \overline{\mathrm{P}}_{\mathrm{j}}^{\mathrm{n}+1}, \overline{\mathrm{~T}}_{\mathrm{j}}^{\mathrm{n+1}}\right)>0$. For this case the square roots in the preceding equation are larger than unity so that the upper sigtis in this equation always furnish a value Λ_{j}^{n+1} which satisfies the requirement $\Lambda_{j}^{n+1}>0$. However, when the term $\frac{9 \alpha^{2} K_{j}^{n_{1}}}{G}$ is larger than unity (or close to unity) the lower signs also furnish a positive value Λ_{j}^{n+1}. This value is inappropriate and should be disregarded. The inapplicability of the value obtained on the basis of the lower signs can be demonstrated by studying the consequences of decreasing the time step Δ to the limit $\Delta t \rightarrow 0$.

As a demonstration consider, for simplicity, Eqs. (15) to (17) with $C_{D} \rightarrow \infty$, and a solution such that the yield condition is just satisfied for $(n, j), \Phi\left(R_{j}^{n}, P_{j}^{n}, T_{j}^{n}\right)=0$, while $\Phi\left(\bar{R}_{j}^{n+1}, \bar{P}_{j}^{n+1}, \bar{T}_{j}^{n+1}\right)=\varepsilon>0$. If the time step is decreased, the value of the yield function at the time $(n+1)$ will beccine smaller, $\varepsilon=O(\Delta t)$. Using the upper signs one finds

$$
\operatorname{Lim}_{\Delta t \rightarrow 0}\left[\Delta t \Lambda_{j}^{n+1}\right]=\operatorname{Lim}_{\varepsilon \rightarrow 0}\left[\frac{\varepsilon}{8\left(\rho \alpha^{2} k_{j}^{n}+G\right)\left(k+3 \alpha P_{j}^{n}\right)^{2}}\right]=0
$$

while use of the lower signs gives

$$
\operatorname{Lim}_{\Delta t \rightarrow 0}\left[\Delta t \Lambda_{j}^{n+1}\right]=\operatorname{Lim}_{E \rightarrow 0}\left[\frac{1}{\left(9 \alpha^{2} K_{j}^{n}-G\right)}+G(E)\right]=\frac{1}{9 \alpha^{2} K_{j}^{n}-G}
$$

which is a finite positive value if $9 \alpha^{2} k_{j}^{n}>G$. Equations (15) to (20) indicate that or $\Delta t \Lambda_{j}^{n+1} \rightarrow 0$ the increments $R_{j}^{n+1}-R_{j}^{n}, P_{j}^{n+1}-P_{j}^{n}$ and $T_{j}^{n+1}-T_{j}^{n}$ becone, in the limit, smaller and smaller as required. If, however, $\Delta t \Lambda_{j}^{n+1}$ in the limit is finite, then $\bar{R}_{j}^{n+1}-R_{j}^{n}, \bar{P}_{j}^{n+1}-P_{j}^{n}$ and $\bar{\Gamma}{ }_{j}^{n+1}-T_{j}^{n}$ tend to zero, but not $P_{j}^{n+1}-P_{j}^{n}$, etc., because the factors on the right hand sides of Eqs. (18) to (20) differ in the limit from unity.

The corrected stresser are thus to be computed from
c) Correction \dot{A} lgorithmat the Boundary $j=1$.

At the boundacy $j=2(z=0)$ a similar correction algorithm must be formulated to satisfy the boundary conditions coresponding to Eqs. (IV-20a, b)

$$
\begin{align*}
& 2 R_{1}^{n}+P_{1}^{n}=P_{0}^{n} \tag{V-22a}\\
& T_{1}^{n}=0 \tag{V-22b}
\end{align*}
$$

where $p_{0}^{n}=p_{0}\left[\left(n-\frac{3_{2}}{2}\right) \Delta t\right]$. For this purpose the constitutive equations (5), (6) and (7) with $C_{D} \rightarrow \infty$ and the yield condition, Eq. (11), at $j=1$ are used and the grid is extended one half-step beyond $z=0$ to include $j=\frac{1}{2}$. Substitution of Eq. (22a,b) and elimination of $\left(v_{3 / 2}^{n+\frac{1}{2}}-v_{\frac{1}{2}}^{n+\frac{1}{2}}\right)$ gives the relation

$$
\begin{align*}
& \left(\frac{\kappa_{1}^{n}+4 G / 3}{\kappa_{1}^{n}}\right)\left(P_{1}^{n+1}-P_{1}^{n}\right)-\left(p_{0}^{n+1}-P_{o}^{n}\right)+4 G \Delta t U_{3 / 2}^{n+\frac{1}{2}}- \\
& \tag{V-23}\\
& -2 G \Delta t \Lambda_{1}^{n+1}\left[p_{o}^{n+1}+4 \alpha k-\left(1-12 \alpha^{2}\right) P_{1}^{n+1}\right]=0
\end{align*}
$$

Using an elastic trial value
$\bar{P}_{1}^{n+1} \equiv P_{1}^{n}-\frac{\kappa_{1}^{n}}{\left(\kappa_{1}^{n}+4 G / 3\right)}\left[4 G \Delta t U_{3 / 2}^{n+\frac{1}{2}}-\left(p_{o}^{n+1}-p_{o}^{n}\right)\right]$
reduces Eq. (23) to the form
$P_{1}^{n+1}=\frac{\bar{P}_{1}^{n+1}+\left(\frac{\kappa_{1}^{n}}{\kappa_{1}^{n}+4 G / 3}\right) 2 G \Delta t \Lambda_{1}^{n+1}\left(p_{0}^{n+1}+4 \alpha k\right)}{1+\left(\frac{\kappa_{1}^{n}}{\kappa_{1}^{n}+4 G / 3}\right) 2 G \Delta t \Lambda_{1}^{n+1}\left(1-12 \alpha^{2}\right)}$

The yield condition at the boundary becomes

$$
\begin{equation*}
\Phi_{b}^{n+1} \equiv \Phi_{b}\left(P_{1}^{n+1}\right)=\frac{3}{2}\left(1-12 \alpha^{2}\right)\left(F_{1}^{n+1}-P_{a}\right)\left(P_{1}^{n+1}-P_{b}\right) \leq 0 \tag{v-26}
\end{equation*}
$$

where the quantities

$$
\begin{align*}
& p_{a}=\frac{\left(3 p_{0}^{n+1}-k \sqrt{12}\right)}{3(1+\alpha \sqrt{12})} \tag{V-27a}\\
& p_{b}=\frac{\left(3 p_{0}^{n+1}+k \sqrt{12}\right)}{3(1-\alpha \sqrt{12})} \tag{v-27b}
\end{align*}
$$

satisfy the inequality

$$
\begin{equation*}
P_{b}-F_{a}=\frac{4\left(3 \alpha p_{o}^{n+1}+k\right)}{\sqrt{3}\left(1-12 \alpha^{2}\right)}>0 \tag{v-28}
\end{equation*}
$$

for $\left(3 \alpha p_{0}^{n+1}+k\right)>0, \frac{1}{\sqrt{12}}>\alpha \geq 0$. Finally, substitution of Eq. (25) into Eq. (26) gives two roots for Λ_{1}^{n+1},

$$
\begin{align*}
& \Lambda_{1 a}^{n+1}=\frac{1}{G \Delta t} \frac{\left(\kappa_{1}^{n}+4 G / 3\right)}{\left(1-12 \alpha^{2}\right) \kappa_{1}^{n}} \frac{\left(P_{a}-\bar{P}_{1}^{n+1}\right)}{\left(P_{b}-P_{a}\right)} \tag{v-29a}\\
& \Lambda_{1}^{n+1}=\frac{1}{G \Delta t} \frac{\left(\kappa_{1}^{n}+4 G / 3\right)}{\left(1-12 \alpha^{2}\right) \kappa_{1}^{n}} \frac{\left(\bar{P}_{1}^{n+1}-P_{b}\right)}{\left(P_{b}-P_{a}\right)} \tag{V-29b}
\end{align*}
$$

where use of Λ_{1}^{n+1} in Eq. (25) gives $P_{1}^{n+1}=P_{a}$, whereas Λ_{1}^{n+1} g Lives $P_{1}^{n+1}=P_{b}$.

From the form of Ec. (26) and the inequality Eq. (28) it is seen that only if the elastic trial value computed from Eq. (24) is outside the range $P_{a} \leq \bar{P}_{1}^{n+1} \leq P_{b}$ will the yield condition Eq. (26) be violated, that is $\Phi_{b}\left(\bar{P}_{1}^{n+1}\right)>0$ and a correction of the trial value be required. When $\overline{\mathrm{P}}_{1}^{\mathrm{n}+1}>\mathrm{P}_{\mathrm{b}}$, of the two roots given by Eqs. (29a,b) only Λ_{1}^{n+1} is positive and its use in Eq. (25) gives $P_{1}^{n+1}=P_{b}$. If $\bar{P}_{1}^{n+1}<P_{a}$,
Λ_{1}^{n+1} is the positive rove and leads to $P_{1}^{n+1}=P_{a}$. Thus, in either case, the sulution satisfies $\Lambda_{1}^{n+1}>0$.

VI DISCUSSION OF TYPICAL NUMERICAL RESULTS AND CONCLUSION.

a) Material Case 1.

Results for a group of situations were obtained using the material properties listed as Case 1 in Appendix B and a gradually rising input pressure

$$
\begin{equation*}
p_{0}(t)=300[1-\exp (-1000 t)] \tag{VI-1}
\end{equation*}
$$

in psi and seconds. The analysis was made in all cases for stacked rings with a radius $r_{0}=24$ in.; but three radically different values for the parameter B representing the shell stiffness were used,

$$
\begin{gathered}
\mathrm{B}_{1}=7.95 \times 10^{5} \mathrm{lb} / \mathrm{in}^{3}, \mathrm{~B}_{2}=2.93 \times 10^{4} \mathrm{lb} / \mathrm{in}^{3} \\
\mathrm{~B}_{3}=5.35 \times 10^{3} \mathrm{lb} / \mathrm{in}^{3}
\end{gathered}
$$

The mass of the rings was not varied, $\rho_{s}=7.5 \times 10^{-4} \mathrm{ib} . \mathrm{sec}^{2} / \mathrm{in}^{4}$.

The analysis was made for the value $C=0$, defined in
Eq. (II-16), implying that there is no longitudinal interaction between rings and filler material. The values of B_{2} and ρ_{s} correspond to steel rings of $9 / 16$ in. thickness and 24 in. radius, a case for which a test, Ref. [1], is available. The value B_{1} is very much larger than B_{2}, so that transverse strains for the former are severely inhibited and the situation for B_{1} can be expected to be very close to uniaxial strain. The value B_{3} on the other hand represents a situation where the lateral restraint is an order of magnitude less than for B_{2} and longitudinal and transversc strains can be expected to be of comparable magnitude.

Under uniaxial strain, See Figs. B-1 and B-2, the material description implies hardening with increase in pressure. As a result, a progressing shock front occurs in all examples, even for the gradually rising input $p_{0}(t)$.

When formulating the finite differance scheme a "diffusion term" defined by the arbitrary parameter C_{D} was introduced.

After some experimentation $i t$ was found that numerical results in which the shock fronts are steep, while subsequent oscillations (due to the numerical approacin) are not excessive, could be obtained for $\Delta t=5.0 \times 10^{-6}$ sec., $\Delta z=0.25 \mathrm{mn}$. if values of C_{D} on the order of 30 were usad. A short discussion of the effect of varying C_{D} is given in Appendix C.

All results shown used one term of the expansion for earh unknown. The matter of adequacy of this truncation is discussed later. As a result of the truncation the axial stress is uniform for all values of r, while the radial velocity, e.g., varies as r, etc.

Numerical computations were made on a CDC 6600. Figures 3, 4 and 5 show the axial stress histories in three locations, $z=15,25$ and 75 in., for the three values B_{1}, B_{2} and B_{3}, respectively. The shccks are clearly visible and the strength increases with 2 in Figs. 3 and 4 as expected. This is not so for the weakest shell, Eig. 5, where the shock strencth at 75 in. has decreased. (It will be seen later that the truncation used can not be considered adequate for this case and the unexpected decrease may be due to this inadequacy.) In Figs. 4 and 5
oscillations with periods in oxcess of 1 msec. are clearly visible. Their periods, respectively, agree with estimates for the periods of radial oscillations of the shell filled with the material. These oscillations are thus not caused by the numerical scheme, but are real. The same type of oscillation (while present) is not easily discernible in Fig. 3 for the very stiff shell. Such uscillations do not occur in wave propagation in uniaxial strain and the smallness of the oscillations is due to the fact that the value B_{1} is sufficiently large to approximate the uniaxial situation well. In addition to these oscillations there are others of much higher frequencies just after the arrival of the shocks. These oscillations are of purely computational origin. Their magnitude is controlled by the value of C_{D}.

The time-histories for axial velocities are quite similar to those for the axial stresses and were not shown. Typical results for the radial velocities at $r=r_{0}$ are shown for the stiffness B_{2} in two locations z , Fig. 6. The results show decaying oscillations corresponding to those in Fig. 4.

Typical plots of shear stress for the three values B_{i} are shown in Fig. 7. Due to the truncation the distribution of the shear stresses is necessarily poorly approximated. They are proportional to the location r, i.e., the boundary
 The result obtained is only a "best fit" of the actual distribution. The shear stresses, which are much smaller than
the radial ones, oscillate with respect to some ultimate, nonvanishing value. As expected, the magnitude of shear stresses and oscillations increases as the rings become softer. The period of oscillation agrees with that in the axial stresses for the values B_{2} and B_{3}. For the stiffiess $B_{1}=7.95 \times 10^{5} 1 \mathrm{~b} / \mathrm{in}^{3}$, Fig. 3 does not show oscillations clearly, while fig, 7 indicates oscillating shear stresses below $4 \mathrm{lb} / \mathrm{in}^{2}$. As mentioned before, the corresponding variations in Fig. 3 are too small to be visible.

Situations with an immediate pressure rise in $p_{0}(r)$, followed by ar exponential decay can also be handled. as an example, Fig. 8 shows the applied axial stress $p_{0}(t)$ and the resulting axial stress at $z=15$ in. and 75 in. for $B_{2}=2.93 \times 10^{4} 1 t / i n^{3}$. It must be emphasized that the materiai model used is for this input entirely unrealistic. The response in this case involves important unloading situations, while the material model was not fitted for unloading. Figure 8 is thus purely academic.
b) Comparisons of Results for Materials of Cases 1 and 2 and of a Test.

A test result giving the axial stress at a distance $z=15$ in. is available, Ref. [1], for the tube stiffness $R_{2}=2.93 \times 10^{4} 1 b / i n^{3}$. The measured input pressure and the time-history of $p_{o}(t)$ according to Eq. (1) are shown in Fig. 9 , indicating that the difference is modest. Figure 10 shows the
test result and the computed results at $z=15$ in: for the materials of Cases l and 2 , the properties of which are listed in Appendix B. Both analytical results agree well with the test.

The agreement between the calculations for Cases 1 and 2 at $z=15$ in. shows that the results in this location depend essentially on the behavior in unyaxial strain, where both cases lead to nearly identical stress-strain curves, (see Figs. $B-1$ and B-2). Differences between the materials, however, become apparent in the results further from the loaded end of the tube, at $z=75$ in., also shown in Fig. 10. Arrival times and the corresponding jumps in stress differ noticeably, but not radically. This indicates that the effect of differences in triaxial behavior increases with z, a trend which will hold in other cases too.

While the agreement between the test and the computation is gratifying, its importance must not be exaggerated. The fact that both sets , mf material parameters give good results indicates a lack of sensitivity in this location, provided the behavior in uniaxial strain is well expressed by the parameters. The agreement should also not be used to claim confirmation of the elasto-plastic model used. Any other model representing the uniaxial stress-strain curve well would have given good results ton. There is one conclusion of some importance, however, which can be drawn from the agreement of test results and analysis. The latter matched, in Cases 1 and 2 , the uniaxial static test. The adequacy of the static test as a basis for a dynamic analysis indicates
that effects of strain rate in this range, and for thjomaterial, are not important.

A sharper tool for an experimental decision on the adequacy of any material model could be made by observing not only the axial stress, but also the radial motion of the restraining rings. To demonstrate the strong dependence of the radial motion on the material properties, Fig. 6 shows also a plot of the radial velocity at $z=15$ in. and 75 in. for the material of Case 2. The velocities are only about 50% of those for Case 1.

c) Considerations Concerning Truncation.

An obvious, but uneconomical way to determine the sufficiency of a truncation is to make an alternative computation for the actual problem with an increased number of terms.

However, estimates of adequacy can be made with less effort, dased on simplifications of the material properties. In Appendix A, the differential equations for a tube filled with a linear elastic inviscid fluid are obtained fronithe general relations in Sections II, III and IV.

Applying these relatively simple relations and comparing

 the results from truncations to one and ino terms, gives an understanding of the situation. The nondimensional analysis in Appendix A depends on the shape of the input function $\bar{p}_{0}(\tau)$ and on the two parameters$$
\bar{B}=\frac{B r_{0}}{K_{0}}=\frac{E_{S} h}{K_{0} r_{0}}
$$

$$
\bar{A}=\frac{A}{\rho r_{0}}=\frac{\rho_{S} h}{\rho r_{0}}
$$

The last parameter expresses the influence of the mass of the containing rings and is on physical grounds of minor importance, because this mass is a small fraction of the mass of the enclosed material. There is, further, no reason to expect a radical dependence on $\bar{p}_{o}(\tau)$ when the time constants describing the load hiscories are of similar order of magnitude. The situation for the fluid, considered in Appendix A, thus depends principally on the nondimensional parameter \bar{B}.

To use the result obtained for a fluid in Appendix A as a guide for a nonifear solid, it is necessary to use an appropriate equivalent value \bar{B} e for the parameter \bar{B}. If a tube is so stiff that the transerse strains ε_{r} vanish, the truncation to one term inherently gives the exact solution. As the transuerse strains increase, or more precisely as the ratio $\varepsilon_{r} / \varepsilon_{z}$ increases, the solutica using one tere will become progressively less accurate. The value $\varepsilon_{r} / \varepsilon_{z}$ seems therefore a suitable gage and the equivalent value \vec{B}_{e} should be selected so that the ratios $\varepsilon_{r} / \varepsilon_{z}$ in fluid and solid agree. As there are no strain rate effects only a static comparison is required, but the nonlinearity in the solid requires the selection of a representative stress level. For the material properties designated as Case 1 and a stress level of 200 psi the values

$$
\bar{B}_{e 1} \sim 718, \bar{B}_{e} \sim 26.2, \bar{B}_{e} \sim 4.5
$$

were obtained for the three shell stiffnesses B_{i} defined
previously. (The corresponding values \bar{B} e for the material of Case 2 are somewhat larger, e.g., $\bar{B}_{e 2}=55$.) The knowledge of the values \bar{E} e permits comparison with the results for the fluid, which were obtained from

$$
\overline{\mathrm{B}}_{1}=2110, \quad \overline{\mathrm{~B}}_{2}=77.7, \quad \overline{\mathrm{~B}}_{3}=14.2
$$

The results using one term were quite satisfactory for \bar{B}_{1} and \bar{B}_{2}, while the results for the smallest value $\bar{B}_{3}=14.2$ were meaningful, but not really good, particularly for the largest value of $\zeta=3.0$. This leads to the conclusion that all results for the stiff tube, $\mathrm{B}_{1}=7.95 \times 10^{5} \mathrm{lb} / \mathrm{in}^{3}$, can be accepted as reliable. For the value $B_{2}=2.93 \times 10^{4} \mathrm{lb} / \mathrm{in}^{3}$, the results at $z=15$ in. and 25 in. can be accepted, but the results at 75 in. are likely to deviate appreciably. The results for $B_{3}=5.35 \times 10^{3} 1 b / i n^{3}$ may be inaccurate, but stili meaningful at $z=15$ in., but are questionable at $z=75$ in. The insufficiency of the truncation may be the cause for the drop in the shock strength from $z=25$ in. to $z=75$ in. in Fig. 5.

The value $\bar{B}_{e} 2$ for, the material of Case 2 being larger than for Case l, the results shown are at least as good as for the material of Case 1.
d) Conclusion.

A scheme has been presented which permits the analysis of wave propagation problers in tubes filled with an elasto-plastic material. The approach permits the treatment of cases where the
material behaves differently, elastically or plastically, in different regions which move with time in an ariori unknown manner.

The method is applicable to other materials. For example, it is possible to modify the model used to allow for hysteresis by using different pressure-volume relationships for loading and unloading: It is also possible to apply the approach to elasto-plastic materials with different yield conditions, to materials of the type considered in Ref. [3], or to viscous or visco-plastic materials.

The arrangement considered is suitable for tests, so that the analysis proposed permits a check on the appropriateness of material models and corresponding parameters obtained from other tests. It may also be possible to use the analysis in conjunction with dynamic tests to obtain the values of the parameters refuired for a theoretical description of a material.

FIG. I - CONFIGURATION

FIG. 2 - FINITE CIFFEREICE GMID

FIG.3-TIME HISTORIES OF AXIAL STRESS (MATERIAL OF CASEI, SHELL STIFFNESS B, $=7.95 \times 10^{5}\left(\mathrm{~b} / \mathrm{in}^{3}\right.$)

FIG. 4 - TIME HISTORIES OF AXIAL STRESS (MATERIAL OF CASE 1 , SHELL STIFFNESS $B_{2}=2.93 \times 10^{4} \mathrm{lb} / \mathrm{in}^{3}$)

FIG. 5 TIME HISTORIES OF AXIAL STRESS (MATERIAL OF CASE I, SHELL STIFFNESS $B_{3}=5.35 \times 10^{3} \mathrm{lb} / \mathrm{in}^{3}$)

FIG. 6 - TIME HISTORIES OF RADIAL VELOCITY AT $r=r_{0}$ (MATERIAL OF CASE I AND 2, SHELL STIFFNESS $B_{2}=2.93 \times 10^{4} \mathrm{lb} / \mathrm{in}^{3}$)

FIG. 7 - TIME HISTORIES OF SHEAR AT $z=25$ in
(MATERIAL OF CASEI, SHELL STIFFNESSES B_{1}, B_{2}, B_{3})

FIG. 8 - INPUT po(t) AND TIME HISTORIES OF AXIAL STRESS (MATERIAL OF CASE 1 , SHELL STIFFNESS $B_{2}=2.93 \times 10^{4}\left(\mathrm{~b} / \mathrm{in}^{3}\right.$)

FIG. 9 - COMPARISON OF TIME HISTORY OF po(\dagger), AND OF THE SURFACE PRESSURE MEASURED IN THE TEST

FIG. 10 - COMPARISON OF TEST RESULT AND COMPUTED TIME HISTORIES OF AXIAL STRESS (MATERIALS OF CASE 1 AND 2, SHELL STIFFNESS $B_{2}=2.93=10^{4} \mathrm{tb} / \mathrm{in}^{3}$)

APPENDIX A - Linear Inviscid Fluid - Influence of Truncation.

For the purpose of ubtaining a judgment on the validity of the truncation used in the body of the report, this appendix considers the special case of a linear inviscid fluid in che same configuration. For thi: case, numerical solutior; based on truncitions with one and with two terms are comparel. In this simpie case the analysis requires ilttle effort, yet is very helpful. The appropriate equations for a linear inviscid fluid can be obtined as a pecial case of the :etations found in Sertion IV in elastic regions.

a) Equations for a Linear Inviscid Fluid.

In an inviscid fluid, several of the variables vanish,

$$
R_{i}=Z_{i}=T_{i} \equiv 0
$$

and :he corresp nding equations ot tained by the galerin method will not appear. Tiae value $G=0$ is to h. used for the modulus of rigidity, while the linearity leads to

$$
K(p)=K_{0}=\text { constant }
$$

so that Eq. (IN IO) becomes $k_{m j}=K_{0}$.
As a result of these simplifications, Eq. (IV-7) berores

$$
\sum_{i=0}^{n} \frac{i_{0}^{2 i}}{(2 i+2} \frac{1}{1+i+m+i}\left[(2 i+2) u_{i}+v_{i}^{\prime}+\frac{1}{k_{0}} \dot{p}_{i}\right]=0 ; m=0,2, \ldots, 2 n
$$

This form can furthec be simplified by noting that the expression in brackets does not contain the subscript m and the coefficients $\frac{r_{0}^{2 i}}{(2 i+2)(2 i+\pi+4)}$ form the elements of a square nonsingular matrix. Consequently, the equations uncouple

$$
\begin{equation*}
(2 i+2) U_{i}+V_{i}^{\prime}+\frac{1}{K_{0}} \dot{P}_{i}=0 ; i=0,1,2, \ldots, n \tag{A-1b}
\end{equation*}
$$

Equation (IV-3) contains the indeterminate quantity $\frac{\dot{z}_{1}}{G}$. By the artifice of evaluating this quantity from Eq. (IV-6) and noting that the equations again uncouple, one finds

$$
\frac{3}{2 G} \dot{z}_{i}=2 v_{i}^{\prime}-(2 i+2) U_{i}
$$

Substitution of this relation into Eq. (IV-3) gives

$$
\begin{array}{r}
\sum_{i=0}^{n} r_{0}^{2 i}\left\{-\frac{(m+3)}{(2 i+m+3)} \dot{P}_{i}+r_{o} B U_{i}+\left[r_{0} A+\frac{\rho r_{0}^{2}}{(2 i+m+5)}\right] \ddot{U}_{i}\right\}=0 ; \\
m=0,2, \ldots, 2 n \tag{A-2}
\end{array}
$$

Finally, in Eq. (IV-4) attention must be given to the constant C, introduced in Section III in the process of incorporating the tangential boundary condition at $r=r_{0}$ represented by Eq. (II-17). Unless C is taken as zero, Eq. (IV-4) will contain the implication that the fluid at $r=r_{0}$ and the stacked ring shell have the same axial velocity, which is not a proper boundary condition for an inviscid fluid. When $C=0$ is introduced, EqS. (IV-4), which uncouple again, become

$$
\frac{\partial}{\partial t}\left(P_{i}^{\prime}+\rho \dot{V}_{i}\right)=0 \quad ; \quad i=0,1,2 ; \ldots, n
$$

This form can be simplified by integration from an initial state of rest and zero pressure,

$$
\begin{equation*}
P_{i}^{\prime}+\rho \dot{V}_{i}=0 \quad ; \quad i=0,1,2, \ldots, n \tag{A-3}
\end{equation*}
$$

The formulation is completed by the specification of an initial stress-fros state of rest at $t=0$ and of the boundary condition,

$$
\begin{equation*}
\left[P_{i}\right]_{z=0}=P_{0}(t) \delta_{0 i} ; i=0,1,2, \ldots, n \tag{A-4}
\end{equation*}
$$

b) Nondimensional Governing Equations.

By the introduction of the dimensionless variables

$$
\begin{align*}
& \zeta=z / r_{0} \\
& \tau=\frac{t}{r_{0}} \sqrt{K_{0} / \rho} \\
& \bar{P}_{i}=r_{0}^{2 i} P_{i} / K_{0} \\
& \bar{v}_{i}=r_{0}^{2 i} v_{i} \sqrt{\rho / K_{0}} \tag{A-5}\\
& \bar{U}_{i}=r_{0}^{2 i+1} \nu_{i} \sqrt{\rho / K_{0}} \\
& \bar{p}_{0}(\tau)=\frac{1}{K_{0}} p_{0}\left(\tau \Sigma_{0} \sqrt{\rho / K_{0}}\right)
\end{align*}
$$

Equations (lb), (2), (3) and (4) are transformed to

$$
\frac{\partial \bar{P}_{i}}{\partial \tau}+\frac{\partial \bar{v}_{i}}{\partial \zeta}+(2 i+2) \bar{U}_{i}=0 ; i=0,1, \ldots, n(A-6)
$$

$\sum_{i=0}^{n}\left[-\frac{(m+3)}{(2 i+m+3)} \frac{\partial \bar{P}_{i}}{\partial \tau}+\overline{B U}_{i}+\bar{A}_{m i} \frac{\partial^{2} \bar{U}_{i}}{\partial \tau^{2}}\right]=0: m=0,2, \ldots, 2 n$

$$
\begin{align*}
& \frac{\partial \bar{v}_{i}}{\partial \tau}+\frac{\partial \bar{P}_{i}}{\partial \zeta}=0 ; i=0,1, \ldots, n \tag{A-8}\\
& {\left[\bar{P}_{i}\right]_{\zeta=0}=\bar{p}_{0}(\tau) \delta_{01} ; 1=0,1, \ldots, n}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{B}=\frac{r_{0} B}{K_{0}} \quad, \quad \bar{A}_{m i}=\frac{A}{\rho r_{0}}+\frac{1}{(21+m+5)} \tag{A-10}
\end{equation*}
$$

c) Truncations.

If a truncation to two terms for each variable is desired the equations are obtained from Eqs. (6)-(9) for $n=1$. The result is

$$
\begin{align*}
& \frac{\partial \overline{\mathrm{P}}_{0}}{\partial \tau}=-\frac{\partial \overline{\mathrm{V}}_{0}}{\partial \zeta}-2 \overline{\mathrm{U}}_{0} \tag{A-11a}\\
& \frac{\partial \overline{\mathrm{P}}_{1}}{\partial \tau}=-\frac{\partial \overline{\mathrm{V}}_{1}}{\partial \zeta}-4 \overline{\mathrm{U}}_{1} \tag{A-11b}\\
& \frac{\partial^{2} \overline{\mathrm{U}}_{0}}{\partial \tau^{2}}=\mathrm{C}_{11} \frac{\partial \overline{\mathrm{P}}_{0}}{\partial \tau}+\mathrm{C}_{12} \frac{\partial \overline{\mathrm{P}}_{1}}{\partial \tau}-\overline{\mathrm{B}} \mathrm{C}_{11} \overline{\mathrm{U}}_{0}-\overline{\mathrm{B}} \mathrm{C}_{11} \bar{U}_{1} \tag{A-12a}\\
& \frac{\partial^{2} \bar{U}_{1}}{\partial \tau^{2}}=\mathrm{C}_{21} \frac{\partial \overline{\mathrm{P}}_{0}}{\partial \tau}+\mathrm{C}_{22} \frac{\partial \overline{\mathrm{P}}_{1}}{\partial \tau}-\overline{\mathrm{B}} \mathrm{C}_{21} \bar{U}_{0}-\overline{B C}_{21} \overline{\mathrm{U}}_{1} \tag{A-12b}\\
& \frac{\partial \overline{\mathrm{~V}}_{0}}{\partial \tau}=-\frac{\partial \overline{\mathrm{P}}_{0}}{\partial \zeta} \tag{A-13a}\\
& \frac{\partial \overline{\mathrm{~V}}_{1}}{\partial \tau}=-\frac{\partial \overline{\mathrm{P}}_{1}}{\partial \zeta} \tag{A-1.3b}
\end{align*}
$$

$$
\begin{align*}
& {\left[\bar{P}_{0}\right]_{\zeta=0}=\overline{\mathrm{P}}_{0}(\tau)} \tag{A-14a}\\
& {\left[\overline{\mathrm{P}}_{1}\right]_{\zeta=0}=0} \tag{A-14b}
\end{align*}
$$

where

$$
\begin{align*}
& C_{11}=\left(\bar{A}_{21}-\overline{\mathrm{A}}_{01}\right) /\left(\overline{\mathrm{A}}_{00} \overline{\mathrm{~A}}_{21}-\overline{\mathrm{A}}_{01} \overline{\mathrm{~A}}_{20}\right) \\
& \mathrm{C}_{12}=\left(\frac{3}{5} \overline{\mathrm{~A}}_{21}-\frac{5}{7} \overline{\mathrm{~A}}_{01}\right) /\left(\overline{\mathrm{A}}_{00} \overline{\mathrm{~A}}_{21}-\overline{\mathrm{A}}_{01} \overline{\mathrm{~A}}_{20}\right) \\
& C_{21}=\left(\overline{\mathrm{A}}_{00}-\overline{\mathrm{A}}_{20}\right) /\left(\overline{\mathrm{A}}_{00} \overline{\mathrm{~A}}_{21}-\overline{\mathrm{A}}_{01} \overline{\mathrm{~A}}_{20}\right) \tag{A-15}\\
& C_{22}=\left(\frac{5}{7} \overline{\mathrm{~A}}_{00}-\frac{3}{5} \overline{\mathrm{~A}}_{20}\right) /\left(\overline{\mathrm{A}}_{00} \overline{\mathrm{~A}}_{21}-\overline{\mathrm{A}}_{01} \overline{\mathrm{~A}}_{20}\right)
\end{align*}
$$

The system for the truncation using one term consists of Eqs. (11a), (12a), (13a) and (14a) in which the terms with $\overline{\mathrm{F}}_{1}, \overline{\mathrm{U}}_{1}$ and $\overline{\mathrm{V}}_{1}$ are removed. The definition of $\mathrm{C}_{1 i}$ becomes $C_{11}=1 / A_{00}$.

d) Finite Difference Equations.

The finite difference form of Eq. (11) to (14) is generated in the manner described in Section V. A staggered grid in both time and space with constant mesh size is used, with derivatives approximated by central differences except for the time derivatives in the constitutive equations, Eq. (lab), which are approximated by the form Eq. (vo). The resulting rulusions fir the truncation to two terms are

$$
\begin{align*}
& -\frac{\Delta \tau}{\Delta \zeta}\left(\overline{\mathrm{v}}_{1}^{\mathrm{n}+\frac{1}{2}}{ }_{j+\frac{1}{2}}^{2}-\overline{\mathrm{V}}_{1}^{\mathrm{n}+\frac{1}{2}}{ }_{j-\frac{1}{2}}\right)-2 \Delta \tau\left(\overline{\mathrm{U}}_{1}^{\mathrm{n}+\frac{1}{2}}{ }_{j+\frac{1}{2}}+\overline{\mathrm{U}}_{1}^{\mathrm{n}+\frac{1}{2}} \mathrm{j}-\frac{1}{2}\right)(\mathrm{A}-16 \mathrm{~b}) \\
& \bar{u}_{0}^{\mathrm{n}}+{ }_{j+\frac{1}{2}}^{3 / 2}=\left(2-\overline{\mathrm{B}} \mathrm{C}_{11} \overline{\mathrm{~T}}^{2}\right) \overline{\mathrm{u}}_{0}^{\mathrm{n}+\frac{1 / 2}{j}}{ }_{j+\frac{1}{2}}-\overline{\mathrm{u}}_{0}^{\mathrm{n}-\frac{1}{2}}{ }_{j+\frac{1}{2}}+ \\
& +\frac{C_{11} \Delta \tau}{2}\left(\bar{P}_{0}^{n+1}{ }_{j+1}^{n}-\bar{P}_{o j+1}^{n}+\bar{P}_{o}^{n+1}-\bar{P}_{o j}^{n}\right)+ \\
& +\frac{c_{12} \Delta \tau}{2}\left(\bar{P}_{1}^{n+i}{ }_{j+1}-\bar{P}_{1}^{n}{ }_{j+1}+\bar{p}_{1}^{n+1}-\bar{P}_{1}^{n}\right)- \\
& \text { - } \overline{\bar{B}}{ }_{11} \overline{\Delta T}^{2} \overline{\mathrm{U}}_{1}^{\mathrm{n}}+{ }_{j+\frac{1}{2} / 2} \tag{A-17a}\\
& \overline{\mathrm{U}}_{1}^{\mathrm{n}}+3+\frac{3 / 2}{2}=\left(2-\bar{B} C_{2 j} \Delta \bar{\tau}^{2}\right) \overline{\mathrm{U}}_{1}^{\mathrm{n}+\frac{1}{2}}{ }_{j+\frac{1}{2}}-\overline{\mathrm{u}}_{i}^{\mathrm{n}-\frac{1}{2}}{ }_{j+\frac{1}{2}}+
\end{align*}
$$

$$
\begin{align*}
& +\frac{C_{22} \Delta \tau}{2} \cdot\left(\bar{P}_{1}^{\mathrm{n}+1}{ }_{j+1}-\bar{P}_{1}^{\mathrm{n}}{ }_{j+1}+\overline{\bar{F}}_{1}^{\mathrm{n}+1}-\overline{\mathrm{P}}_{1}^{\mathrm{n}}{ }_{j}\right) \\
& -\overline{\bar{B}}{ }_{21} \overline{\Delta T}^{2} \bar{U}_{o}^{\mathrm{n}+\frac{1}{2}}{ }_{j+\frac{1}{2}} \tag{A-17b}
\end{align*}
$$

$$
\begin{align*}
& \bar{V}_{0}^{n}+\frac{3 / 2}{j+\frac{1}{2}}=\bar{V}_{0 j+\frac{1}{2}}^{n+\frac{1}{2}}-\frac{\Delta T}{\Delta 5}\left(\bar{P}_{r}^{n+1}-\bar{p}_{0}^{n+1}\right) \tag{A-18a}
\end{align*}
$$

$$
\begin{align*}
& \bar{P}_{0}^{n} 1=\bar{P},\left[\left(n-\frac{1}{2}\right) \Delta T\right] \tag{A-19a}\\
& \bar{P}_{11}^{n}=0 \tag{A-19b}
\end{align*}
$$

The equations for the truncation to the leading terms are obtained by the procedure described in the case of the differential equations.

Equations (16a) to (18b) represent a two level implicit linear finite difference operator whose application requires the knowledge of $\overline{\mathrm{P}}_{\mathrm{o}}$ and $\overline{\mathrm{P}}_{1}$ at the time level $n, \overline{\mathrm{~V}}_{0}, \overline{\mathrm{~V}}_{1}, \overline{\mathrm{U}}_{0}$ and \bar{U}_{1} at $\left(n+\frac{1}{2}\right)$ and \bar{U}_{0} and \bar{U}_{1} at $\left(n-\frac{1}{2}\right)$, and at all relevant space points. The stability criterion becomes. Pef. [16],

$$
\begin{equation*}
\frac{\Delta \tau}{\Delta \zeta} \leq \sqrt{1-\frac{2}{2+C_{D}}} \tag{A-20}
\end{equation*}
$$

e) Discussion of Results.

Figures $A-j, A-2$ and $A-3$ show typical time histories of the dimensionless pressure $\bar{p}_{0}^{(1)}$ obtained for a unft step input if the series are trincated to one term. In this case the values of the pressurc at $r=0$ and at $r=r_{o}$ are identical,
 are also plotted, representing the dimensionless pressures at
$r=0$ and $r=r_{0}$, respectively, when two terms in the trurcation are retained. The mean value of the pressure, in this case, is $\bar{p}_{m}^{(2)}=\overline{\mathrm{P}}_{0}^{(2)}+\frac{1}{2} \overline{\mathrm{P}}_{1}^{(2)}=\frac{1}{2}\left[\overline{\mathrm{P}}_{0}^{(2)}+\overline{\mathrm{P}}_{\mathrm{r}}^{(2)}\right]$. The latter is a suitable basis for comparison with $\overline{\mathrm{P}}_{0}^{(1)}$.

Three sets of results for different values of the nondimensional stiffness \bar{B} are given. Comparing first the results for the same value of \bar{B}, but in different locations, 1t is seen that the differences increase with ζ, i.e., with distance from the input end. From Fig. A-2 it is also apparent that in each location the oscillations and the differences decay with time.

The order of magnitude of the difference in the same location increases as the stiffness parameter \bar{B} of tho sheli decreases. It serves no purpose to quote percentages for the various cases. For the stiffest shell, $\bar{B}_{1}=2110$, the truncation using one term is clearly an excellent approximation. For the cases $\overline{\mathrm{B}}_{2}=77.7$ and $\overline{\mathrm{B}}_{3}=14.2$, the results for $\bar{P}_{0}^{(1)}$ and $\overline{\mathrm{P}}_{\mathrm{m}}^{(2)}$ differ moderately. In these cases, appreciable differences between the pressure at $r=0$ and at $r=r$ o occur, particularly shortiy after arrival of the signal, the situation being particularly unfavorable for \bar{B}_{3} and for large values of ζ.

The problem of the fluid filled tube for a step velocity input has been treated in Ref. [17] by transform methods,
leading to a series solution. Numerical results were obtained for two cases, corresponding to $\bar{B}=2$ and $\bar{B}=10$. From the Reference it is known that the jump in presiure at arrival time in all locations is equal to the inftial fressure, and the location and magnitude of this fump are indicated in Figs. A-1 to A-3 for comparison purposes.

FIG. A-I PRESSURE - TIME HISTORIES, $\bar{B}=2110$

FIG. A-2 PRESSURE - TIME HISTORIES, $\bar{B}=77.7$

FIG. A-3 PRESSURE-TIME HISTORIES, $\bar{B}=14.2$

APPENDIX B - Estimate for the Magnitude of the Material Constants.

In order to select values of material constants to be used in the numerical examples, a fit was made using some available quasi-static test data on sand*). The data used were results of uniaxial and triaxial tests, and measurements of the velocities of the shock waves.

It must be stressed that no claim is made that the sets of values for the material constants given are of consecuence in actual situations, which will vary greatly. The fits were made solely to get "reasonable" values for the various properties.

In view of the intended application to situations in which, at least grossly, the stress levels increase with time, only experimental data for initial loading were used for the fit. Further, also because the situation for stiff tubes is closer to uniaxial tests than to triaxial ones, the fit to the former was emphasized.

In addition to the values of k, α and G, the function $K(p)$ is to be selected. For practical applications a function with three open parameters, such as

$$
\begin{equation*}
K(p)=K_{0}(1+p / \bar{p})^{n} \tag{B-1a}
\end{equation*}
$$

where $K_{0}>0, \bar{F}>0$ and $1>n>0$ permits an adequatefit. This furction leads to an expression for pin terms of $\varepsilon_{k k}$ which is a parabola of order $1 /(1-n)$.

[^4]Because of the exploratory nature of the present study the value $n=\frac{1}{2}$ was chosen immediately, to simplify the fitting process,

$$
\begin{equation*}
K(p)=K_{0}(1+p / \bar{p})^{\frac{1}{2}} \tag{B-1b}
\end{equation*}
$$

A representative value for the density, $\rho=1.573 \times 10^{-4} 1 \mathrm{~b} . \mathrm{sec}^{2} / \mathrm{in}^{4}$ was selected. In addition it vas assumed that the value of the constant k, representing cohesion, would be sufficiently small compared to the stress level to permit the use of the limiting value $k \rightarrow 0$ for the fit.

By trial two sets of material constants were determined, as follows:

$$
\alpha=3.09 \times 10^{-2}
$$

$$
G=9560 \mathrm{lb} / \mathrm{in}^{2}
$$

Case 1

$$
\mathrm{K}_{0}=9050 \mathrm{lb} / \mathrm{in}^{2}
$$

$$
\bar{p}=8.311 \mathrm{~b} / 1 \mathrm{n}^{2}
$$

$$
\alpha=0.199
$$

$$
\begin{aligned}
& G=18300 \mathrm{lb} / \mathrm{in}^{2} \\
& \overline{\mathrm{p}}=1.56 \mathrm{lb} / \mathrm{in}^{2}
\end{aligned}
$$

As will be seen subsequently, Case 1 fits the uniaxial test up to $300 \mathrm{lb} / \mathrm{in}^{2}$ extremely well, but gives very poor correlation with failure strength in the triaxial tests. Case 2 still fits the uniaxial test quite well. It approaches the triaxial ones somewhat better, but not really well. (This is inherent in the model employed.) The sets of parameters differ appreciably, and some results were run for both cases in order to determine the sensitivity of the results.

The fitting process, and the comparison of the fit obtained require a few analytical relations which are derived below.
a) Triaxial Test.

The triaxial test consists of a hydrostatic loading
phase up to some value p_{c} of the confining pressure, followed by an axial loading phase during which the specimen is loaded axially at a constant confining pressure. If σ denotes the change of axial stress above its value $-p_{c}$ at the termination of the hydrostatic phase, $\sigma_{z z}=\sigma-p_{c}, \sigma_{r r}=\sigma_{\theta \theta}=-p_{c}$, or $p=p_{c}-\sigma / 3, s_{z z}=-2 s_{r r}=-2 s_{\theta \theta}=2 \sigma / 3$. The elastic constitutive relations, Eas. (II-7), give the axial strain rate

$$
\begin{equation*}
\dot{\varepsilon}_{z z}=\left[\frac{1}{3 G}+\frac{1}{9 K_{o}}\left(1+\frac{3 p_{c}-\sigma}{3 \vec{p}}\right)^{-\frac{1 / 2}{}}\right] \dot{\sigma} \tag{B-2}
\end{equation*}
$$

In the fitting process the initial triaxial modulus

$$
M_{I_{0}}=\left[\frac{d \sigma}{d \varepsilon_{z z}}\right]_{\sigma=0}
$$

was utilized. Vsing Eq. (2) gives

$$
\begin{equation*}
M_{0}=\frac{3 G\left(1+p_{c} / \bar{p}\right)^{\frac{3_{j}}{2}}}{\frac{1}{2 \beta}+\left(1+p_{c} / \bar{p}\right)^{\frac{1 / 2}{2}}} \tag{B-3a}
\end{equation*}
$$

where

$$
\begin{equation*}
B=3 K_{0} / 2 G \tag{B-3b}
\end{equation*}
$$

b) Uniaxial Test.

The constrained compression test may be ideally considered as a state of purely uniaxial strain. For the assumed model of the material there will be initial elastic behavior for all values of the pressure, or only up to a yield point p_{y}. In the latter case which is of sole interest here, the elastic phase is followed by a plastic one up to an "elastic point" ${ }^{\mathrm{E}} \mathrm{E}$. Under further loading the material re-elasticizes and a second elastic phase follows.

Elastic behavior for stress levels $p>p_{E}$ does not occur in the elasto-plastic material with a linear relation between p and $\varepsilon_{k k}$ as originally considered in Ref. [11]. The situation here is caused by the fact that the modulus of rigidity, G, is a constant, while the bulk modulus K is stress-dependent, the combination being equivalent to a stress-dependent Poisson's ratio v. When, for large p, the value U becomes sufficiently large, an increase in axial stress causes sufficiently large transverse stresses which prevent further yielding.

1) Elastic Phase $p<p_{y}$.

As a result of the radial constraint and of symetry $\dot{\varepsilon}_{r r}=\dot{\varepsilon}_{e \theta}=0$, while the rates of change of the stress deviators and of the pressure are related by

$$
\begin{equation*}
\dot{s}_{z z}=-2 \dot{s}_{r r}=-2 \dot{s}_{\theta \theta}=-\frac{4 G}{3 K(p)} \dot{p} \tag{B-4}
\end{equation*}
$$

The axial strain rate is therefore

$$
\begin{equation*}
\dot{\varepsilon}_{z z}=\frac{1}{2 G} \dot{s}_{z z}-\frac{1}{3 K(p)} \dot{p}=-\frac{1}{K(p)} \dot{p} \tag{B-5}
\end{equation*}
$$

Integration of Eqs. (4) and (5) from an unstrained and unstressed initial state gives

$$
\begin{gather*}
s_{z z}=-2 s_{r r}=-2 s_{\theta \theta}=-\frac{4 G}{3} f(p) \tag{B-6a}\\
\varepsilon_{z z}=-f(p) \tag{B-6b}
\end{gather*}
$$

where $f(p)$ is the integral

$$
\begin{equation*}
f(p)=\int_{0}^{p} \frac{1}{K(\xi)} d \xi=\frac{2 \bar{p}}{K_{0}}\left[(1+p / \bar{p})^{\frac{1}{2}}-1\right] \tag{B-7}
\end{equation*}
$$

2) Compressive Yield Point.

Substitution of Eq. (6a) into Eq. (Il-4) gives

$$
\begin{equation*}
F\left(\sigma_{1 j}\right)=\frac{4 G^{2}}{3} f^{2}(p)-(k+3 \alpha p)^{2} \leq 0 ; p \geq-\frac{k}{3 \alpha} \tag{B-8}
\end{equation*}
$$

The yield point is a root p of $F=0$,

$$
\begin{equation*}
\frac{2 G}{\sqrt{3}} f(p)= \pm(\dot{k}+3 \alpha p) ; \quad p \geq-\frac{k}{3 \alpha} \tag{B-9}
\end{equation*}
$$

For the compressive case $p \geq 0, f(p) \geq 0$ so that only the upper sign in Eq. (9) is relevant. Let an auxiliary yield function for the compressive range be defined by

$$
\begin{equation*}
\bar{F}_{c}(p)=\frac{2 G}{\sqrt{3}} f(F)-(k+3 \alpha p) \tag{B-10}
\end{equation*}
$$

For $p \geq 0$, the function $F\left(\sigma_{i f}\right)$, Eq. (8), has the same sign as \bar{F}_{c} so that the material remains $\operatorname{slastic}$ as long as $\bar{F}_{c}<0$.

The compressive yield point p_{y} is the smaller positive root P_{y}, if any, of $\bar{F}_{c}(p)=0$. To assure yield this root must not be a double root, otherwise $\bar{F}_{c}<0$ would not be violated for $p>p_{y}$. Examination of the coefficients of the equation defining p_{y} gives the necessary and sufficient condition for the existence of a meaningful compressive yield point,

$$
\begin{equation*}
B a<\left(1+\frac{\beta k \sqrt{3}}{6 \bar{p}}\right)-\sqrt{\left(1+\frac{\beta k \sqrt{3}}{6 \bar{p}}\right)^{2}-1} \tag{B-11a}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\alpha \sqrt{3} \tag{B-11b}
\end{equation*}
$$

In the limiting case $k \rightarrow 0$, the vield point becomes $p_{y}=0$ and the restriction, Eq. (11a),

$$
\begin{equation*}
\beta a<1 \tag{B-11c}
\end{equation*}
$$

If Eq. (1lc) holds, the material in the constrained compression test yields immediately. There is no initial elastic phase, and loading begins in the plastic phase. If $B a \geq 1$ the material in the constrained compression test never becones plastic.
3) Plastic Phase (For $k=0$).

For reasons of brevity only the case $k=0$ is considered from here on.

In the plastic phase the elastic strain rates are, Eqs. (II-7),

$$
\begin{equation*}
\dot{\varepsilon}_{i j}^{E}=\dot{e}_{i j}^{E}+\frac{1}{3} \dot{\varepsilon}_{k k}^{E} \delta_{i j}=\frac{1}{2 G} \dot{s}_{i j}-\frac{1}{3 K(p)} \dot{p} \delta_{i j} \tag{B-12a}
\end{equation*}
$$

The plastic strain rates for $k=0$ are, Eqs. (II-8a),

$$
\begin{equation*}
\dot{\varepsilon}_{i j}^{p}=\dot{e}_{i j}^{p}+\frac{1}{3} \dot{\varepsilon}_{k k}^{p} \delta_{i j}=\lambda s_{i j}+2 a^{2} \lambda p \delta_{i j} \tag{B-12b}
\end{equation*}
$$

so that

$$
\begin{align*}
\dot{\varepsilon}_{i j}=\dot{\varepsilon}_{i j}^{E}+\dot{\varepsilon}_{i j}^{P}=\frac{1}{2 G} \dot{s}_{i j} & -\frac{1}{3 K(p)} \dot{p} \delta_{i j}+ \\
& +\lambda s_{i j}+2 a^{2} \lambda p \delta_{i j} \tag{B-12c}
\end{align*}
$$

Using cylindrical coordinates the constrained compression test implies $\dot{\varepsilon}_{r r}=\dot{\varepsilon}_{\theta \theta}=\dot{\varepsilon}_{r \theta}=\dot{\varepsilon}_{\theta z}=\dot{\varepsilon}_{z r}=0$, and Eqs. (12c) give

$$
\begin{align*}
& \dot{\varepsilon}_{z z}=\frac{1}{2 G} \dot{s}_{z z}-\frac{1}{3 K(p)} \dot{p}+\lambda s_{z z}+2 a^{2} \lambda p \tag{B-13a}\\
& \dot{\varepsilon}_{r r}=\frac{1}{2 G} \dot{s}_{r r}-\frac{1}{3 K(p)} \dot{p}+\lambda s_{r r}+2 a^{2} \lambda p=0 \tag{B-13b}
\end{align*}
$$

Symmetry requires $\dot{s}_{r r}=\dot{s}_{\theta \theta}=-\frac{1 / 2}{\dot{s}_{z z}}, \dot{s}_{r \theta}=\dot{s}_{\theta z}=\dot{\mathbf{s}}_{r z}=0$, which can be integrated, $s_{r r}=s_{\theta \theta}=-\frac{1 / 2}{2} s_{z z}, s_{r \theta}=s_{\theta z}=s_{r z}=0$. The yieid condition for $k=0$ becomes therefore $s_{z z}= \pm 2 a p$. For the compressive case $s_{z z}<0$ so that

$$
\begin{equation*}
s_{z z}=-2 a p \tag{B-14}
\end{equation*}
$$

Substitution of Eq. (14) and of $\mathrm{s}_{\mathrm{rr}}=-\frac{1}{2} \mathrm{~s}_{\mathrm{zz}}$ in Eq. (13b) gives

$$
\begin{equation*}
\lambda=-\frac{\left[a-\frac{2 G}{3 K(p)}\right]}{2 a(1+2 a) G} \frac{\dot{p}}{p} \tag{B-15}
\end{equation*}
$$

and substitution of Eq. (15) into Eq. (13a)

$$
\begin{equation*}
\dot{\varepsilon}_{z z}=-\frac{3}{G(1+2 a)}\left[a^{2}+\frac{G}{3 K(p)}\right] \dot{p} \tag{B-16}
\end{equation*}
$$

Integration of Eq. (16) from the yield point, and use of Eq. (14) relating $s_{z z}$ and p results finally in the desired relation between $\bar{E}_{z z}$ and $\sigma_{z z}$
$\varepsilon_{z z}=\frac{3}{G(1+2 a)^{2}}\left\{a^{2} \sigma_{z z}+\frac{(1+2 a) \bar{p}}{\beta}\left[1-\sqrt{1-\frac{\sigma_{z z}}{(1+2 a) \bar{p}}}\right]\right\}$
($\mathrm{B}-17$)
where, as previously defined, $\beta=3 K_{0} / 2 G, a=\alpha \sqrt{3}$.

4) Elastic Point.

The validity of Eq. (17) is subject to the restriction, Eq. (II-80), requiring that λ computed from Eq. (15) satisfy

$$
\lambda \geq 0
$$

Since for compressive loading $\dot{\mathrm{p}} / \mathrm{p}>0$ and $\mathrm{a}, \mathrm{G}>0$ this restriction is equivalent to

$$
\begin{equation*}
\mathrm{F} \leq \overline{\mathrm{p}}\left[\frac{1}{(a \beta)^{2}}-1\right] \equiv \mathrm{P}_{E} \tag{B-18}
\end{equation*}
$$

where p_{E} is the pressure defining the elastic point. The corresponding axial stress is

$$
\begin{equation*}
\sigma_{E}=-(1+2 a) p_{E}=-(1+2 a) \bar{p}\left[\frac{1}{(a \beta)^{2}}-1\right] \tag{B-19}
\end{equation*}
$$

For $p>p_{E}$, Eq. (17) is no longer valid and elastic incremental relations must be used. Note that Eq. (11c) implies $p_{E}>0$ so that the plastic range is always of finite extent. For the material constants listed at the beginning of this appendix the plastic range extends up to $\sigma_{E} \sim 1600 \mathrm{psi}$ in Case 1 and $\sigma_{E} \sim 375 \mathrm{psi}$ in Case 2.
5) Initial Tangent Modulus.

Equation (17) gives the initial tangent modulus

$$
\begin{equation*}
M_{c o}=\left[\frac{d \sigma_{z z}}{d \varepsilon_{z z}}\right]_{\sigma_{z z}=\varepsilon_{z z}=0}=\frac{2 \beta G(1+2 a)^{2}}{3\left(1+2 a^{2} \beta\right)} \tag{B-20}
\end{equation*}
$$

The knowledge of this result is convenient for the fitting process.

6) Plastic Shock Velocity.

Provided the pressure level is below the limit defined by Eq. (18) a piane plastic shock will propagate into the undisturbed material at a velocity \bar{c} obtained from the Rankine-Hugoniot relations,
$\vec{c}^{2}=\frac{1}{\rho} \frac{\sigma_{z z}^{s}}{\varepsilon_{z z}^{s}}=\frac{G(1+2 a)^{2}}{3 \rho}-\frac{\sigma_{z z}^{s}}{a^{2} \sigma_{z z}^{s}+\frac{(1+2 a) \bar{p}}{\beta}\left[1-\sqrt{\left.1-\frac{\sigma_{z z}^{s}}{(1+2 a) \bar{p}}\right]}\right.}$
where $\sigma_{z z}^{s}$ and $\varepsilon_{z z}^{s}$ are the normal stress and strain behind the shock.
c) Discussion of the Fit obtained.

To demonstrate the fit obtained Figs. B-1 and B-2 show the fit for the uniaxial test. Both fit reasonably well, but Case 1 is superior*) in the stress range up to 300 psi of interest in the dynamic test discussed in Section VI.

Figure $B-3$ shows curves for the computed values for the initial triaxial tangent modulus $M_{\text {To }}$ for both cases, in comparison to three available test points. The test points show large scatter, possibly due to differences in the material tested. Cases 1 and 2 fit respectively the low and high values of $M_{\text {To }}$.

An additional comparison can be made of the triaxial failure predictions from the theoretical models, Fig. B-4. Case 1 is extremely poor, and even Case 2 has a large error. It is a known shortcoming of the plastic model that the failure stresses are not well predicted. It must be stressed, however, that in dymamic situations the material is constrained,

[^5]and the deviation near fallure may not be important, provided the portions of the triaxial test at lower stresses fit reasonably.

The above reasoning is not intended to make the claim that Case 1 should be used as a realistic model. The case was selected because it gives an excellent fit in Fig. B-1. By use of the more general relation for $K(p)$ given in Eq. (la) it is possible to obtain a fit as good as in Case 1 , and represent the failure stress to the degree obtained for Case 2.

A comparison can also be made of the shock velocities in tests and as computed for Cases 1 and 2. The results for both cases, Fig. B--5, are of the same order of magnitude as found in the tests.

FIG. B-I-COMPARISON FOR UNIAXIAL TEST-CASE I

FIG. B-2 - COMPARISON FOR UNIAXIAL TEST-CASE 2

FIG. B-3-COMPARISON FOR TRIAXIAL TEST INITIAL MODULUS

FIG. B-4-COMPARISON FOR TRIAXIAL TEST $-p_{c}=70 \mathrm{psi}$

FIG.B-5-COMPARISON FOR SHOCK-WAVE VELOCITY

APPENDIX C - Selection of the Value of $C_{\text {I }}$ in the Numerical
Integration.

If the exact solution contains shocks, the solution by finite differences without artifices usually shows large oscillations, which may be so severe that the results are useless. Figure $C-1$ shows a typical result of this type obtained from the relations in Section V when the terms with C_{D} are omitted. To eliminate such situations the scheme presented in Section V uses a diffusion term which reduces the oscillations to an acceptable level. The approach requires the choice of a "suitable" value of the parameter C_{D} occurring in the relations derived in Section v.

As the terms containing C_{D} modify the problen, it is necessary to make their effect as inconsequential as possible. Due to the manner in which it enters the relations, C_{D} should be selected as large as compatible with the purpose of elimination of oscillations caused by the finite difference scheme.

The choice of an appropriate value C_{D} must be made by trial for each particular set of values Δt and Δz, and may also be infiuenced by the locarion z where the results are desired. The dependence of the value of the parameter to be selected on the increments can be reduced by considering the results as a function of the combination

$$
K_{D}=\frac{(\Delta z)^{2}}{\left(2+C_{D}\right) \Delta t}
$$

which occurs in Eq. (V-4). The value K_{D} should be selected
as small as possible.

The dependence can be seen in Fig. $C-2$, showing the longitudinal stress $\sigma_{z z}$ for the two values $K_{D} \sim 3100$ and $60 \mathrm{in}^{2} / \mathrm{sec}$, respectively. (For the spacing used the corresponding values C_{D} were 2 and 50.) For the larger value K_{D} (smaller C_{D}) the result is very smooth, but the rise in pressure (which should be a shock) is very gradual, and occurs in about 30 space steps. If K_{D} is reduced (C_{D} is increased) the front becomes steeper, but there is a limit. The rise can not be reduced to less than a distance of about 3 space steps. This is roughly the situation for $K_{D} \sim 60$ $\left(C_{D}=50\right)$ in Fig. C-2. However, as the above mentioned limit is approached, oscillations of computational nature appear, and it is necessary to compromise between the desire for a rapid rise (and small overall effects of the artificial terms) and the desire Eor smooth results.

FIG. C-I TIME HISTORY OF AXIAL STRESS AT $2=25 \mathrm{in}$ FOR $C_{0}=\infty, \Delta z=0.125 \mathrm{in}, \Delta 1=5 \times 10^{-3} \mathrm{msoc}$ MATERIAL. CASE I; LOADING, EO. (II - 1)

FIG. C-2 EFFECT OF THE PARAMETER $C O$ ON THE TIME HISTORY OF AXIAL STRESS AT $2=25$ In MATERIAL CASE 1 ; LOADING, EQ. (VI -I)

REFERENCES

[1] The Acceleration Response of a Stiff Cylinder Buried in Sand, Report in Preparation, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
[2] Stoll, R.D. and Ebeido, I.A., Shock Waves in Granuiar Soil, Journal of the Soil Mechanics and Foundarions Division, ASCE, Vol. 91, No. SM4, Juiy 1965, pp. 107-125.
[3] Nelson, I and Baron, M.L., Development of Mathematical Material Models, Investigation of Ground Shock Effects in Nonlinear Hysteretic Materials, Report No. 1 , Paul Weidinger, Consulting Engineer, Contract No. DACA39-67-C-0048, U.S. Army Engineer Waterways Experinent Station, Vicksburg, Miss., March 1968. A siallar material prescription was used by Grigorian, S.S. On Basic Concepts in Soll Dynamics, PMM, Vol. 24, No. 6 , 1960, FF. 1057-1072.
[4] Mindlin, R.D. and Herrmann, G., A One-Dimensional Theory of Compressional Waves in an Elastic Rod, Proc. First U.S. National Congress of Applied Mechanics, Chicago, Ill., June 1951, pp. 187-191.
[5] Mindin, R.D. and McNiven, H.D., Axially Symmetric Naves in Elastic Rods, Journal of Applied Mechanics, ASME, Vol. 27, No. 1, March 1960, pp. 145-151.
[6] Skalak, R., Longitudinal Impact of a Semi-Infinite Ciraular Elastic Bar, Journal of Applied Mechanics, ASME, Vol. 24, No. 1, March 1957, pp. 59-64.
[7] Testa, R.B., Longitudinal Impact of a Semi-Infinite Circular Viscoelastic Rod, Columbia University, Office of Naval Research Project NRO64-417, Technical Report No. 17, September 1963.
[8] Tapley, B.D. and Plass, H.D. Jr., The Propagation of Plastic Waves in a Semi-Infinite Cylinder of a Strain-Rate Deperdent Material, Development in Mechanics, Vol. l, Plenumpress, New York, 1961, pp. 256-267.
[9] Stoll, K.D. and Hess, M.S., Wave Propagation in a StressRelaxing Bar, Journal of the Engineering Mechanics Division, ASCE, Vo1. 92, No. EM5, October 1966, pp. 25-42.
[10! Hunter, S.C. and Johnson, I.A., The Propagation of Smali Amplitude Elastic-Flastic "Waves in Pre-Stressed Cylindrical Bars, Proc., International Union of Theoretical and Applied Mechanics Symposium on Stress Waves in an Elastic Solid, Brown University, Providence, Rhode Island, 1963, Springer-Verlag, Berlin, 1964, pp. 149-165.
[11] Drucker, D.C. and Prager, W., So11 Mechanics and Plastic Analysis or Ifmit Design, Quarterly of Applied Mathematics, Vo1. X, No. 2, i952, pp. 157-165.
[12] Finlayson, B.A. and Scriven, L.E., The Method of Weighted Residuals - A Review, Applied Mechanics Reviews, Vol. 19, No. 9, September 1966, pp. 735-748.
[13] Drucker, D.C., A Definition of Stable Inelastic Material, Journal of Applied Mechanics, ASME, Vol. 26, No. 1 , March 1959, pp. 101-106.
[14] Ames, W.F., Nonlinear Paztial Differential Equations in Engineering, Academic Press, New York, 1965, pp. 453-460.
[15] Wilkins, M.L., Calculation of Elastic-Flastic Flow, Methods in Computational Physics, Vol. 3, Academic Press, New York, 1964, pp. 211-263.
[16] Richtmeyer, R.D. and Morton, K.W., Difference Metiods for Initial Value Problems, Interscience Publishers, New York, 1967, $2^{\text {nd }}$ Edition.
[17] King, W.W. and Frederick, D., Transient Elastic Waves in a Fluid-Filled Cylinder, Journal of the Engineering Mechanics Division, ASCE, Vo1. 94, No. EM5, October 1968, pp. 1215-1230.
[18] Durbin, W.L., Steady Dynamic Stress-Strain and Wave Propagation Characteristics of Sofis, United Research Inc., Contract No. DA-22-079-eng-373, Report No. 3, U.S. Army Engineer Watesways Experiment Station, Vicksburg, Miss.
[19] Dorris, A.F., Response of Horizontally Oriented Buried Cylinders to Static and Dynamic Loadings, U.S. Army Engineer Waterways Experiment Station, Report No. l-682, Vicksburg, Miss., July 1965 .

NUCLEAR WEAPONS EFFECTS DIVISION REPORTS

 DISTRIBUTION LIST| Address | Normal No. of Copies |
| :---: | :---: |
| Army | |
| Chief of Engineers, Department of the Army, Washington, D. C. 20314 | |
| ATTN: ENGME-S | 1 |
| ENGME | 1 |
| ENGCW-E | 1 |
| ENGCW-Z | 1 |
| ENGMC-E | 1 |
| ENGMC-EM | 1 |
| ENGMC-DE | 1 |
| ENGAS-I | 1 |
| ENGAS-1, Library | 1 |
| ENGNA | 1 |
| Chief of Research and Development, Headquarters, Department of the Army, Washington,
 D. C. 20310 | 3 copies of Form |
| ATTN: Director of Army Technical Information | 1473 |
| Chief of Research and Development, Department of the Army, Washington, D. C. 20310 | |
| ATTN: Atomic Office | 1 |
| CRDES | 1 |
| Division Engineers, U. S. Army Engineer Divisions, Continental United States | Cy to ea |
| Commandant, U. S. Army Air Defense School, Fort Bliss, Tex. 79906 | 1 |
| Commandant, U. S. Army Command \& General Staff College, Fort Leavenworth, Kans. 66027 ATTN: Archives | 1 |
| Commandant, Army War College, Carlisle Barracks, Pa. 17013 ATTN: Library | 1 |
| Commanding General, Aberdeen Proving Ground, Aberdeen, Md. 21005 ATTN: Director, Ballistic Research Laboratories | 4 |
| Commanding General, The Engineer Center, Fort Belvoir, Va. 22060 ATTN: Assistant Commandant, Engineer School | 1 |
| Commanding General, U. S. A. Electronics Command, Fort Monmouth, N. J. 07703 ATTN: AMSEL-GG-DD | 1 |
| Commanding General, USA Missile C ommand, Huntsville, Ala. 35809 | 1 |
| Commanding General, USA Munition Command, Dover, N. J. 07801 | 1 |
| Commanding General, U. S. Continental Army Command, Fort Monroe, Va. 23351 | 1 |

NWED Reports Distribution List

Address	Normal No. of Copies
Army (Continued)	
Commanding General, U. S. Army Materiel Command, Washington, D. C. 20310 ATTN: AMCRD-DE-N	2
Commanding Officer, Picatinny Arsenal, Dover, N. J. 07801 ATTN: ORDBB-TK	1
Commanding Officer, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Va. 23604	1
Commanding Officer, U. S. Army Combat Developments Command, Institute of Nuclear Studies, Fort Bliss, Tex. 79916	2
Commanding Officer, U. S. Army Mobility Equipment Research and Development Center Fort Belvoir, Va. - 22060 ATTN: Technical Documents Center, Building 315	1
Commanding Officer, U. S. Army Nuclear Defense Laboratory, Edgewood Arsenal Edgewood, Md. 21040 ATTN: Technical Library	1
Department of the Army, CE Ballistic Missile Construction Office, P. O. Box 4187 Norton AFB, Calif. 92409	1
Director of Civil Defense, Office of the Secretary of the Army, Washington, D. C. 20310 ATTN: Mr. George Sisson (RE-ED)	2
Director, Nuclear Cratering Group, U. S. Army Corps of Engineers, Lawrence Radiation Laboratory, P. O. Box 808. Livermore, Calif. 94550	1
Director, U. S. Army Corps of Engineers, Coastal Engineering Research Center Washington, D. C. 20016 ATTN: Mr. T. Saville, Jr.	1
Director, U. S. Army Corps of Engineers, Ohio River Division Laboratories, 5851 Mariemont Avenue, Cincinnati, Ohio 45227	1
Technical Library USAMERDC, BIdg 314 Fort Belvoir, Va. 22060	1
Director, U. S. Army CRREL, P. O. Box 282, Hanover, N. H. 03755 ATTN: Mr. K. Boyd	1
Director, U. S. Army Construction Engineering Research Laboratory, P. O. Box 4005, Champaign, Ill. 61820 ATTN: Library	1

NWED Reports Distribution List

Normal
No. ofCopies
Army (Continued)
District Engineer, U. S. Army Engineer District, Omaha, 6012 U. S. Post Office and Court House1
215 N. 17th Street, Omaha, Nebr. 68101
ATTN: MROGS-BPresident, U. S. Army Air Defense Board, Fort Bliss, Tex. 79906Superintendent, U. S. Military Academy, West Point, N. Y. 1099612
ATTN: Library
U. S. Army Engineer Division, Missouri River, P. O. Box 103, Downtown Station 1 Omaha, Nebr. 68101
ATTN: Mr. Ken Lane
Navy
Commander-in-Chief, Pacific, FPO, San Francisco 94129
Commander-in-Chief, U. S. Atlantic Fleet, U. S. Naval Base, Norfolk, Va. 23511
Chief of Naval Operations, Navy Department, Washington, D. C. 20350
ATTN: OP- 75 2
OP-03EG 1
Chief of Naval Research, Navy Department, Washington, D. C. 20390 1
ATTN: Code 811
Commandant of the Marine Corps, Navy Department, Washington, D. C. 20380
ATTN: Code A04E
Commander, Naval Facilities Engineering Command, Navy Department, Washington, D. C. 20370 ATTN: Code 04 1
Code 03 1
Commander, Naval Ordnance Systems Command, Washington D. C. 20360 1
Commander, Naval Ship Engineering Center, Washington, D. C. 20360 1
ATTN: Code 6115
Commanding Officer, Nuclear Weapons Training Center, Atlantic Naval Base, Norfolk, Va. 23511 1
ATTN: Nuclear Warfare Department
Commanding Officer, Nuclear Weapons Training Center, Pacific, Naval Station, North Island 2
San Diego, Calif. 92136
Commanding Officer \& Director, Naval Electronics Laboratory, San Diego, Calif. 92152 1
Commanding Officer \& Director, Naval Ship Research and Development Center 1
Carderock, Md. 20007
Commanding General, Marine Corps Development and Education Command, Quantico, Va. 221342
ATTN: Director, Development Center

Commanding Officer \& Director, U. S. Naval Civil Engineering Laboratory

Commanding Officer, U. S. Naval Civil Engineer Corps Officer School, U. S. Naval Construction
Battalion Center, Port Hueneme, Calif. 93041
Commanding Officer, U. S. Naval Damage Control Training Center, Naval Base
Philadelphia, Pa. 19112
ATTN: ABC Defense Course
Commanding Officer, U. S. Naval Weapons Evaluation Facility, Kirtland Air Force Base
Albuquerque. N. Mex. 87117 ATTN: Code WEVS

Commanding Officer, U. S. Naval Weapons Laboratory, Dahlgren, Va. 22448 I ATTN: TE

Commander, U. S. Naval Oceanographic Office, Suitland, Md. 20023
Commander, U. S. Naval Ordnance Laboratory, Silver Spring, Md. 20910
ATTN: EA
E
Commander, U. S. Naval Ordnance Test Station, China Lake, Calif. 93555
Director, U. S. Naval Research Laboratory, Washington, D. C. 20390 I
President, U. S. Naval War College, Newport, R. I. 02840
Special Projects, Navy Department, Washington, D. C. 20360 l
ATTN: SP-272

Superintendent, U. S. Naval Postgraduate School, Monterey, Calif. 93940
1
Underwater Explosions Research Division, Naval Ship Research and Development Center I
Norfolk Naval Shipyard, Portsmouth, Va. 23511

Air Force

Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433 I ATTN: Mr. Frank Janik, Jr.

Air Force Institute of Technology, AFIT-L, Building 640, Wright-Patterson AF'B, Ohio 45433

Air Force Systems Command, Andrews Air Force Base, Washington, D. C. 20331 I ATTN: SCTSW

NWED Reports Distribution List

NormalNo. ofCopies
Air Force (Continued)
Air Force Technical Applications Center, Department of the Air Force, Washington, D. C. 20333
Air Force Weapons Laboratory, Kirtland AFB, N. Mex. 87117
ATTN: Library 1
Director, Air University Library, Maxwell AFB, Ala. 36112 2
Commander, Strategic Air Command, Offutt AFB, Nebr. 68113 1
ATTN: OAWS
Commander, Tactical Air Command Langley AFB, Va. 23365 1
ATTN: Document Security Branch
Space and Missile Systems Organization, Norton AFB, Calif. 92409 1
ATTN: SAMSO (SMQNM)
Headquarters, USAF, Washington, D. C. 20330 1
ATTN: AFRSTG
Director, Air Research and Development Command Headquarters, USAF1Washington, D. C. 20330ATTN: Combat Components Division
Director of Civil Engineering, Headquarters, USAF, Washington, D. C. 20330 1
ATTN: AFOCEDirector, U. S. Air Force Project RAND, Via: U. S. Air Force Liaison Office, The RANDCorporation, 1700 Main Street, Santa Monica, Calif. 90406
ATTN: Library1
Dr. Harold L. Brode 1
Dr. Olen A. NanceOther DOD AgenciesAdministrator, National Aeronautics \& Space Administration, 400 Maryland Avenue, S. W.Washington, D. C. 20546Assistant to the Secretary of Defense (Atomic Energy), Washington, D. C. 203011Commandant, Armed Forces Staff College, Norfolk, Va. 23511ATTN: Library
Commandant, National War College, Washington, D. C. 20310 1
ATTN: Class Rec. LibraryCommandant, The Industrial College of the Armed Forces, Fort McNairWashington, D. C. 20310

NWED Reports Distribution List

Commander, Test Command, DASA, Sandia Base, Albuquerque, N. Mex. 87115
ATTN: TCCOM, TCDT
Commander, Field Command, DASA, Sandia Base, Albuquerque, N. Mex. 87115
Defense Documentation Center (DDC), Cameron Station, Alexandria, Va. 22314 (NO TOP
Director, Defense Atomic Support Agency, Washington, D. C. 20301
ATTN: SPSS
STAP
Director of Defense Research and Engineering, Washington, D. C. 20301
ATTN: Technical Library
Mr. Frank J. Thomas
Director, Advanced Research Projects Agency, Washington, D. C. 20301 1
ATTN: NTDO
Director, Defense Intelligence Agency, Washington, D. C. 20301
ATTN: DIA-AP8B-1
Director, Weapons Systems Evaluation Group, Washington, D. C. 20305
Langley Research Center, NASA, Langley Field, Hampton, Va. 23365
ATTN: Mr. Philip Donely
Manager, Albuquerque Operations Office, USAEC, P. O. Box 5400, Albuquerque, N. Mex. 87115
Manager, Nevada Operations Office, USAEC, P. O. Box 1676, Las Vegas, Nev. 89101
National Aeronautics \& Space Administration, Man-Spacecraft Center, Space Technology
Division, Box 1537, Houston, Tex. 77001
National Military Command System Support Center, Pentagon BE 685, Washington, D. C. 20301
ATTN: Technical Library
U. S. Atomic Energy Commission, Washington, D. C. 20545
ATTN: Chief, Classified Tech Lib, Tech Information Service
U. S. Documents Officer, Office of the United States National Military Representative-SHAPE
APO New York 09055

Other Agencies

Aerospace Corporation, lill E. Mill Street, San Bernardino, Calif. 92408 I
ATTN: Dr. M. B. Watson
Agbabian-Jacobsen Associates, Engineering Consultants, 8939 South Sepulveda Boulevard Los Angeles, Calif. 90045

NWED Reports Distribution List

Address	Normal No. of Copies
Other Agencies (Continued)	
Applied Theory, Inc., 1728 Olympic Blvd, Santa Monica, Calif. 90404 ATTN: Dr. John G. Trulio	1
AVCO Corporation, Research and Advanced Development Division, 201 Lowell Street Wilmington, Mass. 01887 ATTN: Mr. R. E. Cooper	1
Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201 ATTN: Dr. P. N. Lamori -	1
Bell Telephone Laboratories, Inc., Whippany Road, Whippany, N. J. 07981 ATTN: Mr. R. W. Mayo	1
The Boeing Company, P. O. Box 3707, Seattle, Wash. 98:24 ATTN: Technical Library	1
Corrugated Metal Pipe Institute, Crestview Plaza, Port Credit, Ontario, Canada ATTN: Mr. W. A. Porter	1
Defence Research Establishment, Suffield. Ralston, Alberta, Canada	1
General Research Corporation, P. O. Box 3587, Santa Barbara, Calif. 93105 ATTN: Mr. Benjamin Alexander	1
Denver Mining Research Center, Building 20, Denver Federal Center, Denver, Colo. 802.25 ATTN: Dr. Leonard A. Obert	1
Dynamic Science Corporation, 1900 Walker Avenue, Monrovia, Calif. 91016 ATTN: Dr. J. C. Peck	1
Edyerton, Germeshausen \& Grier, Inc., 95 Bruokline Avenue, Boston, Mass. 02129 ATTN: D. F. Hansen	1
Fngineering Physics Company, 12721 Twinbrook Parkway, Rockville, Md. 20852 ATTN: Dr. Vincent J. Cushing Mr. W. Danek	1
General American i ansportation Oorpo ation, General American Research Division 7449 North Natcher. Avenue, Niles, Ill. 6064b ATTN: Dr. G. L. Neidhardt	1
General Electric Company, Missile and Space Vehicle Department, Valley Forge Space Technology Center, Goddard Fonlevard, King of Prussia, Pa. 19406	1
General Electric Company, TEM?O, 81r. State Street, Santa Barbara, Calif. 93101 ATTN: Mr. Warren Chan (DASIAC)	1
Chief, Structural and Arplied Rifchani : Sranch, Bureau of Public Roads, Federal Highway Administration, Washington, 1. C. "), 貺 ATTN: Mr. F. J. Tamanini	1

Normal
No. of
Address
Copies
Other Agencies (Continued)
IIT Research Institute, 10 West 35th Street, Chicago, Ill. 60616 1
ATTN: Dr. K. McKee
Kondner Research, Downes Road, Parkton. Md. 21120 1
ATTN: Dr. R. L. Kondner
Lockheed Missile and Space Company, Lockheed Aircraft Corporation, 111 Lockheed Way1Sunnyvale, Calif. 94086ATTN: Dr. R. E. Meyerott
Los Alamos Scientific Laboratory, P. O. Box 1663, Los Alamos, N. Mex. 87544 1
ATTN: Report Librarian
Ministry of Defense, MEXE, Christchurch, Hampshire, England
ATTN: Dr. Philip S. Bulson
Mr. Bruce 'T. Boswell 11
The Mitre Corporation, Route 62 and Middlesex Turnpike, Bedford, Mass. 01730 1
Physics International Company, 2700 Merced Street, San Leandro, Calif. 94577
ATTN: Dr. Charles Godfrey
Mr. Fred M. Sauer1
Research Analysis Corporation, Document Control Supervisor, McLean, Va. 22101 1
Dr. John S. Rinehart, Senior Research Fellow (R.2), IER/ESSA, Boulder, Colo. 80302 1
Sandia Laboratories, P. O. Box 5800, Albuquerque, N. Mex. 87115 1
ATTN: Classified Document Division for Dr. M. L. Merritt
Southwest Research Institute, 8500 Culebra Road, San Antonio, Tex. 78228 1
ATTN: Dr. Robert C. DeHartSystems, Science and Software, P. O. Box 1620, La Jolla, Calif. 920371
ATTN: Mr. K. D. Pyatt, Jr.
TRW Space Technology Laboratories, One Space Park, Redondo Beach, Calif. 90278ATTN: Dr. Millard Barton1
Mr. Fred Pieper
Mr. J. L. Merritt1
URS Corporation, 1811 Trousdale Drive, Burlingame, Calif. 94010 2
ATTN: Mr. James HalseyU. S. Department of the Interior, Geological Survey, Geologic Division, Branch of1
Engineering Geology, 345 Middlefield Road, Menlo Park, Calif. 94025
ATTN: Harold W. Olsen
Paul Weidlinger, Consulting Engineer, 110 East 59th Street, New York, N. Y. 10022 5
ATTN: Dr. M. L. Baron

NWED Reports Distribution List

Normal
No. of
Address

College and Universities

University of Arizona, Tucson, Ariz, 85721
ATTN: Dr. Donald A. DaDeppo, Department of Civil Engineering 1
Professor Bruce G. Johnston, Dept of Civil Engineering
1
Dr. George Howard, College of Engineering
1
University of California, Lawrence Radiation Laboratory, P. O. Box $808 \quad 2$
Livermore, Calif. 94550
ATTN: Technical Information Division
University of Colorado, School of Architecture, Boulder, Colo. 80304 I
ATTN: Professor G. K. Vetter
University of Detroit, Department of Civil Engineering, 4001 West McNichols Road
Detroit, Mich. 48221
ATTN: Professor W. J. Baker
University of Florida, Department of Mechanical Engineering, Gainesville, Fla. 32603 I
ATTN: Professor John A. Samuel
Florida State University, Department of Engineering Science, Tallahassee, Fla. 32302 I
ATTN: Dr. G. L. Rogers
University of Illinois, Urbana Campus, Department of Civil Engineering, Urbana, Ill. 61801
ATTN: Professor N. M. Newmark
$\begin{array}{ll}\text { Professor S. L. Paul } & 1\end{array}$
Professor M. T. Davisson 1
Professor G. K. Sinnamon $\quad 1$
$\begin{array}{ll}\text { Professor W. J. Hall } & 1\end{array}$
Professor A. J. Hendron, Jr. $\quad 1$
$\begin{array}{ll}\text { Professor M. A. Sozen } & 1\end{array}$
Iowa State University of Science and Technology, Ames, Iowa 500102
ATTN: Professor Glen Murphy
Lehigh University, Bethlehem, Pa. 18015
ATTN: Dr. J. F. Libsch, Materials Research Center
Dr. D. A. Van Horn, Department of Civil Engineering la l
University of Massachusetts, Department of Civil Engineering, Amherst, Mass. 01002 I
ATTN: Dr. M. P. White
Massachusetts Institute of Technology, Division of Sponsored Research, 77 Massachusetts
Avenue, Cambridge, Mass. 02139
ATTN: Dr. Robert J. Hansen
Dr. Robert V. Whitman
University of Michigan, Civil Engineering Department, Ann Arbor, Mich. 48104
ATTN: Professor Frank E. Richart, Jr., Consultant

Address	Norm No. Copi
College and Universities (Continued)	
Dr. George B. Clark, Director, Rock Mechanics Research Group, University of Missouri at Rolla, Rolla, Mo. 65401	1
University of New Mexico, Eric H. Wang Civil Engineer Research Facility, Albuquerque, N. Mex. 87106 ATTN: Dr. Eugene Zwoyer	1
University of New Mexico, Eric H. Wang Civil Engineering Research Facility, P. O. Box 188 University Station, Albuquerque, N. Mex. 87106	2
Nova Scotia Technical College, School of Graduate Studies, Halifax, Nova Scotia, Canada ATTN: Dr. G. G. Meyerhof	1
Pennsylvania State University, University Park, Pa. 16802 ATTN: Professor G. Albright, Dept of Architectural Engineering Professor Richard Kummer, 101 Eng. A	1
Purdue University, School of Civil Engineering, Civil Engineering Building, Lafayette, Ind. 47907 ATTN: Professor M. B. Scolt	1
Rensselaer Polytechnic Institute, Troy, N. Y. 12180 ATTN: Dr. Clayton Oliver Dohrenwend, Security Officer, Mason House	1
Rice University, Department of Civil Engineering, Houston, Tex. 77001 ATTN: Professor A. S. Veletso's	1
San Jose State College, Department of Civil Engineering, San Jose, Calif. 95114 ATTN: Dr. Franklin J. Agardy	1
University of Texas, Balcones Research Center, Austin, Tex. 78712 ATTN: Dr. J. Neils Thompson	1
Utah State University, Department of Mechanical Engineering, Logan, Utah 84321 ATTN: Professor R. K. Watkins	1
University of Washington, Seattle, Wash. 98105 ATTN: C. H. Norris, Department of Civil Engineering Dr. A. B. Arons, Department of Physics Professor William Miller, Department of Civil Engineering, 307 More Hall	1 1 1
The George Washington University, Nuclear Defense Design Center, School of Engineering and Applied Science, Washington, D. C. 20006	1
Worcester Polytechnic Institute, Department of Civil Engineering, Worcester, Mass. 01609 ATTN: Dr. Carl Koontz	1
Northern Arizona University, Box 5753, Flagstaff, Arizona 86001 ATTN: Professor Sandor Popovics	1

DOCUMENT CONTROL DATA - R \& D

(Security cfaesification of iffle, body of abstraci and indexing ennolation must be entered when the overall repori le ciaselfed)

1. ORIGINATINGACTIVITY (Comporenter Author)
Paul Weidlinger, Consulting Engineer
New York, New York
2. NEPOMT TITLE

STRESS WAVES IN A SOIL-FILIED CYLINDRICAL SHELL
4. DESCAIPTivE NOTES (TYpe of repart and inclueive delee)
Final Report

Final Report
8. AUTHOA(S) (Firet neme, middle inillel, lat name)

John Kovarna and Hans H. Bleich

crepontoate May 1970	To. total no. ofpages	1b. NO. Of CEFS
May 1970	104	19
E. CONTHACT OR GRANT NO DACA39-67-C-0021 b. пполet no.	mentiainatonis meport mumernisi	
c. a.	0b. OTME WEPOMT NOIS) to. S. Army En ment Station Con	er Waterways Experiact Report N-70-2

11. SUTPLEMENTAAY NOTE:

Prepared under contract for U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.

An approximate solution to the problem of transient longitudinal wave propagation in a semi-infinite cylindrical body of elasto-plastic material restrained radially by a stacked-ring shell and subjected to a normal pressure at the end is obtained by a Galerkin technique using the radial coordinate as an expansion parameter. In order to get equations applicable to numerical computations the expansions are truncated to the leading term in each variable. This truncation creates a mathematical problem when elastic and plastic regions occur along the same radial line. A finite-difference scheme is used to solve the differential equations resulting from application and truncation of the Galerkin expansion. A special method for handling the boundary between clastic and plastic regions along the same radial line is developed in conjunction with this numerical solution. Numerical results of the finite-difference scheme are presented for several variations in such parameters as shell stiffness and material constants. For the purpose of evaluating the results of the truncation to the leading term in each expansion, the analogous problem is formulated for a linear inviscid fluid and solved twice, once with a truncation to the first term and once carrying two terms in each expansion. The numerical results are presented for these two solutions so that the change in the solution caused by the truncation can be evaluated.

UNCLASSIFIED
security clossification

[^0]: *)
 In special situations not expected in the problem to be treated here, the distinct boundaries may degenerate into neutral regions within which elastic relations, or plastic ones with $\lambda=0$, may be used interchangeably.

[^1]: *)
 This method is more general than the Galerkin one and contains the latter as a special case.

[^2]: *) While an approach to a proof of uniqueness may be found in Ref. [13], no theorem on existence of solutions in dynamic elasto-plastic problems is available.

[^3]: *)
 Due to the well behaved nature of the problem such a series can be expected to be convergent.

[^4]: *) Data on Cook's Bayou Mo. 1 sand, Refs. [18] and [19], obtained from the U.S. Army Engineer Vaterways Experiment Station, Vicksburg, Miss.

[^5]: *)
 In Case 1 the initial slope $M_{\text {co }}$ of the test and of the computed zurve have been made to agree.

