

CONTRACT REPORT N-70-I

A NONLINEAR FINITE ELEMENT CODE FOR ANALYZING THE BLAST RESPONSE OF UNDERGROUND STRUCTURES

by
I. Farhoomand, E. Wilson

January 1970
Sponsored by Defense Atomic Support Agency
Conducted for U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi Under Contract No. DACA 39-67-0020

By Structural Engineering Laboratory, University of California, Berkeley, California

A NONLINEAR FINITE ELEMENT CODE FOR ANALYZING THE BLAST RESPONSE OF UNDERGROUND STRUCTURES

by

I. Farhoomand, E. Wilson

January 1970

Sponsored by Defense Atomic Support Agency NWER Subtask SC210

Conducted for U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi
Under Contract No. DACA 39-67-0020
By Structural Engineering Laboratory, University of California, Berkeley, California

FOREWORD

The investigation described herein was performed under Contract No. DACA 39-67-0020 for the Nuclear Weapons Effects Division (NWED), U. S. Army Engineer Waterways Experiment Station (WES), under the sponsorship of the Defense Atomic Support Agency as part of Nuclear Weapons Effects Research (NWER) Subtask SC 210.

This contract was technically monitored by Mr. P. J. Reck under the direct supervision of Mr. W. J. Flathau, Chief, Protective Structures Branch, and under the general supervision of Mr. G. L. Arbuthnot, Jr., Chief, Nuclear Weapons Effects Division, WES.

This study was conducted by Dr. Edward L. Wilson and Mr. Iraj Farhoomand of the University of California, Berkeley, California. Close technical cooperation was provided by Messes. J. L. Kirkland and R. E. Walker and Dr. R. Froelich of NWED.

COL Levi A. Brown, CE, was Director of WES during the preparation of this report. Mr. F. R. Brown was Technical Director.

ABSTRACT

A nonlinear, axisymmetric, dynamic finite-element method of analysis computer program is developed. Elastic, two-dimensional problems can also be analyzed without loss of efficiency. An extensive description of the analytical procedures used in the code is given. A FめRTRAN IV listing of the computer code is presented along with information on utilizing the code to run problems.

Analytical results are compared with experimental data obtained from testing a modeled buried structure subjected to a blast loading.

TABLE OF CONTENTS

Page
INTRODUCTION 1
DYNAMIC EQUILIBRIUM EQUATIONS 2
STEP-BY-STEP INTEGRATION OF EQUILIBRIUM EQUATIONS 4
NONLINEAR MATERIAL BEHAVIOR 10
CONSISTENT FORMULATION OF NONLINEAR PROPERTIES 14
APPLICATION 18
COMPUTER PROGRAM 26
REFERENCES 28
APPENDIX A Internal Force Vector for A Quadrilateral
Element
APPENDIX B Description Of Input Data For Computer ProgramAPPENDIX C Fortran IV Listing of Computer ProgramAPPENDIX D Listing Of Input Data For Sample Problem

INTRODUCTION

Several attempts have been made to use the finite element method for the nonlinear dynamic analysis of granular materials $1,2,3$. These previous coded programs are not readily used by engineers for the dynamic analysis of complex structures. One of the objectives of this study is to develop a nonlinear computer program which is efficient and easy to use.

In Reference 4 the finite element method coupled with a stable step-by-step method of integration was used for the elastic dynamic analysis of two-dimensional plane strain solids. Reference 5 is a generalization of the material in Reference 4. It also contains a new coding technique which increases the capacity of the program. The purpose of this investigation is to extend the step-by-step dynamic analysis of axisymmetric structures to include nonlinearity of granular materials. It is worthy to note that elastic materials can also be treated by the nonlinear program without a loss of efficiency. In addition, the step-by-step integration method has been revised to provide better accuracy when nonlinear equations are involved.

DYNAMIC EQUILIBRIUM EQUATIONS

The force equilibrium of a system of structural elements is expressed by the following matrix equation:

$$
\begin{equation*}
\underline{M} \underline{u}_{t}+\underline{C} \dot{u}_{t}+\underline{K} \underline{u}_{t}=\underline{R}_{t} \tag{1}
\end{equation*}
$$

where $\underline{u}, \underline{\underline{u}}$, and $\underline{\ddot{u}}$ are vectors of nodal point displacements, velocities and accelerations at time "t". \underline{M} is the mass matrix assumed to be constant (independent of time). \underline{K} is the instantaneous stiffness matrix, i.e., it varies as a function of displacements. \underline{C} is the instantaneous damping matrix, and finally \underline{R} is the generalized external load vector applied at the nodal points of the system.

A formal mathematical development of the mass matrix \underline{M} is possible. Such an approach would result in a mass matrix with the same coupling properties as the stiffness matrix. However, if the physical lumped mass approximation is made, the mass matrix will be diagonal. The lumped mass approximation results in a small reduction in accuracy and considerable saving in computer storage and time. In this investigation one-fourth of the mass of each quadrilateral element is assumed to be concentrated at each of the four nodal points.

For most structures the exact form of the damping matrix \underline{C} is unknown. In the solution procedure the damping matrix may be completely arbitrary; however, there is little experimental justification for selecting specific damping coefficients. In the following analysis the damping matrix is ignored. This fact is
specially justified for analysis of earth structures subjected to blast loading. Neglecting the damping matrix results in considerable simplification and saving in the computer time.

At any stage of the analysis, knowing the elastic constants of each element, the instantaneous stiffness matrix may be generated using the same procedure as used in the linear elastic analysis (reference 5). The assemblage of the stiffness matrix of the system is also the same.

STEP-BY-STEP INTEGRATION OF EQUILIBRIUM EQUATIONS

The dynamic equilibrium of the finite element system is given by equation (1). The basic concept of the solution of this set of second order differential equations is explained in references 4 and 5. However, in nonlinear analysis the overshooting problem (figure 1) makes the direct procedure inaccurate. To improve the accuracy of the method, neglecting the damping matrix \underline{C}, equation (1) is written as follows:

$$
\begin{equation*}
\underline{M} \underline{u}_{t}+\sum_{\tau=0}^{\tau=t} \underline{k}_{\tau} \underline{\Delta u}_{\tau}=\underline{R}_{t} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underline{\Delta u}_{\tau}=\underline{u}_{\tau}-\underline{u}_{\tau-\Delta t}, \\
& \underline{\Delta u}_{0}=\underline{u}_{0}
\end{aligned}
$$

and \underline{K}_{τ} is the instantaneous stiffness matrix for the displacement interval \underline{u}_{τ}. The assumption is that \underline{K}_{τ} is constant for the displacement interval $\underline{\Delta u}_{\tau}$. The second term of the left hand side of equation (2) may be written as:

$$
\begin{equation*}
\sum_{\tau=0}^{\tau=t} \underline{k}_{\tau} \underline{\Delta u}_{\tau}=\underline{E}_{t}+\underline{k}_{t} \underline{\Delta u}_{t} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{E}_{t}=\sum_{\tau=0}^{\tau=t-\Delta t} \underline{-}_{\tau} \underline{\Delta u}_{\tau} \tag{4}
\end{equation*}
$$

The force vector E represents the forces carried by the elements of the system at the beginning of the time increment. The formation of

FIG.I OVERSHOOTING PROBLEM IN A STEP - BY - STEP PROCEDURE
force vector E for an axisymetric finite element system is discussed in Appendix A. Using equation (3) the force equilibrium equation of a finite element system is expressed by:

$$
\begin{equation*}
\underline{M} \underline{u}_{t}+\underline{K}_{t} \Delta_{t}=\underline{R}_{t}-\underline{E}_{t} \tag{5}
\end{equation*}
$$

This is the basic forces equilibrium equation which is used throughout this investigation.

The time discretization of equation (5) is approximated in the following manner: The acceleration of each point in the system is aṣsumed to vary linearly within a small time interval, $2 \Delta t$. This assumption leads to a parabolic variation of velocity and a cubic variation of displacement within the time interval $t-\Delta t$ and $t+\Delta t$.

A direct integration over the interval gives the following equations for acceleration and velocity at the end of the time interval:

$$
\begin{align*}
& \ddot{u}_{t+\Delta t}=\frac{1.5}{\Delta t^{2}} \frac{\Delta u_{t+\Delta t}}{}-\frac{3}{\Delta t} \underline{u}_{t-\Delta t}-2 \underline{u}_{t-\Delta t} \\
& \dot{u}_{t+\Delta t}=\frac{1.5}{\Delta t} \Delta u_{t+\Delta t}-2 \underline{u}_{t-\Delta t}-\Delta t \ddot{u}_{t-\Delta t} \tag{6}
\end{align*}
$$

The substitution of equation (6) into equation (5), results in a set of linear equations in terms of unknown vector $\underline{\Delta u}_{t+\Delta t}$. The solution of this set of equations yields the increment of displacements of the system at time $t+\Delta t$. The acceleration and velocities at time t may then be found from the following series of equations:

$$
\begin{equation*}
\ddot{u}_{t+\Delta t}=\frac{1.5}{\Delta t^{2}} \frac{\Delta u}{t+\Delta t}-\frac{3}{\Delta t} \underline{\underline{u}}_{t-\Delta t}-2 \underline{u}_{t-\Delta t} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& \ddot{\underline{u}}_{t}=\frac{1}{2}\left(\ddot{u}_{t+\Delta t}+\underline{\ddot{u}}_{t-\Delta t}\right) \tag{8}\\
& \underline{u}_{t}=\underline{u}_{t-\Delta t}+\frac{\Delta t}{2}\left(\underline{u}_{t}+\underline{u}_{t-\Delta t}\right) \tag{9}\\
& \underline{u}_{t}=\underline{u}_{t-\Delta t}+\frac{\Delta t}{2} \underline{u}_{t-\Delta t}+\frac{\Delta t^{2}}{3} \underline{u}_{t-\Delta t}+\frac{\Delta t^{2}}{6} \underline{\underline{u}}_{t} \tag{10}
\end{align*}
$$

Equation (8) is the essential factor in making the step-by-step method stable. In fact, it can be shown that all roots of the characteristics equation of the difference equation of the method lie between -1 and 1 for all sizes of time interval Δt. This means that regardless of the size of the time step the procedure is stable and the high frequency components do not cause the solution to blow up. However, the new procedure tends to introduce damping in the higher frequencies of the system. Fortunately this partial truncation of the higher modes is justified in many dynamic analyses. The selection of the time step and the finite element idealization for a particular problem will depend on the experience of the user with similar problems.

The step-by-step procedure, which is presented in a form which minimizes computer storage and execution time, is summarized in Table 1. The "effective" stiffness matrix is normally banded and its triangularized form is also banded. Therefore, a large amount of computer storage is not required. Since the stiffness matrix is different for each time step, it should be triangularized at every step. However, for weakly nonlinear problems, where the stiffness matrix might vary slightly, it may not be necessary to triangularize the matrix at each time step.

TABLE 1 SUMMARY OF STEP-BY-STEP PROCEDURE
I. Initial Calculation
A. Calculate the following constants:

$$
\begin{array}{rlrl}
\tau & =\Delta t & a 4=a 0 / a 3 \\
a 0 & =3 / \tau & a 5=2 / a 3 \\
a 1 & =.75 / \tau^{2} & a 6=\tau / 2 \\
a 2 & =a 0 / 2 & a 7=\tau^{2} / 6 \\
a 3 & =2 a 1 & a 8=2 a 7
\end{array}
$$

B. Form the stiffness matrix \underline{K}, diagonal mass matrix \underline{M}, and the internal force vector E.
C. As a starting point, form and triangularize the effective stiffness matrix $\underline{K}=\underline{K}+a 3^{*} \underline{M}$.
D. Form the revised mass matrix $\bar{M}=a 3^{*} M$.
II. For Each Time Increment
A. Form the effective load vector

$$
\bar{R}_{t+\Delta t}=\underline{R}_{t+\Delta t}-\underline{E}_{t-\Delta t}+\underline{\bar{M}}\left(a 4 \underline{\dot{U}}_{t-\Delta t}+a 5 \underline{\ddot{U}}_{t-\Delta t}\right)
$$

B. Back substitute to solve for the displacement vector $\underline{U}_{t+\Delta t}$ $\underline{\bar{K}} \underline{\bar{W}}_{t+\Delta t}=\underline{\underline{R}}_{t+\Delta t}$
C. Calculate acceleration, velocity, and displacement vectors at time "t":

$$
\begin{aligned}
& \ddot{\underline{u}}_{t}=a 1 \underline{u}_{t+\Delta t}-a 2 \dot{\underline{u}}_{t-\Delta t}-.5 \underline{\underline{u}}_{t-\Delta t} \\
& \underline{\dot{u}}_{t}=\underline{\dot{u}}_{t-\Delta t}+a 6\left(\ddot{u}_{t}+\ddot{u}_{t-\Delta t}\right) \\
& \underline{u}_{t}+\underline{u}_{t-\Delta t}+r \underline{\dot{u}}_{t-\Delta t}+a 7\left(\underline{\underline{u}}_{t}+2 \underline{u}_{t-\Delta t}\right)
\end{aligned}
$$

D. Calculate strains, stresses, and the internal force vector E_{t} at time "t".
E. For each desired interval:

Calculate and triangularize the new effective stiffness matrix $\overline{\mathrm{K}}$.
F. Repeat for the next time step.

NONLINEAR MATERIAL BEHAVIOR

Many investigators have worked on nonlinear dynamic analysis of earth structures. Penzien ${ }^{1}$ developed a lumped mass, one-dimensional model to study the response of semi-infinite soil layers in which the material had a hysteretic, bilinear stress-strain behavior. Ang ${ }^{2}$ investigated a technique to solve nonlinear two and three dimensional dynamic analysis of soil media; however, his technique is cumbersome and impractical. Recently, Dibaj ${ }^{3}$ developed a consistant formulation for the nonlinear dynamic analysis of earth structures based on plasticity rules and the finite element method. Dibaj's technique is also inefficient for practical purposes in the sense that to solve a practical problem the computer time and storage are large.

Most computer codes that attempt to account for nonlinear behavior are based on the three dimensional Prager-Drucker yield condition. The behavior of the system is then assumed to be piecewise linear, and the incremental elastic constants are evaluated for each time interval. Based on these constants the tangent stiffness is computed and the response of the system at the end of that interval is obtained. Although the procedure is straight forward, it requires a large amount of computer time. Furthermore, the incremental stressstrain relationship for practical soil materials cannot be accurately obtained from the Prager-Drucker yield condition

In reference 6, the stress-strain behavior of soils subjected to dynamic load is discussed. Among the prime factors which are important in the nonlinearity of the soil are volumetric change,
hydrostatic pressure, second strain invariant, and shear stress. It is extremely difficult to use this experimental data directly in the computer program. Since, the nonlinear-hysteretic behavior of the bulk modulus appeared to be of major importance, a model was selected to accurately represents this property. Figure 2, shows a pressure volume strain relationship for a typical soil material. The bulk modulus is defined as the ratio of the incremental hydrostatic pressure to the incremental volumetric strain, or

$$
K=\frac{\Delta p}{\Delta e}
$$

Note that the bulk modulus is significantly different for loading and unloading. The strain e_{f} for a given maximum pressure is the volumetric strain which will cause the soil material to lose its incremental tensile stiffness. Therefore, if the strain, e, is less than e_{f} the average volume stress must vanish although the individual stresses may not be zero. In order to use the bulk modulus experimental data it was necessary to assume that the material is incremental isotropic. Or

$$
\Delta \sigma=\underline{c} \Delta \underline{\varepsilon}
$$

where

$$
\underline{C}=\left(\begin{array}{cccc}
K+\frac{4}{3} G & K-\frac{2}{3} G & K-\frac{2}{3} G & 0 \tag{11}\\
K-\frac{2}{3} G & K+\frac{4}{3} G & K-\frac{2}{3} G & 0 \\
K-\frac{2}{3} G & K-\frac{2}{3} G & K+\frac{4}{3} G & 0 \\
0 & 0 & 0 & 2 G
\end{array}\right)
$$

FIG. 2 STRESS-STRAIN DIAGRAM FOR A GRANULAR SOIL SAMPLE

In this formulation the shear modulus may be a function of pressure and may be found experimentally. In the next section of the report an alternate procedure will be given for the determination of the incremental shear modulus.

It is not necessary to express the material properties in mathematical form for the purpose of a numerical analysis. The following sequence of points which describe the stress-strain behavior may be used to define the input to the computer program

1. Volumetric change
2. Hydrostatic pressure.
3. Unloading bulk modulus.
4. Shear Modulus.
5. Strain at which tensile hydrostatic pressure is initiated in soil.

CONSISTENT FORMULATION OF NONLINEAR PROPERTIES

It is apparent that the nonlinear model discussed in the previous section has many limitations. However, it can be improved by considering in more detail a consistent mathematical formulation of the constitutive equations as suggested by Brown and Froelich (8) Following reference (8), the internal energy may be written as:

$$
W=W_{1}+W_{2}
$$

where

$$
\begin{align*}
& W_{1}=f\left(\theta_{1}, S\right) \tag{12}\\
& W_{2}=-2 \sqrt{\tau_{p}} \quad \theta_{2}-\frac{\sqrt{\tau_{p}}}{2 G_{0}} L_{n}\left(1+\frac{2 G_{0}}{\sqrt{\tau_{p}}} \theta_{2}\right)
\end{align*}
$$

θ_{1} and θ_{2} are the first and second strain tensor invarients. S is entropy density. τ_{p} is the maximum shear stress soil can resist, and G_{0} is the initial shear modulus. The stress tensor might be expressed by (reference 7):

$$
\begin{equation*}
\underline{\sigma}=A I_{3}+B\left(\theta_{1} I_{3}-\underline{\varepsilon}\right)+C \quad C \text { of }(\underline{\varepsilon}) \tag{14}
\end{equation*}
$$

where I_{3} is a 3×3 unit matrix, and

$$
\begin{equation*}
A=\frac{\partial W}{\partial \theta_{1}}=\frac{\partial W_{1}}{\partial \theta_{1}}, \quad B=\frac{\partial W_{1}}{\partial \theta_{2}}=\frac{\partial W_{2}}{\partial \theta_{2}} \tag{15}
\end{equation*}
$$

in this case

$$
C=\frac{\partial w}{\partial \theta_{3}}=\text { constant }
$$

It is simple to see that equation 14 may also be written in the form of:

$$
\begin{equation*}
\underline{\sigma}=\left(\frac{1}{\theta_{1}} \frac{\partial W_{1}}{\partial \theta_{1}}+\frac{2}{3} \frac{\partial W_{2}}{\partial \theta_{2}}\right) \theta_{1} I_{3}-\frac{\partial W_{2}}{\partial \theta_{2}}\left(\underline{\varepsilon}-\frac{1}{3} \theta_{1} I_{3}\right) \tag{16}
\end{equation*}
$$

comparing equations (11) and (16), one can conclude that it is possible to define incremental linear elastic constants in such a way that they satisfy nonlinearity, i.e.,

$$
\begin{equation*}
K_{e}=\frac{1}{\theta_{1}} \frac{\partial W_{1}}{\partial \theta_{1}}\left(\theta_{1}, s\right), \quad G_{e}=\frac{1}{2} \frac{\partial W_{2}}{\partial \theta_{2}}\left(\theta_{2}, \tau_{p}, G_{0}\right) \tag{17}
\end{equation*}
$$

To define the tangent moduli for nonlinear analysis, variation of stress tensor should be expressed in terms of variation of strain tensor. Applying δ operator to equation (16) and neglecting second order terms, equation (16) will change to:

$$
\begin{equation*}
\delta \sigma=\left(\frac{\partial^{2} W_{1}}{\partial \theta_{1}^{2}}+\frac{2}{3} \frac{\partial W_{2}}{\partial \theta_{2}}\right) \delta \theta_{1} I_{3}-\frac{\partial W_{2}}{\partial \theta_{2}} \delta\left(\underline{\varepsilon}-\frac{1}{3} \theta_{1} I_{3}\right) \tag{18}
\end{equation*}
$$

Comparing equation (18) with the incremental strain stress relation, equation (11).
the tangent moduli are defined as follows:

$$
\begin{align*}
& K=\frac{\partial^{2} W_{1}}{\partial \theta_{1}^{2}} \approx \frac{\Delta \frac{\partial w_{1}}{\partial \theta_{1}}}{\Delta \theta_{1}} \tag{19}\\
& G=\frac{1}{2} \frac{\partial w_{2}}{\partial \theta_{2}} \tag{20}
\end{align*}
$$

Using equation (13), shear modulus G may be expressed by:

$$
\begin{equation*}
G=G_{0} /\left(1+2 G_{0} \sqrt{\theta_{2} / \tau_{p}}\right) \tag{21}
\end{equation*}
$$

Therefore the incremental shear modulus is not independent, but may be calculated directly; since the experimental determination of the shear limit, τ_{p}, is possibie.

Equation (17) indicates that the bulk modulus is dependent on entropy; therefore S must be controlled during experiments in order to obtain the true behavior of K. Presently experimental tests do not give this information. Therefore, one must introduce simplication in order to use the current test results. Referring to Jackson's tests (reference 6), it appears that the maximum value of the first invarient of strain tensor may be considered as a measure of S. From experimental results one may plot hydrostatic pressure vs. volumetric change (figure 2), and express a bulk modulus by:

$$
\begin{equation*}
K=K\left(p, e_{\max }, \dot{e}, e\right) \approx \Delta\left(\frac{\partial w_{1}}{\partial \theta_{1}}\right) / \Delta \theta_{1} \tag{22}
\end{equation*}
$$

Where \dot{e} is the rate of change of e with respect to p, and

$$
\begin{align*}
& p=\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right) \tag{23}\\
& e=\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33} \tag{24}
\end{align*}
$$

in which $\sigma_{11} \quad \sigma_{22}$ and σ_{33} are principle stresses, and $\varepsilon_{11} \quad \varepsilon_{22}$ and ε_{33} are principle strains.

Equation (22) implies that the loading and unloading bulk moduli are different (figure 2). This is an indication of the hysteretic behavior of the material and is accurately represented in the model.

APPLICATION

The validity of the finite element method as applied to the nonlinear dynamic analysis of axisymmetric systems is demonstrated by two examples.

The method of analysis is compared with an experimental study conducted by Jackson (reference 6). The model was a confined soil cyl inder subjected to a blast load uniformly distributed on the model. Figure 3 shows the model, the finite element idealization, and the time variation of the blast load. The pressure-volume change of material of this same reference is constructed using a constant Poisson's ratio and is shown in figure 4. Vertical strain of the model was measured and plotted vs. time. A good agreement between the experimental and the finite element results is observed (figure 5). Specially, the permanent set, which linear analysis does not exhibit, is pronounced by the nonlinear analysis. The slight discrepancy is due to inexactness of the information adopted from reference 6.

In another analysis, the results of an elastic and a nonlinear finite element analysis were compared with an experimental study of a structure buried in a soil material. This experimental study was conducted in the blast load simulator at Vicksburg, Mississippi. The stress-strain diagram used in the nonlinear analysis is shown in figure 6. Figure 7 shows the finite element idealization of the model and the time variation of the blast pressure which is applied on the model. A listing of the input data for this structure is given in Appendix D. In figure 8 the displacements at a point in the soil are
plotted. The experimental results indicate a permanent set in the material, wheareas, the displacements from the elastic analysis return to zero. The results of the nonlinear analysis are also plotted on the same diagram, and are in good agreement with the experiment.

FIG. 3a SOIL SAMPLE

FIG. 3b FINITE ELEMENT IDEAL

FIG. 3c TIME VARIATION OF BLAST PRESSURE

FIG. 4 STRESS-STRAIN BEHAVIOR OF A SOIL MATERIAL

FIG. 5 TIME VARIATION OF VOLUMETRIC STRAIN

FIG. 6 STRESS • STRAIN CURVE (VICKSBURG'S TEST)

FIG. 7a TIME VARIATION OF PRESSURE

FIG. 7 b FINITE ELEMENT IDEALIZATION

FIG. 8 DISPLACEMENT VS. TIME IN SOIL MATERIAL

62135

A Fortran IV listing of the computer program for the nonlinear dynamic analysis of axisymmetric structures is given in Appendix C. The program utilizes axisymmetric elements with quarilateral crosssections. The capacity of the program will depend on the storage of the computer used.

Within the program a method of dynamic storage allocation is used, therefore, for a given problem all required data is compressed into the smallest possible storage area. This also allows the capacity of the program to be increased or decreased by only changing one number within the program.

The operation of the program may be summarized by the following steps:

First.

Control information, material properties nodal point geometry and element data are read (or generated) by the computer.

Second.

For each element, an 8×8 incremental stiffness matrix and element mass matrix are formed. These are then added to the total stifness and mass matrices of the system.

Third.
The step-by-step solution, as summarized in Table 1 , is used to evaluate the displacements as a function of time. At

At specified time points displacement and stresses are printed. Also, at a different time interval new incremental element stiffnesses may be calculated.

REFERENCES

1. Penzien, J., Scheffey, C.F., and Parmelee, R.A., "Seismic Analysis of Bridges on Long Piles", Journal of Engineering, Mechanics Division, ASCE, Vol. 90, No. EM3, June 1964.
2. Ang, A.H.S., "Numerical Approach for Wave Motions in Nonlinear Solid Media", Proc. of the Conf. on "Matrix Methods in Structural Mechanics", Dayton, Ohio, 26-28 Oct. 1965, AFFDL-TR-66-80, Nov. 1966.
3. Dibaj, M., "Nonlinear Seismic Response of Earth Structures", Ph.D. Thesis, University of California, Berkeley, California, 1969.
4. Wilson, E.L., "A Computer Program for the Dynamic Stress Analysis of Underground Structures", Report to Waterways Experiment Station, U.S. Army Corps of Engineers, Report. No. 68-1, Structural Engineering Laboratory, University of California, Berkeley, California, January 1968.
5. Wilson, E.L., "Elastic Dynamic Response of Axisymmetric Structures", Report to Waterways Experiment Station, U.S. Army Corps of Engineers, Report No. 69-2, Structural Engineering Laboratory, University of California, Berkeley, California, January 1969.
6. Jackson, J.G., "Factors that Influence the Development of Soil Constitutive Relations", U.S. Army Corps of Engineers, Waterways Experiment Station, Miscellaneous Paper No. 4-980, July 1968.
7. Green, A.E., and Zerna, W., "Theoretical Elasticity", Oxford Press, 1954.
8. Brown, D., and Froelich, R., "Ideas from Continuum Mechanics Pertinent to the Development of Computer Codes", Unpublished Report,

APPENDIX A

Internal force vector for a quadrilateral element

APPENDIX A.

INTERNAL FORCE VECTOR FOR A QUADRILATERAL ELEMENT

INTRODUCTION

The purpose of this section is to present the development of the internal force vector for a quadrilateral element. Expression of virtual work is.

$$
\begin{equation*}
W=\int_{V_{01}}[\varepsilon]^{\top}[\sigma] \mathrm{dV} \tag{A-1}
\end{equation*}
$$

the same expression in terms of the displacements of descrete nodal points is.

$$
\begin{equation*}
W=[d]^{\top}[E] \tag{A-2}
\end{equation*}
$$

where

$$
\begin{gathered}
\underline{\varepsilon}=\left(\begin{array}{c}
\varepsilon_{r r} \\
\varepsilon_{z z} \\
\varepsilon_{\theta \theta} \\
r_{r z}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial u}{\partial r} \\
\frac{\partial v}{\partial z} \\
u / r \\
\frac{\partial u}{\partial z}+\frac{\partial v}{\partial r}
\end{array}\right], \underline{\sigma}=\left(\begin{array}{c}
\sigma_{r r} \\
\sigma_{z z} \\
\sigma_{\theta \theta} \\
\tau_{r z}
\end{array}\right] \\
{[d]^{\top}=\left[\begin{array}{lllllll}
u_{1} & v_{1} & u_{2} & v_{2} & u_{3} & v_{3} & u_{4} \\
v_{4}
\end{array}\right]}
\end{gathered}
$$

The strain vector can be related to the displacements at the nodal points by the operator [B]

$$
\begin{equation*}
[\varepsilon]=[B][d] \tag{A-3}
\end{equation*}
$$

Substituting equation (A-3) into equation (A-1) and comparing the result with equation $(A-2)$ we can write,

$$
[E]=\int_{V O T}[B]^{\top}[\sigma] d V
$$

Or for constant thickness t,

$$
\begin{equation*}
[E]=t \int_{a}[B]^{\top}[\sigma] d A \tag{A-4}
\end{equation*}
$$

COORDINATE SYSTEMS
The coordinates (R, Z) are cartesian while the natural coordinates (S, T) may be skewed and are defined such that S and T vary from - 1 to 1 , as shown in figure $A-1$. The (R, Z) coordinates are given in terms of (S, T) natural coordinates by the following interpolating functions:

$$
\begin{array}{ll}
r(s, t)=\sum_{i=1}^{4} h_{i} r_{i} & Z(s, t)=\sum_{i=1}^{4} h_{i} Z_{i} \\
h_{i}=(1-s)(1-t) / 4 & h_{3}=(1+s)(1+t) / 4 \\
h_{2}=(1+s)(1-t) / 4 & h_{4}=(1-s)(1+t) / 4
\end{array}
$$

Since strains are defined by derivatives with respect to (R, Z) and the displacement expantions are given in the (S, T) system, the chain rule for differentiation must be used to calculate

$$
\frac{\partial s}{\partial r}, \frac{\partial s}{\partial z}, \frac{\partial t}{\partial r}, \text { and } \frac{\partial t}{\partial z}
$$

Inverting the chain rule,

$$
\left[\begin{array}{l}
\frac{\partial}{\partial s} \\
\frac{\partial}{\partial t}
\end{array}\right]=\left\{\begin{array}{ll}
\frac{\partial r}{\partial s} & \frac{\partial z}{\partial s} \\
\frac{\partial r}{\partial t} & \frac{\partial z}{\partial t}
\end{array}\right] \quad\binom{\frac{\partial}{\partial r}}{\frac{\partial}{\partial z}}
$$

Gives

$$
\left[\begin{array}{l}
\frac{\partial}{\partial r} \\
\frac{\partial}{\partial z}
\end{array}\right]=\frac{1}{J}\left[\begin{array}{cc}
\frac{\partial z}{\partial t} & \frac{-\partial z}{\partial s} \\
\frac{-\partial r}{\partial t} & \frac{\partial r}{\partial s}
\end{array}\right] \quad\left[\begin{array}{l}
\frac{\partial}{\partial s} \\
\frac{\partial}{\partial t}
\end{array}\right]
$$

Where

$$
J=J(s, t)=\frac{\partial r}{\partial s} \frac{\partial z}{\partial t}-\frac{\partial r}{\partial t} \frac{\partial z}{\partial s}
$$

Since $d A=J d s d t$ Equation (A-4) may be rewritten as.

$$
\begin{equation*}
[E]=t \int_{A}[B]^{\top}[\sigma] J d s d t \tag{A-6}
\end{equation*}
$$

STRAIN DISPLACEMENT TRANSFORMATION [B]

Let nodal point values of the displacement u and v be given by

$$
\begin{aligned}
& {[u]^{\top}=\left[u_{1}, u_{2}, u_{3}, u_{4}\right]} \\
& {[v]^{\top}=\left[v_{1}, v_{2}, v_{3}, v_{4}\right]}
\end{aligned}
$$

The assumed displacement expansion uses the same interpolation functions as appeared in Eqs. A-5, i.e.

$$
u(s, t)=\sum_{i=1}^{4} h_{i} u_{i} \quad v(s, t)=\sum_{i=1}^{4} h_{i} v_{i}
$$

The $\varepsilon_{\theta \theta}$ strain is given by

$$
\varepsilon_{\theta \theta}=\sum_{i=1}^{4} \frac{h_{i} u_{i}}{r_{i}}=\sum_{i=1}^{4} G_{i} u_{i}
$$

$\varepsilon_{r r}$ may be obtained by differentiation

$$
\begin{aligned}
\varepsilon_{r r} & =\frac{\partial u}{\partial r}=\frac{\partial u}{\partial s} \frac{\partial s}{\partial r}+\frac{\partial u}{\partial t} \frac{\partial t}{\partial r} \\
& =\frac{1}{J} \sum_{i=1}^{4} \sum_{j=1}^{4} u_{i}\left(\frac{\partial h_{i}}{\partial s} \frac{\partial h_{j}}{\partial t}-\frac{\partial h_{i}}{\partial t} \frac{\partial h_{j}}{\partial s}\right) z_{j} \\
& =[u]^{\top}[p][z] / J .
\end{aligned}
$$

Where

$$
[P]=\sum_{i=1}^{4} \sum_{j=1}^{4}\left(\frac{\partial h_{i}}{\partial s} \frac{\partial h_{j}}{\partial t}-\frac{\partial h_{i}}{\partial t} \frac{\partial h_{j}}{\partial s}\right)=\frac{1}{8}\left[\begin{array}{cccc}
0 & 1-t & -s+t & -l+s \\
0 & 1+s & -s-t \\
& & 0 & 1+t \\
\text { skew-symmetric } & 0
\end{array}\right]
$$

Similarly

$$
\begin{aligned}
& \varepsilon_{z z}=\frac{\partial v}{\partial z}=-[v]^{\top}[p][r] / J \\
& \gamma_{r z}=\frac{\partial u}{\partial z}+\frac{\partial v}{\partial r}=\frac{-[u]^{\top}[p][r]+[v]^{\top}[p][z]}{J}
\end{aligned}
$$

Let

$$
\frac{[P][z]}{J}=[y]=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\frac{1}{83}\left(\begin{array}{r}
z_{24}-z_{34} s-z_{23} t \\
-z_{13}+z_{34} s+z_{14} t \\
-z_{24}+z_{12} s-z_{14} t \\
z_{13}-z_{12} s+z_{23} t
\end{array}\right)
$$

And

$$
\left.\begin{array}{rl}
-[P][r] \\
J
\end{array}\right][x]=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\frac{1}{8 J}\left[\begin{array}{llll}
-r_{24}+r_{34} s+r_{23} & t \\
\text { and so on } & \\
& -A 4-
\end{array}\right.
$$

Then

$$
\left(\begin{array}{l}
\varepsilon_{r r} \\
\varepsilon_{z z} \\
\varepsilon_{\theta \theta} \\
\gamma_{r z}
\end{array}\right)=\left(\begin{array}{llllllll}
y_{1} & 0 & y_{2} & 0 & y_{3} & 0 & y_{4} & 0 \\
0 & x_{1} & 0 & x_{2} & 0 & x_{3} & 0 & x_{4} \\
g_{1} & 0 & g_{2} & 0 & g_{3} & 0 & g_{4} & 0 \\
x_{1} & y_{1} & x_{2} & y_{2} & x_{3} & y_{3} & x_{4} & y_{4}
\end{array}\right) \quad\left(\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3} \\
v_{3} \\
u_{4} \\
v_{4}
\end{array}\right)
$$

or

$$
[\varepsilon]=[B][d]
$$

[B] is the strain displacement relationship required in Eq. A-6 to evaluate the internal force vector of the element.

COMPUTATION OF [E]

One point integration is used to evaluate the integral of Eq.
A-6. Therefore Eq. A-6 is reduced to

$$
[E]=\left.[B]^{\top}\right|_{\substack{t=0 \\ s=0}} *[\sigma] * \text { volume }
$$

Where
$\left.[B]^{\top}\right|_{\substack{t=0 \\ s=0}}$ is the value of $[B]^{\top}$ at point $t=0, s=0,[\sigma]$ is the stress vector at point $t=0, s=0$, and the volume is the total volume of the element.

APPENDIX B

DESCRIPTION OF INPUT DATA FOR COMPUTER PROGRAM

APPENDIX

DESCRIPTION OF INPUT DATA FOR COMPUTER PROGRAM

The purpose of this computer program is to determine timedependent displacements and stresses within elastic axisymmetric structures of arbitrary shape and materials. In order to define the computer input a two-dimensional cross-section of the axisymmetric structure must be idealized by a system of finite elements. Quadrilateral, triangular and one-dimensional membrane elements can be used. Elements in the system are identified by a sequence of numbers starting with one. Also, all nodal points are identified by a separate numbering sequence. The reference coordinate system to be used and a simple finite element representation of a structure is shown in Figure B-1.

The following sequence of punched cards numerically define the axisymmetric structure to be analyzed.
A. IDENTIFICATION CARD. (72 H)

Columns 1 to 72 contain information to be printed with results.
B. CONTROL CARD. (715, 4F10.0)

Columns $\quad 1$ - 5 Number of nodal points (n)
6 - 10 Number of elements (k)
11-15 Number of different materials (m)
16-20 Number of time steps
21-25 Number of time increments between the print displacements and stresses

FIG. B-I REFERENCE COORDINATE SYSTEM

FIG. B-2 PRESSURE BOUNDARY CONDITIONS

26-30 Number of load cards (()
31-35 Number of boundary pressure cards (p)
36-40 Number of increments between the change of stiffness

41-50 Damping coefficient α
51-60 Damping coefficient β
61-70 Time increment Δ^{t}
71 - 80 Reference number to be added to all R ordinates
C. MATERIAL PROPERTY INFORMATION.

The following card must be supplied for each different material (I5,2F15.0)

Columns 1 - 5 Material identification number
5-20 Mass density of material
21-35 Thickness (for membrane shell elements)
D. STRESS-STRAIN INFORMATION.

To describe the stress-strain behavior of each material a sequence of six points are used. Therefore, Six cards with the following informations must be supplied for each different material. 6(5F10.0)

```
Columns \(\quad 1-10\) Volumetric change \(\left(\varepsilon_{r}+\varepsilon_{z}+\varepsilon_{\theta}\right)\)
    11-20 Average Stress \(\left[\left(\sigma_{r r}+\sigma_{z z}+\sigma_{\theta \theta}\right) / 3.\right]\)
    21-30 Unloading bulk modulus
    31 - 40 Shear modulus
    41-50 Ratio of permanent strain and the maximum strain
        \(\left(\varepsilon_{f} / \varepsilon_{\text {max }}\right)\)
```

The one-dimensional shell elements are restricted to linear materials. The material properties of the shell elements are also specified by the same input format - the unloading bulk modulus is defined as the modulus of elasticity and the shear modulus is defined as Poisson's ratio. The other information is not required.
D. NODAL POINT CARDS, (I5, F5.0, 2 F .10 .0)

One card is required for each nodal point with the following information:

Columns 1 - 5 Nodal point number
6-10 Boundary condition code " k "
11-20 R-ordinate
21-30 Z-ordinate

Specifications for code "k". If

$k=0$	load in the R-direction load in the Z-direction
$k=1$	zero displacement in the R-direction load in the Z-direction
$k=2$	load in the R-direction zero displacement in the Z-direction
zero displacement in the R-direction	
zero displacement in the Z-direction	

Nodal point cards must be in numerical sequence. If cards are omitted, the omitted nodal points are generated in equal intervals along a straight line between the defined nodal points. The boundary condition code is set equal to zero.
E. ELEMENT CARDS. (6I5)

Columns 1-5 Element number 6-10 Nodal point I 11-15 Nodal point J 16-20 Nodal point K 21-25 Nodal point L 26-30 Material Identification

For a right hand coordinate system the nodal point numbers I, J, K and L must be in sequence in a counter-clockwise direction around the element. Element cards must be in element number sequence. If element cards are omitted the program automatically generates the omitted information by incrementing by one the preceeding I, J, K and L. The material identification for the generated cards is set equal to the corresponding value on the last card. The last element card must always be supplied. TrianguTar elements are also permissible; they are identified by repeating the last nodal point number (i.e. I, J, K, K). One dimensional membrane elements are identified by a nodal point numbering sequence of the form I, J, J, I.

F. PRESSURE CARDS (2I5, 3F10.0)

One card for each boundary element which is subjected to a normal pressure.

```
Columns 1 - 5 Nodal point I
    6 - 10 Nodal point J
    11-20 Pressure multiplier P}\mp@subsup{P}{i}{
```

$$
\begin{aligned}
& \text { 21-30 Pressure multiplier } P_{j} \\
& 31-40 \text { Arrival time of pressure at the center of the } \\
& \text { surface element }
\end{aligned}
$$

As shown in Figure B-2 the boundary element must be on the left as one progresses from I to J. Surface tensile force is input as a negative pressure.

G. LOAD CARDS (2F10.0)

These cards specify the normal pressure as a function of time in the form of straight line segments. One card is required for each point with the following information:

Columns 1-10 Time t
11-20 Normal pressure p(t)

OUTPUT INFORMATION

The following information is developed and printed by the program:

1. Reprint of input data
2. Pressure boundary conditions
3. Nodal point displacements, velocities and accelerations as a function of time
4. Stresses at the center of each element as a function of time

PROGRAM LIMITATIONS

The capacity of the program is limited by the dimension "d" of the "A" array in program DYNS.
$[4 n(b+1)+18 n+2 \ell+7 p+14 k+32 m]$ must not be greater
than d. The symbols n, ℓ, p and b have been defined previously and their values will depend on the particular structure to be analyzed. The maximum size which d can have will depend on the particular computer being utilized. For a computer with 32 K storage the maximum value for d will be approximately 20000.

APPENDIX C

FORTRAN IV LISTING OF THE COMPUTER PROGRAM

PRUGKAM DYINS (INRUT, UUTPUT, TAPES=INPUT, TAPEG=UUTPUT) COMMON NUMNP, MBAND,NT, NPRINT,NP, NUMPC, INUNEL, NUMMAT, KA,TT, DELT, 1 NST, ALFA,BEIA, $\operatorname{HED}(12), A(33200)$

```
C READ AND PRINT OF CONTROL INFORMATION
C---m---- KEAD (b,lUUU) HED,NUMNH,NUMEL,NUMMAT,NT,NPKINT,NP,NUMPC,NST,ALFA,
        1BETA,DELI,RA
        WRI'E (6,200U) HED,NUMNP,NUNEL,INUININAT,NI,NPKINT,INP,NUMPC,ALFA,
            1 BETA,DELT,NSI
C-------
C--------
    NEQ=2*NUMNP
    N2=1+ NUMNP
    N3=N2+NUMNP
    N4=N3+NUMNP
    N5=N4+5*NUMEL
    N6=N5+NUMMAT
        N7=N6+30*NUMMAT
        N8=N7+NUMPC
        N9=N8+NUMPC
        N1O=N9+NUMPC
        N11=N1O+NUMPC
        N12=N11+NUMPC
        N13=N12+NUMPC
        N14=N13+NUMPC
        N15=N14+NUMMAT
    1\cupO CALL DATAIN(A(1),A(N2),A(N3),A(N4),A(N5),A(N6),A(N7),A(N8),A(N9)
        1,A(N1U),A(N11),A(N12),A(N13),A(N14),A(N15))
C--------
C FORM IUIAL STIFFNESS AND MASS MATRICES AND SULVE STEP-BY-STEP
N16=N15+2*NP
            N17=N16+NUMNP
            N18=N17+NEQ
            N19=N18+NEQ
            N2U=N19+NEQ
            N21=N2U+NEQ
            N22=N21+NEQ
            N23=N22+5*NUMEL
            N24=N23+4*NUMEL
            N25=N24+NEQ*MBAND
            IF (N25.LE. 332UO) GO TO 200
            WRITE (6,11U0)
            STOP
    200 DO 3uU I=N16,N25
    300 A(1)=U.
            CALL SOLVE(A(1),A(N2),A(N3),A(N4),A(N5),A(N6),A(N7),A(N8),A(N9),
            1 A(N1U),A(N11),A(N12),A(N13),A(N14),A(N15),A(N16),A(N17),A(N18)
            2,A(N19),A(N2U),A(N21),A(N22),A(N23),A(N24),NEQ)
            GO TO 5U
C-------
    IUUU FORMAT (12A6/815,4F10.0)
    11UO FORMAT (25HU UIMENSION OF A EX(EEEDED)
    2\cupUU FORMAI (1H1 12A6/
            1 3OHO NUMBER OF NODAL POINTS------ I4 /
```

```
2 3OHO NUMBER OF ELEMENTS---------- I4 /
3 3OHO NUMBER OF DIFF. MATERIALS--- I4 /
4 30HO NUMBER OF TIME INCREMENTS--- I4 /
5 30HO PKINT INTEKVAL-------------- 14,
6 3OHO NUMBEK UF LUAD POINTS------- I4 /
7 3OHO NUMBER OF PRESSURE CARDS---- I4 /
8 3OHU DAMPING COEFFICIENT ALFA---- F10.5 /
9 30HO DAMPING COEFFICIENT BETA----- F10.5 /
O 30HO TIME INCRENENT-------------- F10.5/
1 3OHO STIFFNEOS CHANGE INTERVAL--- 14)
END
```

SUBKOUIINE STREJ (IGGPRES,E,VOL,EE,MIYPE) COMMON / LS4ARG/ LM(8),SS (4,8),XC,YC,S(0,8),C(4,4)
DIMENSION SIG(4),E(1),EE(5,6,1)


```
    SUBKOUTINE SIGERS (STKAIN,EE,MTYPE,C, PKES,EPSP)
    DIMEN\ION EE(2,6,1),E(4),STRAIN(5),C(4,4)
C---------EPSM(1) IS THE LAST MAX. STRAIN OF THE UNLOADING BRANCH.
C-------
    EPSP=OTRAIN(1)+STRAIN(2)+STRAIN(3)
    IF(EPSP.LE.U.) GO TO gO
C-----COMPLET CRACK
    PRES=U.
    DO 8U I=1,4
    DO 80 J=1,4
    BU (11:J)=0.
        RETURN
    90 EPSM=STRAIN(5)
        EPSP=-EPSP
        IF(EPSP.GT.EPSN) EPSM=EPSH
        EPSA=EPSM
C
    DO 100 I=2.6
    IF(EPSA.LT.EE(1,I,MTYPE)) GO TO 200
    IUU CONTINUE
C------FIND THE LOADING BULK OF THE CORNER POINT.
c
    200 DE=EE(1,I,MTYPE)-EE(1,I-1,MTYPE)
        B= (EE(2,I,MTYPE)-EE(2,I-1,MT(PE))/DE
C------FIND INFURMATIUN OF THE CORNER POINT.
C
    R=(EPSA-EE(1,I-1,MTYPE))/DE
    DO 30U J=1.4
    300 E(J)=EE(J+1,I-1,MTYPE)+K*(EE(J+1,I,MTYHE)-EE(J 1,I-1,MTYPE))
        G=E(3)
        PRES=E(1)
        R=B
    C------CHECK FOR THE UNLOADING BRANCH.
C
        IF (EPSP.GE.EPSM) GO TO 4OO
C-----ASSUME A 8ILINEAR BEHAVIOR FOR THE UNLOADING BRANCH
        EF=E(4)*EPSM
        EB=E(1)/(E(2)+E(2))
        IF(EF.GT.EPSP) GO TO 6
        ECON=EPSM-EB
        IF(EPSP.LT.ECUN) GO TO 5
        B=E(2)
        PRES=E(1)-E(2)*(EPSM-EPSP)
        GO TO }
        5 B=E(1)/(2.*(EPSM-EF-EB))
        PRES=B*(EPSP-EF)
        GO TO 7
        6 B=EPSP/EF*E(1)/(2.*(EPSM-EF-EB))
        PRES=v.
        7 G=B*E(3)/R
    4UU CONTINUE
        STRAIN(5)=EPSM
C-m-n-- MATERIAL MATRIX.
C
    C(4,4)=G
    G=(G+G)/3.
```

```
            C(1,1)=B+G+G
C(1,2)=B-G
C(1,3)=C(1,2)
C(2,1)=C(1,2)
C(2,2)=c(1,1)
C(2,3)=C(1,2)
C(3,1)=c(1,3)
C(3,2)=C(2,3)
C(3,3)=C(1,1)
RETURN
END
```

```
            SUBKOUTINE SULVEIR,Z,CUDE,IX,RU,EE,HI,HJ,VI,VJ,T,INI,JNJ,H,P,
        1 MASS,XO,XI,X\angle,B,E,EPS,SIG,A,NEQI
            CUMMON NUMINP,MBAND,NT,NPKINT,NP,NUMPC,INUIVEL,NUMMAT,RA,TT,DELT,
        1 NST ,ALFA,BETA
        DIMENSION K(1),L(1),CUDE(1),IX(5,1),RU(1),EE(5,6,1),HI(1),
        1 HJ(1),VI(1),VJ(1),T(1),INI(1),JNJ(1),P(2,1),MASS(1),XO(1),
        2 XI(1),X2(1),B(1),A(NEQ,1),EPS(5,1),E(1),SIG(4,1),H(1),ELMASS(4)
        COMMON / LS4AKG/LMM(8),SS(4,8),XC,YC,S(8,8),C(4,4)
        REAL MASS
C-m----
    DO 40 1=1,4
    DO 50 J=1,8
    5u SS(I,J)=U.
    DO 4U J=1,4
    4UC(I;J)=0.
    VOL=0.
C ---
C CONSTANTS FOK THE STEP-BY-STEP SOLUTION
C
    Al=3./DELT
    A2=.75/DELT**2
    A3=A1/2.
    Au = A2+ A2
    A4 =A1/A0
    A5 = 2./AU
    A6=DELT/2.
    AT=DELT**2/6.
    A8=A7+A7
C-----FORM STIFFNESS AND MASS MATRIX OF THE SYSTFM
    DO 375 N=1,NUMEL
    DO -1-99 I =1.4
    J=I +I
    II =IX(I,N)+IX(I,N)
    LM(J)=II
    199 LM(J-1)=II-1
C-m----
C--------
    I=IX(1,N)
    J=IX(2,N)
    K=IX(3,N)
    L=IX(4,N)
    MTYPE=IX(5,N)
    IF(J.NE.K) CALL ..IGEPS (EPS(I,N),EE,MTYPE,C, PRES,EPSP)
C------
C--------
    CALL STIFF (K,L,CODE,IX(I,N),EE,A,NEQ,KU,MTYPE,VOL,H)
    IF (J.NE.K) GO TO 444
    RRR=VUL*KU(NTYPE)/4.
    ELMASد(1)=RRR
    ELMASS(2)=RRR
    ELMASS(3)=RRR
    ELMASS(4)=RRR
    GO TO 454
```

```
    444 RM=8.*XC
    R12=R(I)-R(J)
    R13=R(1)-R(K)
    R14=R(I)-R(L)
    R23=R(J)-R(K)
    R24=R(J)-R(L)
    R34=R(K)-R(L)
    Z12=Z(I)-L(J)
    Z13=Z(I)-L(K)
    L14=2(I)-L(L)
    L23=2(J)-L(K)
    224=L(J)-L(L)
    234=Z(K)-L(L)
    ROM=RO(MTYPE)/72.
    BR=(R34*212-234*RB2)*ROM
    AR=(VOL+VOL)/XC *ROM
    CR=(R23*L14-L23*R14)*ROM
    ELMASS(1)=AK*(KM+R13+R(I))-BK*(R(I)+R(I)+K(L))CR*(R(I)+R(I)+K(J))
    ELMASS(2)=AK*(KMi +R24+R(J))+BK*(R(J)+R(J)+R(K)) CK*(R(I)+R(J)+K(J))
    ELMASS(3)=AK*(KMI+R(K)-K13)+BR'*(R(J)+R(K)+R(K)) CR*(R(K)+R(K)+K(L))
    ELMASS(4)=AR*(RM+R(L)-R24)-BR*(K(I)+R(L)+R(L)) CR*(R(K)+R(L)+R(L))
    454 CONTINUE
    DO 35U I=1,4
    II=IX(I,N)
    35U MASS(II)=MASS(II)+ELMASS(I)
    375 CONTINUE
C--------
C INITIAL ACCELERATION
C--------
    TT=P(1,1)
    I K=1
    CALL LOAD (T,P,B,INI,JNJ,HI,HJ,VI,VJ,IK)
C-----FURM THE EFECIIVE STIFFNESS OF THE SYSTEM
    II=U
    DO 40U I=1,NEQ
    II=I-II
    IF(A(I,I).EQ.U.) GO TO 400
    X2(I)=B(I)/MAゝS(II)
    A(I,1)=A(I,I)+AU*MASS(II)
    400 CONTINUE
C-----REVISE THE MASS METRIX FOR SUBCIQUENT USE
    DO 4U1 II=1,NUMNP
    401 MASS(II)=MASS(II)*AU
C-----INITIAL TRIANGULARIZATION
    CALL TRIA (NEQ,MBAND,A)
C-------
C STEP-BY-STEP SOLUTION
C--------
    MM=(NST-1)*NUMEL
    KK=U
    LL=U
    DO 5UU NNN=1,NT
    TT=TT+DELT
    CALL LOAD (T,H,B,INI,JNJ,HI,HJ,VI,VJ,IK)
    II=U
C-----EFECTIVE LOAD VECTOR
    DO 46U I=1,NEQ
```

```
            II=I-II
            B(I)=B(I)-E(I)+MASS(II)*(A4*XI(I)+A5*X2(I))
            IF(A(I,I),EQ.U.U) B(I)=0.0
    460 CONTINUE
C
    SOLUTION AT END OF TIME STEP
    CALL BACKS (NEQ,MBAND,A,B)
    DO 48U I=1,NEQ
    E(I)=U.
    ACC=A2*B(I)-A3*X1(I)-.5*X2(I)
    B(I)=DELT*X1(I)+A7*(ACC+X2(I)+X2(I))
    XO(I)=XU(I)+B(I)
    X1(I)= X1 (I)+AG*(X2(I)+ACC)
    480 X2(I)=ACC
C PRINT DISPLACEMENT AND PREPARATION OF A NEW STIFFNESS METRIX
C------+
    IF (LL.NE.NPRINT ) GO TO 499
    LL=0
    421 WRITE (6,2006) TT
    DO 482 N=1,NUMNP
    M=N+N
    K=M-1
    482 WRITE (6,2008) N,XO(K),XO(M),X1(K),X1(m),X2(K),X2(M),N
    499 CONTINUE
    MPRINT =0
    DO 498 N=1,NUMEL
    KK=KK+1
C STIFFNESU
    CALL STRAIN (B,K,L,IX(I,N),EPSTI,N),MTY+E,VUL,Hi
    IF (IX(2,N).NE.IX(3,N))
    1CALL SIGEPS(EPS(1,N),EE,MTYPE,C, PRES,EPSP)
    CALL STRESS (SIG(I,N),PRES,E,VOL,FE,MTYPE)
C
    IF( KK.LE.MM) GO TO 170
    IF (KK.GT.MM+1) GO TO 424
    II=0
    DO 425 I=1,NEQ
    I I= I-I I
    IF (A(I,I).NE.U.) A(I,I)=MASS(II)
    DO 425 J=2,MBAND
    425 A(I:J)=0.
    424 CALL STIFF (K,L,CODE, IX(1,N),FE,A,NEW,NU,MTYPE,VUL ,H)
        IF (N.NE.NUMEL) GO TO 170
    KK=O
    CALL TRIA (NEQ,MBAND,A)
    170 IF (LL.NE.O) GU TO 498
C-------
C--m---CALCULATE THE PRINCIPLE STRESSFS.
    CC=(SIG(1,N)+SIG(2,N))/2.
    BB=CC-SIG(2,N)
    CR=SQRT(BB**2+SIG(4*N)**2)
```

```
        SIGMAX=CC+CR
        SIGMIN=CC-CR
        IF(CR) 2UU,25方200
    200 ANGLE =28.648*ATAN2(SIG(4,N),BB)
    255 IF( MPRINT) 11U,1U5,110
    1U5 WRITE (6,2000)
    MPRINT =5U
    110 MPRINT =MPRINT-1
    305 WRITE (6,2001) N,XC,YC,(SIG(I,N),I=1,4):SIGMAX,SIGMIN,ANGLE
        1 ,PRES,EPSP
C
    498 CONTINUE
    500 CONTINUE
        RETURN
C---- -+
    2000 FORMAT (6HIEL.NU 7X IHK 7X 1HZ 7X JHSIG-R 7X 5HSIG-Z IX
        I SHSIG-T 6X GHTAU-K2 5X 7HSIG-MAX oX 7HSIG-MIN 7H ANGLE
        22X IIHAVE. PRESS. 2X IIHVOL. CHANGE. I
    2UO1 FORMAT (I I5,1X,2F8.2,6E12.4,F6.2,2E13.4)
    2006 FORMAT IOHITIME T=FlO.6/1118 HONUDAL POINT X-DISPLACEMENT Y-DISHLA
        1CEMENT X-VELUCITY Y-VELOCITY X-ACCELERATION Y-ACCELEKATI
        2ON NODAL POINT )
    2UU7 FORMAI (FIU.O)
    2UUB FORMAI (I9,6E16.4.19)
        END
```

```
                SUBKOUTINE DATAIN(R,Z,CUDE,IX,RU,EE,HI,HJ,VI,VJ,T,INI,JNJ,H,P)
                CUMMON NUININP,MBAND,NT,NHKINT,INP,NUMPC,NUMEL,NUMMAT,KA,TT
                DIMENSION K̇(1),<(1),CUDE(1),IX(5,1),KO(1),EE(5,6,1),HI(1),
            1 HJ(1),VI(1),VJ(1),T(1),INI(1),JNJ(1),P(2,1),IE(5),H(1)
C--------
C READ AND PRINT OF MATERIAL PROPERTIES
C-------
            DO 59 M=1,NUMMAT
            READ (5,1UO1) MTYPE,RO(MTYPE),H(MTYPE),
            1 ((EE(I,J,MTYPE):I=1,5),J=1,6)
                WRITE (6,2000) MTYPE,RU(MTYPE),H(MTYPE)
    59 WRITE (6,2012) ((EE(I,J,MTYPE),I=1,5),J=1,6)
C------ READ AND PRINI OF NODAL POINT DATA
C--------
            WRITE (6,20U4)
            L=U
        60 READ (5,10U2) N,CODE(N),R(N),Z(N)
            R(N)=R(N)+RA
            IF (L.EQ.U) GO TO 85
            ZX=N-L
            DR=(R(N)-R(L))/LX
            DZ=(Z(N)-L(L))/LX
            85 NL=L+1
            70 L=L+1
        IF(N-L) luv,9U,8U
    80 CODE(L)=C.O
    R(L)=R(L-1)+DR
        L(L)=Z(L-1)+DL
        GO TO 7U
    90 WRITE (6,2002) (K,CODE(K),R(K),Z(K),K=NL,N)
        IF(NUMNP-N) 1UU,110,60
    _1UU WRITE (6,2UUg) N
        STOP
    110 CONTINUE
C
C--------
    WRITE (6,2UUI)
    N=U
    MBAND=U
    130 READ (5,1\cupU3) M,(IE(I),I=1,5)
    14v N=N+1
        MB=0
        DO 16U I=1,4
C---- --
C DETERMINATION OFBAND WITH
    MM=IABS(IE(I)-IE(J))
    IF(MM.GT.MB) MB=MM
    160 CONTINUE
    MB=2*MB+2
    IF(MB.GT.MBAND) MBAND=MB
    IF(M.EQ.N) GO TO 145
    DO 142 I = 1,4
    142 IX(I,N)=IX(I,N-1)+1
```

```
            IX(5,N)=IX(5,N-1)
            GO TO 15u
    145 DO 148 I=1,5
    148 IX(I,N)=IE(I)
    150 WRITE (6,20U3) N,(IX(I,N),I=1,5),MB
C---- --
    IF(N.EQ.NUMEL) GO TO 7UO
    IF(N.EQ.M) GO TO 13U
    GO TO 14V
C---- --
C PRESSURE BOUNDARY CONDITIUNS
    TUU WRITE (6,2U10)
    DO 33U K=1,NUMPC
    READ (5,I\cupU7) INI(K),JNJ(K),A,B,T(K)
    I=INI(K)
    J=JNJ(K)
    DL=(Z(I)-L(J))/12.U
    DR=(R(J)-K(I))/12.U
    RX=A*(3.v*R(I)+R(J))+B*(R(I)+R(J))
    ZX=A*(R(I)+R(J))+B*(R(I)+3.O*R(J))
    HI(K)=RX*DZ
    HJ(K)=2X*DL
    VI(K)=RX*DR
    VJ(K)=\angleX*DR
    330 WRITE (6,2U13) I,J,A,B,HI(K),VI(K),HJ(N),VJ(K),T(K)
C------
    C READ AND PRINT OF LOAD DATA
C---- ---
    WRITE (6,2007)
    DO 38\cup M=1.NP
    38\cup READ(5,1\cup\cup4) (P(K,M),K=1,2)
    WRITE (6,2005) ((P(N,M),K=1,2),M=1,NP)
C---- ---
    RETURN
    IUUI FORMAT (I5,2F15.0/(5F10.0))
    1UO2 FORMAT (I5,FO.U.2FIU.O)
    IUG3 FORMAT (6I5)
    luU4 FORMAT (2FIU.U)
    lUU7 FORMAT (2I5,3FIU.U)
    \angleOUO FORMAI (1yH MATERIAL NUMBEK = 15,1OH DENSITY = ELD.6 ,
        1 13H IHICXNESS = E15.6 / 4X,
        29UH STRAIN PRESSURE UNLOADING BULK SHEAK M
        3ODULUS STRAIN SET RATIO / )
    2UU1 FORMAT (49HIELEMENT NO. I J K L MATERIAL )
    2UU2 FORMAT (IT, F10.2,2F10.3)
    2UU3 FORMAT (1113,416,2I12)
    2004 FORMAT (37HINODAL POINT TYPE X-ORD Y-ORD )
    2UU5 FORMAI (2F15.7)
    2UU7 FORMAT (27HI TIME PRESSURE P)
    2UUY FORMAT (26HUNODAL POINT CARD ERROR N= I5)
    2\cup1U FORMAT (29HIPREOSURE BOUNDARY CONDITIONS/
        1\X,1HI,5X,1HJ,7X,4HPI/P,*X,4HPJ/P,8X,2HHI, 10X,2HVI,10X,2HHJ,10X,
            2 2HVJ,11X,1HT)
    2Ul2 FORMAT (5E18.6)
    2U13 FORMAT (2I6.7F12.3)
        END
```

```
    SUBROUTINE STRAIN (XO,R,Z,IX,EPS,MTYPE,VOL,H)
    DIMENSION XO(1),R(1),Z(1),IX(5),EPS(5),X(4),Y(4),H(1)
    COMMON / LS4ARG/LM(8),SS(4,8),XC,YC,S(8,8),C(4,4)
    DO 2U~ I =1.4
    DO 50U IK=1,8
    5uU SS(I,IK)=U.
    J=I +I
    II=IX(I)+IX(I)
    LM(J)=1I
    200 LM(J-1)=II-1
    l=1 X(1)
    J=I X(2)
    K=IX(3)
    L=IX(4)
    MTYPE=IX(5)
C---- --
C DISPLACEMENT STKAIN TRANSFORNIATION MATKIX.
C--------
    R13=R(1)-R(K)
    R24=R(J)-R(L)
    L13=L(I)-L(K)
    L24=L(J)-L(L)
    RM=1./(R(I)+R(J)+R(K)+R(L))
    YC=(Z(I)+L(J)+L(K)+L(L))/4.
    IF(J.NE.K) GO TO 30U
C-----SHELL ELEMENT
    XL=R24**2+224**2
    SS(1,1)=R13/XL
    SS(1,2)=L13/XL
    \S(1,3)=-ゝ>(1,1)
    SS(1,4)=-ゝS(1,2)
    SS(-2,1)=RM+RM
    SS(2,3)=\S(2,1)
    VOL=SURT (XL)* (H(MTYPE) +H(MTYPE))
    GO TO 4UU
    30U VOL=R13*<24-L13*R24
    Y(1)=\angle24/VOL
    Y(2)=-\angle13/VOL
    Y(3)=-Y(1)
    Y(4)=-Y(2)
    X(1) =-R24/VOL
    X(2)=R13/VOL
    X(3)}=-X(1
    x(4)=-x(2)
    DO 100 I =1,4
    II= I +I
    JJ=II-1
    Sゝ(1;JJ)=Y(I)
    SS(2,1I)=X(I)
    SS(3,JJ)=RM
    SS(4,III)=Y(I)
    luU Sゝ(4,JJ)=X(I)
    400 XC=.25/RM
    VOL=VOL/2.*XC
C--m----
C--------

DO \(18 \mathrm{u} \quad \mathrm{I}=1.4\)
S(1,1)=U.
DO \(18 \cup J=1,8\) \(J J=L M(J)\)
\(180 \mathrm{~S}(I, 1)=\supset(I, 1)+ゝ ゝ(I, J) * \times 0(J J)\)
DO 19ن \(1=1,4\)
190 EPS(I) \(=\mathrm{E}\) PS(I) \(\mathrm{C}(1,1)\)
320 RETURN
END
```

 SUBROUTINE ONED (R,L,H,IX,VOL,MTYPE,EE)
 COMMON / LS4AKG / LM(8),SS(4,8),XC,YC,S(8,8),C(4,4)
 DIMENSION R(1),L(1),H(1),IX(5),ST(4,8), EE(5,6,1)
 DO 41U I=1,8
 DO 405 J=1,4
 4U5 ST(J,I)=U.
 DO 41し J=1,8
 4l\cupS(I,J)=U.
 I=IX(1)
 J=IX(2)
 XC=(R(I)+R(J))/2.
 YC=(Z(I)+L(J))/2.
 DX=R(J)-R(I)
 DY=L(J)-L(I)
 XL=SQR「(DX**2+DY**2)
 VOL=H(MTYPE)*NL*XC
 ENU=EE(4,1,MTYPE)
 El=EE(3,1,MTYPE)/(1.-ENU**2)
 C(1,1)=E1
 C(2,2)=E1
 C(1,2)=ENU*E1
 C(2,1)=C(1,2)
 C----STRAIN DISPLACEMENT RELATION
ST(1,1)=-DX/XL**2
ST(1,2)=-DY/XL**2
ST(1,3)=-ST(1,1)
ST(1,4)=-ST(1,2)
ST(2,1)=.5/XC
ST(2,3)=\T(2,1)
DO 411 I=1,4
DO 411 J=1,8
411 SO(1,J)=U.
DO 412 I=1,2
DO 412 j=i,4
DO 412 K=1,2
412SS(I,J)=SS(I,J)+C(I,K)*ST(K,J)
DO 414 J=1,4
DO 414 I=1.4
DO 414 K=1,2
414 S(I,J)=S(I,J)+うT(K,I)*SS(K,J)*VOL
RETURN
END

```
```

 SUBROUTINE LUAD (T,P,B,INI,JNJ,HI,HJ,VI,VJ,IK)
 COMMON NUIMNP,MBAND,NT,NPRINT,NP,NUMPC,NUMIEL,NUMMAT,RA,TT,DELT
 DIMENSIUIV T(1),P(2,1),B(l),INI(l),JNJ(l),HI(1),HJ(l),VI(l),VJ(1)
 C
NEQ=NUMNP+NUMNP
DO GOU I=1.NEQ
600 B(I)=U.
N=1
IUU TAU=TT-T(N)
- IF(TAU) 50U,20U,20U
200
IF(TAU.GE.P(I,IK).AND.TAU.LE.P(I,IK+I)) GU TO 300
IF (TAU.GT.P(I,IK+1)) IK=IK+I
IF (TAU.LT.P(I,IK)) IK=IK-1
GO TO 20u
300
D=P(1,IK+1)-P(1,IK)
DH=P(2,IK+1)-P(2,IK)
IF (TT.EU.P(1,1)) TAU=-DELT
DT=TAU-P(I,IK) +DELT
F=P(2,IK)+DT*DH/D
400 I=INI(N)+INI(N)
II=I-I
J=JNJ(N)+JNJ(N)
JJ=J-1
B(II)=B(II)+F*HI(N)
B(JJ)=B(JJ)+F*HJ(N)
B(I)=B(I)+F*VI(N)
B(J)=B(J)+F*VJ(N)
5uO N=N+1
IF (N.GT.NUMPC) RETURN
IF(T(N).EQ.T(N-1)) GO TO 400
GO TO IUU
END

```
```

 SUBKOUTINE STIFF (R,Z,CUDE,IX,EE,A,NEW,KU,MTYPE,VOL,H)
 COMMON / LS4AKG / LM(8),SS(4,8),XC,YC,S(8,8),C(4,4)
 DIMENSION R(1),L(1),CODE(1),IX(5),EE(5,6,1),A(NEU,1),RO(1),H(1)
 I=IX(1)
 J=IX(2)
 K=1 X(3)
 L=IX(4)
 IF (J.NE.K) GO TO 420
 CALL ONED (R,L,H,IX,VOL,MTYPE,EE)
 GO TO 43U
 420 CONTINUE
 C
CALL UUAD(K(I),K(J),K(K),K(L),Z(I),Z(J),Z(K),Z(L),XC,YC,VUL,C,
l S.SS)
43U CONTINUE
C
C MODIFY FOR ZERO DISPLACEMENTS
DO Guv I=1.4
I J=I I I
II=IX(I)
IF (CODE(II).EQ.U.O) GO TO 600
IF (CODE(II).EQ.I.U) GO TO 580
DO 57u J=1,8
S(IJ:J)=`.
57\cup S(J,IJ)=0.
580 IF (CODE(II).EQ.2.0) GO TO 600
DO 59U J=1,8
S(IJ-1,J)=0.
590 S(J,IJ-1)=0.
6\cupU CONTINUE
C
DO 30U I=1,8
I I=LM(I)
DO 30\cup J=1,8
JJ=LM(J)-II+1
IF (JJ.LT.1) GO TO 300
A(II,JJ)=A(II,JJ)+S(I,J)
3UU CONTINUE
RETURN
END

```
```

 SUBROUTINE BACKS(NN,MM,A,B)
 C
DIMENSION A(1),B(1)
C
MMM=MM-1
N=U
270 N=N+1
C=B(N)
IF(A(N).NE.U.U) B(N)=B(N)/A(N)
IF(N.EQ.NN) GO TO 3UO
IL =N+1
IH=MINU(NN,N+MMM)
M=N
DO 285 I=IL,IH.
M=M+NN
285 B(1)=B(1)-A(M)*C
GO TO 27U
C
3uU IL=N
N=N-1
IF(N.EQ.U) REIURN
IH=MINU(NN,N+MMM)
M=N
DO 40U I=IL.IH
M=M+NN
4\cup0 B(N)=B(N)-A(M)*B(I)
GO TO 3uU
C
END

```
```

 SUBROUTINE TRIA(NEQ,M,A)
 DIMENSION A(1)
 NE=NEQ-1
 MN=M-1
 MM=MN*NEQ
 MK=NEQ-MN
 DO 300 N=1,NE
 NT=N-MK
 IF(NT.GT.O) MM=MM-NEQ
 IF(A(N).EG.U.U) GO TO 300
 L=N
 IL=N+NEQ
 IH=N+MM
 DO 2OU I=IL,IH,NEQ
 L=L+1
 J=L
 9u C=A(I)/A(N)
 DO 1OU K=I,IH,NEQ
 A(J)=A(J)-C*A(K)
 100 J=J+NEQ
A(1)=C
2UU CONTINUE
3UU CONTINUE
RETURN
END

```
    FURMS STIFFNESS MIATKIX UK, CENTKUIDAL STKESS MATRIX US 
    A FOUR POINT INTEGRATION FORMULA.
    CONSTANT SHEAR STRAIN INTKODUCES INCOMHATIBILITY
    DIMENSIUIN UK(U,O),OS(4,8),D(4,4),TT(4),WC(4,10),SS(4),QQ(10,10)
    DATA ১S/ -1.,1.,1.,-1. / , TT /-1.,-1.,1.,1. /
    DO 6 I= =1,1U
    DO 6 J=1,1U
6 QQ(I,J)=U.
    R12=R1-R2
    R13=R1-R3
    R14=R1-R4
    R23=R2-R3
    R24=R2-R4
    R34=R3-R4
    Z12=Z1-Z2
    Z13=<1-23
    Z14=21-24
    223=22-23
    224=22-24
    L34=2.3-24
    VOL=R13*\angle24-R24*<B3
    RM=(R1+R2+R3+R4)/4.U
    LM=(21+22+(3+L4)/4.U
    IF (D(1,1).EQ.U.) GO TO 888
    Y5=L24/VOL
    X6=R13/VOL
    X7=R24/VOL
    Y8=213/VOL
    X5=-X7
    Y6 =-Y8
    Y7=-Y5
    X8=-X6
    DO 30 II =1,4
    S=SS(II)*U.577350269189626
    T=TT(II )*v.571350269189626
    XJ =VUL+\*(K34*L12-R12*Z34)+T*(R23*Z14-R14*Z23)
    XJAC=XJ/8.0
    SM=1.v-S
    SP=1,v+S
    TM=1.v-T
    TP=1.U+T
    Hl=U. 25*SM*TM
    H2=U. 25*SP*TM
    H3=0. 25*SP*TP
    H4=U. 25*)M*TP
    R=H1*R1+H2*R2+H3*R3+H4*R4
    GI=H1/R
    G2=H2/R
    G3=H3/R
    G4=H4/R
    GC=SM*SP*TM*TP/R
    X1=(-R24+R34*U+R23*T)/XJ
    X2=( R13-R34*S-R14*T)/XJ
```

X3 $=($ R24-R12*د $+R 14 * T) / X J$
$X_{4}=\left(-R 13+R 12^{*} S-R 23^{*} T\right) / X J$
$Y 1=(224-(34 * J-L 23 * T) / X J$
$\left.Y_{2}=(-213+L 34 *)+L 14 * T\right) / X J$
$Y_{3}=(-224+212 * 2-214 * T) / X J$
$Y_{4}=\left(213-\angle 12^{*} S+\angle 23^{*} T\right) / X J$
$R S=0.25^{*}(-T M * K 1+T M * R 2+T P * R 3-T P * R 4)$
$\angle S=0.25 *(-T M * \angle 1+T M * \angle 2+T P * \angle 3-T P * 24)$
$R T=0.25 *(-S M * R 1-S P * R 2+S P * K 3+S M * R 4)$
$Z T=0.25 *(-S M * \angle 1-S P * L 2+S P * Z 3+S M * 24)$
$X C=-2 \cdot U *(T * S M * S P * R S-S * T M * T P * R T) / X J A C$
$Y C=2 . U *(T * S M * S P * 2 S-S * T M * T P * Z T) / X J A C$
$F A C=X J A C * R$
FORM STIFFNESゝ QK
DO $10 \quad I=1,4$
$D 1=D(1,1) * F A C$
$D 2=D(1,2) * F A C$
D3 $=\mathrm{D}(\mathrm{I}, 3) * \mathrm{FAC}$
D4=DII, 4)*FAC
$\operatorname{QC}(1,1)=$
QC(1,3)=
QC(1,5)=
QC(1,7)=
QC(1,9) $=$
QC(1,2)=
$\operatorname{QC}(1,4)=$
$Q C(1,6)=$
QC(1,8)=
QC(1,lu)=
$D_{1} * Y 1+D 4 * \times 5+D 3 * G 1$
$D 1 * Y 2+D 4 * \times 6+D 3 * G 2$
$D 1 * Y 3+D 4 * X 7+D 3 * G 3$
$D 1 * Y 4+D 4 * X 8+D 3 * G 4$
$D 1 * Y C \quad+D 3 * G C$
$D 2 * X 1+04 * Y 5$
$D 2 * X_{2}+D 4 * Y 6$
$D 2 * X 3+D 4 * Y 7$
$D 2 * \times 4+D 4 * Y 8$
D2*XC
10 CONTINUE
DO $20 \quad \mathrm{I}=1.10$
D1=QC(1,1)
$D 2=Q \subset(2, I)$
$D 3=Q C(3,1)$
$D 4=Q C(4,1)$
QQ(1, I) $=Q Q(1,1)+D 1 * Y 1+D 4 * \times 5+D 3^{*} G 1$
$\operatorname{QQ}(3, I)=W U(3,1)+D 1 * Y 2+D 4^{*} \times 6+D 3^{*} G 2$
$\operatorname{QQ}(5,1)=\operatorname{QQ}(5, I)+D 1 * Y 3+D 4 * X 7+D 3 * G 3$
$\operatorname{QQ}(7, I)=\operatorname{WU}(7, I)+D 1 * Y 4+D 4 * X 8+D 3 * G 4$
$\operatorname{QQ}(9, I)=\operatorname{QQ}(9, I)+D_{1} * Y C \quad+D 3 * G C$
QQ(2,I) $=$ Qu($2, I)+D 2 * X 1+D 4 * Y 5$
$Q Q(4, I)=Q Q(4, I)+D 2 * \times 2+D 4 * Y 6$
$Q Q(6, I)=Q Q(6, I)+D 2 * X 3+D 4 * Y 7$
QQ $(8,1)=Q Q(8, I)+D_{2} * X_{4}+D 4 * Y 8$
QQ(10,I) $=Q Q(1 \cup, I)+D 2 * X C$
2u CONTINUE
3U CONTINUE
FORM STRESS MATRIX QS AT CENTROID (RM, LM) OF ELEMENT
DO $40 \quad I=1,4$
D $1=\mathrm{D}(1,1)$
$D 2=D(I, 2)$
$D 3=D(1,3) /(4 . U * R M)$
D4=D(I,4)

```
            TI=1 DI*<24-D4*R24)/VOL
            T2=(-D1*L13+D4*R13)/VOL
            T3=(-D2*R24+D4*L24)/VOL
            T4=(D2*R13-D4*<13)/VOL
            QC(1,1)=D3+T1
            QC(1,3)=D3+T2
            QC(I,b)=D3-T1
            QC(I,7)=D3-T2
            QC(I,9)=4.0*D3
            QC(I,2)=T3
            QC(I,4)=T4
            QC(I,6)=-T 3
            QC(1,8)=-T4
            QC(1,1U)=U.U
    4U CONTINLE
RELOCATE STRESS, STIFFNESS AND LOAD MATRICES
888 CONTINUE
DO \(70 \quad j=1,8\)
DO \(7 \cup I=1,4\)
\(\operatorname{QK}(I, J)=Q Q(I, J)\)
\(70 \operatorname{QK}(1+4, J)=\operatorname{QQ}(1+4, J)\)
\(V O L=V O L * R M / 2\).
RETJRN
END
```


APPENDIX D

LISTING OF INPUT DATA FOR SAMPLE PROBLEM

TEST FOR	R THE		INEAR		SYMME	TRIC	ANALYSIS．	VICKSBURG＇S	EXAMPLE．
63	50	2	20	1	11	6	1		． 0015
				00u0	00.	17500	．． 874		
－U0015s	56	5		0000	U0．	13500.	．$\quad .874$		
． 00029	16			0000	00	10500.	－． 874		
．0016		40.		u0uv	U0．	12000.	．$\quad .874$		
.001855		50.		0000	00.	21000	－． 874		
.002	6	．		OOuv	00.	27000.	－．874		
2.	.0007			uvív	00.	－ 3			
				$000 \cup$	00.	－ 3			
				U00U	00.	． 3			
				uvou	00.	－3			
				טuou	00.	． 3			
			300	000	00.	－ 3			
1	3.		0 。		0.				
2	3.		12.		0.				
3	3.		36.		0.				
4	3.		60.		0.				
5	3.		84.		0.				
6	3.		$1 \cup 8$ 。		0.				
7	3.		132.		0.				
8	1.		0.		24.				
9	0.		12.		24.				
14	1.		132.		24.				
15	1.		U．		48.				
16	0.		12.		48.				
21	1.		132.		48.				
22	1.		0 。		60.				
23	0.		12.		60.				
28	1.		132.		60.				
29	1.		0.		72.				
30	0.		12.		72.				
35	1.		132.		72.				
36	1.		0 。		84.				
37	0 ．		12.		84.				
42	1.		132.		84.				
43	1.		0 。		96.				
44	0.		12.		96.				
49	1.		132.		96.				
50	1.		0.		108.				
51	0.		12.		108.				
56	1.		132.		108.				
57	1.		\checkmark 。		120.				
58	0.		12.		120.				
63	1.		132.		120.				
1	1	2	9	8	1				
6	6	7	14	13	1				
7	8	9	16	15	1				
12	13	14	21	20	1				
13	15	16	23	22	1				
18	20	21	28	27	1				
19	22	23	30	29	1				
24	27	28	32	34	1				
25	30	31	38	37	1				
29	34	35	42	41	1				

DISTRIBUTION LIST

No. ofAddress
Army

Chief of Engineers, Department of the Army, Washington, D. C. 20314
ATTN: ENGME-S 1
ENGME 1
ENGCW-E 1
ENGCW-Z 1
ENGMC-E 1ENGMC-EM
ENGMC-DE 1
ENGAS-I1
ENGAS-I, Library 1
ENGNA 1
Chief of Research and Development, Headquarters, Department of the Army, Washington, D. C. 20310
ATTN: Director of Army Technical Information
Chief of Research and Development, Department of the Army, Washington, D. C. 20310
ATTN: Atomic Office
CRDES
Division Engineers, U. S. Army Engineer Divisions, Continental United States
Commandant, U. S. Army Air Defense School, Fort Bliss, Tex. 79906
3 copies of Form 1473
1

Address	No. o Copie
Army (Continued)	
Commanding General, U. S. Army Materiel Command, Washington, D. C. 20310 ATTN: AMCRD-DE-N	2
Commanding Officer, Picatinny Arsenal, Dover, N. J. 07801 ATTN: ORDBB-TK	1
Commanding Officer, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Va. 23604	1
Commanding Officer, U. S. Army Combat Developments Command, Institute of Nuclear Studies, Fort Bliss, Tex. 79916	2
Commanding Officer, U. S. Army Mobility Equipment Research and Development Center Fort Belvoir, Va. 22060 ATTN: Technical Documents Center, Building 315	1
Commanding Officer, U. S. Army Nuclear Defense Laboratory, Edgewood Arsenal Edgewood, Md. 21040 ATTN: Technical Library	1
Department of the Army, CE Ballistic Missile Construction Office, P. O. Box 4187 Norton AFB, Calif. 92409	1
Director of Civil Defense, Office of the Secretary of the Army, Washington, D. C. 20310 ATTN: Mr. George Sisson (RE-ED)	2
Director, Nuclear Cratering Group, U. S. Army Corps of Engineers, Lawrence Radiation Laboratory, P. O. Box 808, Livermore, Calif. 94550	1
Director, U. S. Army Corps of Engineers, Coastal Engineering Research Center Washington, D. C. 20016 ATTN: Mr. T. Saville, Jr.	1
Director, U. S. Army Corps of Engineers, Ohio River Division Laboratories, 5851 Mariemont Avenue, Cincinnati, Ohio 45227	1
Technical Library	1
USAMERDC, Bldg 314	
Fort Belvoir, Va. 22060	
Director, U. S. Army CRREL, P. O. Box 282, Hanover, N. H. 03755 ATTN: Mr. K. Boyd	1
Director, U. S. Army Construction Engineering Research Laboratory, P. O. Box 4005, Champaign, Ill. 61820 ATTN: Library	1

No. of Copies

Army (Continued)
District Engineer, U. S. Army Engineer District, Omaha, 6012 U. S. Post Office and Court House 215 N. 17th Street, Omaha, Nebr. 68101
ATTN: MROGS-B
President, U. S. Army Air Defense Board, Fort Bliss, Tex. 79906
Superintendent, U. S. Military Academy, West Point, N. Y. 10996
ATTN: Library
U. S. Army Engineer Division, Missouri River, P. O. Box 103, Downtown Station
Omaha, Nebr. 68101
ATTN: Mr. Ken Lane

Navy
Commander-in-Chief, Pacific, FPO, San Francisco 94129
Commander-in-Chief, U. S. Atlantic Fleet, U. S. Naval Base, Norfolk, Va. 23511
Chief of Naval Operations, Navy Department, Washington, D. C. 20350
ATTN: OP-75
OP-03EG

Chief of Naval Research, Navy Department, Washington, D. C. 20390 ATTN: Code 811

Commandant of the Marine Corps, Navy Department, Washington, D. C. 203802
ATTN: Code A04E
Commander, Naval Facilities Engineering Command, Navy Department, Washington, D. C. 20370
ATTN: Code 04
Code 03
01

Commander, Naval Ordnance Systems Command, Washington, D. C. 20360 I
Commander, Naval Ship Engineering Center, Washington, D. C. 20360 I
ATTN: Code 6115
Commanding Officer, Nuclear Weapons Training Center, Atlantic Naval Base, Norfolk, Va. 23511
ATTN: Nuclear Warfare Department
Commanding Officer, Nuclear Weapons Training Center, Pacific, Naval Station, North Island
San Diego, Calif. 92136
Commanding Officer \& Director, Naval Electronics Laboratory, San Diego, Calif. 92152
No. ofNavy (Continued)
Commanding Officer \& Director, U. S. Naval Civil Engineering Laboratory 2 Port Hueneme, Calif. 93041
ATTN: Code L31
Commanding Officer, U. S. Naval Civil Engineer Corps Officer School, U. S. Naval Construction 1 Battalion Center, Port Hueneme, Calif. 93041
Commanding Officer, U. S. Naval Damage Control Training Center, Naval Base 1 Philadelphia, Pa. 19112
ATTN: ABC Defense Course
Commanding Officer, U. S. Naval Weapons Evaluation Facility, Kirtland Air Force Base 1 Albuquerque, N. Mex. 87117
ATTN: Code WEVS
Commanding Officer, U. S. Naval Weapons Laboratory, Dahlgren, Va. 22448 1
ATTN: TE
Commander, U. S. Naval Oceanographic Office, Suitland, Md. 20023 1
Commander, U. S. Naval Ordnance Laboratory, Silver Spring, Md. 20910
ATTN: EA 1
EU 1
E 1
Commander, U. S. Naval Ordnance Test Station, China Lake, Calif. 93555 1
Director, U. S. Naval Research Laboratory, Washington, D. C. 20390 1
President, U. S. Naval War College, Newport, R. I. 02840 1
Special Projects, Navy Department, Washington, D. C. 20360 1
ATTN: SP-272
Superintendent, U. S. Naval Postgraduate School, Monterey, Calif. 93940 1
Underwater Explosions Research Division, Naval Ship Research and Development Center 1Norfolk Naval Shipyard, Portsmouth, Va. 23511
Air Force
Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433 1
ATTN: Mr. Frank Janik, Jr.
Air Force Institute of Technology, AFIT-L, Building 640, Wright-Patterson AFB, Ohio 45433 1
Commander, Air Force Logistics Command, Wright-Patterson AFB, Ohio 45433 2
Air Force Systems Command, Andrews Air Force Base, Washington, D. C. 20331 1
ATTN: SCTSW
No. of
Air Force (Continued)
Air Force Technical Applications Center, Department of the Air Force, Washington, D. C. 20333 1
Air Force Weapons Laboratory, Kirtland AFB, N. Mex. 87117
ATTN: Library 2
WLDC 1
WLDC/R. W. Henny 1
Director, Air University Library, Maxwell AFB, Ala. 36112 2
Commander, Strategic Air Command, Offutt AFB, Nebr. 68113 1
ATTN: OAWS
Commander, Tactical Air Command Langley AFB, Va. 23365 1
ATTN: Document Security Branch
Space and Missile Systems Organization, Norton AFB, Calif. 92409 1
ATTN: SAMSO (SMQNM)
Headquarters, USAF, Washington, D. C. 20330 1
ATTN: AFRSTG
Director, Air Research and Development Command Headquarters, USAF 1
Washington, D. C. 20330
ATTN: Combat Components Division
Director of Civil Engineering, Headquarters, USAF, Washington, D. C. 20330 1
ATTN: AFOCE
Director, U. S. Air Force Project RAND, Via: U. S. Air Force Liaison Office, The RAND Corporation, i700 Main Street, Santa Monica, Calif. 90406
ATTN: Library1
Dr. Harold L. Brode 1
Dr. Olen A. Nance 1
Other DOD Agencies
Administrator, National Aeronautics \& Space Administration, 400 Maryland Avenue, S. W. 1
Washington, D. C. 20546
Assistant to the Secretary of Defense (Atomic Energy), Washington, D. C. 20301 1Commandant, Armed Forces Staff College, Norfolk, Va. 235111
ATTN: Library
Commandant, National War College, Washington, D. C. 20310 1
ATTN: Class Rec. Library
Commandant, The Industrial College of the Armed Forces, Fort McNair 1

Address	No. of Copies
Other DOD Agencies (Continued)	
Commander, Test Command, DASA, Sandia Base, Albuquerque, N. Mex. 87115 ATTN: TCCOM, TCDT	2
Commander, Field Command, DASA, Sandia Base, Albuquerque, N. Mex. 87115	2
Defense Documentation Center (DDC), Cameron Station, Alexandria, Va. 22314 (NO TOP SECRET TO THIS ADDRESS)	20
Director, Defense Atomic Support Agency, Washington, D. C. 20301 ATTN: SPSS	5
Director of Defense Research and Engineering, Washington, D. C. 20301	
ATTN: Technical Library	1
Mr. Frank J. Thomas	1
Director, Advanced Research Projects Agency, Washington, D. C. 20301 ATTN: NTDO	1
Director, Defense Intelligence Agency, Washington, D. C. 20301	
ATTN: DIAAP-IK2	1
DIA-AP8B-1	1
Director, Weapons Systems Evaluation Group, Washington, D. C. 20305	1
Langley Research Center, NASA, Langley Field, Hampton, Va. 23365 ATTN: Mr. Philip Donely	1
Manager,-Ailbuquerque Operations-Office, USAEC,P. O. Box 5400, Albuquerque, N. Mex. 87115	1
Manager, Nevada Operations Office, USAEC, P. O. Box 1676, Las Vegas, Nev. 89101	1
National Aeronautics \& Space Administration, Man-Spacecraft Center; Space Technology Division, Box 1537, Houston, Tex. 77001	1
National Military Command System Support Center, Pentagon BE 685, Washington, D. C. 20301 ATTN: Technical Library	1
U. S. Atomic Energy Commission, Washington, D. C. 20545 ATTN: Chief, Classified Tech Lib, Tech Information Service	1
U. S. Documents Officer, Office of the United States National Military Representative-SHAPE APO New York 09055	1
Other Agencies	
Aerospace Corporation, 1111 E. Mill Street, San Bernardino, Calif. 92408 ATTN: Dr. M. B. Watson	1
Agbabian-Jacobsen Associates, Engineering Consultants, 8939 South Sepulveda Boulevard Los Angeles, Calif. 90045	1

Other Agencies (Continued)

Applied Theory, Inc., 1728 Olympic Blvd, Santa Monica, Calif. 90404
ATTN: Dr. John G. Trulio
AVCO Corporation, Research and Advanced Development Division, 201 Lowell Street
Wilmington, Mass. 01887
ATTN: Mr. R. E. Cooper
Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201

ATTN: Dr. P. N. Lamori

Bell Telephone Laboratories, Inc., Whippany Road, Whippany, N. J. 07981

The Boeing Company, P. O. Box 3707, Seattle, Wash. 98124
ATTN: Technical Library
Corrugated Metal Pipe Institute, Crestview Plaza, Port Credit, Ontario, Canada
ATTN: Mr. W. A. Porter
Defence Research Establishment, Suffield, Ralston, Alberta, Canada
1
General Research Corporation, P. O. Box 3587, Santa Barbara, Calif. 93105 I
ATTN: Mr. Benjamin Alexander
Denver Mining Research Center, Building 20, Denver Federal Center, Denver, Colo. 80225

Dynamic Science Corporation, 1900 Walker Avenue, Monrovia, Calif. 91016
ATTN: Dr. J. C. Peck
Edgerton, Germeshausen \& Grier, Inc., 95 Brookline Avenue, Boston, Mass. 02129
ATTN: D. F. Hansen
Engineering Physics Company, 12721 Twinbrook Parkway, Rockville, Md. 20852
ATTN: Dr. Vincent J. Cushing
Mr. W. Danek
General American Transportation Corporation, General American Research Division
7449 North Natchez Avenue, Niles, IIl. 60648
ATTN: Dr. G. L. Neidhardt
General Electric Company, Missile and Space Vehicle Department, Valley Forge Space Technology Center, Goddard Boulevard, King of Prussia, Pa. 19406

General Electric Company, TEMPO, 816 State Street, Santa Barbara, Calif. 93101

Other Agencies (Continued)

IIT Research Institute, 10 West 35th Street, Chicago, Ill. 60616 1
ATTN: Dr. T. Schiffman
Kondner Research, Downes Road, Parkton, Md. 21120 1
ATTN: Dr. R. L. Kondner
Lockheed Missile and Space Company, Lockheed Aircraft Corporation, 111 Lockheed Way 1 Sunnyvale, Calif. 94086
ATTN: Dr. R. E. Meyerott
Los Alamos Scientific Laboratory, P. O. Box 1663, Los Alamos, N. Mex. 87544 1
ATTN: Report Librarian
Ministry of Defense, MEXE, Christchurch, Hampshire, England
ATTN: Dr. Philip S. Bulson 1
Mr. Bruce T. Boswell 1
The Mitre Corporation, Route 62 and Middlesex Turnpike, Bedford, Mass. 01730 1
Physics International Company, 2700 Merced Street, San Leandro, Calif. 94577
ATTN: Dr. Charles Godfrey 1
Mr. Fred M. Sauer 1
Research Analysis Corporation, Document Control Supervisor, McLean, Va. 22101 1
Dr. John S. Rinehart, Senior Research Fellow (R.2), IER/ESSA, Boulder, Colo. 80302 1
Sandia Laboratories, P. O. Box 5800, Albuquerque, N. Mex. 87115 1-ATTN: Classified Document- Division fer Dr. M. L. Merritt
Southwest Research Institute, 8500 Culebra Road, San Antonio, Tex. 78228 1
ATTN: Dr. Robert C. DeHart
Systems, Science and Software, P. O. Box 1620, La Jolla, Calif. 92037 1
ATTN: Dr. K. D. Pyatt, Jr.
TRW Space Technology Laboratories, One Space Park, Redondo Beach, Calif. 90278
ATTN: Dr. Millard Barton1
Mr. M. V. Anthony 1
Mr. J. L. Merritt 1
URS Corporation, 1811 Trousdale Drive, Burlingame, Calif. 94010 2ATTN: Mr. Harold Mason
U. S. Department of the Interior, Geological Survey, Geologic Division, Branch of 1
Engineering Geology, 345 Middlefield Road, Menlo Park, Calif. 94025
ATTN: Harold W. Olsen
Paul Weidlinger, Consulting Engineer, 110 East 59th Street, New York, N. Y. 10022 1ATTN: Dr. M. L. Baron

College and Universities

University of Arizona, Tucson, Ariz. 85721
ATTN: Dr. Donald A. DaDeppo, Department of Civil Engineering 1
Professor Bruce G. Johnston, Dept of Civil Engineering 1
Dr. George Howard, College of Engineering 1
University of California, Lawrence Radiation Laboratory, P. O. Box 808 2
Livermore, Calif. 94550
ATTN: Technical Information Division
University of Colorado, School of Architecture, Boulder, Colo. 80304 1
ATTN: Professor G. K. Vetter
University of Detroit, Department of Civil Engineering, 4001 West McNichols Road 1 Detroit, Mich. 48221
ATTN: Professor W. J. Baker
University of Florida, Department of Mechanical Engineering, Gainesville, Fla. 32603 1
ATTN: Professor John A. Samuel
Florida State University, Department of Engineering Science, Tallahassee, Fla. 32302 1
ATTN: Dr. G. L. Rogers
University of Illinois, Urbana Campus, Department of Civil Engineering, Urbana, Ill. 61801
ATTN: Professor N. M. Newmark 1
Professor S. L. Paul 1
Professor M. T. Davisson 1
Professor G. K. Sinnamon 1
Professor W. J. Hall 1
Professor A. J. Hendron, Jr. 1
Professor M. A. Sozen 1
Iowa State University of Science and Technology, Ames, Iowa 50010 2
ATTN: Professor Glen Murphy
Lehigh University, Bethlehem, Pa. 18015
ATTN: Dr. J. F. Libsch, Materials Research Center 1
Dr. D. A. Van Horn, Department of Civil Engineering 1
University of Massachusetts, Department of Civil Engineering, Amherst, Mass. 01002 1
ATTN: Dr. M. P. White
Massachusetts Institute of Technology, Division of Sponsored Research, 77 MassachusettsAvenue, Cambridge, Mass. 02139
ATTN: Dr. Robert J. Hansen1
Dr. Robert V. Whitman 1
University of Michigan, Civil Engineering Department, Ann Arbor, Mich. 48104 1

Address	No. Copi
College and Universities (Continued)	
Dr. George B. Clark, Director, Rock Mechanics Research Group, University of Missouri at Rolla, Rolla, Mo. 65401	1
University of New Mexico, Eric H. Wang Civil Engineer Research Facility, Albuquerque, N. Mex. 87106 ATTN: Dr. Eugene Zwoyer	1
University of New Mexico, Eric H. Wang Civil Engineering Research Facility, P. O. Box 188 University Station, Albuquerque, N. Mex. 87106	2
Nova Scotia Technical College, School of Graduate Studies, Halifax, Nova Scotia, Canada ATTN: Dr. G. G. Meyerhof	1
Pennsylvania State University, University Park, Pa. 16802 ATTN: Professor G. Albright, Dept of Architectural Engineering Professor Richard Kummer, 101 Eng. A	1
Purdue University, School of Civil Engineering, Civil Engineering Building, Lafayette, Ind. 47907 ATTN: Professor M. B. Scott	1
Rensselaer Polytechnic Institute, Troy, N. Y. 12180 ATTN: Dr. Clayton Oliver Dohrenwend, Security Officer, Mason House	1
Rice University, Department of Civil Engineering, Houston, Tex. 77001 ATTN: Professor A. S. Veletsos	1
San Jose State College, Department of Civil Engineering, San Jose, Calif. 95114 ATTN: Dr. Franklin J. Agardy	1
University of Texas, Balcones Research Center, Austin, Tex. 78712 ATTN: Dr. J. Neils Thompson	1
Utah State University, Department of Mechanical Engineering, Logan, Utah 84321 ATTN: Professor R. K. Watkins	1
University of Washington, Seattle, Wash. 98105	
ATTN: C. H. Norris, Department of Civil Engineering Dr. A. B. Arons, Department of Physics Professor William Miller, Department of Civil Engineering, 307 More Hall	1 1 1
The George Washington University, Nuclear Defense Design Center, School of Engineering and Applied Science, Washington, D. C. 20006	1
Worcester Polytechnic Institute, Department of Civil Engineering, Worcester, Mass. 01609 ATTN: Dr. Carl Koontz	1
Northern Arizona University, Box 5753, Flagstaff, Arizona 86001 ATTN: Professor Sandor Popovics	1
University of California, Berkeley, Dept. of Civil Engineering, Berkeley, Calif. 94720 ATTN: Dr. E. L. Wilson	25

