Modified Laursen Method for Estimating Bed-Material Sediment Load

by Edward B. Madden
Consulting Engineer

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Modified Laursen Method for Estimating Bed-Material Sediment Load

by Edward B. Madden
Consulting Engineer
10109 McCree Road
Dallas, TX 75238

Final report

Approved for public release; distribution is unlimited
Prepared for U.S. Army Corps of EngineersWashington, DC 20314-1000
Monitored by Hydraulics Laboratory U.S. Army Engineer Waterways Experiment Station 3909 Halls Ferry Road, Vicksburg, MS 39180-6199

Waterways Experiment Station Cataloging-in-Publication Data

Madden, Edward B.

Modified Laursen method for estimating bed-material sediment load/ by Edward B. Madden ; prepared for U.S. Army Corps of Engineers ; monitored by Hydraulics Laboratory, U.S. Army Engineer Waterways Experiment Station.
69 p. : ill. ; 28 cm . - (Contract report ; HL-93-3)
Includes bibliographical references.

1. Bed load - Measurement. 2. Sediment transfer - Measurement. 3. Stream measurements - Arkansas River. 4. Sedimentation and deposition - Mathematics. I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Flood Control Channels Research Program. IV. Title. V. Series: Contract report (U.S. Army Engineer Waterways Experiment Station) ; HL-93-3.

TA7 W34c no.HL-93-3

Contents

Preface iv
Conversion Factors, Non-SI to SI Units of Measure v
1-Introduction 1
2-Laursen Procedure 2
3-Arkansas River Data 4
4-Development of Modified Laursen Functional Relationship 5
5-Application of Modified Laursen Functional Relationship 10
6-Range of Applicability 15
References 16
Tables 1 and 2
Appendix A: List of Symbols A1
Appendix B: Development of Modified Laursen Sediment Relationship Based on Arkansas River Data B1
Appendix C: Modified Laursen Method, Sediment Load Calculations C1
SF 298
List of Figures
Figure 1. Relation for sediment load, Laursen method 3
Figure 2. Sediment fall velocity 6
Figure 3. Modified relationship for sediment load, working curve 9
Figure 4. Modified Laursen method, error analysis 12
Figure 5. Comparison of results 14

Preface

The investigation reported herein was conducted for the U.S. Army Engineer Waterways Experiment Station (WES) by Edward B. Madden under Contract DACW39-85-M3699. It documents a modification to coefficients in the Laursen Transport Function using data from streams and rivers. To better fit observations, a new expression involving Froude number of the flow was added to the calculations.

The study, conducted during the period 1984 to 1985, was under the general supervision of Messrs. F. A. Herrmann, Jr., Chief of the Hydraulics Laboratory, WES; R. A. Sager, Assistant Chief of the Hydraulics Laboratory; Mr. M. B. Boyd, Chief of the Waterways Division, Hydraulics Laboratory; and under the direct supervision of Mr. W. A. Thomas, Research Hydraulic Engineer, Waterways Division, who was the Contracting Officer's Representative. This report was prepared by Mr. Madden as part of the contract, and was reviewed by Mr. Thomas.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

Conversion Factors, Non-SI to SI Units of Measure

Non-SI units of measurement used in this report can be converted to SI units as follows:

Multiply	By	To Obtain
cubic feet	0.02831685	cubic meters
Fahrenheit degrees	$5 / 9$	Celsius degrees or kelvins ${ }^{1}$
feet	0.3048	metres
tons (2,000 pounds, mass)	907.1847	kilograms
1 To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula: $C=(5 / 9)(F-32)$. To obtain Kelvin (K) readings, use: $K=(5 / 9)(F-32)+273.15$.		

1 Introduction

During planning studies for the Arkansas River navigation channel, which were carried out during the late 1950's and on into 1960, it was considered desirable to express the relation between stream and channel characteristics, discharge, and bed-material sediment load in generalized terms such that the effects of changes in the various parameters involved could be evaluated. A functional relationship developed by Emmett M. Laursen (1968) was used as a framework for developing a generalized working curve for use in the Arkansas River channel design studies. Laursen's relationship was adopted because it is expressed in terms which permit separating readily the effects of the various parameters which are generally considered to govern the relation between the bed-material load, the hydraulic characteristics of the streamflow, and the characteristics of the material of which the streambed is composed. In addition, being empirical, the Laursen relation is susceptible of being adjusted to fit Arkansas River sediment load observations.

2 Laursen Procedure

Using the results of a number of flume tests from various sources Laursen developed a functional relation curve between the expressions $\sqrt{\tau o / \rho / \boldsymbol{w}}$ and $c /\left((d / D)^{7 / 6}\left(\left(\tau o^{\prime} / \tau c\right)-1\right)\right)$, where $\sqrt{\tau o / \rho}$ is the shear velocity at the streambed in feet per second, and the second group of parameters is referred to as $f(\sqrt{\tau o / \rho / w)}$; τo is the boundary shear or tractive force in pounds per square foot, $\tau 0$ ' is the boundary shear associated with the sediment particles in the streambed, τc is the critical tractive force for beginning of movement of the sediment particles, ρ is the mass density of the fluid (1.94 for water), w is the fall velocity of the sediment particles in water in feet per second, c is the concentration of sediment in percent by weight, d is the diameter of the sediment particle (mean diameter of each fractional size range in feet, D is the depth of flow in feet, and f means "function of."

Laursen's functional relation curve is shown in Figure 1. In attempting to reproduce sediment load versus discharge rating curves which had been developed for gaging stations on the lower Arkansas River from numerous sediment measurements that had been made over a period of many years, it was discovered that the rating curves calculated from Laursen's relation resulted in loads considerably smaller than the curves developed from the longterm measurements. However, the curves did parallel each other. It was also noted that the data point values of $f(\sqrt{\tau o / \rho / w)}$ calculated from Missouri River data by D. C. Bondurant (1968) plotted considerably higher than Laursen's functional relation. For these reasons, a new relationship curve was developed for use in the Arkansas River planning studies, using Laursen's parameters but based on Arkansas River data. Two versions of the modified relationship were developed at different times. Both versions are shown on Figure 1 for comparison with Laursen's original curve.

Figure 1. Relation for sediment load, Laursen method

3 Arkansas River Data

Three sets of special measurements were made on the Arkansas River as follows:

Near Dardanelle, Arkansas, in June-July 1957,
Near Dardanelle, Arkansas, in April 1958, and
Near Morrilton, Arkansas, in April 1958.
In each set, the measurements were made on four separate ranges and at five verticals on each range, resulting in 20 measuring locations in each set and a total of 60 locations for the three sets.

The observations at each vertical consisted of the sounded depth, the mean velocity in the vertical, and a depth-integrated suspended sediment sample. Bed-material samples were also obtained at each vertical with a revolvingbucket type sampler during the 1958 measurements at both Dardanelle and Morrilton. Attempts to obtain bed-material samples with a drag-bucket sampler at Dardanelle during the 1957 observations were unsuccessful. The water temperature was measured on each day of the observations. Water surface elevations also were obtained at each range. The total river discharges during the observations were approximately $178,000 \mathrm{cfs}^{1}$ at Dardanelle in 1957, 121,000 cfs at Dardanelle in 1958, and 97,000 cfs at Morrilton in 1958.

[^0]
4 Development of Modified Laursen Functional Relationship

The sediment size classification used in this study is presented in the following tabulation:

Sediment-size Class	Size Range in mm	Geometric Mean for in mm	Size Class in feet
Coarse Silt	$0.031-0.0625$	0.044	0.000142
Very Fine Sand	$0.0625-0.125$	0.088	0.000285
Fine Sand	$0.125-0.250$	0.177	0.000580
Medium Sand	$0.250-0.500$	0.353	0.001158
Coarse Sand	$0.500-1.00$	0.707	0.00232
Very Coarse Sand	$1.00-2.00$	1.414	0.00464
Very Fine Gravel	$2.00-4.00$	2.828	0.00928

Sediment fall velocities as a function of grain size and water temperature are shown in Figure 2.

The procedure for developing the desired functional relationship consists essentially of calculating values of $\sqrt{\tau_{d} \rho / w},(d / D)^{7 / 6}$, and $\left(\left(\tau_{d}^{\prime} / \tau_{c}\right)-1\right)$ for each data point, based on the observed information on flow and bed-material characteristics and then solving for $f\left(\sqrt{\left.\tau_{d} / \rho / w\right)}\right.$ using the equation:

$$
\begin{equation*}
f\left(\sqrt{\tau_{d} / \rho / w}\right)=\left(c / P_{s}\right) /\left\{P_{b}(d / D)^{7 / 6}\left[\left(\tau_{d} / \tau_{c}\right)-1\right]\right\} \tag{1}
\end{equation*}
$$

where P_{s} is the fraction of suspended material of the size class represented by d, P_{b} is the fraction of bed material of the size class represented by d, and the other symbols are as previously defined.

Figure 2. Sediment fall velocity

Additional pertinent equations are as follows:

$$
\begin{align*}
& \tau_{o}=\gamma D S=28.25 n^{2} V^{2} / D^{1 / 3} \tag{2}\\
& \tau_{o}^{\prime}=\left(V^{2} / 30 d_{m} / D\right)^{1 / 3} \tag{3}\\
& \tau_{c}=4 d \quad \text { in general, } \tag{4a}\\
& \text { but } \tau_{c}>4 d \text { for particles less than } .088 \mathrm{~mm} \text { in size } \tag{4b}\\
& q_{s}=27 q c \quad \text { or } Q_{s}=27 Q c \tag{5}
\end{align*}
$$

In these equations γ is the specific weight of the fluid in pounds per cubic foot (62.4 for water), S is the energy gradient in feet per foot, n is the Manning roughness coefficient, V is the mean velocity in feet per second, d_{m} is the median size of the sediment mixture in the streambed in feet (considered representation of the grain roughness of the bed), q is the discharge per foot width in cubic feet per second per foot, Q is the total discharge in the stream cross section in cubic feet per second, q_{s} is the sediment load in tons per day per foot width, and Q_{s} is the total sediment load in the channel cross section in tons per day. These and other symbols are summarized in a list of symbols, Appendix A.

The procedure described above was applied to each sediment size class in the suspended and bed material samples at each observation location. These calculations resulted in values of $f\left(\sqrt{\left.\tau_{d} / \rho / w\right)}\right.$ for the suspended sediment corresponding to each value of $\left(\sqrt{\left.\tau_{d} / \rho / w\right)}\right.$. Values of $f\left(\sqrt{\left.\tau_{d} / \rho / w\right)}\right.$ for bed load were calculated from the equation.

$$
\begin{equation*}
f\left(\sqrt{\tau_{d} / \rho} / w\right)_{b}=10.7378\left(\sqrt{\tau_{d} / \rho / w}\right)^{0.25301} \tag{6}
\end{equation*}
$$

which was deduced from Laursen's curve labelled "Bed load" in Figure 1. The bed-load values were added to the suspended-load values to obtain values of $f\left(\sqrt{\left.\tau_{d} / \rho / w\right)}\right.$ applicable to the total load. Plotting of the resulting values of $f\left(\sqrt{\left.\tau_{d} / \rho / w\right)}\right.$ versus corresponding values of $\sqrt{\tau_{d} \rho / w}$ served as the basis for developing the functional relationship curve. As the many points were widely scattered, group averaging was employed to aid in plotting the curve. The points fell into groups according to sediment-size class. Accordingly, the group averaging was performed on a size-class basis.

The latest, 1985, implementation of the procedure described above is illustrated in detail by Table 1. In the interest of simplifying computer printouts, the symbols $T o, T o^{\prime}, X, Y$, and Y^{\prime} have been substituted for $\tau_{o}, \tau_{o}^{\prime}$, $\sqrt{\tau_{d} / \rho / w}, f\left(\sqrt{\left.\tau_{d} / \rho / w\right)}\right.$ for suspended load, and $f\left(\sqrt{\left.\tau_{d} / \rho / w\right)}\right.$ for total load, respectively. The results of computations for all of the special Arkansas River observations at Dardanelle and Morrilton in 1957 and 1958 are included in Appendix B of this report as Tables B-1 through B-12. The computation of group averages of data points is included as Table B-13.

At the time of the Arkansas River project planning studies, the results of laboratory analyses of the bed-sediment samples had not been completed. Because of this, it was necessary to use the results of bed-material samples obtained previously during relatively low river flows. The resulting modified functional relationship curve in Figure 1 is labelled "Curve dated October 1959." The application of that relationship curve to the Arkansas River project planning studies is described in Madden (1964).

The relationship curve was revised in 1963 utilizing the results of the bedmaterial samples that were obtained at the time of the special observations in 1958. The 1958 samples at Dardanelle were assumed to be applicable to the 1957 observations at Dardanelle in the absence of actual bed-samples at that time. The 1963 modified relationship curve is labelled "Curve dated Jan. 1963" in Figure 1. A more detailed "working-curve" version of the 1963 curve is included as Figure 3 of this report. Copies of this curve were distributed to attendees at a course in Sediment Problems in Hydraulic Engineering that was held at the US Army Engineer Waterways Experiment Station in Vicksburg, MS, May 18-22, 1970.

The group-averaged data points computed in the latest (1985) study agree very closely with the 1963 relationship curve. Consequently, further revision of that curve is considered not warranted.

Figure 3. Modified relationship for sediment load, working curve

5 Application of Modified Laursen Functional Relationship

Calculation of the bed-material sediment concentration follows a reverse process to that described above. Data requirements include the flow depth or hydraulic radius, D or R; the velocity, V; the energy gradient, S; or a Manning n value; a grain-size distribution for the bed material, P_{b}; and an observed or estimated water temperature, TDF. The parameters $\sqrt{\tau_{d} / \rho / w},(d / D) 7 / 6$, and $\left(\left(\tau_{d}^{\prime} / \tau_{c}\right)-1\right)$ are first computed from the known information as before. For each value of $\sqrt{\tau_{d} / \rho / w}$, a corresponding value of $f\left(\sqrt{\left.\tau_{d} / \rho / w\right)}\right.$ is then read from the functional relationship curve. The sediment concentration is then calculated by means of the equation:

$$
\begin{equation*}
c=P_{b}(d / D)^{7 / 6}\left(\left(\tau_{o}^{\prime} / \tau_{c}\right)-1\right) f\left(\sqrt{\tau_{o} / \rho / w}\right) \tag{7}
\end{equation*}
$$

The sediment load is calculated from Equation 5.
The calculations are carried out for each grain-size class, and the resulting incremental loads are then summed to obtain the combined load for all sizes. For total load, Equation 7 is modified as follows:

$$
\begin{equation*}
\bar{C}=\Sigma P_{b}(d / D)^{7 / 6}\left(\left(\tau_{o}^{\prime} / \tau_{c}\right)-1\right) f\left(\sqrt{\tau_{d} / \rho} / w\right) \tag{7a}
\end{equation*}
$$

where \bar{C} is the total bed-material concentration and \sum represents summation.
As a test of the procedure, it has been applied to the following locations at which observed sediment concentration data are available for comparison with computed values:

RIVERS:

Atchafalaya River at Simmesport, Louisiana
Mississippi River at Tarbert Landing, Louisiana

\author{

Mississippi River at St. Louis, Missouri
 Red River at Alexandria, Louisiana
 Rio Grande near Bernalillo, New Mexico
 Middle Loup River at Dunning, Nebraska
 Niobrara River near Cody, Nebraska
 Arkansas River at Dardanelle and Morrilton, Arkansas
 FLUME TESTS:
 Simons and Richardson, 0.19 mm sand, Colorado State University
 | $"$ | $"$ | $"$ | 0.27 mm sand | $"$ | $"$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $"$ | $"$ | $"$ | 0.45 mm sand | $"$ | $"$ |
 Toch, $\quad 0.93 \mathrm{~mm}$ sand \quad Iowa Institute of Hydraulic Research

}

The information on all of the rivers except the Arkansas was obtained from a paper by Toffaleti (1968). Information on the flume tests by Simons and Richardson was obtained from Guy, Simons, and Richardson (1966). Information on the flume tests by Toch was obtained from Laursen (1968).

Calculation of the bed-material sediment load is demonstrated in detail in Table 2. Calculations for all of the locations listed above are included in Appendix C as Tables Nos. C-1 through C-27. Critical tractive force values of 4d were assumed for all computations except for the Toch flume tests, for which a value of 5 d was used because of the small size of the bed material. The tables include computations of ratios of computed load to observed load. A wide variation in the ratios can be noted. In an investigation to determine whether or not some additional parameters should be included in the procedure, the ratios were plotted against values of the Froude number, $F_{r}=V / \sqrt{g D}$, where g is the gravitational acceleration. The Froude number is considered to be one of the factors governing the presence of ripples, dunes, antidunes, plane bed, or intermediate transitions. (See Albertson, Simons, and Richardson (1958) and a relationship of dune wave steepness versus Froude number presented in Vanoni (1975) from a study by Kennedy (1963).) Variations in these bed-regime features affect the bed roughness and turbulence, which, in turn, affect the flow-sediment interaction.

The plot of the computed-to-observed load ratios versus Froude numbers on $\log -\log$ graph paper is shown in Figure 4. A definite correlation can be observed. A representative straight-line curve has been drawn in an approximately median position among the points. Most of the points lie within enveloping curves drawn at positions giving ratio values from one-half to two times the median curve values. This degree of correlation is considered good for field sediment data. Almost all of the points are within a range of onethird to 3 times the median values. This is considered acceptable.

Two of the points diverge widely from the others. An examination of the basic information on these points revealed that sediment transport was very small, consisting entirely or almost entirely of bed-load movement with little

Figure 4. Modified Laursen method, error analysis
or no suspended load. The bed configuration was in the ripple regime. Also, it was noted that the grain-associated tractive force, τ_{o}^{\prime}, for the median-size was only 1.4 and 1.5 times the computed critical tractive force, τ_{c}. This suggests the possibility of a "hiding effect," in which the smaller particles are partially sheltered when movement of the median size is marginal, or that the assumed value of 4 d does not define the critical tractive force with sufficient accuracy under near-threshold conditions.

The following equation was deduced for the median curve of relationship between the ratio of computed to observed sediment load and the Froude number:

$$
\begin{equation*}
\text { Ratio }=6.19 F_{r}^{0.904} \tag{8}
\end{equation*}
$$

An adjustment factor for adjustment of the computed load can be computed from the inverse of the latter equation:

Adj. Factor $=0.1616 / F_{r}^{0.904}$

Equation 9 was applied to each initially computed load or concentration in Tables 2 and B-1 through B-27 to obtain adjusted values of computed load or concentration. Although the adjustment was performed as a separate operation in the tables for illustrative purposes, it should be noted that Equation 9 can be incorporated into Equations 7 and 7a, resulting in the equations:

$$
\begin{align*}
& c=P_{b}(d / D)^{7 / 6}\left(\left(\tau_{o}^{\prime} / \tau_{c}\right)-1\right) f\left(\sqrt{\tau_{o} / \rho} / w\right)\left(0.1616 / F_{r}^{0.904}\right) \tag{10}\\
& \text { and } \bar{C}=\Sigma P_{b}(d / D)^{7 / 6}\left(\left(\tau_{o}^{\prime} / \tau_{c}\right)-1\right) f\left(\sqrt{\tau_{o} / \rho} / w\right)\left(0.1616 / F_{r}^{0.904}\right) \tag{10a}
\end{align*}
$$

As indicated previously, the bed-material load is computed by means of the equation:

$$
\begin{equation*}
q_{s}=27 q \bar{C} \quad \text { or } \quad Q_{s}=27 Q \bar{C} \tag{11}
\end{equation*}
$$

A plot of all values of adjusted computed loads or concentrations versus observed loads or concentrations, shown in Figure 5, indicates acceptable results, comparable to results of other sediment load computation procedures.

Figure 5. Comparison of results

6 Range of Applicability

The modified Laursen procedure has been applied to sediments ranging in size from coarse silt (noncohesive) to very fine gravel, flow depths ranging from 0.25 to 54 feet, velocities from 0.85 to 7.7 feet per second, energy gradients from 0.00001 to 0.1 , temperatures from 36 to 90 degrees Fahrenheit, and Froude numbers from 0.07 to 1.7. It is concluded that the results, with adjustments for Froude number effects, are satisfactory throughout these ranges in variables except when the grain-associated tractive force for the median size of the bed-material mixture is less than about two times the critical tractive force. Within this same restriction, satisfactory results can be obtained without the Froude number adjustment when the Froude number is within the range from 0.10 to 0.30 (see boxed area in Figure 4.) This range of Froude numbers is characteristic of large alluvial rivers.

References

Albertson, M. L., Simons, D. B., and Richardson, E. V. 1958(Feb). Discussion of "Mechanics of Sediment-Ripple Formation," by Hsian K. Liu, Journal of the Hydraulics Division, ASCE, Vol 84, No. HY1, pp 1558-23 to 1558-32.

Bondurant, D. C. 1958. Discussion of "The Total Sediment Load of Streams," by E. M. Laursen, Journal of the Hydraulic Division, ASCE, Vol 84, No. HY6.

Guy, H. P., Simons, D. B., and Richardson, E. V. 1966. "Summary of Alluvial Channel Data from Flume Experiments, 1956-1961," U.S. Geological Survey Professional Paper 462-I, U.S. Geological Survey, Washington, D.C.

Kennedy, J. F. 1963. "The Mechanics of Dunes and Antidunes in ErodibleBed Channels," Journal of Fluid Mechanics, Vol 16, Part 4, pp 521-544.

Laursen, E. M. 1958(Feb). "The Total Sediment Load of Streams," Journal of the Hydraulic Division, ASCE, Vol 84, No. HY1.

Madden, E. B. 1964 (May). "Channel Design for Modified Sediment Regime Conditions on the Arkansas River," Chapter III, Symposium on Channel Stabilization Problems, Technical Report No. 1, Vol 2, prepared for Committee on Channel Stabilization, Corps of Engineers, U.S. Army, by U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Toffaleti, F. B. 1968 (Nov). "A Procedure for Computation of the Total River Sand Discharge and Detailed Distribution, Bed to Surface," Technical Report No. 5, prepared for Committee on Channel Stabilization, Corps of Engineers. U.S. Army, by U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Vanoni, V. A. 1975. Sedimentation Engineering, Manuals and Reports on Engineering Practice--No. 54, American Society of Civil Engineers. p 164.

table mo. 2 hodifiel latasen hethod sedieut loab carcuations																		
Locationand dat:	v	a	*	tof	hed Compsitioa			*	\&	v	Bra-material Seliamet Loar Tons Per Day		$\begin{aligned} & \text { Rutid } \\ & \text { Coneq/064 } \end{aligned}$	$\begin{aligned} & \text { frowdr } \\ & \text { Hovoler } \\ & \text { Fit } \end{aligned}$	Mansted Comuted LosA lons/bay	Munsted fatio Complas	Mjusten lasd Pess/hayft	
					$\begin{aligned} & \text { Size } \\ & \text { Claty } \end{aligned}$	Spon. Mean Site, 1 l.	H				Complet	Deserved					Copptes	yenere
12	;	1	5	1	-	,	10	11	12	1314	15	16	17	11	19	0	21	27
$4 \mathrm{mil} 112,1962901000$	6. 27	41.3	1651.0000192	91	vrs	.000285	. 049	. 819	14.55	13000.013364	111212.53				154159.05			
					fs	.00053	. 117	.041	4.32	000.013049	176519.95				150167.01			
					\%	. 01158	. 23	. 114	1.12	16.0001107	5ss5.4				4726.10			
					${ }^{\text {cs }}$. 00232	. 002	.285	1.00	21.7 . 0000009	12.00				10.n			
					vcs	. 0044	-	.315	. 72	12.7 -	. 0				. 0			
					nedian lotal	.000656					363301.09	677000	. 54		309063. 35	. 16	[11.20	410.05
Atchatalaye R., Sianesport, La. Hay 7, $1961 \quad \$ 44000$	5.68	46.6	1562.000046	10	UF5	.000785	. 074	. 022	12.00	9000.0111973	142325.13				130052.71			
					fs	.0005t	.71	. 012	3.67	500.0071109	8504.14				\%943s.95			
					Hs	. 001158	. 149	. 854	1.78	54.0001507	1806.19				1655.52			
					es	.00332	. 082	. 261	1.01	19,000000	7.40				6.71			
					ves	.0064	0	. 385	. 6	12 *	. 0				. -			
					netion Tota!	. 00059					229993.56	431400	. 53		210799.00	. 41	138.95	200.35
Atchafalay R., Sisuesport, La. Rasct 19, 1963 301000	4.91	45.3	1353.000059	so	WFs	. 000795	.165	. 0161	14.33	12700.0274049	222719.54				229915.03			
					Fs	. 00058	. 112	.085s	4.12	100.0058003	4780.4				41433.01			
					${ }^{\text {m }}$. 001158	. 184	. 1375	1.75	59.000145	145.71				1203.39			
					${ }^{\text {cs }}$.00232	.023	. 2525	. 15	17.000005	31.43				32.45			
					ves	. 0464	θ	. 45	. 63	12 -	. .				. 0			
					Hedian Sotal	.0005					27167.81	19300	1.41		280484.4	1.4	201.31	112.13
Atchatalayd A., Sinmsport, La. Decemer 14, 1961 17600	8.49	30.6	1270.0000276	46	WFs	. 000275	. 262	. 0177	9.31	5250.0222939	105440.44			. 14	94304.4			
					18	. 00058	. 464	.0sts	2.12	260.001512	832.49				7 mog			
					M5	. 001151	. 115	. 1353	1.22	27.0000062	27.4				21.50			
					${ }^{6}$. 0232	. 02	. 2525	. 15	12.0500002	1.04				. 1			
					ves	. 00454	*	. 385	. 13	1 -	. 0				. -			
					netion iotal	.00032					114891.3!	119100	. $\%$		107133.39	. 90	H. 5	\$4.02
Atchaidalyd R., Stamesport, LA. nupust 13 , 1964 43700	1.92	22.1	1050.0000113	4	VFs	. 000785	. 362	. 024	3.34	380.0004307	508.20			. 01	128. 81			
					F5	. 00058	. 312	. 0816	1.10	22.0000084	9.11				17.21			
					45	. 00155	. 037	. 1624	. 35	11-.000002	-1.11				. 0			
					cs	. 0332	-	.25s6	. 3	s	. ∞				. 00			
					ves	. 0044	-	. 38	. 28	3 ,	. ∞				. +			
					nedian Potal	.00050s					516.34	2260	.23		903.59	. 10	.	2.11

Appendix A List of Symbols

c
sediment concentration of each grain size class, percent by weight
$\bar{C} \quad$ total sediment concentration of all grain size classes, percent by weight
d diameter of sediment particle (geometric mean of size class; $d=\sqrt{d_{i} * d_{i+1}}$ where i represents the lower bound and $i+1$ the upper bound of the size class), ft
$d_{m} \quad$ median size of bed material, ft (i.e., D_{50})
D depth of flow in a vertical, ft
$f($) function of variable inclosed in the parentheses
$F_{r} \quad$ Froude Number, $\quad V / \sqrt{g D}$
g gravitational acceleration, $\mathrm{ft} / \mathrm{sec} / \mathrm{sec}$
$n \quad$ roughness coefficient in Manning flow formula
$P_{b} \quad$ fraction of bed material of diameter $d, \%$ by weight
$P_{s} \quad$ fraction of suspended material of diameter d
q flow per unit width, $V D$ or $Q / W, \mathrm{cfs} / \mathrm{ft}$
$q_{s} \quad$ sediment load per unit width, tons/day/ft
Q total rate of flow in a cross section, cfs
$Q_{s} \quad$ total bed material sediment discharge, tons/day
$R \quad$ hydraulic radius of a channel cross section, ft
$S \quad$ energy gradient, $\mathrm{ft} / \mathrm{ft}$
Tc substitute symbol for $\tau_{\boldsymbol{c}}$, critical tractive force for beginning of sediment movement, $\mathrm{lb} / \mathrm{sq} \mathrm{ft}$

To' substitute symbol for $\tau_{\mathcal{c}}$, boundary shear or tractive force associated with sediment particles, $\mathrm{lb} / \mathrm{sq} \mathrm{ft}$

TDF temperature of water, degrees Fahrenheit
$V \quad$ velocity of flow, $\mathrm{ft} / \mathrm{sec}$
$w \quad$ fall velocity of sediment particle of size (or size class) $d, \mathrm{ft} / \mathrm{sec}$
W surface width of channel cross section, ft
X equivalent to $\sqrt{\tau_{d} \rho / w}($ also $=\sqrt{g D S / w}$ or $\sqrt{g R S / w})$, dimensionless
$Y \quad$ function of X or $f(X)$ for suspended sediment concentration
$Y^{\prime} \quad f(X)$ for total concentration including bed load
$\gamma \quad$ specific weight of water, $\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
$\rho \quad$ mass density of fluid, 1.94 for water, slugs/cu ft
$\tau_{o} \quad$ boundary shear or tractive force $(=\gamma D S), \mathrm{lb} / \mathrm{sq} \mathrm{ft}$
$\sqrt{\tau_{o} / \rho} \quad$ boundary shear velocity $\mathrm{U}_{*}($ also $=\sqrt{g D S}), f t / \mathrm{sec}$
\sum sum

Appendix B
 Development of Modified Laursen Sediment Relationship Based on Arkansas River Data

$\begin{aligned} & \text { Range } \\ & \text { Mo. } \end{aligned}$	Date	Mater teap.	OEVELOPMEN	TABLE MO. B-i					Pb	10	ic	70 ${ }^{\text {a }}$	a	To	-	e	\square	V	Y for ilet Load	$\begin{gathered} y \text { qor } \\ \text { Total load } \end{gathered}$	DARSDI	
				OF MODIF BASED d	ED LaUMS arxansas DAMELLE ne-July	RSEM SEDIMEI SAS RIVER DAA E RAMGES ! 1957	RELATIO															
			Station on range	0		Sediment tize clas:	d	Ps													Ave. of 1 each size	Ave. of Y each size
1	2	s	4	5	6	7	1	9	10	11	12	13	14	15	16	18	17	19	20	21	22	23
										. 001213			. 029									
3	b-27-57	76F	420	26:80	3.23							.0324931		. 2171565		.173						
						UFS	.000285	.1	. 033		. 00114				. 024	. 0173	13.94	12087.28	20.91	12108.19	12.72	8862.17
						55	. 00058	. 03	.136		. 00232				. 077	. 00519	4.35	812.18	15.57	127.76	3.96	1297.69
						W	. 001158	. 08	. 57		. 00665				. 153	. 00346	2.16	124.62	13.05	877.64	1.97	94.71
			120	17.50	4.63							. 0283128		. 1892198		. 212						
						WFS	.000285	. 11	. 035		. 00114				. 024	. 02332	13.01	12972.98	20.55	12993.53		
						55	.00058	. 07	.136		. 00232				. 017	.01484	4.06	\$860.25	15.30	1875.59		
						45	. 001158	. 02	. 57		.00163				. 155	. 00424	2.01	123.98	12.12	136.80		
			1220	14.80	4.58							. 0303722		. 2029823		.188						
											. 00114				. 024	. 02444	15.48	4161.16	20.74	9181.90		
						FS	.00059	. 07	.136		. 00232				. 077	. 01316	4.20	1108.01	15.44	1123.15		
						HS	.001158	. 81	. 57		. 00463				. 155	.00188	2.09	36.68	12.93	49.57		
			1620	14.40	3.42							. 0170909		. 1112210		. 19						
						VFS	.000285	. 06	. 053						. 024	. 0114	10.11	7584.89	19.28	7604.17		
						FS	.00058	. 06	.136		. 00232				. 077	. 0114	3.15	1765.52	14.36	1779.87		
						HS	. 001158	. 01	. 57		. 00463				. 155	. 0019	1.57	74.13	12.03	\%.16		
			2020	1.80	4.14							. 0284724		. 1902858		. 194						
						Urs	. 000285	. 05	. 053		. 00114				. 024	. 0091	13.05	2403.97	20.57	2424.54		
						F5	. 00058	. 08	. 136		. 00232				. 077	. 01552	8.07	866.48	15.31	881.80		
						HS	.00158	. 02	. 57		.00463				. 155	.00388	2.02	50.50	12.83	63.33		

$\begin{gathered} \text { Range } \\ \text { Ho. } \end{gathered}$	Date	Nater teap.	QEVELOPMEN	TARLE NO. 8-2					Ph	d	It	10°	n	Po	"	c	1	1	Y for Bed Load	$\begin{aligned} & r \text { for } \\ & \text { Potat Load } \end{aligned}$	Ave. of 1 each sizs	Ave. of Y^{\prime} each size
				0F hodif MASED	IEd Lath ABKAMSA RDAMELE une-duly	RSEW SEDIME sas Riven dat E RAMGES y 1997	WT RELario IA															
			Station on range	0		Sedinent size class	4	Ps														
1	2	3	4	3	6	7	1	-	10	11	12	13	14	15	14	17	18	19	30	21	22	23
7										. 001213			. 029									
			500	20.60	4.63							. 027796		. 1857893		. 212						
						VFS	.000285	. 04	. 053		. 00114				. 024	. 00848	12.89	5126.16	20.50	514.67	15.48	8513.61
						Fs	.00058	.025	.136		.00232				. 077	. 0053	4.02	722.57	15.27	757.93	4.82	634.38
						MS	. 001150	. 005	. 57		.00463				. 155	. 00106	2.00	53.78	12.79	46.57	2.40	74.64
			100	21.70	5.23							. 0348617		. 2329858		. 239						
						WFS	.000285	. 095	. 033		. 00114				. 024	. 022705	14.44	11529.75	21.10	11550.85		
						55	.00058	. 02	. 136		. 00232				. 077	.00478	4.50	542.18	15.71	597.89		
						\%	. 001158	. 003	. 57		.00463				. 155	. 001195	2.24	31.01	13.16	44.17		
			700	25.20	6.10							. 0451169		. 3015370		. 245						
							.000285	. 04	. 053		. 00114				. 024	. 02205	16.43	10272.02	21.80	10243.82		
						F6	.00059	. 03	.136		. 00232				. 077	.00735	5.12	154.70	16.23	770.93		
						HS	. 001158	. 02	. 57		. 00463				. 153	. 0049	2.54	113.03	13.60	126.63		
			1300	22.20	6.71							. 0569499		. 3806056		. 226						
						VFS	.000285	. 09	.035		. 00114				. 024	. 02034	18.48	409.00	22.45	631.45		
						85	.00058	. 025	.136		. 00232				. 077	.00565	5.75	392.02	16.72	408.74		
						MS	. 001158	. 025	. 57		. 00463	,			. 153	. 00565	2.86	87.00	14.01	101.00		
			1500	21.50	5.49							. 0385328		. 2575212		. 225						
						VFS	.000285	. 09	. 033		. 00114				. 024	. 02025	15.18	9173.89	21.37	9195.26		
						f5	.0005a	. 03	. 136		. 00232				. 077	. 00675	4.73	680.62	15.91	696.53		
						MS	. 001159	. 01	. 57		. 00163				. 159	. 00225	2.35	51.50	13.33	64.83		

$\begin{aligned} & \text { Range } \\ & \text { Mo. } \end{aligned}$	Date	Mater teap.	develophemt Station on range	TamLe no. b-4					Pl	4	Te	To ${ }^{\text {a }}$	n	To	*	¢	\pm	γ	Y for Bed Load	$\begin{aligned} & \text { r for } \\ & \text { ratal Load } \end{aligned}$	Ave, of \geq each size	Ave of γ each size
				OF MOOI BASED D		UASEN SEDIME sas river ba \& RAXGES Y 1997	RELA1 Tit															
				0	1	Solliment size class	1	Ps														
1	2	3	4	5	6	7	1	-	10	11	12	13	14	15	16	17	18	19	20	21	22	23
14		H0F								. 001213			. 029									
			240	38.69	8.018							. 0527274		. 3523859		. 216						
						VFS	.000285	. 1	. 077		.00114				. 025	. 0216	17.05	14039.92	21.01	14050.93	13.98	9302.39
						FS	. 00058	. 06	. 134		. 00232				. 078	. 01296	5.46	1858.14	16.50	1974.64	4.48	1301.11
						\%	. 001158	.12	. 57		. 00463				. 16	. 00432	2.64	137.96	13.76	151.72	2.18	113.87
			440	31.00	1.35							. 0646778		. 4322525		. 228						
						WFS	. 000285	. 12	. 035		. 00114				. 023	.02736	18.88	11179.21	22.58	11201.74		
						FS	. 00058	. 05	. 136		. 00232				. 078	. 0114	4.05	1023.02	16.93	1039.96		
						MS	. 001158	.01	. 57		.00463				. 16	. 00228	2.95	45.16	14.12	59.28		
			640	20.50	5.49							. 0394495		. 2616422		. 19						
						WFS	.000285	. 07	. 035		. 00114				. 075	. 0133	14.69	5607.18	21.19	5629.38		
						F5	.0005	. 05	.136		. 00232				. 078	. 0095	4.71	890.98	15.89	906.85		
						иS	. 001158	. 02	. 57		.00463				. 16	. 0038	2.50	¢. 81	13.25	44.06		
			840	20.00	3.88							. 0197160		. 1317654		. 185						
						WFs	. 000285	. 07	. 033		. 00114				:025	. 01295	10.42	10854.02	19.43	10973.46		
						F5	.00058	. 05	. 136		. 00232				. 078	. 00925	3.34	1784.47.	14.57	1799.04		
						ns	. 001158	. 02	. 57		. 00463				. 16	. 0037	1.63	174.93	12.15	187.08		
			1240	11.50	3.01							. 0142692		.0953633		. 169						
						VFS	. 000285	. 045	. 085		. 00114				. 025	. 007605	8.87	4728.76	18.65	4747.41		
						55	.00058	. 035	.136		.00232				. 078	. 005915	2.84	171.06	13.99	885.04		
						us	. 001158	. 01	. 57		. 00463				. 16	. 00169	1.57	65.57	11.66	77.23		

table mo. 8-7
afvelopment of madified lalasen sedinewt relamonshif
BASED OM ARXAXSAS RIVER DATA
gardantlis ranges
Apri! 1958

$\begin{aligned} & \text { Range } \\ & \text { Wo. } \end{aligned}$	Date	Mater teap.	Station on range	0	\checkmark	Sedi aent size class	d	Ps	Pb	6	ic	T0 ${ }^{\text {a }}$	n	10	*	c	*	γ	Y ior Bed Load	$\begin{aligned} & \text { V for } \\ & \text { Total Load } \end{aligned}$	Ave of x ench size	Ave. of Y each size
8	2	3	1	\$	6	1	1	8	10	11	12	13	14	15	16	11	18	19	20	21	22	23
3										. 001213			. 021									
	4-1-58	55	290	11.50	3.12							.0217988		. 3262600		. 17						
						VF5	. 000285	. 08	. 033		. 00114				. 0175	. 0136	14.58	5375.32	21.15	5396.48	14.91	11109.53
						55	. 00058	. 055	.136		.00232				. 061	. 00935	4.18	844.83	15.42	760.25	4.28	944.96
						HS	. 001158	. 01	. 57		.00463				. 14	. 0017	1.82	57.04	12.50	49.54	1.83	90.4
			690	16.50	4.16							. 0241652		. 1399925		. 239						
						VFs	. 800293	.13	. 033		. 00114				. 0178	. 03107	15.35	16785.73	21.13	16807.16		
						F5	.00058	. 06	.136		. 00232				. 061	. 01434	1.10	1760.11	15.62	1775.14		
						HS	. 001158	.013	. 51		. 00463				. 4	. 003585	1.92	104.5B	12.66	117.24		
			1100	17.00	3.92							. 0212449		. 1230746		. 201						
						urs	.000285	.13	. 033		. 00114				. 0175	. 02691	14.39	12240.13	21.08	17261.22		
						55	. 00059	. 03	. 136		. 00232				. 061	.00621	4.13	811.03	15.37	926.40		
						W5	. 001158	. 025	. 57		. 00463				. 155	. 005175	1.62	183.79	12.14	195.93		
			1500	12.00	4.50							. 0314435		. 1821562		. 189						
						UF5	.000285	. 1	. 033		. 00114				. 0175	.0189	17.51	5350.81	22.16	5372.97		
						Fs	.00058	. 025	. 136		. 00232				. 061	.004725	5.02	300.02	16.15	316.10		
						¢5	. 001158	. 008	. 57		. 00463				.18	. 001512	2.19	22.16	13.09	35.25		
			1900	12.60	3.30							.0166368		. 0963793		. 152						
						HFs	.000285	. 12	. 033		. 00114				. 0179	. 01824	12.41	10689.40	20.44	10709.84		
						Fs	. 00058	. 04	. 136		. 00232				. 041	. 00608	3.65	031.33	14.90	846.23		
						MS	. 001158	. 088	. 57		. 00463				. 14	. 001216	1.59	42.14	12.08	54.21		

TABLE MO. B-11

table mo. B-13

develapheyt of modified laursen sedimemt relatlonship
BASED DK ARKAMSAS RIVER DATA
Conputation of 6 oum Averages of Data Points

Location	Dite	Sedineat Size Clasm						
		Range	Very fine Sand		Fine Sand		Metive Sant	
			Ave. ${ }^{\text {d }}$	Ave. ${ }^{\circ}$	Ave. 1	Ave. Y '	Ave. 1	Ave. V
Dardanelle	June-July 1957	3	12.12	8862.47	3.96	1297.69	1.97	94.71
	Jut	?	15.48	8513.61	4.82	634.38	2.40	76.64
	-	10	13.97	9857.83	4.48	679.35	2.20	74.81
	-	14	13.88	1302.39	4.48	1301.11	2.18	113.87
Dardanelle	June-July 1957	Average	84.09	8134.08	4.44	978.13	2.19	90.01
Dar danelle	April 1958		13.89	14334.68	4.56			133.94
	-	3	15.59	9614.08	4.47	456.33	1.95	41.81
	-	8	14.91	11109.53	4. 28	944.96	1.83	90.14
	-	13	14.83	10776.89	4.23	774.28	1.81	90.57
Dardanelle	April 1958	Average	15.28	11458.80	4.39	888.04	1.90	90.69
Morrilton	April 1958	5	12.12	19018.08	2.48	599.20	1.51	75.22
	,	7	12.94	13643.96	3.11	281.00	1.62	42.14
-	-	11	12.63	19840.87	3.62	423.02	1.58	23.14
-	-	24	15.48	14113.26	4.14	505.02	1.94	65.23
Morriston	April 1958	Average	13.39	16604.04	3.56	437.39	1.66	51.23
overall average			14.20	12055.64	4.13	768.12	1.92	71.31

Appendix C Modified Laursen Method Sediment Load Calculations

MOSIFIEO LALASEX HTTHOL
sedment lons cmactuailows

Lecation Date	Q	V	\%	\#	5	raf	Red Composition			*	\pm	$\gamma \cdot$	1	MA-Naterial Sediant Lad Tons Per lay		$\begin{aligned} & \text { Ratio } \\ & \text { Comp/Ots } \end{aligned}$	Fr	Aljusted dijusted Conputed Ratio Loud Camp/Dos Tons/bay		$\begin{gathered}\text { Muysted Load } \\ \text { lons/Day/ft }\end{gathered}$Computed Doserved	
							$\begin{aligned} & \text { Size } \\ & \text { Class } \end{aligned}$	$\begin{aligned} & \text { Seon, hean } \\ & \text { is Size, ff. } \end{aligned}$	Pl					Cooputed	observed						
1	2	3	4	5	6	1	*	?	10	11	12	13	14	15	16	11	18	1	20	21	12

Red River, Alexandria, Lowista

60 Wrs

.000285	.229
.00051	.617
.001158	.11

WFS	.000285	.29
FS	.00051	.611
HS	.000158	.
CS	.00232	.0
CSS	.00464	
Median	.000492	
lotal		

. 019	12.26	9700.0345223	42710
4	3.64	485.0045831	5670.
15	1.61	17.000041	19.2
.255	91	16.4 .0000003	
. 395	. 61	11.3	

2710.82
5670.20
\qquad $\begin{array}{lrr}.001588 & .11 & .115 \\ .00232 & .006 & .258 \\ .00049 & 0 & .885\end{array}$ 17.0000111

16.4 .0000003 | 10.82 |
| :--- |
| 0.20 |
| .27 | . ∞

.124547 .50 15479.50
6040.42

14.45 | 6040.42 |
| ---: |
| 4.45 |
| .40 |

$18400.67 \quad 362$
1.34

Viss Fs HS cs vcs nesian Total

.000285	. 379	. 0152	13.58	11300	.061576	43193.79
.00058	. 515	. 035	3.70		.0040463	2840.50
.001151	. 13	. 135	1.51		.0000570	10.01
. 00232	. 002	. 25	. 91	14.2	0	. 0
.0044	0	. 395	. 3	10.2	0	. 0
. 000492						

93.75
40.50
40.01
.00
.00
7
$64.26 \quad 2450 \quad-1.91$
$\begin{array}{llll} & 50123.39 & 2.08 & 92.31\end{array} \mathbf{4 1 . 4 8}$

Red River, Mlexandria, Lowisiana																			
July l_{1} :959 14400	1.99	13.70	532.0000752	11	VFs	. 000285	. 103	.026	-1.00	2730.	.0028972	1124.49			. 09	1556.60			
					fs	.00058	. 816	.083	2.19	112.	.0004901	268.59				367.02			
					Ms	. 001158	. 072	. 165	1.10	22	0	. 00				. 00			
					cs	. 00232	0	. 21	. 67	12	0	. 00				. 00			
					vcs	. 00164	0	. 385	. 47	9.1	0	. 00				. 00			
					Median Total	. 000574						1393.08	3230	. 13		1903.62	. 59	3.58	6.07
Red River, Alexandria, Loursiama																			
Jung 26, 1980	1.52	12.20	529.0000797	90	VFS	. 000285	. 306	. 027	6.55	2300.	. 0039320	1030.86			. 08	1697.62			
					${ }^{5}$. 00058	. 352	. 086	2.06	95.	. 0000564	14.79				24.36			
					MS	. 001158	. 305	. 168	1.05	21	0	. 00				. 00			
					cs	. 00332	. 007	. 27	. 65	11.7	0	. 0				. 00			
					ycs	. 00454	. 004	. 385	. 46	9.6	0	. 0				. 00			
					Median Total	. 000551						1045.65	1125	. 93		1721.97	1.53	3. 28	2.14

010

IMRE Mo. c-10
nOOIIIEO LAURSEL METHOD sedinent loas cmaluations

$\begin{aligned} & \text { Location } \\ & \text { Bate } \end{aligned}$	0	v	2	*	s	P\%	Deet Conposition			*	!	F'	8	led-haterial Sefiement Loid Tons Per lay		$\begin{aligned} & \text { Ratio } \\ & \text { Comp/Diss } \end{aligned}$	Fr	Al jested Adjusted Coeputed hatio Load Conp/lis Tens/Bay		Adjusted Load Tons/Day/Ft	
							Size Class	Geos. Hean Siti, ft.	P1					Computed						Conputer	observed
1	2	1	-	5	6	7	1	,	10	11	12	is	14	15	16	17	18	11	20	21	27
miobrara R. near Coty, Metrasta, Section c-2																					
	146	4.27	1.60	188	. 00129	6	vis	.000785	. 022	. 0203	12.57	10100	. 405467	B194.09			. 59	2146.85			
							Fs	. 00058	. 34	.048	3.74	340	. 375741	7568.27				1455.88			
							Hs	.001158	. 516	. 15	1.72		.0620099	1250.43				323.15			
							$\mathrm{cs}^{\text {c }}$. 00232	. 072	. 26	. $\%$	18.5	.0028876	58.16				15.05			
							vcs	. 00464	. 014	. 398	. 67		.0003158	6.38				1.65			
							Hedian Total	.000819						17074.27	5950	2.85		4112.56	. 74	37.39	

Miotrara 8. near Coly, mairasta, Sect
Hay B, 1932
117.001345

58

Miobrart h. noar Cody, metrista, Section 2
mugust 3,1951
$314 \quad 2.3$
1.30
110.001

00123

$\begin{array}{lll}\text { Wrs } & .000285 & .027 \\ \text { FS } & .00058 & .41 \\ \text { M5 } & .00158 \\ \text { C5 } & .00232 & .059 \\ & .051\end{array}$

 12.4
.6
675. 21

174
2.68

947.11 700.15

 41.11700.65
103.55 $1015.52 \quad 1232 \quad .152$

37 345.73 312.62
41.48
411.08 11.08
581.24

\square
.

1239 3
$\begin{array}{rr}7600.2062159 \\ 345.1341139 \\ 36 & 1231 \\ 14.005992927 \\ 10.2 & 9.000072\end{array}$
1238.33
818.36
96.41
3.31
-.41
2175.97
$337 \quad$ b. 1
. $39 \quad 475.16$
309.22
3.43
6.45
36.43
1.25
.00
$\begin{array}{llll}822.36 & 2.41 & 9.71 & 2.96\end{array}$

tasie no. $\mathrm{c}-16$
hodified Lanssek hethoo
sedifint loab calcllations

MODIFIED LAURSEM METHOD sediment loab calclatitans

Location and date	$\begin{gathered} 9 \\ \text { cts/ft } \end{gathered}$	v	0	*	5	Tof	Ped Conposition			*	8	r	2	Led-Material Sediment toad lons Per Day/ft		$\begin{gathered} \text { Retio } \\ \text { Comep/Otr } \end{gathered}$	$\begin{aligned} & \text { Frousle } \\ & \text { Musber } \end{aligned}$$\mathrm{Fr}$	Adjusted Coeputed Leal Iens/Day/f	Mausted Ratio Come/Obs
							$\begin{aligned} & \text { Sizt } \\ & \text { Clast } \end{aligned}$	Geos. Mean Size, ft.	¢					Compted	Cosierve				
1	2	s	4	5	${ }^{1}$	1	8	-	10	11	12	13	14	15	16	17	18	19	20
Artansas R. near Morrilton, Ark., Aunge 1																			
							fs	. 00058	. 2185	. 614	1.85	70.	.0067742	- 1.19				. 56	
							ns	. 001156	. 1965	. 142	. 10	14.1 .	.0050071	. 53				. 23	
							cs	. 02232	0	. 252	. 45	9.5	0	- .00				. 00	
							ves	. 00464	0	. 385	. 29	-	0	. 00				. 00	
							Median Total	.001213						6.41	3. 30	1.74		3.01	. 82
arkancas R. near Morrilton, ark., Range it																			
Sta. 1680, Apr1] ?, 1958	32.14	3.28	9.80	--	. 000166	55	VFs	. 000285	. 03	. 014	12.11	10300.	. 0331289	20.07			. 18	14.94	
							Fs	.0005	. 2145	. 041	3.75	530.	. 0096697	7.97				5.46	
							MS	. 001158	. 1115	. 142	1.41	41.5	. 0014802	t. 28				.4	
							cs	. 00332	0	. 262	. 17	15.3	-	. 00				. 00	
							ves	. 00468	0	. 385	. 39	11.1	\bigcirc	. 00				. 00	
							Median Total	.001213						29.23	18.69	1.36		21.73	1.16
Arkansas R. near Morrilton, Ark., Range?																			
Sta. 1960, Mpril ?, 1998	107.87	4.59	23.50	--	.000156	35	VFS	. 000295	. 03	. 018	19.68	20500.	.0248000	72.23			. 17	58.90	
							rs	.00059	. 2115	. 061	5.81	1750.	. 0165389	4.17				33.28	
							Hs	. 001158	. 1169	. 142	2.49	160.	.0023206	8.51				1.94	
							cs	. 00232	0	. 262	1.35	32.5	0	. 00				. 00	
							ves	. 00464	0	. 383	. 92	14.3	0	. 00				. 00	
							median fotal	. 001213						128.90	128.06	- 1.01		105.12	. 82
Arkansas R. near Morrilton, Ark., Range 7																			
5ta. 2260, April ?, 1958	125.02	5.32	23.50	--	.000156	35	vFs	.000295	. 03	.018	. 19.68	20500.	. 0357040	113.71			. 19	01.19	
							${ }_{5}$.00058	. 2185	. 061	5.81	1750.	. 0227704	74.86				34.85	
							${ }^{\text {m }}$. 001158	. 4165	. 142	2.19	160.	.0041394	13.97				4.97	
							cs	. 00332	0	. 252	1.11	32.5	0	. 00				. 00	
							vcs	. 00464	0	. 385	. 92	14.3	0	. 00				. 0	
							$\begin{aligned} & \text { Median } \\ & \text { Total } \end{aligned}$. 002213						204.61	130.31	1.37		148.02	1.12
Arkansas R. near Morrillon, Ark., Range]																			
Sta. 3540 , Mipril ?, 1959	86.32	3.32	26.00	--	. 000166	55	vF5	. 000285	. 019	. 018	20.70	22000.	. 0114522	26.64			. 11	30.48	
							${ }^{55}$.00058	. 2195	. 061	6.11	2000.	.0076892	17.92				20.50	
							M5	. 001158	. 4165	. 142	2.62	190.	.0012313	2.87				3.28	
							cs	. 00232	0	. 252	1.48	39	0	. 00				. 00	
							vcs	. 00464	0	. 389	. 97	18.1	0	. 00				. 00	
							$\begin{aligned} & \text { Median } \\ & \text { Total } \end{aligned}$. 001213						47.43	13.84	3.43		34.27	3.92

920

monified Latresen hethoo sediment ldad cachlatidms

REPORT DOCUMENTATION PAGE			Form Approved ОМВ No. 0704-0188
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE October 1993	3. REPORT TYPE AND DATES COVERED Final report	
4. title and subtitle Modified Laursen Method for Estimating Bed-Material Sediment Load			5. FUNDING NUMBERS
6. AUTHOR(S) Edward B. Madden			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Consulting Engineer, 10109 McCree Road, Dallas, TX 75238			8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) US Army Corps of Engineers, Washington, DC 20314-1000 USAE Waterways Experiment Station, Hydraulics Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199			10. SPONSORING/MONITORING agency report number Contract Report
11. SUPPLEMENTARY NOTES Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.			
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.			12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words) The sediment transport function developed by Emmett M. Laursen was adopted for the Arkansas River navigation project because it expresses transport rate using terms that permit separating the effects of bydraulic and sediment parameters. However, in attempting to reproduce measured data from the lower Arkansas River, the Laursen function gave results that were systematically low. The same trend appeared when the function was applied to Missouri River data. Therefore, Laursen's functional relationship $f\left(\frac{\sqrt{\tau_{o} / \rho}}{w}\right)$ was replotted for the Arkansas River planning studies based on Arkansas River data. Subsequently, another graph of the relationship was developed using data from several other rivers. The work reported in this study is an effort (Continued)			
14. SUBJECT TERMS Bed-material load Sediment transport Froude number Streambed Sediment load			15. NUMBER OF PAGES 69 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	CURITY CLASSIFICATION this page NCLASSIEIED	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION Of ABSTRACT
NSN 7540-01-280-5500			andard Form 298 (Rev. 2-89) rescribed by ANSI Std. 239-18 8-102

14. (Concluded).
to collapse those functional relationships into a single graph. The approach was to introduce a correction coefficient based on Froude number.

The resulting relationship was tested using data from eight field sites and five flume studies. Results, with adjustments for Froude number effects, are satisfactory for sediment sizes ranging from 0.031 mm to 4 mm , flow depths from 0.25 to 54 ft , flow velocities from 0.85 to 7.7 fps , energy gradients from 0.00001 to $0.1 \mathrm{ft} / \mathrm{ft}$, water temperatures from 36 to $90^{\circ} \mathrm{F}$, and Froude numbers from 0.07 to 1.7 except when the grain tractive force is less than about two times the critical tractive force. Sediment transport is very small in this case, and there is probably a hiding effect beyond that included in Laursen's formulation.

[^0]: 1 A table of factors for converting non-SI units of measure to SI units is found on page \mathbf{v}.

