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Subscripts
1
2

dimensionless heat flux given by eq 10 or 11

NOMENCLATURE
heat capacity

gravitational acceleration

heat flux

thermal conductivity
heat transfer coefficient
latent heat of fusion

Nusselt number

Prandtl number

Rayleigh number
dimensionless parameter defined as (T_-T _)/(T_ -Te)
s “m m

solid liquid interface position
transitional melting front
time

‘temperature

melting temperature

initial ice temperature

temperature of the warm plate

distance

thermal diffusivity
thermal expansion coefficient

dimensionless solid liquid interface position defined as S/Sc

dimensionless thérmal boundary-layer thickness

dimensionless pé,ra.meter defined as L/Cp (Tm'To) :
: 2

density

dimensionless time defined as a, 1:/ScZ

viscosity

liquid phase
solid phase

/




SUMMARY

The correlation by O'Toole and Silveston (1959) of natural convection
heat transfer for fiuids confined between two parallel horizontal plates
has been extended to the case involving phase change. The new correla-
tion, which is applicable for melting from below, is

_ hs _ ' 0. 084 [1-0.0114(¢/R,.)2] /3
Nyu = o = 0-104 (N )+% (N ) He/R\p)"?]

where h is the heat transfer coefficient, S is the melting front, k, is the
thermal conductivity of water, ¢ is defined as L/CPZ‘ (Tm-Ty) and RAT is
defined as (Tg4-T.,)/(Ty,~-To). L is the latent heat of fusion; C__ is the
specific heat of ice; and Ty, Tpys and Ty are the warm plate, rnzeltlng and
initial ice temperatures, respectlvely. The above expression is good for
the water-ice system and is valid for ¢ varying from 7.30 to 24,50 and
R varying from 0,350 to 2, 60,




AN ANALYTICAL AND EXPERIMENTAL STUDY OF A MELTING
PROBLEM WITH NATURAL CONVECTION

by
' Yin-Chao Yen

INTRODUCTION

The problem of a horizontal layer of fluid heated from below has been
studied extensively both theoretically and experimentally. A search for lit-
erature, however, failed to reveal any investigations related to the problem
of melting from beélow with natural convection. Tien and Yen (1966) first
presented an approximate analytical solution of this problem. In a recent
paper, Yen et al. (1966) conducted a careful experimental investigation of
the same probiem to confirm the theoretical study. The exper1menta1 data
were qualitatively in agreement with the results predicted by the analytical
solutions. In the present analysis, the correlation by O'Toole and Silveston
(1959) of natural convection heat transfer for fluids confined between two
parallel horizontal plates has been extended to the case involving melting
from below.

THEORETICAL CONSIDERATIONS.

For the classical Stefan's problem, the following differential equations
describe the temperature change in the liquid and solid phases respectively:

9T 92 T . - S :
_a_t}, = a) b x<S(t) , -
BT, _ . T, e B '
with the following initial and boundary conditions:
att-= 0, T, = Ty, forall x> 0, S = 0 . - (3)
x =8(t), T, =T, =T (4)
and at the moving interface
8Ty _ o 8T, -, ;o ds | 5)
v-k‘l 9x ke 8x’+Lpdt : S (5)
at x = T, = Ty & _ ' (6)
x = 0, T, = T, ' (7)

where T, T, Ty, Tg and Ty are the liquid; solid, melting; heat source
and initial ice sample temperatures respectively; k;', a;, k, and a, are the
corresponding thermal conductivities and diffusivities of the liquid and solid
phases; and x is the distance measured from the heat source.
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Complete solutions of eq 1 and 2 with conditions 3 through 7 can be found
in Carslaw and Jaeger (1959). Equation 1 accounts only for the case in which
the heat transfer in the liquid phase is purely by conduction. In the actual
situation, however, it is clear that since the liquid resulting from melting
forms the lower part of the system and is subject to a negative temperature
gradient (for melting, T s> Tm), the system is unstable hydrodynamically
for most liquids whose density decreases as temperature increases. There-
fore, the liquid phase resulting from the melting resembles the classical
Rayleigh's problem. However, it should be borne in mind that the present
problem is far more complicated and differs from the previously mentioned
classical problem in a number of fundamental ways, such as in the nonlinear
and time-dependent temperature gradient, moving interface, and density
inversion somewhere between the warm surface and the water-ice interface.
For two rigid boundaries, the onset of instability begins when the Rayleigh:
number exceeds its critical value, which is reported to be approximately
1708. For the present case, with a moving upper boundary which advances
upward as melting progresses, it is clear from the definition of the’ Rayle1gh
number, g plzﬁc S*(Tg-Tm)/pk, that it increases as the melting proceeds -
(since the value of S increases as the melting progresses). Accordingly the
heat transfer in the liquid phase changes mode from conduction to convection
as soon as the Rayleigh number reaches the critical number. The transitional

c» Which characterizes the change of heat transfer mode is

[1708 py ki /g Bs F>1Z<Cpl (Ts’Tm)]__ 3. : (8) -

It should be recognized that the value of 1708 in eq 8 is also taken only as an
approximation since in the present problem the system involves neither two

- rigid boundaries nor one rigid and one free boundary. Itis understood then

that as soon as the transitional melting front S_ is reached, eq 1 will no
longer describe the heat transfer mode in the liquid phase. To simplify the
analysis of this hydrodynamically unstable problem, it is assumed that the
rate at which the temperature distribution reaches its steady state in the

‘liquid phase is much greater than the melting rate. If this is so, the problem

reduces to a much simpler melting problem in which a prescribed heat flux
is imposed on the liquid-solid interface.

Estimation of the heat flux

flux (Tien and Yen, 1966) defined as

In previous papers by Tien and Yen (1966) and Yen et al. (1966), the
heat flux expression was derived from a correlation by O'Toole and Silveston
(1959) for the natural convection heat transfer for fluids confined between
two parallel horizontal plates. The correlation used for these previous
papers was '

= hS _ . 10,084 0305 ‘
Nyu = * 0.104 (NPr) 7t (Ng,) : (9)
|
in which NNu’ Npy and NRg are Nusselt, Prandtl and Rayleigh numbers,
respectively; h is the heat transfer coefficient; and S is the melting front.
Without any modification to take into account the fact that this was a problem
with a moving upper boundary due: to melting and a time-dependent tempera-
ture gradient, eq 9 was used to derive an expression for dimensionless heat

K g-o0ms (10)

+ Sc
H(t) = H(t) = R
0 = gy B = Rar o
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In the recent paper by Yen et al. (1966), the foregoing expression was
used to describe the heat flux at the water-ice interface. The conduction
equation for the solid phase was then solved with the heat balance integral
technique. From that study, it was concluded that the results computed
from analytical -solutions were about 15% higher than the corresponding
experimental data for Tg = 18.8C, T, = -4.8C and 7 -7, = 1500. It was
also noted that as the value of T4 lowered the discrepancy increased. The
cause of these differences was then considered to be the fact that there is
a 4C layer somewhere between the warm surface and the water-ice interface.
(The existence of the 4C layer has not been investigated experimentally, ) As
T4 was reduced, the distance between the 4C water layer and the interface
could be increased. Due to this increase, the rate of heat transfer from the . -
4C water layer to the meltlng front, and subsequently the rate of melting,
were decreased.. :

To apply the correlat1on developed by O'Toole and Sllveston (1959) to
the moving boundary problem, it was decided that in the present analysis
an arbitrary constant B instead of 0.305 should be used as the exponent to
‘the Rayleigh number in eq 9. Following an approach similar to that used in
the previous papers by the present author, it can be shown that the dimension-
less heat flux w111 have the follow1ng form: :

S
) c - Xk __(1-38) . 10
H (t) (T H(t) = R ,p Y , (10)
or

where A = 1-3B. ‘A is an unknown value which is presumed to be dependent
on thermal parameters ¢ and RAT- After obtaining the expression for the
heat flux function for the water-ice interface (see eq 11), the heat conduction
equatlon in the solid phase was solved and can be summarized by the following
pair of nonhnear differential equatlons

4 - 1. -~ '
23 [3(‘1.“ Ryt UA‘IQ—Q’} R o ua
d 1 -A k 3] ' o
ar =3 [RAT"_ (k;')'ﬁ] B

where 1 is defined as 6- ¢ or the difference between the dimensionless
thermal boundary layer thickness 6 and dimensionless liquid- solid interface
o= S/S ¢ is defined as L/C (T,-To) in which L is the latent heat of
fusion, .C.pz ‘is the spec1f1c h&4t of ice, and RAT is defined as (Tg-Ty)/
(Tm-To).

EXPERIMENTAL AND ANALYTICAL RESULTS

The experimental apparatus and procedure are descrlbed in detail in a
paper by Yen et al.(1966). In all experiments, bubble-free, homogeneous ice
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samples were prepared before the melting experiment. Caution was always

taken to eliminate any possible entrainment of air during the coupling opera-

tion of the assembled melting chamber and the heat source. This was nec-
essary to get reliable and reproducible results. As in previous papers,
Figures 1-3 are plots of dimensionless melting front ¢ versus dimensionless
time T - T It should be realized that when7 - 7. =0, ¢ = 1. In the figures,
black dots represent the experimental data. Equations 12 and 13 were inte-
grated simultaneously by the method of Runge-Kutta. For each pair of Raor
and ¢, a trial and error procedure was used to discover a specific value of
A that would give the best fit to the experimental data of the corresponding
set values of R and ¢. The computed results along with the . values of A
are indicated by crosses in Figures 1-3. - Table I is a summary of the
experimental parameters and the values of A. Altogether 15 experiments
were conducted. Three original ice temperatures, T,, were used, i.e.,
-6.5, -13.0 and -22C, respectively. Ten heat source temperatures, Tg,
varying from 7.72 to 18.80C, were employed. From Figures 1-3 it can be
seen that the computed results give a slightly higher value than the experi-
mental data for small values of dimensionless time, T - T., while for large
values of 7 - 7. the computed results show a little lower value than the
experimental data. However, in general, the results from theory and
experiment are in close agreement '

Table I. Summary of experimental parameters and values of A,

Exp no To(°C) T'S(°C) ‘ ¢ RAT A
13 -22.00  + 7.72 7.30  0.350 . 0.440
17 ~ -22.00  +10.05 7.30  0.460  0.320
14 - -22.00 +13.10 7.30 -~ 0.600 0.230
11 -13.00  + 7.72  -12.50  0.600°  0.450

3-5 -13.00  +10.60 . 12.50  0.820  0.250
8 -13.00  +14.02  12.50 . 1.100 . 0.220
1,2 -13.00  +18.80  12.50  1.450  0.140
18 - 6.50 + 7.75  24.50  1.200  0.450
19 - 6.50  + 9.83 24.50  1.500  0.300
4,5 - 6.50  +13.00  24.50  2.000  0.240
6,7 - 6.50  +18.00  24.50  2.600  0.200

i

Evaluation of the funct1ona1 relatmnshlp between A, RaT 2nd ¢

From F1gures 1-3, it can be observed that for a spec1f1c value of ¢
the value of A increases as RpT decreases. For the same Rap, it can be
seen that the value of A increases as ¢ increases (see Fig. 1 and 2, for
instance, when R, = 0.60, A = 0.230, for ¢ = 7.30 and A = 0,450 for
¢ = 12.50). Itis ;.J;lought that the functional relationship between A, RaT
and ¢ can be expressed as

A= a¢™ (R (14)

AT )
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where constant a and exponents m and n are to be determined.” A log-log

" plot of A vs RAT_with ¢ as parameter is shown in Figure 4. Without
exception, the values of A for different ¢ fall into parallel lines. The slope
of the lines or the value of n is found to be -1.2. Therefore eq 14 can be
-rewritten as - .

A‘=a¢ (R IR (15)

A similar log-log plot of A(RAT)'"? vs ¢ also gives a linear relationship
(Fig. 5). The slope or the vﬁue of m is 1.2. The intercept or the value
of a is 0.0114. Finally the value of A can be correlated by the following -
expression:’ .

A = 0.0114 (T{i—)l_'z. | L C(16)
AT - | |

CONCLUSION

From the relationship A = 1-3B given earlier in the paper, and with an
express1on for A given by eq 16, values of B can be expressed in terms of
¢ and R : :

'1'-0‘.0114(¢/R )2
B = — —a . - (17)

By substltutlng the expression for B in eq 9, replacing the constant exponent
0.305 as proposed earlier;  the correlation for natural convection heat trans-
fer for fluids resulting from melting and confined by a rigid lower boundary
and a moving upper boundary can finally be developed. The final correlation
which 1nv01ves the Prandtl and Rayleigh numbers and thermal parameters

¢ and R -

: N )

[1-0.0114(¢/R )1-2]:/3_
Nu kl' ) AT

= 0.104 (N r)°-°34k('N' (18)

which is apphcable for ¢ varying from 7. 30 to 24,50 and R véryihg from
0.350 to 2. 60 ,
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Figure 1. Relation between dimensionless melting front ¢ and
dimensionless time 7 - 7 _ for the case ¢ = 7.30.
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Figure 2. Relation between dimensionless melting front ¢ and
‘ dimensionless time 7 - T for the case ¢ = 12.50,
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Figure 3. Relation between dimensionless melting front ¢ and
dimensionless time T - T for the case ¢ = 24.50.
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