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| VIBRATORY SURFACE LOADINGS ON A VISCOELASTIC HALF-SPACE
by

" T.M. Lee

INTRODUCTION

It has been the usual praétice‘ to apply the theory of linear.elasticity when designing founda-
tions involving vibratory loads. Experience has shown that the theory is normally adequate for
design but is not always realistic. One reason is that it does not include the effect of internal
damping of the soil. Internal damping is a property affecting the stress-strain relationship by
introducing time dependence. Viscoelastic theory takes such time dependence into account. It is
suggested that under low stress vibratory loads, many soils may reasonably be considered to be-
have like a viscoelastic material. : :

Wave propagation in an elastic half-space generated by an impulsive force applied at its sur-
face was first considered by Lamb® in his classic paper On the Propagation of Tremors Over the
Surface of an Elastic Solid. This study was later extended by Reissner® to consider the effect of
a group of periodic surface forces uniformly distributed over a circular area. The same problem
was treated by Sung'’and Quinlan’ for two more cases of-loading distribution: namely, 1) parabolic
distribution of the forces, and 2) forces to approximate the static reactions under a circular rigid,
plate. Sung also provides tables and curves in his paper that can be used to determine the elastic
constants of a given foundation with appropriate tests. In considering machine foundation design,
Hsieh® reworked the Reissner-Sung theory for evaluating the damping effect of its supporting medi-
um. Since the original analysis’ ®'° was based on elastic theory, the damping effect referred to is
that due to geometric dispersion rather than the dissipative property of the medium.

To include the damping effect from energy dissipation, it is proposed to consider the ground
as a viscoelastic medium and make an analysis based on the assumption that it is-a homogeneous,
isotropic, linear viscoelastic half-space

The work presented here is subdivided into two parts. Solutions to the displacement functions
for a viscoelastic half-space subjected to surface loadings are presented in the first part. As will
be shown, surface vibrations in areas near the source (near field) are affected by three types of
waves generated by the source, namely dilatational waves, shear waves, and Rayleigh (surface)
waves. The first two types of waves diminish with distance much more rapidly than the third kind.
Hence, at great distances from the source (far field), only the effect of the Rayleigh waves needs

-to be considered. With this simplification, closed form expressions for surface motions at great

distances are obtained in this portion of the analysis. A field method of using these results to
determine the complex modulus and the dampmg property of a viscoelastic material’ * is proposed.

In the second part of this work, the near field effect of v1bratory loadings over a surface cir-
cular area is examined and the vertical motion at the center of the circle is calculated for the three
types of force distribution as used by Reissner and Sung. Under these loading conditions, the dis-
placement function is found to depend on the frequency of the applied load and also on the properties
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of the supporting medium. Using these as parameters, a fairly broad range of computations for the
center displacements- can be provided in table form. However, to facilitate the computation, an
attempt has been made to reconstruct the center displacement as a simple function of the (load)
vibration frequency and the material properties of the half-space. With these relationships, compu-
tations may be accomplished without using a. computer; . furthermore computatlon time w111 be only
a small fractlon of that required for the orlgmal analysis.

BASIC ANALYSIS

The wave equation in a homogeneous, isotropic, linear viscoelastic medium may be expressed:?

Mo + 2u) VEp = p O &
L . . co- (9[2 B . o . ‘ - .

where ¢ and ¢ are dilatational and shear potentials, respectively.

i) = M@ + iM(w)

I

(iw) '(w) + iﬁ" "(w)

"are the complex Lame’s constants, p is the dens1ty of- the medlum, and V denotes the Laplaolan
operator. : e

Introducirrg
‘of'(iw) _ Miw) + 2p(io) . o - L ' _(3a)A'
P
T T €
er; 1 and 2 can be rewritten as S .
)V - ——j ) o o )
w2y - . a T OB

Applymg t‘xrst the F‘ourrer transform and then the Hankel transform to eq 4 and 5 we get after
rearranging,

Ok, ) [kg

]@(kz,w) o L ®)
9z°

, 02(10))

‘
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PV (k, z, w) ~

- -[k? _ e ]‘l’(k,}z,w) _o. o

Cg (iw)

The solutions of eq 6 and 7 may be written as:

Ok, z,0) = Ak, ) e Pk, w) : : e (8

¥k, z, ) B'(k,w) eS?P(ko) .- o o C))

where A (k, w) and B (k, ») are to be determined from the boundary conditions of the problem,
P (k, w) is the transformed load function,

ko) = k¥ - K3(iw), . | : : (}Q.a?’
Sk, 0) = K2 - ko), (10b)
and
. _ . _ _ 1
k,(iw) Nk , _ (11a)
k, (o) = —2 . - -
| 2(“‘)) ¢, (@) (11b)

The boundary conditions to be satisfied at the free surface (z = 0) of the: medium are

du o ,
(OZ)Z=0 = )‘(10)) V2¢ + 2#(1(1))6_; ‘= _'p(r’.t), } o . (12)
and
, du,  du R
. r z
(rrz)z=q = piw) (a—z + 5 ) =v0 . - (13)

~where u,, u_are displacements in the z (downward) and r (radial outward) directions respectively,

and p(r, t) is the applied vertical surface load.*

Since u,, is related to the potential functions by

r .

ngé- 31‘2

*For our present intérest we consider only loadings normal to the free surface of the medium, though other
modes of loadings may be treated in a similar fashion. )
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eq 12 can be rewritten as ‘

9%¢ 1

. dp o . 2 8 | |
p—- - 2uliw) | = —(;b- + —ﬁ] - 2u(iw) 1 a"p. + Iy = —p(r,t). (15)
a® ror g2l ~ b dzor g2 o .
‘Transforming eq 15 first with respect to t and then to r, we find
[2k% — k()] ® (k, 2, ) + 2k° a\l!gk, zo) _ Pho) (16)
? p ¢ (iw)
Using the relation
u = 2 - 17
' or * o , an
and eq 14, eq 13 can be written as
o2 3, . o2 3 » . o .
3¢+W+a¢_a¢_-"_(l"_¢.):o. , (18)
0zor  gy25 09z 58 or\ror :

Integrating eq 18 once with respect to r and then applying the Fourier and Hankel transform, we’
get _

2
9 8<I>(k, z, w) + d ‘P(k; z, (1)) + kz‘l‘(k, z, w) - 0. (19)
oz 9z2 T

Substituting eq 8 and 9 in eq 16 and 19, we obtain

! (20)

(2k% - KZ(iw)] Ak, @) ~ 25k*B(k, @) = -
- pC(iw)
and
_2¢Ak w) + (2% - k3(iw)] Bk w) = 0. - - 21
Solving eq 20 and 21, the expressions for (D and ¥ then become
[2k® - kE(w)] p(k
Ok, z,0) = - 2T ) g (22)
p cg(iw) F(k, o)
2‘1 P(kr CO) —SZ

Yk, z,w) = - e I . (23)

p c‘g(iw)' Fk, o)
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where
Flko) = (2% - kFG)® - 4gsk? @

is the well known Raylelgh S functxon

To obtain ¢ and ¥, we invert eq 22 and 23 and get

Lo (2% - k%(iw)][’(k,aj) e
b, 2, t) / / R - e79Z F1OL J (kr) kdkdw (25)
% g p cg(iw) F (k, w) '
and
(r,z,t) = ~2i f f _2aPk o) e SZHIOL ] (kr) kdkdow . (26)
” ’ .

& 9 p Cg(i(u)'F (k, w)

. These are the expressions for the potential functions in integral form. -To find the response
of the medium to the surface loading, we substitute eq 25 and 26 in eq 17 and obtain

) o oo {[2k? f_‘kg(iw)] e 9% _ 2qs e 5%} Pk, o)
Fk o) - -:%p(i(u)

e J (kr)k®dkdw . (27)
Similarly, the expression for the vertical displacerﬁent is

“‘)[J o (kr)kdkdw. (28)

Lot fw /w tek? - ‘kg(im)lq e 1 - 2qk® e} pp
Fk,w) . o p(l(o)

It is seen that the displacements at given points are functions of the material properties of the
medium and the applied load function P (k, w). In order to establish a technique of using the meas-
urable dlsplacements for determining the material constants we shall mvestlg,dte a few assumed

‘loading conditions-in the, followmg sections.

" PART I: ‘FAR FIELD SURFACE MOTION -

A single oscillating source

o We first consider the case of a concentrated penodlc force apphed on. the surface of the medlum.
If the origin of the r-Z axis is chosen to coincide with the load point, we may write

P ‘ o ) S
P t) - 2_0 8(r) eiét - S | @

with P, being the amplltude of the oscﬂlamon { the oscxllatlng frequency and B(r) the Dlrac delta
functxon

L
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The Fourier and Hankel transform of eq 29 is

P{k,w) = Py 8w - ). » o P L )

Substituting eq 30 in eq 27 and performing the integration fbp o, we get’

Poelct 00 [2k2 _ kg(‘.c)] e—q'z - 2q|sle~s'z .

I TR _ i J | (kr) k? dk (31)
ThUQ) [k - KBGOR - #Pgs

where
y . .
g = k® - k2o | (32a)
and
Yo ‘
§' = k% - KZGOI2. S R (32b)
Similarly,

Poel€t = [[2k? - k2(i{))q'e 17 - 2q'k2eS'

u, = ——— J o (kr) kdk . (33)
2”[1(16) b [2’(2 _ k%(lg)]z _ 4k2q|s| : :

For convenience, we replace ¢ by » and rewrite eq 31 and 33 as
P, el®t o {2k - kg(iw)] e 9% _ 2Aqse‘szly o : ‘
u = Y / J | (kD k2 dk G

2m pu(iw) d - Fm®)

‘ Poeimt e {[2‘(2 _ kg(im)] qe—qi_ _ quge_szi- Lo S

u, = _ / * _ I (kokdk. (35)
2rp(iw) 2 F (k)

Since our interest is the surface measurements, we let z = 0 and obtain the surface motions

Poel® = [2k® - k(i) - 2gs] S
- J Zdk - o
1o = 5 0[ —F GoiEak . (36)

Pye'®t = k3(iw)q

27 p(iw) 0/ F (k)

u 0 = - J o (k) kdk . EEEE 37

Before performing the integration of the above equations, wé note that the positive sign in
front of the square root of

ako) VK Ko)
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and

stow) - + K - k2 (iw)

should be used in order not.to have infinite values for the potential . functions ® and ¥, eq 8 and 9,
as z approaches ~. Hence the quantity

k k3(iw) g -
- (38)
F (k)
of the integrand is an odd function of k'and if we use the relationship
Jokr) = 5 ["0(1)(’“)_ + Ho(?) kol . L (39
the integral of eq 37 can be written as
., = kkZq - ‘ , ,
;2! f 2~ oD (kr)dk : (40)
2 F (k) , T =

where H 0( 1) denotes the Hankel function of. thé"fir‘st kind of zero order, and H 0(,2)’ the second kind
of zero order.

Changing the variable of integration from k to a complex variable £ = k + ir, we may follow
the route* as indicated in F‘lgure 1 for contour mtegramon in £-plane. Notmg that for large argu—

ment
H (1)(&) \/-z__exp li(ér - Z , : | (41a)
H,® (&) f exp [-z(gr - _)] AR T . (41b)

the integrand vanishes on the infinite arc and we get

. . kz q(K) : ‘ Lo L . ) N
l=—ni__.2_____H(2)(Kr)—f—/ S ' ' (42)
Ly Ly ' '
where f and / are the line integrals of the function along the cuts L, and L, respectively,
L, L, :
« is the Rayleigh pole, F' is the derivative of F with respect to k.

The first term on the right-hand side of eq 42 represents the Rayleigh (surface) wave effect,
while the branch line integrals are the effects of the dilatational waves and shear waves

*Since both kl and k2 are complex numbers of  with Re w > 0, the branéh cuts are parts of hyperbolas as
shown in the figure.
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Figure 1. I_ntegration contour in complex &-plane.

Table 1. Companson* of surface vibrations from dilatational waves and
shear waves with those from Raylengh waves, as a functlon of location
(xr) and Poisson’s ratio (v)

Dilatational term Shear term

1% Kr — (% . - S E— %
’ Rayleigh term ( Rayleigh term )
v 10 0.38477 . . 0.00405
20 : 0.00067 s
: 10 0.34050 0.00431
£ 0.30 O S AP con R
: 20 ~0.00078 . B
10 .32880 , 0.
s 10 - 0.32880 ... 0.00465

20 © 000109 -

*Values of / and f are computed by the method of steepest descent.
Ly Ly '

respectively. As shown in Table I, the effect of the first term predommales the far field and we
may omit those of the second and third terms.

Hence, in far field we write

P el(l)l K k2 q(K) N‘ ..
) H.® (cr). . 43
u,(0) ! Ru(iv) F'(x) 01. (Kr)‘, S S @

V Using the asymplotic éxpansion of Ho(z) for large «r (eq 41b) we get

T (O)

oy e,
- io) (2nkr - F(x) o P “d

- Similarly, it can be Showri~t~}‘{at““: o

P0 ) 1 l/ K2[2K I k2 - 2q(K)s(«)] [ ,,)] 45)
R (ot - kr = )],
10 - ' i) (2“1) Fro exp litw T ( .
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It is seen that the amplitude of the surface motion decays with distance r according to 1/yT
‘and travels with the surface velocity Cp as « is the ratio of frequency » and C R’

To find the attenuation effect of the medium, we let

c

. R
k, = =
R .
Cplio) = k() /rle), o : (46)
-and
0
. 2
ki) = = ‘2’ ;- - f‘/’ 1 - itan _). (47)
iw :
R ke (v) M3/p) ™ sec (0,/2)
where
1
M; :-..(#1‘2 + “'?2)»1/2' Lo . I S L P A S (483)
tan 0, - ’; o asy
and p' and p" are the real and imaginary parts of p(irb) as defined before.
Thus, if we write :
. 1 z
w w . .
2 = (2 - iay), (49)
Cp (iw) (cR 2 ) ~ Q |
we get
_ _ M. , 0 AR ‘
C, = k,(v (_) sec. =, - : ‘ e ' (50a)
R (V) A 5
and-a, = the attenuation factor
0
ag = 2 tan 2. (50b)
. Cp 2

\

{

*As shown in elastic theory, kg (V) is a function of Poisson's ratio v. Its value varies from 0.875 to 0.955
when v changes from O to 0.5. Since weare not certain how v’ varies with frequency, and since the frequency
range involved in the present study is quite limited, we may assume that kR (v) is independéent of frequency. -
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- Using-eq 49, the displacement‘ functions.can be rewritten as

POK k(o) b g
0™z 1 - SR ) AR FEERE IR AR ) LR
u,(0) = (i) (2m<(ia))r_) exp (—ayr) exp lla) (t.— §> - iy ]—. | (51)
) Py KrK(iw) / 1 (R v | r v g '
u (0) = ~i i , exp (-ayr)exp liwft — — ) - i- |, (52)
r p(iw) ( 2m k(i) r ) 2 [ ( Cg ) 4 ] o
where
‘ KEa - -
S TR - e
c2k% 2 KR 2qGs0]
K - - R C . (53p)
r Fr(x) - ‘ SR

are functions* of v, the Poisson’s ratio.
Thus, we see in a viscoelastic medium the amplitudes are further reduced exponerntially with
distance by a factor related to the dissipative property of the medium.

If we choose two reference points in the far field of distances r, and ro from the source,
respectwely, and take the ratio of the vibration amphtudes of these pomts then the resultant quan-

tity has a rather simple expression and becomes

uzl(O)
1,2 < —uz2(0)

(54
. r2 l/2 .
(r—l ) exp [a2 (l’2 - rl)] ’

il

as the other terms are not a function of r and thus do not change with the location Since r and
. Iy are known, if the value of R1 9 is measured it is not dlfflcult to determme a2 from eq 54

The phase shift x between the pomts may be given as

w
Xy,2 = = (g = 1.
CR
If we select points 1 and 2 with a phase shift of 27, we get from eq 55

Cp = fdy, (?6)

*These are agaln under the’ aesumpuon that k (V) is mdepend« nt.ol frequency, as-mentioned earlier.
assumed also that the ratio C 1o C2 is not aft”ected by frequency changes in the test range.

Itis:
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where d 1,2 is the distance between the selected points and f is.the vibration frequency. .‘Thus,: .
surface wave velocity may be determined through observations of phase shift between selected
pomts *

Since in field practlce vxbratron is generally transmitted through the base of a v1brator load
is actually applied to the ground on a finite area rather than at a single concentrated point. There-
fore, there will be an influence on the displacement functions arising from the characteristics
associated with the area and shape of the base plate and the pressure distribution beneath the plate.
This will be investigated in some detail by considering several types of input sources with variety
in their amplifudes and size expressed in terms of nondimensional quantity.

'

A group of forces over .a finite area .

As most of the vibrators are equipped with cxrcular bases, it may be proper to consmer only the
possible load distributions over a crrcular area.. For this purpose, we take the followmg three cases

of forces which are distributed:
‘1) uniformly over the area
2) as a parabola )
3) as the reactlon under a r1g1d plate (approximation).

For case 1, we let the radius of the circle be ry and the appued load be p0 Then the load
functmn may be represented by

: P(r,t) = PO e"é‘”‘[h'(rﬂ)" - h(r = r'o)]' L e L e Y(ET)
where h( ) is the Heavrsrde step functlon
The Founer and Hankel transform of eq 57 is '

J (k ro)

o -(58)

P(k W) = 2nr0p05(w - C)

- Substituting.eq 58 into the expressions for the displacement. functlons u, a.nd u, (eq 27 and 28)
and replacmg { by w after- mtegratlon we get

o (22 kg) o172 _ 295 657]

S pgrg €19t g e e
fru ” z&)) ' f TTTTFR Ty ko) (kykak -9
“and
Porq eIt ® [(21('2 - k2)qe - 2qk®e™S?]
u, = — f J | (keg) J o (ke dk. (60)
F
p(iw) J o (k), o v

*This was the technique used by the U.S. Army Waterways Experiment Station soil dynamics group in field

observations of surface velocity and, subsequently, for the determination of elastic modulus of soils. De-

tailed procedure can be found in the report by Z.B. Fry, A Procedure for Determining Elastic Moduli of Soils
by Field Vibratory Techniques, USAE WES Miscellaneous Paper 4-577, June 1963.
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At the surface then they reéduce to < -

Pyl gl®t (2% - k2 ~ 2gs)

- ','{‘.",(9.) T ko) f TRe lfilokde e v
u,,(0) o Of F(k)‘_l('kro)Jov(kr_)dk. N )

Usmg techmques s1mllar to those outlmed in the last sectlon and notmg that for large .f

ERGHLAS ><§r) - 1— [e<r‘+'ro><-'rm’> '+ é(,;,,,);(;m@] o L (69)
ﬂ§(rro)/’

we get,* in far field r > r,

u.zu(o) -

. %/E"exp’(—a'zr‘) exp [:ia) (t"_" L) o i ™o (64)
Kr Cp N B G
Here' again, the effect of the two branch line integrals has been neglected.

Comparing eq 64 with eq 51, there is a new factor J | (xry), replacing «, appearing in u, (0)

due to the assumed load distribution. Since the Bessel functxon has zero roots for real arguments
there will be frequencies at which the source will.produce no vertical surface motion in the far field.
Physically, it may be interpreted as the vibration effects produced by each individual element of the
source which cancel each other at these critical frequencies. However, if the ground behaves visco-
elastically, i.e., involving dissipation of energy, the arguments of the previously mentioned Bessel
function are complex and therefore motions will be reduced to minimum magnitudes, rather than zero,
at these cntlcal frequenmes :

Smce other terms are 81mllar to the smgle concentrated force case, 1t 1s expected that the
expressions for the Amplitude Ratio R 1,2 and the phase shift X1,g are of the same form as glven by ’
eq 54 and 55. Hence, the techniques for determining the surface wave velocity and the attenuation
factor can also be .applied for, the umformly dlsmbuted input source over a circular area.

For the remalmng two cases of load dxsmbutlons we let
2P, (rg ~rd

Pp(r.0) = — " el ) - b - r)l, (65)
rg L e

Py 1
2171‘0 12 2

PRt t) - et [h) - h@r - 1], | (66)

*The mtegratmn of eq 61 for u “(0) can be handled in a similar way. Smce fleld measuremems are nonnally
concemed wnh only vemca] dlsplacemems, tl'us part is ommed Also for s1mpllcnty, K(xm) 1s wntten as K.
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and obtain
Jo(krp) : :
P (k w) = 8P08(m - C)————— , ] (67)
. (kr0)2 : . .
sin kr0 .
Pp (k, w) = POB(w - —, - (68)
kr0 :

where Po is the total load* and the subscript under the load function on the left- hand side of the
equation refers to the types of the assumed load distribution. :

Hence, the corresponding displacement functions are

o ”’4P0'eiwt' 0o [(21(2 k2)e~qz - 2qse—sz] sl : L
gy - ‘o (kro)J (kr)dk SRS
P rute) FR | v

4Pe!®t oo [(2k® - k5)qe 9% - 2qk* "SZ]

u,, = Jo(krg)J, (kt)dk . (70)
mEutio) § kRGO
| L Peel®t m [k® - kDe T - 2qseS7] (k ", (k)'kdk ERUSEN
U 5 = Sll'l r r
() J T Fw 0 .
-and
‘ Ppei®t = (%2 - kDge 97 _ 2qk®eS?L . . )
u p = o , . : - sin (kry) J, (kr) dk . (72
1 R e
For vertical surfac,e‘i'i'is_placémve'nt's',vwe have ) o -
u,,(0) = - f =, (krO)J (kdk . (1)
o - mrg p(ie) LLON ‘ S
and
u_-(0) Poclet 7 kg sin (kr )be(kr)dk: SR A (74)
ry = — n .
2k 2ty (i) Of F (k) 00

*Note that py has been changéd to Py as it is the more appropriate symbol for total force.
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Proceeding with the technique of previous sectionAs, the equations above can be shown to be-

come . . 3 . -
\ ap Jo(xrg) SN AT )
w0 - — K, = ° \/—2- exp (“agr) exp [m (c - L) il ] (75)
18 p(io) ¥ KT Cr 4
and
PoK L | |
: 0z . n 1o o o [ TN am a
ZR(O) m sin (krg) — exp:n(i—_‘:_a?ri)fxp_ [1@ (t - C—R—); i ] SR ()

in the far field when the effects of the branch hne mtegrals are neglected

Here again we notice that the functions J (K ro) and-sin KI'O ‘will produce zéro vibration ampli-
tudes at some critical frequencies-for elastic medla ‘Hence,-all critical frequencies are determined
from zeros of the Bessel or circular functions. Let X n be the nth root* of these functions. Then
we get

CpX 2nfry R o
R“n . : n 0 .
f = i . C p— i . - . R .. PN . ) . 77
n 27[0 or R Xn U R ( )

Thus, knowing the surface wave. velocity (or dispersion curve), one may predict the critical
frequencies from eq 77; or, by observing these frequencies, the velocity may be calculated.

However, as mentioned earlier, when dissipation is involved there will be no zero ground mo-
tions but rather the minima. The value of the minima may be determined from the amplitude terms
of eq 64, 75 and 76. Hence, when damping is present, it will cause a shift in critical frequencies. .
Furthermore, these frequencies also depend upon the location of the observations made as they all
have the square root and exponential terms of r. Taking r/rO = 10 and 20, we made computations
for the first two.roots of the minima of all three assumed load dlstnbutlons These values are
listed in Table II We notice that the shift in frequencies is not great for the values investigated.
Thus, within experimental error, eq 77 is still useful for the case of small magmtude of damping.

While the magnitudes of the minima are too small for any-helpful information, those of the
maxima are of considerable interest. Setting r/ry, = 10, their values (scaled magnitudes) and the
corresponding (scaled) frequencies are calculated in Table III for a variety of damping coefficients.
Also, the magnitudes of the §urface v1brat10n, in the v1cm1ty of the first max1mum, vs the damping
effect of the ground are illustrated in Figures 2-4. Though the peaks mdlcated on these figures
are not very sharp, the corresponding critical frequencies can be located with good accuracy.**

Let M, , be the ratio of the magnitude of the first observed maximum to that of the second -
maximum. A set of curves showing the effect of damping on these ratios is given in Figure 5. It is
seen that the values of M 1.2 change rapidly with the change in values of tan (02/ 2). Hence, they
are sensitive indicators of the damplng magmtude of the’ ground

*Values of the zero roots for Bessel functions may be found in tables, for example, E. Jahnke and F. Emde,
Table of Functions, Dover Publication. First three roots of J1 are: Xl = 3.832, X2 7.016, and X3
10.173; and those for J, are: X = 5.135, X, = 8.417, and X3 = 11.620.

tFor greater distance and higher damping values, the amplitudes are too small-to distinguish-the minimum. - -
*xSince their magnitudes do not change rapidly in the vicinity of thé maxima; the measuréd values aré ‘quite’
close to the true peak values even if not actually at the peak.
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" Table II. Vibration frequencies, at minimum amplitudes, as a function of
observation lecation (r/ry), damping magnitude (tan 0,/2) and input load
distribution: 1) uniform, 2) parabolic, and 3) rigid plate approximation.

) ) : 2ninr0
. 6, . KaT K0 <=—CR—)
n — . tan— : ' '
‘ o 2 (1) () (3
0 3.8317 - 5.1356 3.1416
0 0.02  _  3.8336 5.1408 3.1418
.04 3.8443 5.1658 3.1454
, .06 - 3.8723 5.2322 3.1577
g 0 3.8317 5.1356 3.1416
o .0.02 3.8348 . 5.1430 3.1426
o .04 3.8543 15,1854 3.1519
.06 3.9143 - 3.1822
0 7.0156 8.4172 6.2832
0 0.02 . 70210 ' 8:4280 8.2851
©.04 7.0542 8.4880 6.3040
.06 7.1582 8.7310 . 6.3671
? o 0 7.0156 8.4172 6.2832
%0 0.02 7.0250 8.4340 6.2883
.04 7.0920 8.5539 6.3325

.06 - - : .

Table II. Maximum vibration amplitudes and their corresponding frequencies
at r/r0 = 10 for input load distributions: 1) uniform, 2) parabolic and
: 3) rigid plate approximation.

2 (1) | @ | (3)
2 P (Amp,), o (Ampg),., il (Ampg)
Cp max- Cp - Y2’ max Cr 3 max

.00> | 5.2335 0.11937 6.4598 0.0 1856 4.6042 0.05847
.01 5. 1331 ) .0<7118 6.3579 .00980 ‘ 4.5044 .'037 12
.02 5.0366 .04298 6.2609 00525 4.4080 .02385
.03 4.,9452 .02627 6.1679 .00285 ' 4.3152 ‘ .01550
.04 4.8566 ) .01625’ .6.0739 - .00157_ 4,2262 | .01019
.05 4.7704 01017 - 5.9769 .00088  4.1408 00678
.06 4.6849 - .00644 5.8707 ) ‘00(.)50 4.0572 .00456
.07 4.5967 .00415 . 5.7417 A .00029 ’ 3.9751 .00310
.08 4.5019 ° .00270 - - 3.8927 .00214
09 43886 . .00179 I - - 3.8070 .00149

Where Ampl = H u,(0) ’ Ampy = of Auz(O) Ampg = of u,(0)

poroK, : PoK, PyK,
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E 0|2 P

0.08

— U, (0
Poro K, U (o)

0.04

F igure 2. Vi,braiibn ampliwde vs frequency, near first maximum,
: at r/ry = 10 and with uniform loading.
0.020° — T — - T T

0.016

0.012
Yo K uy(0)
0 2
0008
0004

Figure 3. Vibraiion amplitude vs [requency, near. first ma)fimum,
at r/ry = 10 and with parabolic loading.
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0061

- 8y _
tan— =0

0.04

o B
Pﬂ Kl'

Uz (0)

"~ o002

0.06
0 I 1 | 1 1 1
3.6 4.0 . 4.4 . 4.8
wry ’
Cr

Figure 4. Vibration amplitude vs frequency, near first maximum, .
at r/r0 = 10 and with loading to approximate rigid plate reaction.

T T

(Amp‘) max

(Amp,) max

Rigid plate
; (Approx.)

0 002 0.04 0.06
tan & )
2

Figure 5. Ratio of first and second maximum amplitudes vs
tan 62/2 for three types of input loadings.
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_PART II: NEAR FIELD STUDY |

Motion at center of source : v
In near field study, the influence from line‘integrais f and / along the branch cuts L1 and
Ly Lo .
L2, which represent the effects of the dilatational waves and the shear waves respectively, are
important and can no longer be neglected. Furthermore, the method ‘of steepest descent used in
Part [ to evaluate these integrals is also not appllcable. Hence, to compute the surface motion in

a near field, we have a choice of either numerically evaluating the original infinite integral or using
. the contour integration technique and dealing with the branch integrals.

Here, we.shall choose to deal with the main integral directly and start the investigation with
the uniformly distributed pressure source. The other two cases of pressure distribution will then be
handled in a similar manner,

At the cénter where T = 0, eq 62 becomes

pyrge’®t / > k3 (i) q (k)

u_(0,0,t) = — J kr dk ) ) 78)
20:0:0) = ¢ W) TR kg dk (
.vwhere P, is the uniformly distributed pressure.- cing -
Introducing
kc E : ‘ A
E-_*% . . (79a)
w
and
‘wr - p . h »
g = —2, | - | (79b)
Co
eq 78 can be rewritten as*
2, 1 - itan (0,/2)  2q (€ n,, tan(8,/2),tan (6,/2)] : '
Pel0, 0.0 - - 02 f i ¥ ) (fag)df (80)
pyeit ' FU& 7, tan (6,/2),tan (65/2)]
where
1 . : )
TN 9 :
¢, - <i) sec 2 ; \ (81)
e (1 -2 | (82a)
L 21 = v :

*For simplicity, from here on the time dimension ¢ in the displacement function u, wil.l be omitted.
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(At % o) R
tan 0, = — . DL (82b)
(Ay t 2u') o

M and tan 6 are defined by eq 48a,b , v is the P01sson s ratio of the supporting medium, A', A",
and py p" are the real and imaginary parts of the complex Lame’s constants A(iw) and p(io), as .
defmed early in Part I, and P is the total load apphed at the source,

Let g, g2u be the real and 1mag1nary parts- of the (scaled) complex center motion. Equatlon
80 may.be further written:as: . : \

UZU(O,Q) = gl,“ (u. a,, tan 5 tan ?) + 1 8gy (u, ag, t 2 , tan _2_) (83)
where
} oo 27 - :
. pcory
v,,0,0) = i u,, 0,0

0€.

is the (scaled) surface vertical dlsplacement at the center of the mrcle under the uniformly dis-
tributed pressure.

In this form it is then possible to express the center displacemems directly in terms of the four
' parameters v, ag, tan 6,/2, and tan 6,/2. To illustrate this relationship, we take the cases of v =
0.25 and 0.5 and plol the computed values of g,, and 8o, in Figures 6-11.

It is seen that both 8, and g, are subjected to the- mﬂuence of tan ¢,/2 and tan 62/2 with
the exception of v = 0.5 where tan 6,/2 has no effect.” The magnitude of thelr effect, however,
varies with the frequency, as represented by a,5. For example, their influence on &1, is more
prominent in the high frequency range (i.e. for large a, values). As for &5, On the contrary, it is

in the middle and near the lower frequency range where a, is approximately equal to 0.5. &14 and

- 89, also respond differently to the variations in tan ] /2 and tan 0 o/2. The magnitude of &1
generally decreased with increased tan ¢,/ 2 or tan 6 / 2 values. In the case of 8oy it first in-
creases in the lower frequency range -and then decreases at higher frequencies when the value of
tan 0,/2 is increased; however, its value is generally increased with increased tan 6 /2.

The response of 8,, and &ou to vibration frequencies and the damping properties of the sup-
" porting medium may be better illustrated and understood by using the analogy of the ‘mechanical
impedance.’’ :

Differentiating eq 83 once with respect to t, we get

N 0y - Oy 0y 0y
zu(O'O) = |- 8, (V, a,, tan —é— ,-tan ?) + iglu (V, ag, tan 5 ,tanz_)], (84)

The mechanical impedance may be defined as the ratio of the applied force to the center veloc-
ity of the ‘‘plate.”” Let it be denoted by Z." Then,* the mechamcal impedance of the medlum for a
» umformly distributed pressure source is: -

*For simplicity, &, (v, ag, tan 61, 2, tan 0 /2) and &y, (v, ag, tan 0, 2 tan 0 '2) are abbreviated to g,
and 8oy
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T T T T T T T
0.24 =
0.20 .
0.16 -
Uniform Pressure Source: ¥v=0.25
o2k + — —Elastic, \_q:
tonizo
2
008 | L 1 1 1 - | 1 .
0 0.4 08 o2 1.6
i (Ufo ‘
°7 ¢,

.0.24

- 020k |
-9, 0.16} —H
012F ‘ \ —
o ‘Uniform Pressure Source: ¥=025
- — — Elastic -
A tan —g—':pl ) .
oosl C : S
1 1 ] 1 1 1 1
0 0.4 - 0:8 1.2 1.6
‘wr,
Qo= —2
C,

Figure 7. g, vs a; and tan (6>2/2).
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192
0.08 -
.
0.04 Uniform Pressure Source: ¥=0.25 _]
: — — Elastic . -
mio
L 1 L 1 1 1
o 0.4 0.8 1.2 1.6
wr,
a, =
o c,
~ Figure 8. g4 vs ag and tan (6,/2). ~
T T -1 T T T
/
0,"6 e -
0.12 ]
9.

0.08

004}

Uniform Pressure Source: v=0.25
— —Elastic
tan - 5 ]
2
1 1 | 1 1 |

0.4 08 . 12’
’ wr,
Qo =——

Ca

Figure 9. &g Vs ag and tan (0,72).
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Figure 19. g, vs a, and tan (62/2). |
- |
T T T T T
0.12} . i
008~
9, :
_0.04 -
Uniform Pres\sur.e Source:v:0.5
— —Elastic -
B Aﬁ'« 8 n
B — ‘ on -
1 L 1 | t 1 L
0 04 .08 1.2 1.6
wr
Qo = c,
: |
|

’ Figuré 11; g2 Vs a, énd tan (6,/2).
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2 . . .
pcor , ,
Z :1____3_9___._ ; : . (85)
ey, v 185 -

The. ‘“‘mechanical resistance’’ R and the ‘‘mechanical reactance’” X are readily shown to be

2

peyr 8 L :
R -_ %0 | "2 S (86)
u a 2 sl i
0 81q t 8oy o
and
2 o
: peyr . ) S
X, =20 o L (87)

a 2 e e
0 8, ¢ »gzu" -

Hence, it is clear that losses in a medlum are related to g2 “and the stiffness to &1y The
relation of R and X to ag is shown in Figures 12-14. We see that both X and R are decreasing
with mcreasmg 30 The determmanon of tan 6 / 2 from measurements appears to be best accom-
plished using a low frequency range, i.e. for 30 less than 0.5.

When the force distribution of the source is in the form of a parabola or as the static reaction
under a rigid plate (Rigid Plate. Approximation), _t_.he_surface displacements at r = 0 become

4P vt /w k3 (iw) g (k)

u, (0,0,t) = — _ : J, (kry) dk ' (88)
z - _—
P ﬂrgy(i({)) ‘0 kF (k) 2 0 .
~and
P,el@t o0 (m;)q(k) '
u (0,0,t) = - —— —s (kry)dk . 89
ZR( ) 27”.0#,(1'(‘)), y . F(-k) in O) . ) ( )
Equations 88 and 89 can also be written in »_t"’h‘e form: .-
? 0y .0 Osy ’ 0, 0y
Uyp(©.0) = gy (viag, tan oan 2—) iag, (v.f;zo, S otan 2) (90)
and
0, 0y o 0, ()2
U,z(0,0) - 81r (u, ag, , tan ?) + igop (u,ao. tan 5 tan _2.) 91)
where
2
pesr
U,, 0,0 - — 22 u (0,0 -
p P eiw( !
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Figure 12. X, R'vs aj and tan (0,/2).
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Figure 13. X, R vs a; and tan (05/2).
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Figure 14. X, R vs:ag and tan (6,/2)
and
pcgly
U,p0,0) =—=2 u (0,0
Co . iwt . P

are the (scaled) center surfaee vertieal»displacements with subscripts p and R referring to parabolic
and rigid plate approximation pressure distributions, respectively.

The relationships of & and g, to the parameters v, a,, tan 6,/2 and tan 6,/2 for these two
pressure dlstrlbutlons can be computed from eq 88 and 89 Smce they are 31mllar to those presented
for the uniform pressure source case, graphic presentations are omitted. However, their simplified
analytical expressions as well as that for the uniform pressure loading will be attempted in the next -
sectlon

Approximauon ot diSplacements

' The numerical procedures used to ‘obtain the relationships of &4, &9 With the. parameters v, ao,
tan (9 /2) and tan (0,/2) are lengthy. It was also apparent that presenting the computed values

, grdphlcal]y or in a tabulated form can become bulky if a fairly broad range is to be covered. Hence,

in order to facilitate the comput atlons ‘an attempt will be made to approximate their relationships by
some simple mathematical expressions. With these expressions, it is possible to obtain values for
the center surface displacements without using long computational procedures.

To achieve this aim, two approaches are presented in the following sections.

Approach 1. In the study of the vertical motion of a circular ‘‘plate’’ resl'i”u;, on elastic ground,
Reissner and Sung*“tried to express the center displacement in terms of the polynomials of 4, the
dimensionless frequency ratlo That is

U,0,0 = £, 1 il, s (92)



26 " VIBRATORY SURFACE LOADINGS ON A VISCOELASTIC HALF-SPACE

where
f; = cyo + €193 + cyqa5, | v (93a)
fo = Cgyay + o330 + Cogag, | - . (93b)

€40 to Co5 are coefficients of the polynomial and their values depend upon the load distribution on
the ‘‘plate’” and the Poisson’s ratio of the supporting medium. The coefficients are listed in
Table 1IV. ' -

Table IV. Coé(ficights of functions f, and f,. (From Sung.’)

Uniform Parabolic Rigid

v c
pressure pressure . base
€y -0.23873 -0.31831 -0.18750
Ci2 .06968 1.04775 .07031
1/4 Cia ~ .00416 — .00238 - .00613
Cy .14859 ..14859 .14859
Cy3 - 01776 - - .01184 ~".02368
Cs .00081 ~.00041 .00129
C1o - .21221 — .28294 — .16667
€y, . .05158 .04126 .06076
1/3 Cia — .00345 - .00197 — .00509
€, .13063 .13063 ©-.13083
s - .01504 - .01002 - .02005
€5 .00066 .00033 _ .00105
Cyo - .15916 - 21221 . = .12500
Ci2 ©.03979 .03183 .04688
172 Ciq : — .00243. —..00139 — .00358.
Cay | 10455 .10455 10455
Cy3 - - — 201104 - .00756 . —~.01472
s : -.00044 . . .00022 . .00072

For a viscoelastic foundation, there should be a damping effect resulting from the dissipative
properties of the medium. Hence, the first step of approximation is to consider the influence of
tan 6,/2 and replace f; and f, in eq 92 by their counterparts g, and g,, which are defined as

- L0 0y, '
&, = (8} + 89 (1 - tan ?) + 2(g'y - gy tan 5 , (94a)
& = (8% - &%) <1-— tan” =) - 2(gy + 89 tan 5 S (94b)

: 85, 0
8y =9 + cl2a§ (1 - tan? ?2) + cMag (1 - Gtanz.;—) : (95a)
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0

8] = (cgy3g '+ 302333 + 502538) tan e (95b)
‘ . 62 - 62
85 = Cg48g + c2330 (1 - 3tan® ?) + 02530 (1 ~ 10tan® 2_) (96a)
. 6,
85 = 2(01283 + 2»c14ag) tan»-z—. (961)

-Thus, using the corresponding coefficients from Table IV, center. displacements.of a circular
‘‘plate’’ under the three types of loading conditions.can be computed which include the effect of
the dampmg property of the medium.

) F‘or the purpose of comparlson, the 'values. computed from the approx1mate expressmns are
checked against the integral solutions in the range of a; from 0.25 to 1.5 (with increment = 0. 25)
and tan .6 o/2 from 0 to 0.1 (with increment = 0.02). Within this specified range, the dlfference in
dlsplacement amplitudes is generally within 3% with values from the approximate expressions
usually larger. Only in some special situations, i.e. when both frequency.and damping are high and
for the Rigid Plate (approximation) loading condition, the differences are in the neighborhood of 4%.
The difference for values of & 1 and &, are, however, considerably higher; from a few percent to as
high as 20%. Since the large difference occurs mostly for small values of 81 (or g,), values of
displacement amplitude are not really affected.

It appears, therefore, that results of this approach can be used to compute the center displace-
‘ments of a circular source with good accuracy. However, a different approach may be needed for
approximating the functions &, and g, if their values are of direct concern.

Approach 2. To include the damping effect from both tan 6,/2 and tan 6 o/2, we introduce two .
functions ¢, and ¥, each as a function of only one of the two dampmg constants We further
assume that g, may be represented by the product of ¢, and ¢, i.e.

o, 6, 6, 0,
&, (v,ao, tan,?, tan’ E—) by (v,ao, tan —) Uy (v,ao, tan ?) 97)

In this relationship, ¢, and ¢, can be shown to take the form

¢ 0y £, g) | . 98
,ap, tan — | = ; ’ ‘ |
P1 (V 0 2) -1 + AAtan (6,/2) _ ' o

]

’ o, . . . :
v (u,ao, tan 2_> 1-CCO5 - vt , (98b)
‘where £, (v, ap) is defined by eq 93a and 44 and CC are coefflclents with their values dependmg
upon both v and a, o
To represent g,, a similar approach may be employed Let $, and Y5 be the other two functlons

Then we have

6, 6, - 0\ )
8o (v, a,, tan 5 tan 5 ) = ¢y (v, a,, tan ?) Yy (v, a,, tan ?> (99)
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and
A 0 f,(v,39)
1 2 0
Lan, tan — ) = (100a)
P2 (V For 41 3 ) 1~ BB tan (0,/2)
0, 0, ,
Vo (u,ao, tan ?) -1+ DDO5 - Vtan  (100b)

where fyv,a,) is defined by eq 93b and BB and DD are coefficients similar to A4 and CC.

" 'Valies of AA, BB, CC, and DD-are ‘Shown in-Figures 15-17 for the. three loading conditions.
In each case they are plotted against- a; for the three'Poisson’s t'a't»ios v = 0‘25 0.33, and 0.5,

Using these coefficients, the approx1mated values of &, and g2 and also the complex amphtude
at the circular center can be computed. Their values are again compared with the integral solution
in the range of a; from 0.25 to 1.5, tan 6,/2 from 0-to 0.15 and tan 65/2 from 0 to 0.1. In'this1 range,
the dlfferences in computed amplitude are generally less than 1%, except atag = 0.25 and tan 6 /2
= tan 02/ 2 = 0.1. At these particular values of frequency and damping coefficients, the values
from the approximate solution for the three loading conditions are off by 1%%-3%. Values for g1 )

- and g, in this approach 1mprove consxderably Thelr dxfferences with the 1ntegral solutlons are 1n
'general less than 2%. : S

s

o~

Figure 15. AA, BB, CC and DD vs ag, uniform p;eSSuref'source.
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Figure 16. AA, BB, CC and DD vs a,, parabolic pressure Sourée.

S 24

Figure 17. AA, BB, CC and DD vs ag, rigid plate approxiinalion.
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CONCLUSION

Investigations of surface displacements with assumed types of pressure sources have indicated
that simplified closed form solutions may be obtained for far field surface vibrations. In these
areas, the effect of surface (Rayleigh) waves predominates’ and therefore, material constants may
be determined from surface vibration measurements

Amplitudes of the displacement functions are shown to be related to the characteristics of the
input source. Hence, unless these characteristics are known, determination of the ground properties
through use of amplitude measurements at a single location will involve some uncertainty,

In addition to the terms affected by the properties of the source as mentioned, there is a common

factor in all displacement functions regardless of the source. This factor indicates that displace-
"ment amplitudes vary inversely with the square root of the distance from the source and also de-

crease exponentially with a damping: factor related to the damping properties of the medium. There-
fore, if we apply the ‘‘Amplitude Ratio’’ technique of using surface measurements from fwo locations,
the ground properties may be determined without knowing the characteristics of the source. In view
of the uncertainty of the pressure distribution beneath the base plate of a testing vibrator, this
technique may be desirable. :

A study has also been made of the vertical displacements at the center of three assumed pres-
sure loadings, namely uniform, parabolic, and rigid plate approXimation. It was found that the com-
plex displacement amplitudes may be expressed in terms of two real functions, gi and 82 of their
real and imaginary parts, respectively. In this form it is then possible to express these two func-

‘tions directly in terms of the material xiroperties of the supporting medium and the frequency of the
applied load.

In order to facilitate computations, attempts have been made to approximate the above relation-
ships by simple mathematical expressions. Two approaches have been employed. Both can provide
fairly accurate values for the displacement amplitudes. Error in Approach 1 is found to be less than
3%, and that of Approach 2,1%. However, for calculating g, and g, (or the ‘‘mechanical resistance’’
and ‘‘mechanical reactance’’), good accuracy can only be achieved by using the equations of
Approach 2. The difference with the corresponding values from integral solutions is, in general,
less than 2%. :

The advantage of these approximations lies mainly in the fact that they replace a complicated
- numerical procedure but require only a small fraction of its computation time.
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