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VIBRATORY SURFACE LOADINGS ON A VISCOELASTIC HALF-SPACE 

by 

T.M. Lee 

INTRODUCTION . 

· It has been the usual practice 1 to apply the theory of linear\elasticity when designing founda­
tions involving vibratory loads. Experience has shown that the theory is normally adequate for 
design but is not always realistic. One reason is that it does not inclm;le the effect of internal 
damping of the soil. Internal damping is a property affecting the stress-strain relationship by 
introducing time dependence. Viscoelastic theory takes such time dependence into account. It is 
suggested that under low stress vibratory loads, many soils may reasonably be considered to be­
have like a viscoelastic material. 

Wave propagation in an elastic half-space generated by .an impulsive force applied at its sur­
face was first considered by Lamb3 in his classic paper On the Propagation of Tremors Over the 
Surface of an Elastic Solid. This study was later extended by Reissner11 to consider. the effect of 
a group of periodic surface forces uniformly distributed over a circular area. The same problem 
was treated by Sting10 and Quinlan7 for two more cases of~ loading distribution: , namely, 1) parabolic 
distribution of the forces, and 2) forces to approximate the static reactions under a circular rigid. 
plate. Sung also provides tables and curves in his paper that can be used to determine the elastic 
constants of a given foundation with appropr~ate tests. In considering machine foundation design, 
Hsieh 2 reworked the Reissner-Sung theory for evaluating the dampi1_1g effect of its supporting medi­
um. Since the original analysis' 8 10 was based on elastic theory, the damping effect referred to is 
that due to geometric dispersion rather than the dissipative property ofthe medium. 

To include the damping effect from energy dissipation, it is proposed to consider the ground 
as a viscoelastic medium and make a_.n analysis based on the assumption that it is -a homogeneous, 
isotropic, linear viscoelastic half-space.6 

The work presented here is subdivided into two parts. Solutions 'to the diSplacement functions 
for a viscoelastic half-space subjected to surface loadings are presented in the first part. As will 
be shown, surface vibrations in areas near the source (near field) are affected by three types of 
waves generated by the source, namely dilatational waves, shear waves, and Rayleigh (surface) 
waves. The first two types of waves diminish with distance much more rapidly than the third kind. 
Hence, at great distances from the source (far field), only the .effect of the Rayleigh waves needs 
to be considered. With this simplification, closed form expressions for surface- motions at great 
distances are obtained in this portion of the analysis. A field method of using these results to 
determine the complex moduius and the damping property of a viscoelastic material3 4 is proposed. 

In the second part of this work, the n~ar field effect of vibrat~ry loadings over a surface cir­
cular area is examined and the vertical motion at the center of the circle is calculated for the three 
types of force distribution as used by Reissner and Sung. Under these loading conditions, the dis­
placement function is found to depend on the frequency of the applied load and also on the properties 
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of the supporting medium. Using these as parameters, a fairly broad range of computations for the 
center displacements· can be provided in table form. However, to facilitate the computation, an 
attempt has been made to reconstruct the eenter displacement as a simple function of the (load) 
vibration frequency and the material properties of the half -space. With these relationships, compu­
tations may be accomplished without_using a. computer; furthermore, computation ~irne will b~- only 
a small fraction of that required- for theoriglnai analysis. - - - -

BASIC ANALYSIS 

The wave equation in a homogeneous, isotropic, linear viscoelastic medium may be expressed:~ 

(1) 

(2) 

where ¢ and tjJ are dilatational and shear potentials, respectively, 

X(iw) A'(w) + _ i ,.\•i (w) 

p.(iw) p.'(w) + i p."'(w) 

-are the· co'mplex' Lame's constants, pis the density of the medium, and -V2 denotes the Laplacian 
operator. 

Introducing 

' 2(· ) c 1 1w 

c~(iw) 
j.L(iw). 

p 

eq 1 and 2 can be r~written as 

_(3a} 

(3b) 

/. 

(4) 

(5) 

Applying first. the Fourier transfo~m and then the Hankel transform9 to eq 4 and 5, we get, after 
rearranging, 

2 . a <l>(k, Z, w) 

az 2 [ 

- - - w2 ] · 
k2 - __ -_ <I> (k, z, w) 

_ c~(iw) 

0, _(6) 



VIBRATORY SURFACE LOADIN9S ON A V~SCOELAST/C HALF-SPACE 3 

a2'1'(k, Z, w) - ·[ k2 - ~ 1 'l'(k, Z, w) 

az2 
. c~ (iw) . . 

0. 

The solutions of eq 6 and 7 may be written as: 

<I> (k, z, w) A (k, w) e-qz P (k, w) 

'I' (k, z, w) B"(k, w) e-sz P (k, ~)' 

where A (k, w) and B (k, w) are to be determined from the boundary conditions of the problem, 
P (k, w) is the transformed load function, 

.S 2 (k, w) k 2 
- k~(iw), 

and 

w 

c
1 
(iw)' 

w 

The boundary conditions to be· satisfied at the free surface (z = 0) of the· medium are 

and 

. (aur au z) 
(r ) = p. (1w) - + - = 0 

rz Z=O, az iJr . 

(7) 

(8) 

(9) 

(lQb) 

(11a) 

,(11b) 

(12) 

(13) 

where u z• ur are displacements in the z (downward)'and r (radial outward) directions respectively, 
and p(r, t) is the applied vertical surface load.* 

Since uz is related to the. poten~ial functions by 

(14) 

*For our present interest we consider only loadings normal to the free surface of the medium, though other 

modes of loadings may be treated in a similar fashion. 
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eq 12 can be rewritten as 

Transforming eq 15 first with respect to t and then to r, we find 

(2k2 - k~(iw)] <I> (k, Z, w) + 2k2 a'l' (k, Z, w) az 

Using the relation 

a¢ a21/J 
u =-+--

r ar azar 

and eq 14, eq 13 can be written as 

P(k, w) 

p c~(iw) 

-·p (r, t). (15) 

(16) 

(17) 

(18) 

Integrating eq 18 once with respect to r and then applying the Fourier and Hankel transform, we· 

get 

(19) 

Substituting eq 8 and 9 in eq 16 and 19, we obtain 

1 (20) 

and 

-2qA(k,w)' + [2k 2 ·~ k~(iw)]B(k,w) = 0. (21) 

Solving eq 20 and 21, the expressions for <I> and 'I' then become 

<l>(k, z, w) 
e---(Jz 

F(k, w) 
p c~(iw) 

(22) 

'I' (k, z, lu) 
2q P(k, w) 

p c~ (iw} F (k, w) 

(23) 
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where 

is the well known Rayl~igl(s fun-~ti<;m. 

and 

To- obtain ¢ and 1/1, we irivert eq 2_2 and 23 and ge~ 

cp (r, z, t) 

1/J(r, z, t) 

·_:. 

2

_ -l"' :_· . . 

1
:x>_ f. 00

. [2k
2 

~ k~ (iw)] P (k, w) 
----,--~--------'-'-- e_;_qz +-iwt J

0
(kr)kdkdw 

-oo 0 p c~(iw) F(k, uJ) 

1 
2rr JJ 

-00 0 

2q P (k, w) e-sz + iwt J 
0 

(kr) kdkdw. 

p c~(iw)F(k, w) 

(24) 

(25) 

(26) 

These are the expressions for the potential functions in integral= form. ·To find the response 
of the medium to the surface loading, we substitute eq 25 and 26 in eq 17 and obtain 

1 
2rr JJ H2k~ -_ k~(iw)]e-qz- 2qse-sz1 P(k,uJ) 

---,----------,--,---------- ____ eiwt J
1 
(kr)k 2 dkd(v. (27) 

F (k, w) p(iw) 
-;-00 . 0 

Similarly, the expression for the vertical displacement is 

2rr f
oo foo n2k2 - k22(iuJ)j q e':_·qZ - -2qk2e-szr ... " 

-----'----------- P(k, (a)' eiwtJ
0

(kr)kdkdw. (28) 
F (k, w) fl. (icv) 

-00 . 0 

It is seen that the displacements at given points are functions of the material properties of the 
medium and the applied load function P (k, w). In order to establish a technique of using the meas­
urable displacements for determining the material constants we shall investigate a few assumed 
loading conditions i'n thefollowing sections. 

PART I: ·FAR FIELD SURFACE MOTION:· 

A single oscillating source 

We first consider the ease of a concentrated periodic force applied on. the surface of the medium. 
If the origin of the r-Z axis is chosen to coincide with the load point, we may write 

Po ;-
p(r, t) = - o(r) eist 

2rrr · 
. . 

(29) 

with P 0 being the amplitude of the oscillation, ~the oscillating frequency and o(r) the Dirac delta 
function. · 

.. 'L 
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The Fourier and Hankel transform of eq 29 is 

p (k, (.!)) = p 0 8 ( (.!) - (,') . (30) 

Substituting eq 30 in eq 27 and performing the integration for 0, we ·get· 

(31) 

where 

q• (32a) 

and 

(32b) 

Similarly, 

(33) 

For convenience, we replace <;by (.!) and rewrite eq 31 and 33 as 

p ei0t 00 l[2k2 - k~ (i0)] e-qz - 2qse-szl 
0 f J 1 (kr) k 2dk ur 

2TT J1(i0) F(k) 
0 

(34) 

p ei0t 00 1[2k2 - k~(i0)] qe-qz. - 2qk2e-szl 
0 f u = J0 (kr)kdk. z 2rr 11 (i0) F(k) 

0 

(35) 

Since our interest is the surface measur.ements; we let z ;:::; ·o and obtain the surface motions 

Before performin~ the integration of the above equations, we note that the positive sign in 
front of the square root. of 

~q(k,0) . ! /k 2 - ki(i(.!)) 

(36) 

(37) 
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and 

shoulQ be used in order not. to have infinite values ~or the potential-functions <I> and 'P, eq Sand 9, 
as z approaches oo • Hence t}le quantity 

k k~ (iw) q 

F(k) 

of the integrand is an odd function of k and if we use the relationship 

i (kr) = ~ [H < 1) (kr{ + H (2) (kr)] . 
0 .... 2 0 ... 0 . . . 

the integral of eq 37 can be written as 

I 
1 

2 

00 k }{2 q 

f --2 - H <1)(kr)dk 
F(k) ~ 

-oo 

(38) 

(39) 

(40) 

where H 
0 
< 1) denotes the Hankel function of the· first kind of zero order, and H 0 (

2
) the second kind 

of zero order. 

Changing the variable of integration from k to a complex variable ( = k + ir, we may follow 
the route* as indicated in Figure 1 for contour integration in (-plane. Noting that for large argu-
ment 

(41a) 

(41b) 

the integrand vanishes on the infinite arc and we get 

I (42) 

where J and J are the line integrals of the function along the cuts L 1 and L2respectively, 

Ll L2 

K is the Rayleigh pole, F• is the derivative ofF with respectto k. 

The first term on the right~hand side of eq 42 represents the Rayleigh (surface) wave effect, 
while the branch line.integrals ~re the effects of the dilatational waves and shear waves 

*Since both k 1 and k2 are complex numbers of w with Re w > 0, the branch cuts are parts of hyperbolas as 

shown in the figure. 
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T 

Figure 1. Integration contour in complex t-plane. 

Table I. Comparison* of surface vibrations from dilatational waves and 
shear waves with those from Rayleigh~wave~-, as a· fimction of loc~tion 

(Kr) and Poisson's ratio (v ). 

Dilatational term (%) Shear· term 
1/ KT (%) 

Rayleigh term Rayleigh term 

10 0.38477 0.00405 
114 

20 0.00067 

10 0_.34050 0.00431 
0.30 .. 

20 0.00078 

1/3 
10 0.32880 0.00465 

20 0.00109 

*Values of J and J are computed by the method of st~e.pest descent. 

L1 L2 

respectively. As shown in Table I, the effect of the first term predominates the far: field and we 
may omit those of the second and third terms. 

Hence, in far field we write 

p ej(J)t K k~ q (K) 
u (0) = i_o_. ____ H

0
<_

2>(Kr). 
z 2t-diw) F' (K) 

. Using the asymptotic expansion of H0( 2) for l~rge Kr (eq 4lb) we get 

il (0) z 

. p O ·. (-·, 1· .)\ K k~_q (K) 

- fL(iu)) -2rrKr . F'(K) 
exp li(li)t 

Similarly, it ean he showri-t-hat -
. "' 

. 11 1 Kr - -) . 4 .... 

(43) 

(44) 

J45) 
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It is seen that the amplitude of the surface motion d~cays. with distance r ~ccording -to .1/Vr 
·and travels with tlie surface velocity c R as K is 'the ratio of frequency wand c R" 

To find the attenuation effect of the medium, we let 

Then* 

and 

where 

k 
R 

K(iw) 
w 

p ... 
tan 02 = - .. , 

11' 

and 11' and 11 11 are the real and imaginary parts of 11 (iw) as defined before. 

Thus, if we write 

we get 

.. - . (. M; .)% @2 .· 
CR = kR(v) ·-p-. . sec. 2 . 

the attenuation factor 

(46) 

(47) 

(48a) 

(48b) 

(49) 

(50a) 

(50 b) 

*As shoWn in elastic theory, kR (v) is a function of Poisson's ratio v. Its value varies from 0.875 to 0.955 

when v changes from 0 to 0.5. Since we are not certain how v varies with frequency, and since the frequency 

range involved in the present study is quite limited, we may assume that kR (v) is independent of frequ~ncy .. · 
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Using eq·49, the displacement· functions can be rewritten as · . 

u z (0) 

u (0) r 

where 

;,., 
.· .... 

_P0 KrK(iw), 1 )~i · l · 
-1 ( exp (-a2 r) exp iw (t- CrR .) ~ i-

4

11 1• 
ll(iw) · 2TTK(iw)r 

K(2K 2 + k~:- 2q(K}S(K)) 

F· (K) 

are functions* of v, the Poisson's ratio. 

(51) 

(52) 

,(53 a) 

(53 b) 

Thus, we see in a viscoelastic medium the amplitudes are further reduced· exponetitiaJly with 
distance by a factor related to the dissipative property of the medium. 

. . If we choose two reference points in the far field of distances r 1 and r 2 from the source, 
respectively. and take the ratio of the vibration amplitudes of these points, t~en the resultant quan­
tity has a rather simple expression and becomes 

u z2 (0) 

(54) 

as the other terms are not a function of r and thus do not change with the loc;;ttion. Since r 1 and 
r2 are known, if the value of R 1, 2 is measured it is not difficult-to de.t,ermine a2 frmn eq 54 .... 

The phase shift x between the points may be given as 

X1.2 
(55) 

If we select points 1 and 2 with a phase shift of 211, we get from eq 55 

(56) 

*Th'esf{are agaiilu.nder the'a~·stimption' that kR(ii) IS independPnfol frequency, as··mentioned earlier. ]tis· 

assumed also that tlw ratio C 1 to c2 is not affected hy frequf'u«:y changes in the test range. 
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where d 1 2 is the distance between the selected points and f is. the vibration frequency. ··Thus,: 
surface wave velocity may be determined through observations of phase shift between selected 
points.* ~ .. 

. Since in field practic~· v'ib~ation is generalry transmitted through the base of a vibrator, load 
is actually applied to the ground on a finite area rather than at a single concentrated point. There­
fore, there will be an influence on the displacement functions arising from the characteristics 
associated with the area and shape of the base plate andthe pressure ~istribution beneath the plate. 
Thi~ will be investigated in some detail· by considering several types of input source.s with variety 
in their amplitudes and size expressed in terms of non dimensional quantity. . 

A group of forces Qver a finit~ ar.~a . 

As most of the vibrators are equipped with circular bases, it may be proper to consider only the 
possible load distributions over a d.rcular area. For this purpose, we t~ke. th~ following three cases 
of forces which are distributed: · 

1) uniformly over the area 

2) as a parabola 

3) as the reaction under a rigid plate (approximation)~ 

For case 1, ;we let the radius of the circle be ro and the applie~ load be Po· ~hEm the load 
functjon m'lY be rPpresented by · 

p (r, t) = p
0 

ei(t [h(t)' - h (r ~- r
0

)] · 

w_here h(.'~.) is ·the Heaviside step function. · 

rrhe· Fourier. anq I::Ian~el transform .of eq .57. is 

. (C7) 

(58) 

· Substituting.eq 58 into the expressions for the displac~me11t fq~c~io11s ur and u z (eq 27 and 28) 
and .replacing (by w after integration, .we get · · · · · · · · · · 

and 

Po ro eiwt 

p.(iw) 

.
1

oo _[(_2k_
2
_~_k~_)_e --q-,--z_·-_2_q_s_.·_e_~s_.z_] . . . 

J 
1 

(kr 
0

) J 
1
. (kr).kdk 

·. F(k) 
0 

Poro eiwt oo [(2k2 - k~)qe-qt - 2qk2e-sz] .. ---J - . F(k) .J 1 (kro)Jo(kr)d_k. 
· p.(iw) 

0 

''(59) 

(60) 

*This was the technique used by the U.S. Army Waterways Experiment Station soil dynamics group in field 

observations of surface velocity and, subsequently, for the determination of elastic modulus of soils. De· 

tailed procedure can be found in the report by Z. B.· Fry, A Procedure for Determining Elastic Moduli of Soils 

by Field Vibratory Techniques, USAE WES Miscellaneous Paper 4-577, June 1963. 
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At the surface 'then they reduce to ·. 

Po ro eiwt oo 

"ni (0). = . .. ·f.· 
. p.(iw) 

0 

(2k 2 - k~ - 2qs) 
J1 (kr 0).J 1 (kr) kdk (61) 

. .._ .. · 

p r . eiwt' 00 k2 q 
' .o .o · j' -=_ J 

1 
(kr

0
)J

0 
(kr)dk. 

p. (iw) F (k) .. · . · 
0 

(62) 

Using techniques similar to those outlined in the last section, a~d notfilg that for iarge ~ 

we get,* in far field r > r 0 , 

u (0) = Po_ro K. J
1

(kr
0
)' ~exp (-a~t) exp [i~ (r _, ~) ·- i 71

] · .(64) 
zu p.(lw) z ~ --;;; ;c ~c R 4 . : 

Her·e· again, the effect of the two branch line integrals has been neglected.· 

Comparing eq 64 with eq 51, there is a new factor J 1 (Kr0 ), replacing K, appearing in "zu (0) 
due to the assumed load distribution. Since the Bessel function has zero roots for real arguments, 
there will be frequencies at which the source will produce no vertical surfa~e IIlOtion in the far field. 
Physically, it may be interpreted as the vibration effects produced by each individual element of the 
source which cancel each other at these critical frequencies. However, if the ground behaves visco­
elastically, i.e., involving dissipation of energy, the arguments of the previously mentioned Bessel 
function are complex and therefore motions will be reduced to minimum magnitudes, rather than zero, 
at these.,eritical frequencies. 

Since oth~r ter~s are simii~r to the single concentrated forceease •. it is expected that the . . 
expressions for the Amplitude Ratio R 1 2 and the phase shift X 1 2 are of the same form as given by 
eq 54 and 55. Hence, the techniques fo'r determining the .s!Jrface 'wave veJocity and the attenuation 
factor can also be applie? for. the .uniformly distributed input source over a circular area. : 

For the remaining two cases of load distributions we let 

Pp (r, t) (65) 

(66) 

*Th.e_ integr~tioil of eq 61 for u~ (0) cari be handled in a similar way .. Since field measurem~nts··~re nonilally 

concerned with only v~.rtical ?isplacements, this part is omitted .. Also, for simplicity, K(iw) is ~tten asK. 
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and obtain 

(67) 

(68) 

~here P 0 is the total-load* ~nd the subscript under the load function on the left-hand side of the 
equation refers to the types of the assumed load distribution. 

and 

Hence, the corresponding displacemen~ function~ are 

U, 
rp 

uzR 

.4 p eiwt oo [(2k2 ~ ·_k,_22) e-qz_. ·- 2qs ~...:sz] 
- . .o . . ·. J . .-· F_ (k) J 2 (k ro)Jl (kt)dk 

TTrg 11 (iw) 0 . 

- 2p".roe_ illw(tl.w) .Joo- [(2k2 ~ k~) e-qz - 2qs e-sz] 0 
· -~in (kr0)J~(kr)kdk .F(k) 

0 

. . ' - . 

2

PTTrooe.l1iw(l.tw .. _ ):· -Joo.· [(2k2 -: k~) qe-qz ·_ 2q k2 e-:-szl . . -
----,----:----:-:--:---~----c--- s~~ (kro)Jo (k~')dk ... 

F(k) 
0 

For vertical surfa<;!e· displacements, we have 

u zp_(O) 

and 

*Note·that Po has been changed to P0 as it is the more appropriate symbol for total force. 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 
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Proceeding with the technique of previous sections, the equations above can be shown to be­
come 

u zp (0) (75) 

arid 

u zR (0) P o.Kz sin ·(,{r
0
·) 

1
' · · --~' 1 :- exp ·(-·d 2~ :r) ~xp [:i_w_·f·, .. -_t __ -. C··r_.R· ) .. · ·· ; "·j 

rop.(iw) v~ .... ':· \: .- 1 4 '. '(76) 

in the far field when the effects of the branch line integrais a.re neglected ... 

Here again we notice that the functions J 2 (~t0) and:sin ,(r0 _will produce zero vibration ampli­
tudes at some critical frequenCies for elastic media. Hence, all critiqal frequencies are determined 
from zeros of the Bessel or circular functions. Let Xn be the nth root* of these fimctions. Then 
we get 

f 
cR.xn 

CR 
2rr !n r0 

--- or: n 2 rrro X n 
(77) 

Thus, knowing the surface wave velocity (or dispersion c~rve), one may predict the critical 
frequencies from ~q ?7; or, by obsrrving these frequencies, the velocity may be ~alculated. 

However, as mentioned earlier, when dissipation is involved there will be ;rio zero ground mo­
tions but rather the minima. The value of the minima may be determined from the amplitude terms 
of eq 64, 75 and 76. Hence, when damping is present, it will cause a shift in critical frequencies .. 
Furthermore, these frequencies also depend upon the location of the observations made as they all 
·,have the square root and exponential.ter_ms of r. Takingr/r0 =:= 10_ and 2Q, we made computations 
for .the first two roots of ..the minima of all three assumed load distributions. These values are 
listed in Table II. \ve n·otice that the shift in frequencies is not great for the values i-nvestigated. t 
Thus, within experimental error, eq 77 is still useful for the case of small magnitude of damping. 

While the magnitudes of the minima are too small for any-helpful information, _those ,af the 
maxima are of considerable interest. Setting rlr0 = 10, their values (scaled magnitudes) and the 
corresponding (scaled) frequencies are calculated in Table III for a variety_ of damping coefficients. 
Also, the magnitudes of the surface vibrati.on, in the vicfuity of the first maximum, vs the damping 
eff~ct of the ground are illus

1
trated in· Figures 2-4. Though the peaks indicated on these figures 

are not very sharp, the corresponding critical frequencies can be located with good accuracy.** 

Let M 1 2 be the ratio of the magnitude of the first observed maximum to that of the second · 
maximum. A set of curves showing the effect of damping on these ratios is given in Figure 5. It is 
seen that the values of M 1, 2 change rapidly ,_with the change in values ()f t.an (02/2). Hence, they 
are_ sensitive indicators of the dampi~g .II~a.gilitude ?f the· ground. 

----------
*Values of the zero roots for Bessel functions may be found in tables, for example, E. Jahnke and F. Emde, 

Table of Functions. Dover Publication. First three roots of J 1 are: X 1 = 3.832, x2 = 7.016, and x3 = 

10.173; and those for J 2 are: X 1 = 5.135, X2 = 8.417, and X3 = 11.62G. 

tFor greater distance and higher damping values, the amplitudes are too small- to distinguish the minimum. · 

**Since their magnitudes do not change rapidly in the vicinity of the maxima; the measured values· are' qui ie 
close to the true peak values even if not actually at the peak. 
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Table II. Vibration frequencies, at minimum amplitu.des, as a function of 
observation location (r/r0), .damping magnitude (tan 82/2) and input load 

distribution: 1) uniform, 2) parabolic, and 3) rigid plate approximation. 

()2 
X KTO ('; 

211t0 r0 ) 

n r CR n tan·~ 

ro 2 (1) (2) (3) 

0 3.8317 . 5.1356 3.1416 

10 
0.02 3.8336 5.1408 3.1418 

.04 3.8443 5.1658 3.1454 

.06 3.8723 5.2322 3.1577 

0 3.8317 5.1356 3. 1416 

20 
. 0.02 3.8348 5.1430 3.1426 

.04 3.8543 . 5.1854 3.1519 

.06 3.9143 3.1822 

0 7.0156 8.4172 6.2832 

10 
0.02 7.0210 8.4280 . 6.2851 

.. 04: 7"0542 8.4880 6.3040 

.06 7.1582 8. 7310 . 6.3671 
2 

0 7.0156 8.4172 6.2832 

20 
0.02 7.0250 8.4340 6.2883 

.04 7.0920 8.5539 6.3325 

.06 

Table UI. Maximum vibration amplitudes and their corresponding frequencies 
at r/r0 = 10 for input load distributions: 1) uniform, 2) parabolic and 

3) rigid plate approximation. 

()2 
( 1) (2) (3) 

tan-
2 wro wro wro 

CR 
(Ampl)~ax 

CR 
(Amp2)rpax 

CR 
(Amp3)max 

.00 5.2335 0.11937 6.4598 0.01856 4.6042 0.05847 

.01 5. 1331 .07118 6.3579 .00980 4.5044 .03712 

.02 5;0366 .04298 6.2609 .00525 4.4080 .02385 

.03 4.9452 .02627 6.1679 .00285 4. 3152 .01550 

.04 4.8566 .01625 . 6.0739. .00157 4.2262 .01019 

.05 4. 7704 .01017 5.9769 .00088 4.1403 .00678 

.06 4.6849 .00644 5.8707 .00050 4.0572 .00456 

.07 4.5967 .00415 5. 7417 .00029 3.9751 .00310 

.08 4.5019 .00270 3.8927 .00214 

.09 4.3886 .00179 3.8070' .00149 

Where Amp 1 = __ P._. u (0) 
roll ro p. 

z Amp 2 = -- uz (0) Amp3 = -- u z(O) 
PoroKz . . PoKz PoKz 
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fL 
-p·· K u,(o) 

oro .. z 

Figure 2. Vibration amplitude vs frequency, near first maximum, 

at rlr0 10 and with unifor~ Joading. 

0.020' .-----r---.-_:_---,-----,-;:--,--~--· 

0.016 

0.012 

Figure 3. Vibration amplitude vs frequency, near first maximum,··· 
at rlr 0 10 and with parabolic loading.- -
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Figure 4. Vibration amplitud~ vs frequency, near first maximum, 
at rlr 0 = 10 and with loading to approximate 'rigid plate reaction. 

(Amp
1

) max 

(Amp2 ) ma~. 

82 
ton-

2 

Figure 5. Ratio of first and second maximum amplitudes vs 
tan 8212 foe three types of input loadings. 
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PART II: NEAR FIELD STUDY 

Motion at center of source 

In near field study, the influence from line· integrals J and J along the branch cuts L 1 and 

. Ll L2 

L 2, which represent the effects of the dilatational waves and the shear waves respectively, are 
important and can no longer be neglected. Furthermore, the method ·or steepest descent used in 
Part I to evaluate these integral~ is also not applicable: l-ienee, to compute the surface motion in 
a near field, we have a choice of either numerically evaluating the original infinite integral or using 
the contour integration technique and dealing with the branch integrals. 

Here, we shall choose to deal with the rriain integral directly and start the investigation with 
the uniformly distribt~ted pressure source. The other two cases of pressure distribution will then be 
handled in a simUar manner. 

At the center where r = o; eq 62 becomes 

Poroeiwt - oo k~ (iw)q(k) 
u (0, 0, t) = - -.-.-.-.- J J 1 (_k .. r0 ) __ dk 

zu · · p(lw) · · · F(k) · -
.. .· ' . . . 0':.. .· -

whe"e p0 is the uniformly distributed pressure.- cing 

Introducing 

and 

(V 

w ro 
ao = ·--·· ' 

t2 

eq 78 can be rewritten as* 

pc 2 r 
- _2_0 (0 0) . u zu ' 
p e~<ot 

0 

where 

* t;; e2 
c2 (:2)' sec-

2 

71~ 
(1 - 2v) 
2(1 ·_ v) ' 

------ -

*For simplicity, from here on the time dimension tin the displacement function uz will be omitted. 

(78) 

(79a) 

(79b) 

(81) 

(82a) 
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tan 81 
0\1 1: 21111) 

(A't + 211') 
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(82b) 

M; and tan 8 2 are defined. by eq 48a, b , v is the. Poisson's ratio of the supporting medium, A', A", 
and 11', 11 11 are the real a~d imaginary parts of the CQmplex Lame's constants t\ (iw) and fL (iw), as . 
defined early in Part I, and P 0 is the total load applied at the source. 

Let g 1u, g2u be thereal andimaginary.parts-~f the.(scaled) complex center motion. Equation 
80 may, be further written: as: 

u zu (0, 0) 
8 1. . 8 2 .) - . . ( 8 1 8 2 ) 

g 1u(l',a0 ,tan 2 , tan-y. + ig2u v,a0 ,tan 2 ,tan 2- (83) 

where 

u zu (0, 0) 

is the (scaled) surface vertical displacement at the center of the circle, under the uniformly dis­
tributed pressure. 

In this form it is then possible to express the center displacements directly in terms of the four 
·parameters v, a0 , tan 8tf2, and tan 82/2. To illustrate. this relatio.nship, we take the cases of v = 

0.25 and 0.5 and plot the computed values of g 1u and g2u in Figur-es 6-11. 

It is seen that both g 1u and g 2u are subjected to the.-infiuence of tan 8l2 and tan 82/2, with 
the exception of v = 0.5 where tan 81/2 has no effect. The magnitude of their effect, however, 
varies with the frequency, as represented by a0 . For example, their influence on g 1u is more 
prominent in the high frequency range (i.e. for large a0 values). As for g 2u, on the contrary, it is 
in the middle and near the lower frequency range whe~e a0 is approximately equal to 0. 5. g 1 u and 
g2u also respond differently to the variations in tan 8 1/2 and tan 82/2. The magnitude of g 1u is 
generally .decreased with increased tan 81/2 Qr tan 82/2 values. In the case of g2u, it first in­
creases in the lower frequency range and then decreases at higher' frequencies when the value of 
tan 82/2 is increased; however, its value is generally increased with increased tan 81/2. 

The response of g lu and g2u to vibration frequencies and the damping properties of the sup­
porting medium may be better illustrated and understood by using the analogy of the.· 'mechanical 
impedance.'' 

Differentiating eq 83 once with respect to t, we get 

( 
· 8 1 82 )) 

+ i g 1u v, a0 , tan 
2

, tan 
2 

. (84) 

The mechanical impedance nmy be defined as the ratio of the applied force· to the center veloc­
ity of the "plate." Let it be denoted by z.·· Then,* the mechanical impedance of the medium for a 
uniformly distributed pressure source is: 

*For simplicity, g 1 (v, a0 , tan 01''2, tan 02/2) and g2u (v, a0 , tan 01:'2, tan 82 '2) are abbreviated to g 1u 
and g2u. 
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0.24 

0.20 

Q.16 

0.1'2 

Uniform Pressure Source: v=0.25 
--Elastic, 

- tan~=O 
2 

Figure 6. g 1 vs a0 and tan (0212) • 

. 0.20 

. -g, 0.16 

008 

0 

Uniform Pressure Source·= v=o.25 

--Elastic 

8, 
- tan 2 =0.I 

Figure 7. g 1 vs a0 and tan (0/2). 

1.6 
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0.16 

0.12 

0.08 

0.04 

0.4. 

0.4 

Uniform Pressure Source: v=0.25 
--Elastic 

--tan-%-=o 

0.8 1.2 1.6 

Uniform Pressure Source: v = 0. 2 5 
_ _:_ E(astic 

-tonJ!J_ 
2 

1.2 1.6 
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012 

0.08 

0.04 

0 

Uniform Pressure Source:v=0.5 

~-Elastic 

--Allton~ 
2 

Figure 10. g 1 vs a0 and tan (8 212). 

0.12 

008 

0.04 

0 0.4 

Uniform Pressure Source:v'0.5 
-...:_·Elastic 

-- Alf tan-~ 
2 

0.8 1.2 

Figure 11. g2 vs a0 and tan (8i2). 

1.6 

1.6 

I 
. I 
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z 
u (85) 

The "mechanical resistance" R and the "mechanical reactance" X are readily shown to be 
I 

) 

2 
g2u 

R 
pc2rO 

= ---u 
ao g2 2 

lu + g2u 

(86) 

and 
~ 

2 
glu 

X 
pc2ro 

-- ---u 
ao 2 . 2 . 

glu .+ . g2ti . 
(87) 

Hence, it is clear that losses in a medium are related to g2u,and the stiffness to gtu· The 
relation of Ru and Xu to a0 is shown in Figures 12-14. We see that both X and R are decreasing 
with increasing a0 . The determination of tan 82/2 from me~surements appears to be best accom-
plished using a low frequency range~ i.e. for a 0 less than 0.5. · 

When the force distribution of the source is in the form of a parabola or as the static reaction 
under a rigid plate (Rigid Plate.Approximation), the surface displacements at r = 0 become 

' : . ' . :. • '. ~ • . . . l. 

and 

Equations 88 and 89 can also be written in ~he form: . · 

and 

where 

( e t e2) 
UzR(O,O) _,. g 1R ~~.a0 ,tan-,tan-. 2 2 

U zp (0, 0) 

2 
pc2rO 
--- u zp (0, 0) 
p eiwr 

0 

(88) 

(89) 

(91) 



24 VIBRATORY SURFACE LOADINGS ON A VISCOELASTIC HALF-SPACE 

\ 

8 \ 

6 

Xor R 
__ ,_ 
p c2 r~ 

4 

2 

Uniform Pressure Source: v '0.25 
--Elastic 

\ 
\-X 
-\ 

--tan~=O 
2 

\ 9 
\All tan T 
\ 
\ 
\ 
\ 
\ 

"' 

1:6 

Figure 12. X, R vs a0 and tim (0212)~ 

Xor R _._,_ 
p c 2 r~ 

8 

6 

4 

2 

0.4 

' ~ - . : . . 

. . ~ . 
'uniform :Pressure Source: v =0.25 

--Elastic 
9, 

--tan -
2
- =0. 1 

R 

0.8 

Figure 13. X, R vs a0 and tan (02/2). 
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and 

U zR (0;0) 

12 

4 

Uniform Pressure Source: 11=0.5 

Oo := W ro 

c2 
( · .. 

----'- Elastic 

-.All ton :
1 

Figure J4. X, R vs~a0 ·and tan (02/2). 

"zR(O,O) 

are the (scaled) center surface vertical displacements with subscripts p and R referring to parabolic 
and rigid plate app~oximation pressure distributions, respectively. 

The relationships of g i and· g2 to the parameters F; a0 , tan 0/2 and tan 02/2 for these two 
pressure distributions can be computed from eq 88 arid 89. Since,they are similar to those presented 
for the uniform pressure source mi.se', graphic pres_entations are omitted. However, their simplified 
analytical expression~ as well as ~hat for the uniform pressure loading will be attempted in the next 
section. 

Approximation of displacement~ · 

. Tlie numerical proc~dures used to 'obtain the relationships of g i• g2 with the.paramet~rs F; ao, 
tan (0 1 /2) and tan ( 0~/2) are lengthy. It was also apparent that presenting the computed values 
graphically or in a tabulated form can become bulky if a fairly broad range is to be covered. Hence, 
in order to facilitate the coruputatioris, an attempt will be made to approximat"etheir relationships by 
some simple mathematical Pxpressions. With these expressions, it is possible to obtain values for 
the center surface displacements without using long computational procedures. 

To achieve this aim, two approaches are ptesented in the following sections. 

Approach 1. In the study of the vertical motion of a circular "plate" resting on elastic ground, 
Reis!-'ner and Sung'0tried to express the center displacement in terms of the polynomials of a0; the 
dimensionless frequency ratio. That is 

·· .. \ (92) 
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where 

(93a) 

(93b) 

c 10 to c 25 are coefficients of the polynomia~ and tlleir values depend upon the ioad distribution on 
the "plate" and the Poisson's ratio -of the supporting medium. The coefficients are listed in 
Table IV. 

Table IV. Coeffici~nts of -functions ! 1 and ! 2• (From Sung:) 

VnUorm Parabolic Rigid 
,v c 

pressure pressure base 

Cto -0.'23873 -0.31831 -0.18750 

Cu .06968 .04775 .07031 

1/4 C14 - .00416 - .00238 - .00613 

c2l .14859 .. 14859 .14859 

C23 - .0!1.776 - .01184 - .02368 

C2s .00081 .00041 .00129 

Cto - .'2122!1. - .28294 - .16667 

cl2 .051'58 .04126 .06076 

1/3 C14 - .00345 - .00197 - .00509 

c2l .13063 .13063 .13063 

C23 - .01'504 - .. 01002 - .02005 

C2s .00066 .00033 .00105 

.. 
Cto - . t5916 - .21221 - .12500 

C12 .03979 .03183 :04688 
1/2 C14 - .'00243- - ... 00139 .- .00358. 

C21 . !1:0455 ; .10455 ~ 10455 

C23 . - .'01104 - .00756 - .01472 

C2s .. 00044 .00022 .00072 

For a viscoelastic foundation, there should be a damping effect resulting from the dissipatiye 
properties .of the medium. Hence, the .first step of approximation is· to consider the influence of 
tan 02/2 and replace f 1 and t 2 in eq 92 by their counterpa;ts g 1 and g 2, which are defined as 

gi) (1 . 02) 
:2(g·~ 

. 02 
gl (g1 + tan2 

2 • + - gfp·tan-
2 

(94a) 

g;p ( 1 02) (J2 
g2 {g:2 - . - tan2 -~ - 2{g1 + g'l) tan -. 2 ; ·2 

(94b) 

;,and 

(95a) 
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g'i (95b) 

(96a) 

(96b) 

Thus, using the corresponding coefficients from Table IV, center. di~placements.of a circular 
"plate" under the three types of loading conditions can be. computed which include. the effect of 
the damping propert;y of the medium. 

For the purpose of comparison, the 'values eompu~ed from the approximate expressions are 
c~ecked against the integral solutions in the range of a0 from 0.25 to 1.5 (with increment. =

1 
0.25) 

andtan 02/2 from 0 to 0.1 (with increment = 0.02). Within this specified r~nge, the difference in 
displacement amplitudes is generally within 3%. with values _from the approximate _expressions 
usually larger .. Only in some special situations, i.e. when bot~ frequen~y .and damping are high and 
for the Rigid Plate (approximation) loading condition, .the .difference::; are in the neighborhood of 4%. 
The difference for values of g 1 and g 2 are, however, considerably higher; from a few percent to as 
high as 20%. Since the large difference ~ccurs mostly for small values of g 1 (or g 2), values of 
displacement amplitude are not really affected .. 

It appears, therefore, that results of this approach can be used to compute the center displace­
·ments of a circular source with good accuracy. However, a different approach may be needed for 
approximating the functions g 1 and g 2 if their values are of direct concern. . 

Approach 2. To include the damping effect from both tan 0 l2 and tan 02/2, we introduce two 
functions cp 1 and tjJ 1, .each ~s a function of only one· of the two damping constants. We further 
assume that g 1 may be represented by the product :of ¢ 1 and tjJ 1, i.e. 

(97) 

In this relationship, ¢ 1· and tjJ 1 can be shown to take the form 

(98a). 

· e o
1 t/1 1 (v,a0 , tan f) = 1 - CC(0.5 _- v) tan T (98b) 

where f 1 (v, a0) is defined by eq 9·3a and AA and CC are coefficients with their values depending 
upon both v and a

0
• · · 

To represent g 2 , a similar approach may be employed. Let ¢ 2 and 1/; 2 be the other two functions. 
Then we have 

(99) 
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and 

(100a) 

.P2 ( v,a0 , tan :
1

) ~ 1 + DD(0.5 - v)tan :
1 

(100b) 

where f i_v, a 0) is defined by eq 93b and BB and DD are coefficients similar to AA and CC. 

Values of AA, BB, CC, a·nd·DD-are :shovm .in--Figures i5-17 for the. three loading conditions. 
In each case they are plotted against·a0 for the three'Poisson's ratios v = 0.25, o~33, and 0.5. 

Using these coefncients, the approximated values of g 1 and g 2 a~d also the complex· amplitude 
at the circular center can be' computed. Their values are ag·ain compared with the· integral solution 
in the range·or a0 from 0.25 to L5, tan 0 1/2 from Oto 0.15· and tan 0:2f2 from·o to 0.1. In this rahge, 
the differences in computed amplitude are generally _less than 1%:, except at ao = 0~25 and tan 01/2 
= tan 02/2 = 0.1. At these particular values of frequency and· damping coefficients, the values 
from the approximate solution for the three loading conditions are off by l'h%- 3%. Values for g 1 

' and g 2 in this approach improve considerably. Thefr differences with the integral sohitioris are,' in 
general, less than 2%. · 

·.6. 14 

5 12 

4 4 10 

AA BB cc DD 

3 2 8 

2 2 6 

0 . 1.0 0 . r.o .-;;; 

Figure 15. AA, BB, CC and DD vs a0, uniform pressure: source. 
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3 .0 .---.,..-......----. 6 .-----.--.---....... 

5 

4 

AA 

1.0 

0.5 

0 LO 

06 ao Oo Oo· 

Figure 16. AA, BB, CC an~ DD vs a0, parabolic pressure source. 
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Figure 17. AA, BB, CC and DD vs a0 , rigid plate approximation. 
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CONCLUSION 

Investigations of surface displacements with assumed types of pressure sources have indicated 
that simplified closed form solutions may be obtained for far field surface vibrations. In these 
areas, the effect of surface (Rayleigh) waves predominates-and, therefore, material constants may 
be determined from surface vibration measurements. 

Amplitudes of the displacement functions are shown to be related to the characteristics of the 
input source. Hence, unless these characteristics are known, determination of the ground properties 
through use of amplitude measurements at a single location will involve some uncertainty. 

In addition to the terms affected by the properties of the source as mentioned, there is a common 
factor in all displacement functions regardless of the source. This factor indicates that displace-

. ment amplitudes vary inversely with the square root of the distance from the source and also de­
crease exponentially with a damping factor related to the damping properties of the medium. There­
fore, if we apply the .. Amplitude Ratio'' technique of using surface measurements from two locations, 
the ground properties may be determined without knowing the characteristics of the source. In view 
of the uncertainty of the pressure distribution beneath the base plate of a testing vibrator, this 
technique may be desirable. 

A study has also been made of the vertical displacements at the center of three assumed pres­
sure loadings, namely uniform, parabolic, and rigid plate approximation. It was found that the com­
plex displacement amplitudes may be expressed in terms of two real functions, g ~ and g2, of their 
real and imaginary parts, respectively. In this form it is then possible to express these two func­
tions directly in terms of the material properties of the supporting medium and the frequency of the 
applied load. 

In order to facilitate computations, attempts have been made to approximate the above relation­
ships by simple mathematical expressions. Two approaches have been employed. Both can provide 
fairly accurate values for the displacement amplitudes. Error in Approach 1 is foimd to be less than 
3%, and that of Approach 2,1%. However, for cal~ulating g 1 and g2 (or the "mechanical resistance" 
and "mechanical reactance"), good accuracy can only be achieved by using the equations of 
Approach 2. The difference with the corresponding values from integral solutions is, in general, 
less than 2%. 

The advantage of these approximations lies mainly in the fact that they replace a complicated 
numerical procedure but require only a small fraction of its computation time. 
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