Technical Report 162

SURVEY OF FROZEN PREGIPITATION IN URBAN AREAS AS REIATED TO ClIMATE CONDITIONS by Michal A. Rilello

8Y 1897

CRREL

Technical Report 162
SURVEY OF FROZEN PRECIPITATION IN URBAN AREAS
AS RELATED TO
CLIMATIC CONDITIONS
by
Michael A. Bilello

MAY 1967
U.S. ARMY MATERIEL COMMAND

COLD REGIONS RESEARCH \& ENGINEERING LABORATORY HANOVER, NEW HAMPSHIRE
DATaskIVO14501B52AO2

PREFACE
This report is an analysis of data on frozen precipitation compiled for LaGuardia Airport and Buffalo, New York. * The machine-tabulated data were processed and prepared by the U. S. Weather Bureau National Weather Records Center, Asheville, North Carolina. The survey ultimately included 24 locations within selected metropolitan areas, two of which are presented here as examples. The interpretations and graphs introduced in this report are intended to serve as application guides for the other sites.

Mr. Leonard Stanley assisted in the computer programming and Mr. Roy Bates graphed most of the data.

USA CRREL is an Army Materiel Command laboratory.

[^0]
CONTENTS

Page
Page
Preface- ii
Summary v
Introduction 1
Data requirements 1
Frequency Table AI 2
Presentations of the data in Table AI---------------------- 2
Recommended graphical interpretation for Table AI data 10
Frequency Tables AII and AIII 11
Presentation of the data in Tables AII and AIII 12
Frequency Table AIV 14
Presentation of the data in Table AIV 14
Presentations of supplemental data 16
Discussion 19
Instructions for using the recommended figures 19
Appendix A- 27
ILLUSTRATIONS
Figure

1. Relationship between air temperature and frozen precipita- tion (annual) 3
2. Relationship between air temperature and cat. a precipita- tion (monthly), LaGuardia, N. Y. -------------------- 4
3. Relationship between air temperature and cat. b precipita- tion (monthly), LaGuardia, N. Y. -------------------- 4
4. Relationship between air temperature and cat. c precipita- tion (monthly), LaGuardia, N.Y. ------------------- 5
5. Monthly distribution of frozen precipitation, cat. $\underline{a}, \underline{b}$ and c, LaGuardia, N. Y. 6
6. Probability of frozen precipitation occurring at specific tem- peratures (annual) 6
7. Probability of cat. c precipitation occurring at specific tem- peratures (annual) ' 6
8. Probability of cat. c precipitation occurring at specific tem- peratures (monthly) 8
9a. Probability of frozen precipitation occurring at specific tem- peratures (annual), LaGuardia, N.Y. 9
9b. Highest probability of frozen precipitation observed during the entire period of record for each month and the tempera- ture at which it occurred, LaGuardia, N. Y. ---------- 9
9. Probability of cat. a precipitation and specific temperatures occurring simultaneously (monthly) 10
10. Number of $6-\mathrm{hr}$ snowstorms per month during an ll-year period as related to wind speed 12
11. Probability of a $6-\mathrm{hr}$ snowstorm as related to temperature, wind speed, and amount of precipitation (monthly) ----- 13
12. Frequency of $6-\mathrm{hr}$ snowstorms in terms of temperature, wind speed and amount (annual), LaGuardia, N. Y----- 14
13. Probability of a $6-\mathrm{hr}$ snowstorm as related to temperature (monthly) 15
CONTENTS (Cont'd)
Figure Page
14. Probability of a 6- to $36-\mathrm{hr}$ snowstorm if snow is occurring as related to air temperature (annual) 16
15. Frequency of long-duration snowstorms in terms of tem- perature, LaGuardia, N. Y 17
16. Isolines of mean seasonal snowfall amounts, New York City and vicinity 17
17. Monthly distribution of frozen precipitation, cat. $\underline{a}, \underline{b}$ and \underline{c}, Buffalo, N. Y 20
18. Relationship between air temperature and cat. a precipita- tion (monthly), Buffalo, N. Y. 20
19. Relationship between air temperature and cat. b precipita- tion (monthly), Buffalo, N. Y: 20
20. Relationship between air temperature and cat. c precipita- tion (monthly), Buffalo, N. Y. 21
22a. Probability of frozen precipitation occurring at specific tem- peratures (annual), Buffalo, N.Y. 22
22b. Highest probability of frozen precipitation observed during the entire period of record for each month and the tem- perature at which it occurred, Buffalo, N. Y. 22
21. Frequency of $6-\mathrm{hr}$ snowstorms in terms of temperature, wind speed and amount (annual); Buffalo, N. Y.------ 25
TABLESTable
I. Tabulation of total hours (by months) 15
II. Mean monthly and seasonal snowfall 18
III. Significant snow and freezing rain storms 24
IV. List of stations in the study 24
AI. Dry bulb temperature $\leq 39 \mathrm{~F}$ vs írozen precipitation 27
AII. Mean air temperature vs $6-\mathrm{hr}$ precipitation amount 29
AIII. Wind speed vs 6-hr precipitation amount 30
AIV. Mean air temperature vs snowstorm duration- 30

SUMMARY

This study investigates relationships between observed frozen precipitation and associated meteorological conditions in large cities, and develops procedures for presenting tabulated data on frozen precipitation in a readable and usable form. An explanation of several interpretations is included with methods of analysis, sample diagrams, advantages and disadvantages, and comparisons of the different interpretations. To avoid excessive bulk, only the diagrams for LaGuardia Airport and Buffalo, New York, are discussed in this paper. Similar figures for 22 other stations are on file at USA CRREL.

SURVEY OF FROZEN PRECIPITATION IN URBAN AREAS AS RELATED TO CLIMATIC CONDITIONS

by
Michael A. Bilello

INTRODUC TION

The purpose of this study was to investigate relationships between observed frozen precipitation and associated meteorological conditions in large cities, and to develop procedures for presenting tabulated data on frozen precipitation in a readable and usable form.

Data, naturally, can be interpreted and presented in several ways. Determination of the best method depends upon how, why, and by whom the data will be used. Questions which arise are: 1) What time periods should be used; that is, should the data be presented seasonally or for each month; 2) Should each precipitation type be shown separately; 3) For engineering purposes are bar graphs easier to interpret than smooth curves or isolines; and 4) For design purposes or forecasting, should the analysis be in terms of numerical frequencies, or probabilities?

An explanation of several interpretations is included, with methods of analysis, sample diagrams, advantages and disadvantages, and comparisons of the different interpretations.

One of the objectives of the study was to provide information on the frequency of frozen precipitation at a number of large cities. Unfortunately, inclusion of the diagrams for all the stations in this report would result in excessive bulk, so only the figures for LaGuardia Airport and Buffalo, New York, are discussed below. Similar figures for the other 22 stations are on file at USA CRREL.

DATA REQUIREMENTS

The basic problem was to determine climatological criteria which can be used to help solve problems in snow and ice control. The type of information requested of the Weather Records Center and the format of the tabulation were based on: 1) The climatic parameters which appeared important, 2) The data available on punched cards, and 3) Time-cost considerations. The tabulation was provided in four frequency tables. A sample tabulation (for LaGuardia Airport) is shown in Appendix A.

Initially, it was assumed that frozen precipitation would not occur above 39F. The LaGuardia data proved this assumption incorrect and the upper limit for the remaining stations was raised to 45 F .

The period of record for LaGuardia Airport is October through December for the years 1949-1959 and January through May for the years 1950-1960. Since this ll-year record does not conform with established procedures, it was requested that the period of record for the remaining stations be 10 years instead (Jan 1951 to Dec 1960 incl.).

The tabulation consists of monthly and annual totals of the recorded data and for Table AI includes a count of the total number of cards (each an hourly observation).

Tables AI, AII and AIII include separate tabulations, one for each of the 6 to 8 winter months, October - May. (For some cities no frozen precipitation is observed during October or May.) Table AI also contains an annual summary. Table AIV contains one tabulation, which considers the winter period only.

A discussion of the contents of the tables and methods of presenting the data follows.

FREQUENCY TABLE AI

Table AI (Dry bulb temperatures and frozen precipitation) shows a count of the hours during which certain types of precipitation were observed at each temperature. These types are:
a. Snow and/or snow showers
b. Snow pellets, ice crystals, snow grains, soft hail and/or sleet
c. Freezing rain and/or freezing drizzle.

Where categories \mathfrak{a} and \underline{b} were observed together, the count was shown under a. Where b and \bar{c} were observed together, the count was shown under c. When a and $c \overline{\text { or }} \underline{a}, \overline{\bar{b}}$ and \underline{c} were observed together, it was counted separately under a fourth category, d; category did not occur frequently enough to justify its inclusion in this study.

Since hourly surface observation records were the source for Table AI, precipitation intensity is not reflected. Only frozen precipitation greater than a trace was counted in preparing this table. Temperatures were rounded prior to punching. For example, 32 F includes from 31.5 through 32.4 F .

Presentations of the data in Table AI

The information given in each of the columns of Table AI can be defined as follows:
$N=$ total number of hours (of cards)
S = number of hours with frozen precipitation
$\mathrm{T}=$ number of hours with a certain temperature
$C=$ number of hours with frozen precipitation occurring at a certain temperature (C refers to "combined")
$A=$ number of hours with frozen precipitation occurring at temperatures below a certain value (A refers to "cumulative").
Two subscripts can be applied to the above symbols: first, $\underline{a}, \underline{b}$ and c to designate the category of frozen precipitation; and second, O for October, N for November, etc., to define the particular month being analyzed. May is spelled out in order to differentiate it from M for March, and ann is used to denote an entire winter.

Figure 1... Relationship between air temperature and frozen precipitation (annual), LaGuardia, New York. See p. 2 for explanation and definition of symbols.

Cumulative percent. Figure 1 shows annual distribution of categories a, \underline{b} and \underline{c} as related to temperature, in terms of cumulative percent. The type of information obtainable from Figure 1, curve a, is, for, instance: About 30% of the snow and/or snow showers observed at LäGuardia, New York, between 1949 and 1960 occurred at air temperatures at or below 28 F . The figure also shows the temperature range within which categories $\underline{a}, \underline{b}$, and \underline{c} occur. For example, between 10 and 90% (or 80% of the time) type b precipitation occurs from 28 to 37 F whereas, in this same range, type \subseteq precipitation occurs from 24 to 32 F . However, the presentation does not show monthly variations. A similar analysis was made for each category except that each month is considered separately (Fig. 2-4). From these figures, more detailed information may be obtained. For example from Figure 2 it can be said that: Of the snow and/or snow showers observed during April, 85% occurred at temperatures at or above 32 F , whereas in January only 30% occurred at temperatures at or above 32 F . However, the frequency or probable number of hours one might expect frozen precipitation to occur can not be extracted from these cumulative curves. Note that averaging the curves in Figures 2, 3 or 4 will not necessarily give the same results as the corresponding curve in Figure 1. The reason is that the greater frequency of occurrences reported during the mid-winter months biases the curves, especially the lower portions, in Figure 1 to the left.

Figure 2. Relationship between air temperature and snow and/or snow showers (monthly), LaGuardia, New York.

Figure 3. Relationship between air temperature and snow pellets, ice crystals, snow grains, soft hail and/or sleet (monthly), LaGuardia, New York.

Figure 4. Relationship between air temperature and freezing rain and/or freezing drizzle (monthly), LaGuardia, New York.

The disadvantages, then, in using Figures 1-4 are: 1) They do not provide information on number of hours of frozen precipitation; 2) The presentation of curves for all months in one figure decreases readability, and 3) Figure 1 does not provide information on monthly distribution of frozen precipitation. The second disadvantage can be somewhatialleviated by combining some curves. In Figure 2; for example, the curves for January and February could be combined, as could those for December and March, with almost no appreciable loss in accuracy.

Probability of frozen precipitation occurring. A plot of S / N for each month was made for each category (Fig. 5). This "probability of occurrence" is shown as monthly bar graphs instead of curves because the data do not justify day-to-day interpretation.

Figures l-5 can be used together as follows: assume the question, "Approximately how many hours of freezing rain or freezing drizzle can one expect at LaGuardia Airport during January if and when the temperature is equal to or less than 25F?" From Fig. 5, cat. c, the probability of freezing rain and/or freezing drizzle occurring in January is 0.73% or $\approx 5.5 \mathrm{hr}$. Then, using Figure 4, we find that at temperatures of 25 F or less, the phenomenon occurs 25% of that 5.5 hr , or 1.38 hr .

Figure 5. Monthly distribution of frozen precipitation, cat. a, \underline{b} and \underline{c}, LaGuardia, New York.

Figure 5, therefore, provides monthly frequency values for the occurrence of particular types of frozen precipitation. By itself, however, the presentation does not provide a relationship with any climatic parameters.

Probability of frozen precipitation occurring at specific temperatures.
Dr. Andrew Assur of USA CRREL has offered the following approach: First, to avoid diagrams with many lines such as Figures $2-4$, combine all months and then compute probable occurrence of frozen precipitation at specific air temperatures. This is actually the ratio C/T; some results are shown in Figures 6 and 7.

Figure 6. Probability of frozen precipitation occurring at specific temperatures (annual), LaGuardia, New. York.

Figure 7. Probability of freezing rain and/or freezing drizzle occurring atspecific temperatures (annual), LaGuardia, New York.

Incidentally, means overlapping over $3 F$ were used on the data because of an obvious bias: i.e., a plot of observed temperatures showed that the 20 F and $30 F$ values were recorded far more often than 19 or 21 and 29 or $31 F$. The procedure was used for smoothing purposes also.

Figure 6 combines all months and categories. The distribution of points yielded a smooth curve at temperatures between 24 and $39 F$; but the curve becomes er ratic at temperatures below 24 F . It was, reasoned that the deviations of the curve at the colder temperatures are due to insufficientdata. Dr. Assur suggested that the curve in Figure 6 might approximate the dashed line if the period of record were 50 or more years instead of 11 . It should be noted that similar plots for other locations provided smoother curves.

The analysis used to obtain Figure 6 can be carried further by considering the categories separately. For example, the results for freezing rain and freezing drizzle are shown in Figure 7. From this figure note, for example, that precipitation category c occurs most frequently at 30 F at LaGuardia Airport.

The advantages gained by using Figure 7 are: l) A direct association is provided between known or expected air temperatures and the probable occurrence of any type of frozen precipitation; 2) Smooth, individual curves permit easy reading.

Omitted from this type of presentation (Fig. 6 and 7) are monthly variations. This could be a serious omission, because temperatures between 20 and $35 F$ (the range shown in Fig. 7) are observed during every winter month; but the frequency of frozen precipitation occurring, at these temperatures varies from month to month. The magnitude of these variations is shown in Figure 8a, where the combined months of December, January, February and March used in Figure 7 were analyzed separately. The curves in this diagram are sufficiently uniform to permit smoothing and some combining for easier reading. The net result is shown in Figure 8b. The months, analyzed separately, show major departures in the end points and peaks when compared to Figure 7.

Since Figures 8 a and 8 b show significant differences in the maximum values, which do not appear in Figure 7, it was decided that the best presentation for C/T would be that given in Figure 7 plus an accompanying curve. The second curve would show the highest probability of frozen precipitation observed during the entire period of record for each month and the temperature at which it occurred. Such curves for each frozen precipitation type are shownin Figures $9 \mathrm{a}, \mathrm{b}$. Another reason for using annual curves is that the number of occurrences by months often is so small (e.g., Fig. 7) that the probability analysis becomes statistically unsound. In fact, for 6 ome cities, the number of observed counts for categories b and/or c were so few that any attempt to obtain probability values would be unreasonable. Annual curves in which all categories were combined (Fig. 6) were eliminated. The reason is that category a always showed much higher maximum probability values than did the other categories, and should be separated for maximum design purposes.

Dr. Assur also suggested studying the probability of frozen precipitation occurring at one specific temperature on a month to month basis. For a temperature of 32 F , the results of such a study in which the combined values of three stations were used showed a probability increase from October to April.

Combined probability of simultaneous occurrence of frozen precipitation and specific temperatures (Fig. 10). Figures 6 through 9 are useful in providing probability values only when air temperatures are known or expected.

Figure 8. Probability of freezing rain and/ or freezing drizzle occurring at specific temperatures (monthly), LaGuardia, New York. a. Monthly curves. b. Monthly curves simplified.
However, certain users, for example designers of special equipment for the control of snow or ice, may want information on how often specific temperatures occur in conjunction with a type of frozen precipitation. The next step, then, is to combine the probabilities of occurrence of frozen precipitation and specific temperatures. To compute the probability of both phenomena occurring simultaneously the ratio C / N is obtained, where N is the total number of hours in the month for the years of record (Table I, p. 15). The analysis of the probability of this simultaneous occurrence for category \underline{a}, by months, is shown graphically in Figure 10.

Since Figure 10 considers both certain temperatures and the occurrence of frozen precipitation at those temperatures, the curves offer a multiple prediction. For example, such curves can provide the answer to the following question: For how many hours in January can one expect snow and/or snow showers to occur at LaGuardia at temperatures between 27 and 32 F inclusive? Referring to Figure 10 and considering the total number of hours in January, we obtain:

Figure 9a. Probability of frozen precipitation occurring at specific temperatures (annual), LaGuardia, New York.

Figure 9b. Highest probability of frozen precipitation observed during the entire period of record for each month and the temperature at which it occurred, LaGuardia, New York.
$\frac{\text { Temp }}{27}$

28	744
29	744
30	744
31	744
32	744

Probability
$.17 \%$
$.23 \%$
$.36 \%$
$.41 \%$
$.34 \%$
$.32 \%$

Probable no. of hours of snow and/or snow showers in Jan

An annual curve for the above analysis in which all the categories are combined is not presented. The reason for this is that N , the total number of hours under consideration for a winter season, is difficult to determine. April, May and October, in particular, should be counted as winter months at one location but not at another.

The principal disadvantage in using Figure 10 is that considerable smoothing was used when drawing the curves, which may reduce accuracy.

Recommended graphical interpretation for Table AI data

The data in Table AI can be used by engineers, who require only broad knowledge of the parameters, calling for simple figures, and by forecasters, who require more detailed information and therefore more complex figures.

The next step is to determine the most useful graphical interpretation. The following example is given to show that Figures 2, 3, 4 and Figure 5 together provide the same information attainable from Figure 10 .

Considering the ordinate symbols in Figures 2, 5 and 10, we have for one month (January) and for category a, the following:

Figure 10. Probability of snow and/or snow showers and specific temperatures occurring simultaneously (monthly), LaGuardia, New York.

Figure $2=\frac{A_{a J}}{S_{a J}}$
Figure $5=\frac{\mathrm{S}_{\mathrm{aJ}}}{\mathrm{N}_{\mathrm{J}}}$
Figure $10=\frac{\mathrm{C}_{\mathrm{aJ}}}{\mathrm{N}_{\mathrm{J}}}$.
The product of the symbols on Figures 2 and 5 yields $A_{a J} / N_{J}$ and, if temperatures t_{1} to t_{2} (from lower to higher temperatures) are considered:
$A_{a J}\left(t_{1}-t_{2}\right)=\sum_{t_{1}}^{t_{2}} C_{a J}(t)=\int_{t_{1}}^{t_{2}} C_{a J}(t) d t$. The latter expression describes the area under the January curve given in Figure 10. Thus, results approximating those obtained in the computations shown on page 10 are possible using Figures 2 and 5 as follows:

27 to 32
$\frac{A_{a J}}{S_{a J}(\text { for } \Delta t)} \quad \frac{S_{a J}}{N_{J}} \quad \frac{A_{a J}}{S_{a J}} \times \frac{S_{a J}}{N_{J}}$
4.5%
$39 \% \times 4.5 \%$

No. hours

$\begin{aligned} & \text { Temp } \\ & \text { range }(\Delta t) \end{aligned}$	$\frac{A_{\mathrm{aJ}}}{\mathrm{~S}_{\mathrm{aJ}}}(\text { for } \Delta \mathrm{t})$	$\frac{\mathrm{s}_{\mathrm{aJ}}}{\mathrm{~N}_{\mathrm{J}}}$	$\frac{A_{a J}}{S_{a J}} \times \frac{S_{a J}}{N_{J}}$	No. hours in Jan	of hours of snow and/or snow showers in Jan
27 to 32	69\%-30\% = 39\%	4.5\%	$\begin{aligned} & 39 \% \times 4.5 \% \\ & =.0176 \end{aligned}$	744	13.1 hours

Probable no.

Several computations similar to the above were made to compare the methods. The results differed by ± 5 to 10%; these variations were due mostly to the dissimilarity in drawing and smoothing procedures.

Figures 9a and b are needed to provide probability of occurrence at specific air temperatures. It has been shown that they provide all the essential information given by Figures 6-8. Figures 2, 3, 4, 5 and 9, therefore, are recommended as the best graphical presentation of the data contained in Table AI.

FREQUENCY TABLES AII AND AIII

The mean air temperatures in Table AII (mean air temperature, wind speed and $6-\mathrm{hr}$ precipitation amount when snowfall was $\geq 1 \mathrm{in}$.) are for a 6 -hr precipitation period and are grouped as $22-27 \mathrm{~F}, 28-33 \mathrm{~F}, 34-39 \mathrm{~F}$, etc. The term ≥ 1 in. per $6-\mathrm{hr}$ snowfall refers to an inch or more of measurement, or the "catch." The precipitation amounts, however, are recorded in inches of water equivalent and grouped as . 01-. $09 \mathrm{in} .$, . $10-.19 \mathrm{in} .$, etc.

The wind speeds in Table AIII are the values, in knots, recorded at the end of the $6-\mathrm{hr}$ period. The values are grouped as $0-4,5-9,10-14$, etc. The tabulation of the precipitation data in Table AIII is the same as that used in Table AII.

12 FROZEN PRECIPITATION AS RELATED TO CLIMATIC CONDITIONS

Presentation of the data in Tables AII and AIII

Tables AII and AIII provide monthly information on 6 -hr snowstorms. The term " 6 -hr snowstorm" considers only regularly scheduled $6-\mathrm{hr}$ observation periods. Therefore, the scheduled observations may divide a $6-\mathrm{hr}$ period of heavy snowfall. The method also considers consecutive 6-hr periods in which 5 hr of no snow but 1 hr of $>1 \mathrm{in}$. of snow was observed. Table AII correlates air temperatures with precipitation amount in inches of water equivalent. Table AII correlates wind velocity and amount of precipitation.

An attempt was made to correlate temperature and wind for each particular storm with corresponding amounts of precipitation. This approach was not feasible because it was not possible to separate the storms. Attempts to extract information for a specific storm from a series of isoline charts (similar to Fig. 11) were also abandoned when it was found that no direct relationship existed between the charts and individual storms.

To obtain a complete diagrammatic interpretation of the data in Tables AII and AIII two precipitation conditions - monthly distribution and the number of 6-hr snowstorms - and three meteorological parameters - air temperature, wind speed, and amount of snow (water equivalent) - should be shown. Since it was not possible to combine all parameters, each meteorological parameter was associated with the precipitation conditions. Three diagrams were then required to present the data in this form.

Bar graphs were drawn depicting the conditions for each month. Such diagrams would show dalues of the probable occurrence of a 6-hr snowstorm in terms of the three meteorological parameters. The probability values are obtained by $\mathrm{ExH} / \mathrm{N}$, where $\mathrm{E}=$ number of observed snowstorms; H = number of hours per storm; and $N=$ total number of hours. In this case, N refers to the number of hours for each month for the entire l0-year or ll-year record (Table I, p. 15).

The results, in which temperature, wind, and snow are shown separately, are presented in Figure l2. Presenting all three parameters on one figure permits direct comparison. The probability values unfortunately are extremely small because a long time period is being considered. The probability of a 6-hr

Figure 1l. Number of $6-h r$ snowstorms per month during an ll-year period as related to wind speed, LaGuardia, New York.

Figure 12. Probability of a $6-\mathrm{hr}$ snowstorm as related to temperature, wind speed and amount of precipitation (water equivalent) (monthly), LaGuardia, New York. See p. 12-14for explanation.

Figure 13. Frequency of $6-\mathrm{hr}$ snowstorms in terms of temperature, wind speed and amount (annual), LaGuardia, New York.
snowstorm occurring at a time when snow is already falling can be determined by using the probability values obtained in Figure 12 and Figure 5. For example: the probability of a $6-\mathrm{hr}$ snowstorm occurring at LaGuardia Airport, in January, in the temperature range of $28-33 \mathrm{~F}$ is . 0058 (from Fig. 12). Referring to Figure 5, we find the probability of any snow occurring in January to be . 045. Dividing . 0058 by . 045 gives $\approx .13$, which is the probability that a 6-hr snowstorm will occur in January if and when snow is falling within the temperature range $28-33 \mathrm{~F}$. However, monthly breakdowns as shown in Figure 12 were not considered to be a sound approach, because of the small sampling. Therefore, annual summaries for each parameter were used and the frequency of occurrence expressed as the average number of $6-\mathrm{hr}$ storms per year (Fig. l3).

Another way of presenting the data in Tables AII and AIII is shown in Figure 14. Here, bar graphs and probability values are utilized; the main difference is that the width of the bar is defined by the numerical limits of the parameters. This presentation, however, was rejected because the diagram appeared bulky, the probability ratios were too small and only one meteorological parameter could be shown on each figure.

The conclusion, therefore, is that the data given in Tables AII and AIII are graphically best represented by Figure 13.

FREQUENCY TABLE AIV

Mean air temperatures in Table AIV (mean air temperature and long-duration snowstorms when snowfall was ≥ 1 in. per $6-h r$ period) refer to the average temperatures observed during the last 6 hours of the snow period and are grouped as $22-27 \mathrm{~F}, 28-33 \mathrm{~F}, 34-39 \mathrm{~F}$, etc. The storm durations are for 6-, 12-, 18-, etc. hour periods when the snowfall amounted to ≥ 1 in. The term ≥ 1 in. snowfall per $6-h r$ period refers to an inch or more measurement of snowfall, or the "catch."

Presentation of the data in Table AIV

Since the data in Table AIV consider seasonal totals only, no monthly breakdown of the 10 or ll-year record was possible. The tabulation in Table AIV is as follows: A count of 1 is shown under the column marked 6 when the storm duration was 6 hr , under the column marked 12 when the storm duration was 12 hr , etc. As pointed out earlier, a $6-\mathrm{hr}$ snowstorm does not necessarily mean that the snow fell continuously for 6 hr . If $\geq \mathrm{l}$ in. of snow was recorded during the interval, the period was counted.

Table I. Tabulation of total hours (by months).

LaGuardia, Oct1949 to May 1960

Month	Total hours
October	8184
November	7920
December	8184
January	8184
February	$7392(+72)=7464$
March	8184
April	7920
May	8184

Buffalo, Oct 1950 to May 1960
Month \quad Total hours
October 7440
November 7200
December 7440
January 7440
February $\quad 6720+72=6792$
March 7440
April . 7200
May 7440

Some of the diagrams introduced to represent the data given in Tables AII and AIII were tried for the Table AIV information. Bar graphs and probability values as related to air temperature and storm duration were tested. Since the data in Table AIV were seasonal totals, attempts to use the entire period of record produced impractical probability values. Instead, only the hours when snowfall actually was observed were used. This value, obtained from Table AI for the ll-year record, is 1514 hr for LaGuardia. The probability of a long-duration storm occurring if and when snow is falling is defined as:

$$
\frac{\mathrm{E} \times \mathrm{H}}{\mathrm{~S}_{\mathrm{a}}}
$$

where $\mathrm{E}=$ number of observed storms; $\mathrm{H}=$ number of hours per storm and $\mathrm{S}_{\mathrm{a}}=$ total number of hours with snow. The results, for the data given in Table AIV, are shown in Figure 15.

Figure 14. Probability of a 6-hr snowstorm as related to temperature (monthly), LaGuardia, New York.

Figure 15. Probability of a 6- to 36 -hour snowstorm if snow is occurring as related to air temperature (annual), LaGuardia, New York.

This approach was considered unfavorable because the presentation would be of little value for engineering purposes. As an alternative, still using bar graphs, the frequency of long-duration snowstorms was expressed in terms of average number per 10 -year period and this was related to air temperature (Fig. 16).

PRESENTATIONS OF SUPPLEMEŃTAL DATA

Besides machine-tabulated data such as those given for LaGuardia in Tables AI through AIV, other frozen precipitation information was received for some stations. For example, the question whether data collected at one location such as LaGuardia Airport are representative of all of New York City and its suburbs was asked. Mean monthly and seasonal snowfall amounts (in inches) for 12 stations in and around New York City were therefore requested (Table II), and isolines of seasonal snow amounts were drawn (Fig. 17). No analysis was possible south and southwest of LaGuardia Airport, due to the lack of information. From this diagram we note that a variation of as much as 14.4 in . of snow a year occurs within 20 miles in New York City and its suburbs.

Figure l6. Frequency of longduration snowstorms in terms of temperature (10 years), LaGuardia, New York.

Figure 17. Isolines of mean seasonal snowfall amounts (inches), New York City and vicinity.

Requests also were received for information on maximum 6-hr snowfall amounts and the longest period of freezing rain and/or freezing drizzle during the 11- (or 10-) year record. These data were transcribed from the Local Climatological Data sheets published by the U. S. Weather Bureau; Table III (p. 24) gives the data for LaGuardia Airport.

DISC USSIION

After a study of several possible methods of data presentation, certain ones were found to be better than others.

These presentations consequently were prepared for 23 other locations in Canada and the U. S. (including Alaska) (Table IV). The probability values used in these diagrams were obtained through a Bendix G-l5 computer. Some significant facts concerning the phenomenon of frozen precipitation may be obtained from the study. It was noted, for example, that freezing rain and freezing drizzle in almost all cases are confined to a rather small and definite temperature range.

The relationships between temperature, wind and the occurrence of frozen precipitation should provide the answers to some engineering problems in ice and snow removal or control.

Instructions for using the recommended figures
A sample station (Buffalo, New York) will be used to show how each of the recommended figures may be used. The order of the figures has been changed for more convenient use.

Monthly distribution of frozen precipitation categories (Fig. 18). Using Figure l8, category a, we find snow and/or snow showers occurring from October through May. The maximum amount is observed in January, the probability of occurrence being 34.3%. The period N under consideration (January) is 744 hr. From the ordinate S / N we obtain. 343 , which when multiplied by N will give S (number of hours with snow and/or snow showers), i.e., (.343) $\mathbf{x}(744 \mathrm{hr})=255 \mathrm{hr}$. Similar computations can be made for each month and category. If such detail is not required, the probability values for all months for all or each category can be combined. For example: to find the seas onal total hours for occurrence of freezing rain and/or freezing drizzle at Buffalo, simply add the S^{\prime} 's for this category (computed as shown above) for each month, as follows:

November:	$S=(720) \times(.001)=0.72$
December:	$S=(744) \times(.005)=3.72$
January:	$S=(744) \times(.012)=8.93$
February:	$S=(672) \times(.004)=2.69$
March:	$S=(744) \times(.006)=4.46$
	Total $=20.5 \mathrm{hr}$

Association of frozen precipitation occurrence with air temperature (Fig. 19-2 $\overline{1}$. Figures 19-2l are used in conjunction with Figure 18. Let us assume that only snow occurring at 22 F and above is critical for a particular design or structure problem at Buffalo in January. From Figure 19, January curve, we find that 42% of the snow observed at Buffalo occurs at temperatures less than

Figure 18. Monthly distribution of frozen precipitation, categories a, b, and c, Buffalo, New York.

Figure 19. Relationship between air temperature and cat. a precipitation (monthly), Buffalo, New York.

Figure 20. Relationship between air temperature and cat. b precipitation (monthly), Buffalo, New York.

Figure 2l. Relationship between air temperature and freezing rain and/or freezing drizzle (monthly), Buffalo,

New York.

22F. Therefore, 58% of the snow occurring in January is observed at 22 F or above. Using the probable number of hours (255) that snow will occur in Buffalo in January (from Fig. 18), we compute as follows: (255) $x(.58)=148 \mathrm{hr}$.

Similar computations can be accomplished for a group of months and for all or individual categories.

Probability at specific temperatures (Fig. 22a, b). These figures provide probability values for the occurrence of each frozen precipitation type at known or expected temperatures.

For example: from the annual curve in Figure 22a the probability of snow and/or snow showers occurring if the temperature is 12 F is 39.3%. Note that for temperatures from 13 to +33 F the probability ranges between 32 and 42% and then decreases rapidly. A companion curve (Fig. 22b) shows monthly maximums. We find from this curve, for example, an absolute maximum (53.8%) occurring at 22 F in January.

Since categories b and c occur less frequently, their ordinate scales in Figure 22 had to be expanded. For some locations the probability of oc- currences was so small for these categories that part or all of the curve was omitted. For category c we note on the annual curve that the greatest probability (2.1%) of freezing rain and/or freezing drizzle occurs at 30 F and the maximum curve shows that the peak for any month lies between 28 and $31 F$.

Average number of $6-\mathrm{hr}$ snowstorms to be expected per year (Fig. 23). Six-hr snowstorms were associated with temperature, wind velocity and amount of snow. From Figure 23, we find that most of the $6-\mathrm{hr}$ snowstorms at Buffalo occur between 28 and 33 F during 10 to 14 -knot winds and the snow accumulation in inches of water equivalent is between. 10 and . 19 inches. Fractional frequencies, for example 0.9 for the temperature range $40-45 \mathrm{~F}$, indicate that, on the average, one $6-\mathrm{hr}$ snowstorm can be expected to occur between these temperatures within a l0-year period. It should be noted that the 6 -hr snowstorm information given here considers a $24-\mathrm{hr}$ storm, for example, as four 6-hr storms.

Figure 22a. Probability of frozen precipitation occurring at specific temperatures (annual), Buffalo, New York.

Figure 22 b . Highest probability of frozen precipitation observed during the entire period of record for each month and the temperature at

Figure 23. Frequency of $6-\mathrm{hr}$ snowstorms in terms of temperature, wind speed, and amount (annual), Buffalo, New York.

Average number of long-duration (6 through $42-\mathrm{hr}$) snowstorms to be expected during a 10 -year period (Fig. 24). These snowstorms of long duration were associated with the mean temperature observed during the final 6 - hr of the storm period.

From Figure 24 we find that $6,12,18,24,30$ and $42-\mathrm{hr}$ snowstorms have been observed in Buffalo. The greatest number of 6 -hr storms per 10 -year period (54) occur at a temperature between 28 and 33 F . An average of one $42-\mathrm{hr}$ snowstorm can be expected every 10 years, with a temperature between 28 and 33 F during the last 6 hr .of the storm.

Table III. Significant snow and freezing rain storms, LaGuardia, New York.
(Record: October 1949 through May 1960)
A. Greatest consecutive 6-hr snowfall amount (water equivalent, inches).

March 3, 1960. Hour ending at:

1400	1500	1600	1700	1800	1900
.10	.10	.10	.12	.13	.04

Total "catch" of snowfall 6.5 in. City Office, Battery Place, N. Y., reported 0.15 in . during 1 hr of this period.
B. Longest continuous period of freezing rain and/or freezing drizzle (water equivalent, inches).

February 22, 1950. Hour ending at:

1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400
.01	.01	.01	.02	.04	.03	.01	.01	.02	.01	.01	.01

Continued February 23, 1950:

0100	0200	0300	0400	0500	0600	0700
Trace	.03	.03	.02	.01	.01	.02

Table IV. List of stations in the study.

\quad| \quad City |
| :--- |
| Anchorage |
| Barrow |
| Bedford |
| Buffalo |
| Chicago |
| Chicopee Falls |
| Cleveland |
| Denver |
| Fairbanks |
| Kansas City |
| Kotzebue |
| Milwaukee |
| Minneapolis |
| Montreal |
| New York |
| Omaha |
| Philadelphia |
| Pittsburgh |
| Seattle |
| St. Louis |
| Toronto |
| Vancouver |
| Washington |
| Ypsilanti |

Location

Merrill Field
Weather Bureau Office
Hanscom Field
W.B. Airport Station
W.B. Airport Station

Westover AFB
W. B. Airport Station
W.B. Airport Station

International Airport
W. B. Airport Station

Weather Bureau Office
W.B. Airport Station
W.B. Airport Station

Dorval Airport
LaGuardia Airport
W.B. Airport Station
W.B. Airport Station

Greater Pittsburgh Airport
Seattle-Tacoma Airport
Lambert Airport
Malton Airport
Abbotsford
Washington National Airport
Willow Run Airport

State or Province

Alaska
Alaska
Massachusetts
New York
Illinois
Massachusetts
Ohio
Colorado
Alaska
Missouri
Alaska
Wisconsin
Minnesota
Quebec
New York
Nebraska
Pennsylvania
Pennsylvania
Washington
Missouri
Ontario
British Columbia
D. C.

Michigan

Figure 24. Frequency of long duration snowstorms in terms of temperature (10 years), Buffalo, New York.

Table AI. Dry bulb temperature $\leq 39 \mathrm{~F}$ vs frozen precipitation. Period of record: Oct-Dec for the years 1949-1959; Jan-May for the years 1950-1960. (Source: WB NWRC Carddeck 144, hourly surface observations.)
Station = WBAN station no. $14732=$ LaGuardia, $N . Y$. \quad Tot $A-D=T o t a l$ of $A+B+C+D$
$\mathrm{Mo}=$ Month $01=\mathrm{Jan},-02-\mathrm{Feb}$, etc., Ann=Annual DB Temp = Dry bulb temperature in whole ${ }^{\circ} \mathrm{F}$

Tot = Total frequency count of each frozen precipitation group
Under the heading "Frozen precipitation":
A = Snpw and/or snow showers
B = Snow pellets, ice crystals, snow grains, soft hail and/or sleet
$C=$ Freezing rain and/or freezing drizzle
$D=A+C$ or $A+B+C$ observed together
DB Frozen precipitation Tot Tot

Station	Mo	DB	Frozen precipitation				Tot	Tot	
		temp	A	B	C	D	A-D	Cds	M

Tot Cds = Total number of cards surveyed
Where A is observed alone a count of l is shown under A.
Where B is observed alone a count of 1 is shown under B.
Where C is observed alone a count of l is shown under C.
Where $A+B$ are observed together a count of 1 is shown under A.
Where $B+C$ are observed together a count of l is shown under C.
Where $A+C$ or $A+B+C$ are observed together a count of 1 is shown under D.

Station	Mo	temp	A	B	C	D	A-D	Cds	Mo.	temp	A	B	C	D	A-D	Cds
14732	10	39	1				1	29	11	39	2				2	240
		38						25		38	3	1			4	251
		37						8		37	2				2	209
		36						8		36	6	1			7	136
		35	2				2	9		35	13				13	168
		34	1				1	1		34	4				4	107
		Tot	4				4	80		33	6				6	77
										32	5				5	85
										31	5				5	55
										30	8				8	82
										29	3				3	34
										28	1				1	49
										27						33
										26	2				2	21
		-								25						20
										24						17
							.			23						9
										22						9
										21						2
										20						3
										19						7
										18						2
		-								17				.		2
										Tot	60	2			62	1618
14732	12	39	3				3	377	01	39	2		.		2	302
		38	9	3			12	375		38	4	2			6	334
		37	6	1			7	363		37	4	3			7	425
		36	17				17	316		36	26	3			29	398
		35	28	4			32	347		35	33	4			37	523
		34	23				23	25.3		34	20				20	375
		33	20		2		22	231		33	25	7	8		40	358
		32	26	1			27	269		32	26	3	10		39	352
		31	19		1		20	217		31	29	2	4	2	37	284
		30	17		1		18	240		30	34	1	7		42	375
		29	8			1	9	179		29	31		6	2	39	281
		28	12	1			13	187		28	20		6		26	255
		27	8	1			9	178		27	14		2		16	222
		26	13				13	139		26	11		2		13	190
		25	6				6	152		25	7	1	6		14	227
		24	1				1	91		24	9		3		12	164
		23	3				3	103		23	4		1		5	166
		22	5				5	81		22	5		3		8	143
		21	10				10	73		21	8	1	2		11	99
		20	. 7				7	103		20	14	1			15	120
		19	7				7	74		19	4				4	83
		18	2				2	73		18	6				6	102
		17						43		17	5				5	88
		16						36		16	6				6	44
		15						37		15	4				4	44
		14						17		14	5				5	35
		13						16		13	2				2	21
		12						8		12.	4				4	22
		11						9		11	1				1	10
		10						4		10	2				2	15
		9						3		9						5
		8						5.		8						5
		7						5		7						4
		6						3		6						1
		Tot	250	11	4	1	266	4604		5						2
										4						1
										3						2
										1						3
										Tot	365	28	60	4	457	6080

Table AI (Cont'd).

Station	Mo	$\begin{gathered} \mathrm{DB} \\ \text { temp } \end{gathered}$	$\begin{gathered} \text { Fro } \\ \text { A } \\ \hline \end{gathered}$	$\begin{array}{r} \text { en } \mathrm{pr} \\ \mathrm{~B} \\ \hline \end{array}$	$\begin{gathered} \mathrm{cipit} \\ \mathrm{C} \\ \hline \end{gathered}$		$\begin{array}{r} \text { Tot } \\ \mathrm{A}-\mathrm{D} \\ \hline \end{array}$	$\begin{gathered} \text { Tot } \\ \text { Cdds } \end{gathered}$	Mo	$\begin{gathered} \text { DB } \\ \text { temp } \\ \hline \end{gathered}$	Fro A	$\begin{array}{r} \text { en } \mathrm{p} 1 \\ \mathrm{~B} \\ \hline \end{array}$	$\begin{gathered} \text { cipi } \\ \text { C } \\ \hline \end{gathered}$	D	$\begin{aligned} & \text { Tot } \\ & \mathrm{A}-\mathrm{D} \\ & \hline \end{aligned}$	$\begin{array}{r} \text { Tot } \\ \text { Cds } \end{array}$
14732	02	39	3				3	403	03	39	6	6			12	448
		38	2				2	415		38	10	5			15	462
		37	6	1			7	420		37	24	2			26	433
		36	11	6			17	363		36	22	3			25	320
		35	20	6			26	410		35	50	2			52	376
		34	33	6	2		41	340		34	58	3			61	264
		33	45	10			55	337		33	35	5	2		42	244
		32	33	1	2	1	37	308	,	32	42	5	3		50	243
		31	24		9		33	198		31	20	4	5		29	168
		30	30		5	1	36	255		30	21	3	4		28	197
		29	16		4		. 20	151		29	14				14	137
		28	13	2	6	1	22	159		28	20				20	149
		27	10		5		15	155		27	18	1			19	113
		26	6	- 1	3		10	98		26	14				14	91
		25	12	3	3		18	1.17		25	13				13	91
		24	6				6	107		24	12				12	58
		23	6				6	90		23	11				11	79
		22	10				10	92		22	7				7	61
		21	11				- 11	69		21	15				15	49
		20	15				15	91		20	8				8	33
		19	7				7	87		19						14
		18	3				3	63		18						7
		17						53		17						6
		16	1				1	45		16						5
		15	3				3	47		15						5
		14	7				7	40		14						5
		13	2				2	37		13						4
		12	1				1	29		12						4
		11						11		11						4
		10				-		22		Tot	420	39	14		473	4070
								18								
		8						14	Ann	$\begin{aligned} & 39 \\ & 38 \end{aligned}$	18 30	${ }_{11}^{6}$			41	$\begin{aligned} & 1895 \\ & 1957 \end{aligned}$
		7	4				4	24		38 37	30 52	11 8			60	1957
		6	1				1	7		36	88	13			101	1592
		5 4					:	4		36 35	88 164	18			182	1992 1905
		4 3						3		34	154	9	2		165	1369
		3 2						2		33	141	22	12		175	1263
		2						1		32	1.36	10	15	1	162	1270
		Tot	341	36	39	3	419	5085		31	98	6	19	2	125	932
$1+732$	04	39	1				1	94		30	111	4	17	1	133.	1165
		38	2				2	94		29	74		10	3	87	787
		37	10	1			11	83.		28	69	3	12	1	85	809
		36	6				6	51^{-}		27	51	2	7		60	704
		35	18	2.			20	72		26	46	1	5		52	542
		34	15				15	32		25	38	4	9		51	612
		33	10				10	16		24	28		3		31	441
		32	4				4	13		23	24		1		25	447
		31	1				1	10		22	27		3		30	386
		30	1				1	16		21	44	1	2		47	292
		29	2				2	5		20	44	1			45	350
		28	3				3	10		19	18				18	265
		27	1				1	3		18	11				11	247
		26						3		17	5				5	192
		25						5		16	7				7	130
		24						4		15	7				7	-133
		Tot	74	3			77	511		14	12				12	97
										13	- 4				4	78
										12	5				5	63
										11	1				1	34
										10	2				2	41
										9						26
										8						24
										7	4				4	33
										6	1				1	11
										5						6
	05	39					-	2		4						4
		38						1		3						4
		Tot						3		2						1
										1						3
										Tot 1	1514	119	117	8	758	2051

Table AII. Mean air temperature ${ }^{\circ} \mathrm{F}$ (for $6-\mathrm{hr}$ period) vs $6-\mathrm{hr}$ precipitation amount (water equivalent) when the 6-hr snowfall was ≥ 1 inch. Period of record: Oct-Dec for the years 1949-1959; Jan-May for the years 1950-1960. (Source: WB NWRC Card deck 344, 6-hr surface observations.)

Station = WBAN station no. $14732=$ LaGuardia, N. Y. $\mathrm{Mo}=\mathrm{Month} 01=\mathrm{Jan}, 02=\mathrm{Feb}$, etc., $12=\mathrm{Dec}$.
$P_{c p}=6-h r$ precipitation amount in inches to hundredths $1.40=$ Precipitation from 1.40-1.49; $1.30=$ Precipitation from 1.30-1.39, etc.
$\mathrm{T}=\mathrm{Trace}$
Tot $=$ Total frequency count of each temperature group.

Temperatures:

From 39-34. A frequency count of 1 is shown when the 6 -hr mean temperature was between 39 and 34 F .
From 33-28. A frequency count of 1 is shown when the $6-\mathrm{hr}$ mean temperature was between 33 and 28F, etc.
Tot $=$ Total count for each precipitation interval, for each temperature group.

Table AIII. Wind speed, knots (at end of $6-h r$ period) vs $6-h r$ precipitation amount (water equivalent) when he 6-hr snowfall was 21 inch. Period of record: Oct-Dec for the years 1949-1959; Jan-May for the years 1950-1960. (Source: WB NWRC Card deck 344, 6-hr surface observations.)

Station $=$ WBAN station no. $14732=$ LaGuardia, N. Y. Mo = Month $01=\mathrm{Jan}, 02=\mathrm{Feb}$, etc., $12=\mathrm{Dec}$.
$P_{c} p=6-h r$ precipitation amount in inches to hundredths Tot $=$ Totalfrequency count of each wind speed group

From 0 to $4=$ A frequency count of 1 is shown when the wind speed was between 0 and 4 knots.
From 5 to 9 = A frequency count of 1 is shown when the wind speedwas between 5 and 9 knots, etc.
Tot $=$ Total count for each precipitation interval for each wind speed group.

Station	Mo	Pcp	From: To:	0 4	$\begin{array}{r} 5 \\ 9 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ 14 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 29 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 34 \end{aligned}$	$\begin{array}{r} 35 \\ 39 \\ \hline \end{array}$	$\begin{array}{r} 40 \\ 44 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ 49 \\ \hline \end{array}$	$\begin{array}{r} 50 \\ 54 \\ \hline \end{array}$	$\begin{array}{r} 55 \\ 59 \\ \hline \end{array}$	$\begin{array}{r} 60 \\ 64 \\ \hline \end{array}$	$\begin{array}{r} 65 \\ 69 \\ \hline \end{array}$	$\begin{array}{r} 70 \\ 74 \\ \hline \end{array}$	75 +	Tot
14732	11	. 40									1									1
		.10				1														1
.		Tot				1					1									2
	12	. 50							1											,
		.30				1	1	1				\cdots		-						3
		. 10		1	3	3	2		3											12
		Tot		1	3	4	3	1	4											16
	01	. 40					1							.						1
		. 30							1											1
		. 20				2	1													3
		. 10			4	4	3	2												13
		. 01					2													2
		Tot			4	6	7	2	1											20
	02	. 50						1												1
		. 40				1			1	1										3
		. 20						2	1											3
		. 10			2	1	3	3												9
	.	. 01			1	3	1													5
		Tot			3	5	4	6	2	1										21
	03	. 60						1												
		. 50					1	1			1									3
		. 40						2												2
		. 30				1	1	3	1											6
		. 20							2	1										3
		. 10			1		1	1					-		.					3
		. 01				1	1	1	1											4
		Tot			1	2	4	9	4	1	1									22
	04	. 60				1														1
,		. 30					1	1												2
		. 20						1												1
		. 01								1										1
		Tot				1	1	2		1										5

Table AIV. Mean air temperature ${ }^{\circ} \mathrm{F}$ vs duration (hours), when snowfall was ≥ 1 inch (8 -month seasonal. only). Period of record: Oct-Dec for years 1949-1959; Jan-May for years 1950-1960. (Source: WB NWRC Card deck 344, 6-hr surface observations.)

Station = WBAN station no. 14732 = LaGuardia, N.Y. Tot $=$ The total frequency of each duration group. Mean temperature $=$ Mean air temperature ${ }^{\circ} F$ for the $\quad 6=A$ count of 1 is shown under 6 when the duralast 6 -hr snow period.
39-34 = The mean air temperature was between 39 and 34 F for the first $6-\mathrm{hr}$ snow period.
33-28 = The mean air temperature was between 33 and 28 F for the first $6-\mathrm{hr}$ snow period.

Mean temperature ${ }^{\circ} \mathrm{F}$	6	12	$\begin{gathered} \text { Hou } \\ 18 \\ \hline \end{gathered}$	24	30	36
39-34	9	2	2			
33-28	. 16	6	3			1
27-22	2.	3	2	1		
21-16	1	2				
15-10	1					
Tot	29	13	7	1		L

(Security clasaification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATINGACTIVITY (Corporate author)
U. S. Army Cold Regions Research and

Engineering Laboratory, Hanover, N. H. \quad| 2a. REPORT SECURITY CLASSIFICATI |
| :--- |
| Unclassified |

4. DESCRIPTIVE NOTES (TyPe of report and inclusive dates)
Technical Report
5. AUTHOR(S) (Last name, first name, initial)

Bilello, Michael A.

$\begin{aligned} & \text { 6. REPORT DATE } \\ & \text { May } 1967 \\ & \hline \end{aligned}$	7a. TOTAL NO. OF PAGES 33 7b. NO. OF REFS 0
8a. CONTRACT OR GRANT NO. b. Project no.	9a. ORIGINATOR'S REPORT NUMBER(S) Technical Report 162
c. DA Task lVOl4501B52A02 d.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned his report)

10. AVAILABiLIty/Limitation notices This document is available to U.S. government agencie and their contractors from: Defense Documentation Center. Microfilm or photocopy of this document is available at cost of reproduction from: Clearinghouse for Federal Scientific and Technical Information
11. SUPPL EMENTARY NOTES
12. SPONSORING MILITARY ACTIVITY
U. S. Army Cold Regions Research and Engineering Laboratory

13. ABSTRACT

This study investigates relationships between observed frozen precipitation and associated meteorological conditions in large cities, and develops procedures for presenting tabulated data on frozen precipitation in a readable and usable form. An explanation of several interpretations is included with methods of analysis, sample diagrams, advantages and disadvantages, and comparisons of the different interpretations. To avoid excessive bulk, only the diagrams for LaGuardia Airport and Buffalo, New York, are discussed in this paper. Similar Figures for 22 other stations are on file at USA CRREL.

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i. e., enter the number of pages containing information
7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
$8 b, 8 c, 8 \% 8 d$. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
(1) "Qualified requesters may obtain copies of this report from DDC."
(2) ."Foreign announcement and dissemination of this report by DDC is not authorized."
(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
"U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
"All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known
11. SUPPLEMENTARY NOTES: Use for additional. explanatory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geopraphic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

[^0]: * The study was requested and funded by the U. S. Army Rocket and Guided Missile Agency.

