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Abstract:  Signals from many military targets of interest are often 
strongly randomized, due to the irregular mechanisms by which the 
signals are generated and propagated. In particular, complicated and 
dynamic terrestrial/atmospheric environments (with man-made objects, 
vegetation, and turbulence) randomize signals through random 
atmospheric and terrestrial processes affecting the propagation. Signals 
may also be considered random due to uncertainties in the knowledge of 
the propagation environment and target-sensor geometry. Predictions of 
sensor performance and recommendations of sensor types and placements 
derived from them, thus, should account for the random nature of the 
sensed signals. This report discusses software-modeling approaches for 
characterizing signals subject to random generation and propagation 
mechanisms. By representing signals with random variables, they are 
manipulated statistically to make probabilistic predictions of sensor 
performance. Both the theory and implementation in a general, object-
oriented software design for battlefield signal transmission and sensing is 
explained. The Java-language software program is called Environmental 
Awareness for Sensor and Emitter Employment. Some important 
numerical issues in the implementation are also discussed. 

 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 



ERDC/CRREL TR-10-12 iii 

 

Contents 
Acronyms................................................................................................................................................................. iv 

Preface...................................................................................................................................................................... v 

1 Introduction.................................................................................................................................................... 1 

2 Statistical Modeling of Signals ................................................................................................................ 3 
Signature data features ........................................................................................................... 3 
Probabilistic modeling of features ........................................................................................... 3 
Statistical analysis for measuring sensor performance ......................................................... 4 

3 Software Implementation .......................................................................................................................... 7 
Signal model objects ................................................................................................................ 7 
Signal model inheritance relationships .................................................................................. 8 
Representing a specific feature via a signal model ............................................................... 9 

4 Sums of Random Variables .....................................................................................................................11 
A very simple scheme ............................................................................................................ 11 
Using the Laplace approximation .......................................................................................... 14 
The convolution approach...................................................................................................... 14 
Central limit theorem ............................................................................................................. 15 

5 Numerical Issues ........................................................................................................................................ 17 
Computing the quantile using the bisection method ........................................................... 17 
Computing the cdf using Gauss-Legendre quadrature on the pdf ...................................... 18 
Numerical stability and well-posed problems ....................................................................... 20 
Illustrative examples of numerically stable statistical computations.................................. 22 

6 Conclusions.................................................................................................................................................. 28 

References ........................................................................................................................................................... 29 

Appendix: Floating-Point Implementations of Statistical Formulae ................................................... 31 
Floating point .......................................................................................................................... 31 
Stable statistical implementations........................................................................................ 33 

Gaussian distribution ....................................................................................................................... 33 
Lognormal distribution ..................................................................................................................... 36 
Exponential distribution ................................................................................................................... 40 
Gamma distribution .......................................................................................................................... 42 
X → X2 transformed Rice-Nakagami distribution ......................................................................... 49 

Report Documentation Page .......................................................................................................................... 55 



ERDC/CRREL TR-10-12 iv 

 

Acronyms 

ccdf complementary cumulative distribution function 

cdf cumulative distribution function 

DST decision-support tool 

EASEE Environmental Awareness of Sensor and Emitter Employment 

FFT fast Fourier transform 

IEEE Institute of Electrical and Electronics Engineers 

NaN not a number (value) 

pdf probability density function 



ERDC/CRREL TR-10-12 v 

 

Preface 

This study was conducted for the U.S. Army Corps of Engineers. Funding 
was provided by the Engineer Research and Development Center (ERDC) 
Geospatial Intelligence (GEOINT) program, Exploitation in Man-made 
Environments: Nations to Insurgents (GEMENI). 

The work was performed by the Signature Physics Branch (RR-D) of the 
Research and Engineering Division (RR) at ERDC’s Cold Regions Re-
search and Engineering Laboratory (ERDC-CRREL). The principal inves-
tigator was Dr. D. Keith Wilson (RR-D). The authors thank Dr. George G. 
Koenig of ERDC-CRREL’s Terrestrial and Cryospheric Sciences Branch 
(RR-G) and Mr. Michael Parker of ERDC-CRREL’s Force Projection and 
Sustainment Branch (RR-H) for providing helpful comments on a draft 
version of this report. 

At the time of publication, Dr. Lindamae Peck was Chief, RR-D; Dr. Justin 
B. Berman was Chief, RR; and Mr. Dale R. Hill was the Acting Technical 
Director for Geospatial Research and Engineering. The Deputy Director of 
ERDC-CRREL was Dr. Lance D. Hansen, and the Director was Dr. Robert 
E. Davis. 

COL Kevin J. Wilson was the Commander and Executive Director of 
ERDC, and Dr. Jeffery P. Holland was the Director. 

 



     



ERDC/CRREL TR-10-12 1 

 

1 Introduction 

A variety of modern-day Army missions rely on effective sensing capa-
bilities that provide intelligence on the adversary and to protect friendly 
forces from enemy detection. Sensors that are stationary (e.g., micro-
phones, geophones, and ground-based radars) and moving (e.g., cameras 
on unattended aerial vehicles and ground vehicles) assist operations such 
as persistent surveillance of small, forward-operating bases and rapid 
covert troop maneuvers in the air and on the ground. When advantageous, 
sensing is often performed in multiple signal modalities including visible, 
infrared, acoustic, seismic, radiofrequency, chemical, and biological. 

Yet, despite the increasing assortment of sensors available, knowledge and 
expertise of how to use them efficiently in particular environments and 
missions is quite frequently lacking (Hieb et al. 2007). Since terrain and 
weather effects on signals are complex and oftentimes counterintuitive, 
computational simulations are valuable to both facilitate quick and accu-
rate decision making when planning the use of sensors in an actual mis-
sion as well as to guide the development of sensor technologies in general. 
When multiple diverse signal modalities are involved, it would be ideal to 
integrate them all into a single simulation environment rather than having 
one for each modality. 

Environmental Awareness of Sensor and Emitter Employment (EASEE) is 
a software framework that provides a single environment for analyzing 
sensor performance involving many different signal modalities. This abili-
ty for multimodal signal analysis then enables EASEE to also perform 
higher-level data synthesis needed to answer critical sensing questions 
such as the sensor types and locations best suited for accomplishing mis-
sion objectives within the constraints of a particular environment. A com-
prehensive description of the software design and structure of EASEE is 
provided in Wilson et al. (2009). 

In addition to reconciling models of many, differing signal modalities into 
a common software framework, a decision-support tool (DST) must also 
systematically assess the uncertainty with its predictions. Accounting for 
and measuring uncertainty is often overlooked in current software tools 
predicting sensor performance, but the reliability of a DST’s recommenda-
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tions is obviously key to well-informed decision making. In the compli-
cated process of modeling environmental effects on signal transmission 
and sensing, many types and levels of uncertainty are involved. A thorough 
explanation of practical uncertainty issues is available in Wilson et al. 
(2008). 

Generally, uncertainties may be due to incomplete and/or inaccurate 
knowledge (of, say, the weather for a particular time and location) or due 
to processes that are purely stochastic (e.g., sensitivity of wave propaga-
tion to irresolvable and highly variable environmental details). It is the lat-
ter type of uncertainty—namely stochastic/random uncertainty—with 
which this report is concerned. (Note that sensor performance is also af-
fected by non-stochastic processes not addressed here.) In principle, prop-
agation of acoustic, seismic, and electromagnetic (including visual and 
infrared) waves as well as the dispersion of transient gases are still sensi-
tive to many fine-scale and even dynamic environmental variations that 
cannot be known or determined. Practically speaking, second-to-second 
variability in signal characteristics (e.g., sound level, seismic energy, con-
centration of a chemical agent, etc.) caused by unobservable and unpre-
dictable environmental features (e.g., turbulent eddies, vegetation, dust 
particles, precipitation, small urban structures) are essentially random, so 
statistical models are necessary to represent signal and noise (Strohbehn 
1978; Andrews and Phillips 2005). Wilson et al. (2008) outlines specific 
examples in greater detail. Probabilistic information about signal and 
noise may then be processed to compute statistical metrics on sensor per-
formance and signal-emitter detectability. 

The report begins by first explaining the premise and theory of modeling 
signals statistically in Chapter 2, which also describes how statistical mod-
eling of signals lead to probabilistic predictions on sensor performance. 
Then, Chapter 3 explains how the statistical modeling is implemented effi-
ciently in EASEE’s general, object-oriented structure. A discussion on var-
ious approaches for summing multiple random variables is given in Chap-
ter 4, which is required when simulating multiple target and noise signals 
arriving at a sensor. Some general numerical issues in programming statis-
tical computations are illustrated in Chapter 5, while the Appendix sup-
plies specific information on how particular statistical calculations were 
implemented. 
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2 Statistical Modeling of Signals 

Signature data features 

The EASEE software design (Wilson et al. 2009) operates on basic, identi-
fying qualities of a signal called signature data features (or features for 
short). The features can be thought of as the most essential characteristics 
of signals that might identify their source (i.e., an observable that is a func-
tion of time at the source, sensor, or somewhere in between). Generally, 
features are extracted from raw sensor data after some low-level 
processing (e.g., calibrations to remove sensor response or filtering into 
spectral bands), typically being a conservative quantity (such as energy or 
mass). Examples include: sound power of a harmonic line or in a standard 
octave band; infrared brightness in near, shortwave, midwave, longwave, 
or far bands; components of an electromagnetic field vector; and concen-
tration of a particular chemical or biological species. By using features ra-
ther than raw signals, simulations like EASEE are made not only quicker 
and much more efficient but also more general and nonspecific to any par-
ticular sensor system. 

Probabilistic modeling of features 

As discussed earlier, irregular generation mechanisms and random propa-
gation processes may make it impractical to predict feature characteristics 
deterministically; rather, they can only be described probabilistically. 
Thus, signal and noise features may be regarded as random variables. 
Then, statistical distributions of signal features are generated, propagated, 
and processed. 

A variety of statistical models are appropriate for representing sensor data. 
For example, the exponential distribution describes a single, strongly scat-
tered signal, which often arises when acoustic or electromagnetic waves 
are scattered by both objects and turbulent wind. A version of the Rice-
Nakagami model (specifically with a variable transformation of 2XX → ) 
may closely approximate signal power distributions of certain acoustic and 
seismic signals. Since the lognormal distribution models variables that can 
be the multiplicative product of many independent, positive random va-
riables, atmospheric scientists often use it to describe plume sizes and fre-
quency distributions of transient gases from turbulent processes in the air 
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(Baker et al. 1983; Limpert et al. 2001). Generally, signals are represented 
with probability density functions (pdfs) that have nonnegative support 
because signal power or concentration can never be negative. However, if 
the mean is positive and much larger than the standard deviation, pdfs 
with real-number support like the Gaussian may also be suitable for 
representing a signal. Currently, EASEE implements five continuous sta-
tistical models—namely, the Gaussian, lognormal, exponential, gamma, 
and the 2XX →  transformed Rice-Nakagami—as well as a discrete model. 
(Other examples of statistical models for signals are in Burdic 1984; Wil-
son et. al. 2002; and Nadarajah 2008) 

For consistency, all of these models are used to describe distributions of 
signal power (or intensity) rather than amplitude. Thus, while the untrans-
formed Rice-Nakagami model may describe the distribution of signal am-
plitudes of various acoustic and seismic signals, it is necessary to find the 
corresponding model that would represent the distribution of the signal 
powers. Since signal power is related to the square of the amplitude, the 
correct model for the signal-power distribution is the Rice-Nakagami with 
a variable transformation of 2XX → , which is what is coded in EASEE. 
(Whenever the “transformed Rice-Nakagami” is referred to in this report, 
the 2XX →  transformed Rice-Nakagami model is meant.) Details, includ-
ing the derivation of the 2XX →  transformed Rice-Nakagami random vari-
able, are provided in the Appendix. 

Statistical analysis for measuring sensor performance 

When features are described probabilistically, it is subsequently possible 
to derive statistical metrics of sensor performance. There are actually four 
probabilities that are generally of interest: 

1. Pcd = probability that noise only is present when the sensor determines 
that noise only is present (a correct dismissal) 
 

2. Pfa = probability that noise only is present when the sensor determines that 
a target is present (a false alarm) 
 

3. Pfd = probability that a target is present when the sensor determines that 
noise only is present (a false dismissal) 
 

4. Pd = probability that a target is present when the sensor determines that a 
target is present (a correct detection) 
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These probabilities are given by the following integrals: 
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where: f0  =  pdf of the noise signal alone, 
 
 f1  =  pdf of the target and noise signals together, and 
 
 β  =  the detection threshold set by the detection algorithm. 
 
A detection algorithm computes an appropriate β that ideally optimizes 
sensor performance by increasing probability of detection and decreasing 
probability of false alarm. Some examples (which are currently imple-
mented in EASEE) include: 

1. Neyman-Pearson (constant false-alarm rate) criterion 
2. absolute threshold detection 
3. relative threshold detection 
4. error minimization 
5. Bayes risk minimization 
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puted by manipulating pdfs of signal and noise. In fact, integrations of 
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function (cdf) and the complementary cumulative distribution function 
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where:  f = pdf, 
 
 F = cdf, and 
 
 F C = ccdf 

with the subscripts 0 and 1 denoting the pdf, cdf, or ccdf of the noise signal 
and combined target and noise signal, respectively. Strictly speaking, the 
cdf is actually the integral of the pdf from negative infinity to the threshold 
value; however, the integral from zero would only be negligibly different (if 
at all) when signals are represented with appropriate statistical models, 
whose measure limits to zero (or is even nonexistent) in the negative do-
main, since negative signal power or concentration is impossible. The 
aforementioned detection algorithms also compute the quantile (or in-
verse-cdf) function when determining signal-power (or concentration) 
thresholds corresponding to specified probabilities. 

To obtain a particular statistical representation, both the type of random 
variable and the values for its parameters are needed. While the pdf and 
cdf for each type of random variable are coded to use its unique parame-
ters (e.g., location, shape, scale, etc.), it is useful to also describe random 
variables with the universal parameters, mean and variance. For two-
parameter random variables, closed-form expressions may be found to 
convert its unique parameters to/from mean and variance. 

Finally, the signal pdfs within the integrals above are often joint pdfs, since 
multiple signals of interest and noise may arrive at a sensor simultaneous-
ly. When multiple signal sources are present within a sensor’s vicinity, 
random variables representing each signal source must be summed at the 
receiver. Depending on the type of random variables being summed, com-
puting the exact summation can be complicated and intensive. Thus, ob-
taining a quick approximation may be more practical. A couple of approx-
imating approaches and the most efficient method for computing exact 
results are described later in this report. 
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3 Software Implementation 

The EASEE software design is formulated within the conceptual frame-
work of object-oriented programming in the Java language. For a compre-
hensive description on the object-oriented structure and approach to sig-
nal transmission and sensing in EASEE, it is recommended to consult 
Wilson et al. (2009). Here, only a more thorough and updated explanation 
of the signal model objects will be given. 

Signal model objects 

As previously described, random environmental effects on transmitted and 
received features are accounted for by representing them as random  
variables. Parametric descriptions of these random variables are pro-
grammed in EASEE within Java classes. These Java classes are denoted as 
signal models and instances of them are signal model objects. Signal 
model objects are key in the architecture of EASEE, since they are what are 
actually transmitted, received, and processed, as outlined in Figure 1. The 
purple arrows in the figure specify where signal models are passed from 
one of the five components (illustrated in boxes) to another. Specifically, 
the feature generator produces a signal model object that is inputted and 
then altered by the feature propagator and feature sensor before it is  
finally analyzed by the feature processor to produce an inference, which 
represents desired information derived from the data features such as 
probability of detection or error of target location estimates. 

Signal model classes contain methods for the various, previously described 
statistical operations necessary for making probabilistic predictions on 
sensor performance, including: 
1. setting the mean and variance 
2. converting from mean and variance to unique parameter values 
3. computing the pdf, cdf, and quantile 
4. summing a random variable described by an instance of the class with 

another one. 
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Figure 1. Generalized flow diagram for transmitting, receiving, and processing signature data 

features in EASEE. 

These signal model objects also store arrays of parameter values defining 
different random variables of the same type, which may later be distri-
buted across a terrain grid. Computations for each array component are 
parallelized when possible to improve computational efficiency. As men-
tioned earlier, EASEE currently has implementations for five continuous 
statistical models—namely, the Gaussian, lognormal, exponential, gamma 
and the 2XX →  transformed Rice-Nakagami—as well as a discrete model. 
Each of these models is represented via its own signal model class. 

Signal model inheritance relationships 

The overall signal-transmission and sensing process in EASEE is described 
generally enough to apply for all signal modalities described by potentially 
very different statistics so that each of the generalized components in the 
above figure is coded to work with an abstract representation of all statis-
tical models. This abstract representation is the parent abstract Java class 
of all signal models and is called the abstract signal model. It defines ab-
stract methods for the various required statistical operations, which are 
then individually implemented or overridden by subclass signal models 
representing different statistical models. Figure 2 shows the inheritance 
relationships of the signal models currently available in EASEE. 

 
Figure 2. Inheritance tree of statistical signal models. 
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The constant signal model that extends the base abstract signal model 
represent constant (i.e., time-invariant) signals involving only one variable 
for the signal mean. A collection of variable signal models extend the con-
stant signal. Presently, the inheritance relationships are organized so that 
deeper subclasses add more characteristics to their parent classes. Sub-
classes “inherit” and then modify the fields and/or methods of its parent 
class. For example, nonconstant signal models allow nonzero variance; 
whereas, the constant signal model does not. The gamma distribution ge-
neralizes the exponential distribution, which is, in fact, a special case of 
the gamma distribution with shape parameter equal to 1 and the scale pa-
rameter equal to the mean. 

It may be useful, however, to structure inheritance relationships different-
ly. For example, it may be useful to somehow categorize various distribu-
tions into similar statistical families so the sum of multiple closely related 
random variables may be approximated by a parametric pdf within the 
same family. One of the simplest methods for summing multiple random 
variables (described later) may, in fact, be made more efficient if inherit-
ance is organized in such a way. Otherwise, it may be more appropriate to 
use interfaces to delineate statistical families within the current signal 
model inheritance tree, which can be used to make the described approxi-
mation method for summing random variables more efficient. 

While the generalized components in the simulation scheme are coded to 
accept and return abstract signal models, specific subclass signal models 
will actually be used in actual simulations as appropriate via polymor-
phism. This programming approach using inheritance and polymorphism 
greatly improves software efficiency and the potential for EASEE to conti-
nuously develop and include new capabilities. Namely, existing signal-
generation, propagation, and processing algorithms would automatically 
operate on all new signal models that extend the abstract signal model 
and, conversely, new processing methods that work with the abstract sig-
nal model would instantly apply to all existing and future subclass signal 
models. 

Representing a specific feature via a signal model 

While the signal models fully describe a parametric statistical model, they 
are not explicitly associated with any particular signature data feature. 
Features are separately defined as Java-enumerated types, whose repre-
sentation by a signal model are assigned by a given subclass implementa-
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tion of the feature generator as appropriate. Thus, the “signal data trans-
missions” passed from one generalized component to another in Figure 1 
are essentially “packets” of information assembled by the feature genera-
tor that lists transmitted features and their corresponding signal-model 
representations. For organization and utility, features are defined and 
grouped in different Java enum classes, typically by modality. For in-
stance, all seismic features and all radiofrequency features are enumerated 
in their own, separate classes. When appropriate, further distinctions are 
defined within a single signal modality such as with acoustic features, 
which have separate enum classes for acoustic octave bands (both stan-
dard and third-octave) and linearly spaced spectral bands. 
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4 Sums of Random Variables 

When simulating multiple signals of interest and noise arriving at a sen-
sor, probability-of-detection calculations are performed on the pdf of the 
sum of multiple signals. Thus, the final pdf that is analyzed at the sensor 
represents a sum of multiple random variables, where each individual sig-
nal is described by a unique pdf. The calculation is trivial for summing 
multiple Gaussian random variables, since the pdf of the sum is another 
Gaussian pdf with mean and variance equal to the sum of the means and 
variances, respectively, of each contributing random variable. In fact, the 
mean and variance of the sum of any (even potentially dissimilar) types of 
random variables is always, by definition, the sum of the means and va-
riances of each summed random variable. (This property is referred to in 
the rest of this report by saying that the means and variances of the 
summed random variables are “conserved.”) Yet, despite this property, 
implementation for summing multiple non-Gaussian random variables is 
not straightforward because an analytical form for the pdf of the sum is 
usually not available. 

A very simple scheme 

One of the simplest methods for representing the sum of multiple random 
variables of related types is to approximate the sum with a pdf that con-
serves the mean and variance of the original contributions. The pdf for the 
sum may be the same as one of the original random variables, or a genera-
lized form of the pdf of the original variables. This approach is exact if all 
the summed random variables are constant or Gaussian, and also for some 
other very particular cases, such as for gamma random variables with the 
same scale parameter. Otherwise, it is only an approximation that is not 
necessarily accurate in all cases. For instance, Stewart et al. (2007) ob-
serve that this approach is only reasonably accurate when summing two 
gamma random variables if the shape parameters are not lower than 0.1 
and the scale parameters do not differ by more than a factor of 10. Accura-
cy of approximating the sum of two lognormal random variables by anoth-
er lognormal random variable may be adequate in one tail of the summed 
distribution but not the necessarily the other (Mehta et al. 2007). The ac-
curacy of this approximation with other distributions such as the trans-
formed Rice-Nakagami is unverified. While the method seems to make in-
tuitive sense, the accuracy of the approach is difficult to confirm or predict 
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for various distributions and cases. It is reasonable to assume that there 
are limitations and that it is not good in all cases. 

However, this method is a very simple alternative to other more robust yet 
computationally intensive approaches and much easier to implement. It is 
also important to note that parametric pdfs representing various signals 
are themselves only estimates to begin with because both the models and 
the parameters in the models used to generate them are approximate due 
to idealizations of the signal physics and uncertainties in the weather, 
ground conditions, source signature and directivity, noise background, etc. 
Especially if it will greatly increase computational intensity, it is not neces-
sarily worthwhile to compute the sum of multiple, imprecise random va-
riables with very high precision. 

Although the exact sum of multiple random variables of related type can-
not typically be represented by an analytical pdf, this method essentially 
suggests selecting one that will serve as a good approximation with mean 
and variance conserved. Generally, the sum is best approximated by the 
pdf of one of the summed random variables, but sometimes it is better to 
use a pdf that is different but still a generalized form of the summed ran-
dom variables. For example, the sum of multiple exponential random va-
riables would be better approximated by a gamma distribution rather than 
another exponential distribution, where means and variances are con-
served. In fact, this would be exact if the exponential random variables 
were all identical (with the same mean). Likewise, the summation of mul-
tiple random variables of different but related type is represented as a pdf 
of the most generalized form of the related random variables. An example 
of this is the sum of an exponential random variable and a gamma random 
variable, which would be a gamma random variable with the means and 
variances conserved. Here, the exponential and gamma distributions are 
closely related, belonging to the exponential class of density functions, 
where the gamma distribution with shape parameter equal to 1 reduces to 
the exponential distribution with a mean equal to the scale parameter (i.e., 
the exponential distribution is a special case of the gamma distribution). 
So, in fact, the sum of exponential and gamma random variables is essen-
tially just a sum of gamma random variables. 

Conceivably (but not necessarily), the method could well approximate the 
sum of many different kinds of random variables, so long as a parametric 
distribution that generalizes a diverse set of random variables is available. 
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For instance, the sum of any combination of two or more of the lognormal, 
exponential, Weibull, and gamma distributions may be well approximated 
by a generalized gamma distribution with means and variances conserved, 
since the aforementioned, well-known distributions are actually special 
cases of the generalized, three-parameter gamma distribution. Indeed, 
there are other three-parameter distributions that generalize various well-
known distributions such as the generalized and skew normal distribu-
tions, both of which can mimic other skewed distributions like the gamma, 
lognormal, and Weibull distributions but also includes the normal distri-
bution as a special case. 

Though there is an added complication in representing the sum of random 
variables with a three-parameter distribution, since the three parameters 
must be estimated numerically via maximum likelihood or method of 
moments, it is possible and potentially worthwhile if the process proves to 
be relatively less computationally intensive (Stacy  and Mihram 1965; 
Ashkar et al. 1988; Varanasi and Aazhang 1989). When using the method 
of moments, it is helpful to notice that the third unstandardized central 
moment can be computed exactly for the sum, since they are also “con-
served” like the means and variances, which, in fact, are the first raw mo-
ment and the second unstandardized central moment, respectively. This 
results in three moments that can be computed exactly for the sum, which 
can be used to estimate the required three parameters to obtain the gene-
ralized distribution. Otherwise, it may be advantages to compute a few 
particular cumulants of the generalized distribution of the sum to estimate 
its parameters instead, since all cumulants are conserved. 

As described, this method only applies for summing multiple random va-
riables of related type. If no generalized distribution for two or more di-
verse random variables is available, it is impossible to predict the appro-
priate analytical pdf that best approximates their sum. For example, the 
lognormal and the transformed Rice-Nakagami random variables are not 
of related type and do not have a parametric distribution that generalizes 
both of them, so this method does not apply in this case. 

Finally, this method is both commutative and associative in that the order 
in which multiple random variables are summed together does not affect 
the final representation of their sum. This follows first from the fact that 
the summation of means and variances (and the third unstandardized cen-
tral moment, if necessary) is itself commutative and associative. Then, the 
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method selects the analytical pdf of the same type or of a more generalized 
type than that which describes the two summed random variables, regard-
less of which one is presented first in the method’s algorithm. 

Using the Laplace approximation 

The Laplace approximation is another approach that introduces the ap-
proximation at a different stage in the summation of random variables. 
Rather than approximating the resulting sum of multiple random va-
riables with an appropriate analytical pdf as in the previously described 
method, it is possible to approximate each non-Gaussian random variable 
addend by a Gaussian pdf. Then, the sum of these Gaussian approxima-
tions may be computed exactly, since the exact sum of multiple Gaussian 
random variables is simply another Gaussian random variable with means 
and variances conserved. 

Since many familiar, unimodal random variables may be roughly approx-
imated by a Gaussian pdf, the Laplace approximation is widely used in 
many situations requiring manipulation of multiple random variables that 
must be or is greatly preferred to be Gaussian. In our case, obtaining a 
good Gaussian approximation of multiple random variables greatly simpli-
fies their summation by avoiding the use of a more computationally inten-
sive, numerical approach. It is also likely that the Laplace approximation is 
within the precision errors inherent in the idealizations and uncertainties 
of the models and parameters used in simulating the signal-transmission 
and sensing process. 

Since the Laplace method involves the second-degree Taylor expansion of 
the given, non-Gaussian pdf’s logarithm centered on the mode, both the 
mode and the second derivative of the pdf’s logarithm at the mode must be 
computed. Often these can be calculated with simple, closed-form expres-
sions. If not, quick numerical computations can be devised noting that the 
mode is defined as where the maximum of the pdf occurs. Details on the 
theory and definition of the Laplace approximation can be found in Bishop 
(2006). 

The convolution approach 

Though it is the most computationally intense, it is possible to always 
compute the pdf of the sum of two independent random variables via the 
convolution of their pdfs. Since all pdfs are compactly supported and  
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locally integrable, the convolution of two pdfs, f and g, denoted as f * g, is 
the following well-defined and continuous integral transform: 

( )( ) ( ) ( )∫
ℜ

−=∗ τττ dtgftgf
def  

The preferred method for computing the convolution is via the forward 
and inverse discrete Fourier transforms, for which fast Fourier transform 
algorithms are available. According to the convolution theorem, the Fouri-
er transform of a convolution is the pointwise product of the Fourier trans-
forms of the two functions being convoluted together: 

[ ] [ ] [ ]gFfFkgfF ⋅⋅=*  

where k is a constant that depends on the normalization of the Fourier 
transform and [ ]fF  denotes the Fourier transform of f. Then, the inverse 

Fourier transform may be applied to obtain the convolution, f * g: 

[ ][ ] [ ] [ ][ ] [ ] [ ][ ]gFfFkFgFfFkFgfFFgf ⋅=⋅⋅== −−− 111 **  

Since the characteristic function of a random variable is a Fourier trans-
form of its pdf and is available for every type of random variable, it is then 
possible to compute the sum of multiple random variables using the 
inverse Fourier transform and characteristic functions by the general 
formula above. 

By using the convolution theorem and the fast Fourier transform (FFT) 
algorithms, an implementation for computing the sum of multiple random 
variables via the numerical convolution of two pdfs may be made practical. 
In practice, the FFT algorithm must be implemented carefully to avoid 
errors from discretization and truncation of integrals as much as possible. 
This can be quite difficult, but, if done correctly, the convolution approach 
would make it possible to sum multiple random variables of even vastly 
different type. It is also commutative and associative, as required. 

Central limit theorem 

As more independent random variables are summed, the joint random 
variable monotonically converges into a Gaussian distribution given 
certain conditions. By the classical central limit theorem, the sum must be 
of many independent and identically distributed random variables, each 
having positive variance with both mean and variance being finite. 
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However, the theorem actually also holds for non-identically distributed 
random variables if Lyapunov’s condition is satisfied, which further 
implies that Lindeberg’s condition is also met (Ash and Doléans-Dade 
2000). Though the rate of convergence depends on the type(s) of the 
identical or non-identically distributed random variable addends, it is 
conceivable that the sum of even three to five non-Gaussian random 
variables may already be well approximated by a Gaussian distribution. 
Hence, in cases where enough random variables are added together, where 
at least one of them is non-Gaussian, the sum may be simply represented 
by a Gaussian distribution with means and variances conserved. Any 
implementation for summing multiple random variables should take this 
limit theorem into account to improve both accuracy as well as com-
putational speed. When the theorem applies, the sum should be directly 
represented as Gaussian with means and variances conserved rather than 
computing many Laplace approximations, numerically evaluating many 
convolutions, or using a different pdf for the final representation. 
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5 Numerical Issues 

Although most statistical operations required for the pdfs described in this 
report are relatively straightforward to program, it is helpful to illustrate 
some of the operations that make use of certain numerical algorithms. It is 
also worthwhile to describe how more complicated operations must be 
programmed carefully so that they compute properly using floating-point 
arithmetic on a computer. For the latter concern, only a selection of exam-
ples is presented to illustrate some common problems that may arise. The 
Appendix includes further details. 

Computing the quantile using the bisection method 

With the exception of the exponential model, for which a closed-form for-
mula for evaluating the quantile is available, all other statistical models are 
coded to numerically solve for the quantile, x, by approximating the root, 
y0, of the following function, ( )yQ , using the bisection method for a given 

( )xP cdf=  with the tolerance set to the lowest representable number in bi-
nary double (64-bit) floating-point precision (approximately -1.8 × 10308): 

( ) ( ) PyyQ −= cdf  

where the root, y0, is equal to the quantile, x: 

( ) ( ) ( ) ( ) ( ) ( ) xyxyxyPyyQ =⇔=⇔=−=−= 00000 cdfcdf0cdfcdfcdf  

The lower- and upper-bounds used for the bisection method is set to span 
the entire domain supported by a particular statistical distribution that is 
representable in binary double (64-bit) floating-point precision. Specifical-
ly, the lower- and upper-bounds for the lognormal, gamma, and 2XX →  
transformed Rice-Nakagami models are set to zero and the highest repre-
sentable number (approximately 1.8 × 10308). For random variables with 
real-number support like the Gaussian, the lower- and upper-bound is set 
to the lowest and highest representable number (approximately -1.8 × 
10308 and +1.8 × 10308), respectively. The bisection method used to solve 
for the quantile requires that the cdf be always computable within the 
bounds. Since the bounds are set to span very large domains, the cdf must 
be programmed carefully so that it remains computable for all input values 
within the domain. Concerns related to how the cdf should be pro-
grammed to satisfy this required condition are discussed in the last two 
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sections of this chapter (“Numerical stability and well-posed problems” 
and “Illustrative examples of numerically stable statistical computations”). 

Although the bisection method only converges linearly (i.e., the absolute 
error of the true and estimated roots is halved at each step), it is preferred 
here because of it robustness. Unfortunately, other methods with higher 
convergence rates such as the Newton and Secant methods fail due to the 
nature of the cdf curve, which is asymptotically a horizontal line (with the 
first derivative equal to zero) at both ends. An optimized algorithm with a 
mixture of different methods is conceivable but does not necessarily im-
prove the convergence rate appreciably. 

Computing the cdf using Gauss-Legendre quadrature on the pdf 

Usually there is an expression for the cdf that could be directly imple-
mented, but, if it is complicated (e.g., it contains a special function that is 
difficult to program), numerical integration of the pdf may be a simpler 
alternative, although it is generally more computationally intensive: 

( ) ( )∫=
x

dttx
0

pdfcdf  

The Gauss-Legendre quadrature rule is a very efficient method for per-
forming the integration. Basically, the method approximates the definite 
integral of a function via a weighted sum of function values at specified 
points within the domain of integration. More details about stably imple-
menting this method for arbitrary integration domains are provided in the 
Appendix. 

In addition to the lower- and upper-bounds of the integration, the method 
requires specification of the number of weighted function values, N, to be 
summed. The appropriate number of points for the Gauss-Legendre rule, 
N, so that the integration of the pdf is computed to a sufficient level of pre-
cision depends on the nature of the pdf curve over the specified range of 
integration. Since the theory behind the N-point Gauss-Legendre rule en-
sures that it computes exact integrals for the class of polynomials of de-
gree 2N-1 or less, one must essentially predict the degree of the polynomial 
that adequately approximates the pdf over the specified range of integra-
tion to find the appropriate N. As N is increased, the numerical integration 
becomes more computationally intensive (and time-consuming), so it is 
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important to choose an N that is not greater than what suffices to obtain 
results of sufficient precision. 

To minimize the number of points necessary in the Gauss-Legendre rule 

and still compute ( ) ( )∫=
x

dttx
0

pdfcdf  with sufficient precision, it is helpful to 

minimize the range of integration as much as possible by programming cdf 
computation differently depending on x: 

( )

( )
( ) ( )

( ) ( )
( )














>=

≥>−

<>

<=

=

∫

∫

mean and 0pdffor  ,1

mean and 0pdffor  ,pdf1

mean and 0pdffor  ,pdf

mean and 0pdffor  ,0

cdf

xx

xxdtt

xxdtt

xx

x u

x

x

l
 

where l and u are approximations of the lowest and highest values for x 
with nonzero pdf values, respectively. More precisely, l and u are com-
puted as the first integer standard deviate below and above the mean with 
a pdf value of zero, respectively. If l and/or u is beyond the given statistical 
distribution’s representable support domain, it is set as the lowest and 
highest representable value of the support domain. Then, empirical inves-
tigations suggest that the 50-point Gauss-Legendre rule would be suffi-
ciently precise for computing any desired cdf value (Figure 3). Although all 
parameters cannot be tested, it is reasonable to assume that the general 
behavior of all pdfs of the same type is similar enough that the 50-point 
rule would always suffice. 

This approach is currently used for the 2XX →  transformed Rice-
Nakagami model to avoid implementing the first-order Marcum Q-
Function in its cdf expression. It is also included in the gamma model as 
an alternative in the potential event that the implementation for the direct 
approximation fails for certain inputs. As it turns out, some care must be 
taken in programming floating-point implementations of certain pdfs and 
cdfs (including the gamma cdf), as will be discussed in the following sec-
tions. 
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Figure 3. Comparison of cdf generated using different N-point Gauss-Legendre rules to 
integrate the X → X2 transformed Rice-Nakagami pdf with mean = 100 and var = 70.  

Vertical axis: pdf(x); horizontal axis: x. From left to right on the top row: N = 2, 5, and 10. From 
left to right on the bottom row: N = 20, 50, and 100. As N is increased, accuracy of the pdf 

integration is improved and a smooth cdf curve is generated. 

Numerical stability and well-posed problems 

When programming the various statistical operations, it is important to 
code calculations so that they function properly when performed using 
floating-point arithmetic on a computer. For programming very simple 
calculations, it is not necessarily important to understand the mechanics 
of floating-point arithmetic. It is, however, essential to understand when 
formulating more complicated functions and numerical algorithms. When 
a calculation is programmed to function properly within the limitations of 
floating point, it is called numerically stable. Goldberg (1991) has a much 
more comprehensive treatment of the subject than that which is provided 
here. 

The basic problem is caused by computers with limited memory that can 
only represent (and, therefore, work with) a finite, discrete set of numbers. 
Floating point describes a system for allocating computer memory effi-
ciently so that a very large set of numbers can be made “representable.” A 
more thorough background on floating point is provided in the Appendix. 

A variety of issues due to floating point are well known. First, there is 
round-off error, which is the difference between the calculated approxima-
tion of a number and its exact mathematical value. This type of error is in-
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troduced when the inputs and outputs of an arithmetic operation must be 
rounded to the nearest representable number. Typically, round-off errors 
are insignificant in simple computations, except in relatively rare instances 
(e.g., when two large, nearly equal numbers are subtracted, causing the 
number of accurate significant digits in the difference to be greatly re-
duced, sometimes called a catastrophic cancellation). But, small round-off 
errors may accumulate unacceptably when performing operations that re-
quire a sequence of many calculations (e.g., large summations, matrix in-
version, eigenvector computation, and solving differential equations). 

Another concern is more critical in our case, particularly when program-
ming the pdf, cdf, and quantile. Given that the final result of a computa-
tion is indeed representable, it is important that the results of the various 
arithmetic operations within that computation remain within the given 
floating-point representation’s domain of representable numbers. Ideally, 
a computation should be programmed so that this condition is met for all 
representable inputs. When this condition is not met, the final result is 
typically either very inaccurate or not computable at all, since an arithmet-
ic operation has resulted in an overflow or underflow (which is denoted by 
saying that the computation has suffered from premature overflow or un-
derflow, respectively). Then, the computation could unpredictably return 
an undefined or infinite number (e.g., +∞, -∞, or NaN), although the true, 
mathematical solution to the computation is within the representable 
range. For example, computation of the average of two nonzero numbers, 
x and y, that are within the representable domain using the formula,  
(x + y) / 2, may return +∞ or -∞ if (x + y) overflows, although the average 
would always lie within the representable range. 

To address this latter issue, it is helpful to notice that sometimes a single 
calculation can be achieved in several ways. In the previous example for 
computing the average of the two numbers, x and y, it is better to program 
the distributed formula, x / 2 + y / 2, which does not have the overflow 
problem. But, this formula is now susceptible to underflow by the terms,  
x / 2 or y / 2, for small enough x or y. Since premature underflow would 
only present, at most, an absolute error of twice the smallest representable 
number, it is more important to program against premature overflow than 
premature underflow in this case—for other situations when underflow 
may present a division-by-zero operation, premature underflow is much 
more important to prevent. The final, numerically stable algorithm for  
averaging the two numbers, x and y, would compute the distributed  
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formula, x / 2 + y / 2, only if the original formula, (x + y) / 2, results in an 
overflow. 

If a computation is rather complicated, a careful, numerically stable float-
ing-point computer implementation of it can be quite difficult to program. 
Although various algebraic manipulations are commonly used, each com-
putation is unique and requires different techniques. While it is easier to 
program a computation that must be stable only within a limited domain 
of inputs, the inputs that the computation must be able to handle may be 
difficult to know or predict. 

Illustrative examples of numerically stable statistical computations 

Since they share some general similarities, many statistical formulae suffer 
from common issues. For instance, many pdfs are of the following form: 

( ) ( ) ( )cd
abcdabx

exp
exppdf =−= . 

A simple, direct implementation of the pdf expression may not normally 
present issues with ordinary values for a, b, c, and d. However, this formu-
lation is certainly not robust for all representable a, b, c, and d. Namely, 
the numerator and denominator may both overflow, although their ratio is 
a perfectly ordinary value (that always lies within the representable range). 

This potential problem is easily remedied by a single, straightforward al-
gebraic rearrangement. Specifically, the division of two potentially large 
numbers, A and B, is better encoded via the difference of their logarithms: 

( ) ( )[ ]BA
B
A lnlnexp −=  

so that the ratio becomes computable for a much more expansive domain 
of A and B, since it is only required that their logarithms not overflow. Us-
ing this rearrangement, the general pdf expression above becomes: 

( ) ( ) ( ) ( ) ( )( )[ ] ( )[ ] ( ) ( )[ ]cdbacdabcdab
cd

ab
cd

abx −+=−=−=















== lnlnexplnexpexplnlnexp

exp
lnexp

exp
pdf

 
It is important to note here that not all overflows are necessarily an issue 
but that they become problematic only when inaccuracies may result. For 
example, the potential overflow of the term, cd, in the above rearrange-
ment is not an issue because it would always imply that the pdf is zero 
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and, in fact, actually results in a zero to be returned for the pdf. (It is 
helpful to notice here that the rearranged pdf would always equal zero 
when the term, cd, becomes large enough even before it overflows.) Over-
flow of A and/or B in the previous expression is troublesome because it 
does not imply anything about the true value of A / B and inaccurately 
returns 0, +∞, or NaN. 

Since computing exponentials and logarithms are more computationally 
expensive, it is better to calculate the stable rearrangement as an alterna-
tive only when the floating-point computation of A / B fails, if the simpler 
formulation is only rarely unstable. In certain cases, however, it may be 
that the straightforward formula, A / B, is actually more often unstable 
than it is stable. This is true, for example, with the gamma cdf, which will 
be described shortly. In these cases, it would be more efficient to just com-
pute the stable rearrangement directly. The Appendix includes specific de-
tails on how to apply this rearrangement for each type of distribution. 

As just stated, this technique is useful in coding the gamma cdf, defined 
for 0≥x , α > 0, and β > 0: 

( ) ( )α
β

αγ

β
α

Γ










=







=

x
xPx

,
,cdf  

where P is the regularized incomplete gamma function: 

( ) ( )
( ) ( ) ∫

−−

Γ
=

Γ
=

x
rs drer

ss
xsxsP

0

11,, γ  

and Γ and γ are the gamma function and the lower incomplete gamma 
function, respectively. 

In this formula, the individual terms, 







β

αγ x,  and ( )αΓ , overflow at modest 

values of x, α, and β, although the regularized incomplete gamma function 
itself has the limiting values: 

( ) 00, =sP  and ( ) 1, =∞sP . 
 

Thus, it is also helpful in this case to implement the exponentiation of the 
difference of the logarithms of the two terms: 
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( ) ( ) ( ) ( )( )











Γ−




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















Γ










=
Γ










=







= α

β
αγ

α
β

αγ

α
β

αγ

β
α ln,lnexp

,
lnexp

,
,cdf x

xx
xPx

. 

Though they are used less frequently, various other manipulations are use-
ful in more specific circumstances (and often in combination with the first 
technique). For instance, after using this first technique, the Gaussian cdf 
still contains a term that resembles the following: 

( )ba +ln . 
 
For all representable a and b, the true value of this term is always within 
the representable range, but +∞ would be returned whenever (a + b) over-
flows. This issue can be avoided by programming the following: 

( ) ( )c
c
b

c
ac

c
b

c
ac

c
baba lnlnlnlnln +






 +=














 +=














 +

=+  

 
where c is set as the largest representable number in the given floating-
point system. 

A similar distributive approach is used in multiple other situations, includ-
ing the formula for the gamma pdf, which presents the following general 
expression: 

cab − . 

When implemented directly, the subtraction by c is ignored whenever the 
term, ab, overflows and results in the entire expression being automatical-
ly equated to +∞ or -∞. This is unfortunate if c is of the same sign as ab, 
since the entire expression may very well be within the representable 
range (if c is of large enough magnitude). This problem can be easily 
avoided by programming the following instead: 







 −=






 −

=−
d
c

d
abd

d
cabdcab  

where d is selected to be large enough so that the term, d
ab

, does not over-

flow. 
In many instances, it is only important to simply pay attention to the order 

of operations. This, in fact, applies for programming the term, d
ab

, in the 



ERDC/CRREL TR-10-12 25 

 

technique explained above. It also applies in many other situations, in-
cluding when programming a term in the lognormal cdf, which is of the 
following form: 

bc
a . 

For even a simple expression like this, there are many ways to program it: 

( ) ( ) b
c
a

c
b
a

bc
a

c
a

bcb
a

bc
a

bc
a









=








=







=













=













==

111 . 

With some quick investigation, it is relatively easy to confirm that (usually) 
only one of these implementations (if any) is stable given certain limita-
tions on the domain of a, b, and c. But, in a couple of special cases of this 
general expression, it is always best to implement them in the following 
way: 

b
b
a

b
a









=2
 

 
and 

 







=

b
aa

b
a 2

. 

Simply changing the order of operations is often sufficient throughout 
parts of various statistical formulae; however, attention to this detail is 
quite easily overlooked. Application of this technique in specific cases is 
described within the Appendix. 

When no particular ordering of operations is universally stable for the giv-
en domains of a, b, and c, it is always possible to resort to the following 
general rearrangement that is stable for all representable a, b, and c: 

( ) ( ) ( )[ ]cba
bc
a

bc
a lnlnlnexplnexp −−=














= . 

Finally, it is helpful to note certain consequences of finite-precision arith-
metic when analyzing and implementing stable mathematical expressions 
in floating point. Essentially, any floating-point system represents a finite, 
discrete set of numbers along the real number line that retains the same 
relative difference only between each representable number (Figure 4). 
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This results in additions or subtractions by sufficiently small numbers to 
be ignored because the floating-point system is not precise enough to 
represent the difference. This observation is useful when programming, 
for instance, the following general expression, which arises in lognormal 
parameter conversions: 

( )bca +ln  

which becomes the following for sufficiently large differences in magni-
tude between a and bc: 

( ) ( ) ( ) ( )cbbcbca bca lnlnlnln += →+ <<

. 

This is a simpler alternative to the earlier, distributive technique: 

( ) ( )c
c
b

c
ac

c
b

c
ac

c
baba lnlnlnlnln +






 +=














 +=














 +

=+  

if it can be known that there will always be a sufficiently large magnitude 
difference between the added or subtracted terms. 

This observation is often useful in analyzing the stability of an implemen-
tation and concluding that certain potential underflow issues are accepta-
ble to ignore. Specifically, the magnitude difference of a given representa-
ble number and an underflowing number may be large enough that the 
underflow to zero would not affect their summation, since the contribution 
by the underflowing number would be ignored anyways even if it was not 
necessarily underflowing. However, there are situations when it is prudent 

 
Figure 4. Floating-point number line (Recktenwald 2006). 
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to check and fix a complicated implementation for potential underflow  
issues, particularly if the underflow would result in a division or multipli-
cation by zero. For example, it would be better to program the following 
two expressions as shown: 

( )( ) ( )( )( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]dcbacdabcdabcdab lnlnlnlnexplnlnexplnexp +++=+==  
 

and 
 

( )
( )

( )
( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]dcbacdab
cd
ab

cd
ab lnlnlnlnexplnlnexplnexp −−+=−=
















=  

so that underflow by the terms, ab and/or cd, would not result in potential 
inaccuracies due to the expressions being automatically computed as 0, 
+∞, -∞, or NaN. The Appendix includes more detailed explanations of po-
tential underflow issues for particular statistical computations. 

There are obviously many more algebraic manipulations that could be use-
ful in different situations; the listed techniques here are by no means  
exhaustive. They are, however, what is most helpful for carefully pro-
gramming various statistical operations in floating point. As the mechan-
ics of floating point are better understood, it becomes easier to discover 
other appropriate techniques and improve coding habits. Gradually, it  
becomes obvious that certain expressions should be coded always in a  
certain way such as: 

( ) ( ) ( )baab lnlnln +=  
 

and 
 

baab =  

As it turns out, designing stable floating-point implementations is highly 
nontrivial. But, it is essential if the domain of inputs is expansive or  
unknown and/or if a particular numerical algorithm depends on it to func-
tion properly. In the case here, for example, stable implementations of the 
cdf is vital if the algorithm that solves for the quantile uses a root-finding 
method with bounds set to span a very expansive domain (e.g., the entire 
representable region). Only a broad, conceptual discussion is given here 
for brevity. The Appendix gives specific details for implementing a particu-
lar computation. 
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6 Conclusions 

Given the randomness of most signal-generation and propagation 
processes, predictions of sensor performance are inherently probabilistic 
in nature. While it is important to minimize (e.g., using accurate parame-
ters and models), various types and levels of uncertainty would still exist 
in virtually all situations when modeling a complicated process such as 
signal transmission and sensing. Especially when small variations in the 
environmental state dramatically alter outcomes, calculating and commu-
nicating predictions in a statistical manner is critical. 

This report focused on representing target and noise signals as random 
variables to account for variations in sensor data (e.g., sound level, seismic 
energy, concentration of a chemical agent, etc.) that are essentially sto-
chastic due to many unknown and potentially dynamic environmental var-
iations affecting signal generation and propagation. By modeling signals 
statistically, the report discussed how to make probabilistic predictions on 
sensor performance. Both the software implementation of the statistical 
framework and some important numerical issues in programming statis-
tical computations were also explained. 



ERDC/CRREL TR-10-12 29 

 

References 
Andrews, L. C., and R. L. Phillips. 2005. Laser beam propagation through random 

media. 2nd ed. Bellingham, WA: SPIE. 

Ash, R. B., and C. A. Doléans-Dade. 2000. Probability and measure theory. 2nd ed. pp 
307–317. San Diego, CA: Academic Press.  

Ashkar, F., B. Bobée, D. Leroux, and D. Morisette. 1988. The generalized method of 
moments applied to the generalized gamma distribution. Stoch. Hydrol. 
Hydraul. 2:161-174. 

Baker, M. B., M. Eylander, and H. Harrison. 1983. The statistics of chemical trace 
concentrations in the steady state. Atmos. Environ. 18:969-975. 

Bishop, C. M. 2006. Pattern recognition and machine learning. New York, NY: Springer-
Verlag. 

Burdic, W. S. 1984. Underwater acoustic system analysis. Englewood Cliffs, NJ: Prentice 
Hall.  

Goldberg, D. 1991. What every computer scientist should know about floating-point 
arithmetic. ACM Comput. Surv. 23:5-48. 

Hieb, M. R., S. Mackay, M. W. Powers, H. Yu, M. Kleiner, and J. M. Pullen. 2007. 
Geospatial challenges in a net centric environment: Actionable information 
technology, design, and implementation, report 657816. In Proceedings of SPIE 
Defense and Security Symposium, Defense Transformation and Net-Centric 
Systems, edited by R. Suresh. 

Lanczos, C. 1964. A precision approximation of the gamma function. J. Soc. Ind. Appl. 
Math: Series B, Numerical Analysis 1:86-96. 

Limpert, E., W. A. Stahel, and M. Abbt. 2001. Log-normal distributions across the 
sciences: Keys and clues. BioScience 51:341-352. 

Mehta, N. B., J. Wu, A. F. Molisch, and J. Zhang. 2007. Approximating a sum of random 
variables with a lognormal. IEEE T. Wirel. Commun. 6:2690-2699. 

Nadarajah, S. 2008. A review of results on sums of random variables. Acta Appl. Math 
103:131.140. 

Pugh, G. R. 2004. An analysis of the Lanczos gamma approximation. Ph.D. dissertation, 
pp 114-116. Vancouver, Canada: The University of British Columbia. 

Recktenwald, G. W. 2006. Unavoidable errors in computing. Accessed July 2010. 
<<http://web.cecs.pdx.edu/~gerry/nmm/course/slides/ch05Slides.pdf>> 

Stacy, E. W., and G. A. Mihram. 1965. Parameter estimation for a generalized gamma 
distribution. Technometrics 7:349-358. 



ERDC/CRREL TR-10-12 30 

 

Stewart, T., L. Strijbosch, H. Moors, and P. Batenburg. 2007. A simple approximation to 
the convolution of gamma distributions, report 2007-70. A CentER Discussion 
Paper. ISSN 0924-7815. 

Strohbehn, J. W. editor. 1978. Laser beam propagation in the atmosphere. New York, 
NY: Springer-Verlag. 

Varanasi, M. K., and B. Aazhang. 1989. Parametric generalized Gaussian density 
estimation. J. Acoust. Soc. Am. 86:1404-1415. 

Wilson, D. K., R. Bates, and K. K. Yamamoto. 2009. Object-oriented software model for 
battlefield signal transmission and sensing. ERDC/CRREL TR-09-17/ 
ADA522523. Hanover, NH: U.S. Army Engineer Research and Development 
Center. 

Wilson, D. K., C. L. Pettit, S. Mackay, M. S. Lewis, and P. M. Seman. 2008. Addressing 
uncertainty in signal propagation and sensor performance predictions. 
ERDC/CRREL TR-08-21/ ADA4591357. Hanover, NH: U.S. Army Engineer 
Research and Development Center. 

Wilson, D. K., B. M. Sadler, and T. Pham. 2002. Simulation of detection and 
beamforming with acoustical ground sensors, 50-61. In Proceedings of SPIE 
AeroSense Symposium, Unattended Ground Sensor Technologies and 
Applications IV, edited by E. M. Carapezza. 



ERDC/CRREL TR-10-12 31 

 

Appendix: Floating-Point Implementations of 
Statistical Formulae 

This appendix includes specific details on floating-point implementations 
of the various statistical formulae described in the report. Mathematical 
expressions are programmed so that they always return a representable 
number whenever the true solution is representable for all representable 
parameter inputs. When this condition is met, it is said that the implemen-
tation is numerically stable. The representable numbers are often defined 
by the binary double (64-bit) floating-point precision system, which has 
approximately 16 decimal digits of precision and spans numbers from  
approximating -1.8 × 10308 to +1.8 × 10308. A short background on floating 
point is given as an introduction. 

Floating point 

To be able to represent the widest range of numbers possible using a fixed 
number of bytes in computer memory, modern machines approximate 
numbers to a fixed number of significant digits (called the significand), 
which is scaled by multiplication with a base (normally 2, 10, or 16) raised 
to a specified exponent: 

exponentbasedigitst significan ×  

This numeral system, called floating point, allows the radix point that 
separates the integer part of a number (to the left of the point) from the 
fractional part (to the right of the point) to be placed anywhere relative to 
the significant digits of the number (i.e., to “float”), making it conceptually 
similar to scientific notation. While several different floating-point imple-
mentations have been used in the past, the Institute of Electrical and Elec-
tronics Engineers (IEEE) has standardized the practice in IEEE 754, which 
is now followed by almost all modern computers. 

The IEEE 754 Standard for Floating-Point Arithmetic defines several basic 
floating-point formats using different radixes (i.e., bases) and amounts of 
computer bits, of which two are most widely used in computer hardware 
and programming languages: 



ERDC/CRREL TR-10-12 32 

 

1. binary (i.e., base 2) single precision, which occupies a total 32 bits (4 bytes) 
and has a significand precise to 24 bits (about 7 decimal digits) 

2. binary double precision, which occupies a total of 64 bits (8 bytes) and has 
a significand precise to 53 bits (about 16 decimal digits). 

Other basic floating-point formats include binary quadruple precision  
(occupying 128 bits) and decimal (i.e., base 10) formats encoded using 64 
or 128 bits. All basic floating-point formats also define representations of 
special values, including positive and negative infinities (+∞ and -∞), 
negative zero (-0) distinct from ordinary (“positive”) zero, and a “not a 
number” value (NaN), where NaN is generated by three kinds of opera-
tions: 
1. operations that produce indeterminate forms: 

a. the divisions 0/0, ∞/∞, ∞/-∞, -∞/∞, and -∞/-∞ 
b. the multiplications 0× ∞ and 0×-∞ 
c. the power 1∞ 
d. the additions ∞+(-∞), (-∞)+∞, and equivalent subtractions (i.e., ∞-∞ 

and -∞-(-∞)) 
2. real operations with complex results: 

a. the square root of a negative number 
b. the logarithm of a negative number 
c. the inverse sine or cosine of a number which is less than -1 or greater 

than +1 
3. any operation with a NaN as at least one operand 

The standard further defines how to simulate arithmetic operations (e.g., 
add, subtract, multiply, divide, square root, exponentiation, sine, cosine, 
etc.) on floating-point numbers, recognizing certain exceptional situations, 
which include: 
1. invalid operations (e.g., square root of a negative number) 
2. division by zero 
3. overflow (a number that is too large to represent correctly) 
4. underflow (a number that is very small and is inexact) 
5. inexact (an approximated number) 

Finally, the standard also defines various algorithms for rounding floating-
point numbers during arithmetic and conversions, where the default me-
thod rounds to the nearest representable value or to the nearest represent-
able even number if the number lies midway between two representable 
values. 
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Stable statistical implementations 

Details given here for the Gaussian, lognormal exponential, and gamma 
distributions are thorough enough that a reader may understand exactly 
how they were implemented. Although the details for the 2XX →  trans-
formed Rice-Nakagami model are not as complete, the ideas and tech-
niques used in its implementation are very similar to those of the other 
models. The derivation for the random variable transformation to obtain 
the 2XX →  transformed Rice-Nakagami distribution is also provided. 

When variance is set to zero, the density function does not exist and the 
probability distribution becomes degenerate, describing a discrete random 
variable whose support consists of only one value. While such a distribu-
tion is not random in the practical sense, it does still satisfy the definition 
of a random variable and may be described as such in order to provide a 
way to deal with constant values in a probabilistic framework. Namely, the 
probability mass function (pmf) for this case is given by: 

( )


 =

=
otherwise  ,0

meanfor  ,1
f

x
x

 

Then, the cdf of the degenerate distribution is the Heaviside step function 
about the mean: 

( )


 ≥

=
otherwise  ,0

meanfor  ,1
F

x
x

 

Here, “mean” is denoted as the single, constant value represented by the 
distribution. 

The described implementations in the following sections do not apply 
when variance is set to zero. An implementation of the probabilistic de-
scription explained above is invoked instead in this case. 

Gaussian distribution 

Computation of the pdf 

The following straightforward formulation of the Gaussian pdf , defined 
for ℜ∈µ ,x  and σ2 >0, is vulnerable to a variety of premature overflow and 
underflow issues, including premature overflow by the exponent term 
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( )
2

2

2σ
µ−

−
x

, which would, in turn, cause premature underflow of the exponen-

tiated expression, 
( )








 −
− 2

2

2
exp

σ
µx

: 

( ) ( )







 −
−= 2

2

2
exp

2
1pdf

σ
µ

πσ
xx  

where µ and σ are the mean and standard deviation of the Gaussian distri-
bution, respectively. 

A simple reformulation, however, eliminates the risk of premature over-
flow and underflow: 

( ) ( )( )( ) ( )

( ) ( ) ( ) 















++






 −

−−=































 −
−==

πµµ

σ
µ

πσ

2lnvarln
var2

1exp

2
exp

2
1lnexppdflnexppdf 2

2

xx

xxx
 

where the term ( ) 





 −

−
var
µµ xx  overflows only when the true value of the pdf 

is zero, even when premature overflow occurs by the terms ( )µ−x  or  







 −

var
µx

. 

Underflow of the term ( ) 





 −

−
var
µµ xx  is not an issue since: 

( ) 1min
2
1exp =



 ±− a  for { }min: ±≠∈ aaFa  

where F is the set of all numbers representable in binary double (64-bit) 
floating-point precision and a is set as the expression 1n(var)+1n(2π). 

Computation of the cdf 

Where the error function is numerically stable for any real number input 
and has the range [-1,1], the following formula for the Gaussian cdf is ac-

curate only when computation of the term 
2σ
µ−x  is numerically stable: 

( ) 














 −
+=

2
erf1

2
1cdf

σ
µxx  
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A numerically stable calculation of the term 
2σ
µ−x  is done first by changing 

the order of operations: 
 

( )

σ

µ

σ
µ 







 −

=
− 2

2

x
x

. 

When the term µ−x  overflows, the term 
2σ
µ−x  is computed as follows: 

 

( ) ( )( ) ( ) ( ) ( )








−−−+=−−−=







 −
=

−
2
2lnln

22
ln2lnexp2lnlnlnexp

2
lnexp

2
σµσµ

σ
µ

σ
µ xxxx  

where max = highest representable number in binary double (64-bit) float-
ing-point precision (approximately 1.8×10308). 

The absolute value is computed to avoid the potential, impossible compu-

tation of a negative logarithm. The negative of the computed term 
2σ
µ−x  is 

inputted into the error function for 00
2

<−⇔<
− µ

σ
µ xx . 

 

The term ( )
2
µ−x  cannot underflow for all representable x and µ since: 

min
2

min
=  

in binary double (64-bit) floating-point precision. 

Computing the rearrangement for when the term µ−x  overflows allows 

the final value of the term 
2σ
µ−x  to compute to as low as 

2
1  rather than 

returning ∞, depending on the value of the term σ in the denominator. 

A numerically stable algorithm of the error function for any real number 
input and with a range [-1,1] computes the regularized incomplete gamma 

function ( ) ( )
( ) ( ) ∫

−−

Γ
=

Γ
=

x
rs drer

ss
xsxsP

0

11,, γ , using either the series or continued 

fraction representation: 

( ) ( )
( )


 <−

=
otherwise ,,

0for   ,,
erf 2

2
1

2
2
1

tP
ttP

t  

 



ERDC/CRREL TR-10-12 36 

 

Since the algorithm for computing the lower incomplete gamma function 
is only stable for finite representable inputs, where max2 ≤t , which already 
computes to 1 at 102 =t , the error function is set to -1 and +1 for 10−≤t  and 

10≥t , respectively. 

Lognormal distribution 

Conversion of mean and variance to/from μ and σ 

Given mean and variance, it is possible to compute the unique parameters 
for the lognormal distribution µ and σ by the following formulae: 

( )







 +=







 +−=

2

2

mean
var1ln

mean
var1ln

2
1meanln

σ

µ
 

However, both of these expressions are susceptible to premature overflow 

or underflow by the term 2mean
var . The formulas may be made numerically 

stable by rearrangement. 

Firstly, rearranging the term 2mean
var  to the term 








mean
var

mean
1  eliminates the 

potential of premature underflow or overflow of mean2, thereby modifying 
the expression for µ and σ to the following: 
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var1ln

2
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21
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σ

µ
 

In the case where the term 







mean
var

mean
1  overflows the expression for µ and 

σ reduces to the following computable forms in binary double (64-bit) 
floating-point precision: 

( ) ( ) ( ) ( )

( ) ( )meanln2varln
mean

varln
mean

var1ln

varln
2
1meanln2

mean
varln

2
1meanln

mean
var1ln

2
1meanln

22

max
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var

mean
1for 

2

22
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mean
var

mean
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2
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Assuming round-off errors are negligible, premature overflow is eliminated when 
calculating µ by computing µ2 when the term 








mean
var

mean
1  overflows and compu-

ting µ1 otherwise: 







>







=
otherwise ,

max
mean
var

mean
1for  ,

1

2

µ

µµ  

Similarly, a numerically stable algorithm for calculating σ computes σ2 

when the term 







mean
var

mean
1  overflows and computes σ1 otherwise: 







>







=
otherwise ,

max
mean
var

mean
1for  ,

1

2

σ

σσ  

Underflow of the term 







mean
var

mean
1  can be ignored when computing µ and σ 

since: 
11 =+ a  

for min≤a in binary double (64-bit) floating-point precision, where min = 
smallest representable number in binary double (64-bit) floating-point 
precision (approximately 4.9 × 10-324). 

Conversely, it is possible to compute mean and variance, given µ and σ, by 
the following formulae: 

( )( ) ( )22

2

2exp1expvar

2
expmean

σµσ

σµ

+−=









+=  

A numerically stable algorithm for performing these operations compute 
different expressions that are manipulated yet equivalent for different 
combinations of µ and σ. 

To stably compute the mean, only a simple change in the order of opera-
tions is necessary: 















+=




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
+=

2
exp

2
expmean

2 σσµσµ  

where the term, 







2
σσ , overflows only when the true value of the mean 

overflows. 
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Two rearranged but mathematically equivalent expressions are also used 
in different situations to compute variance: 

( )( ) ( ) ( )( ) ( )[ ]( )
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Firstly, the variance is always computed to zero when ( )2exp σ is equal to 1. 

Var2 is computed whenever 2µ < -max and 2σσ > max. Var1 is computed in 
all other cases: 

( )






>−<
=

=
otherwise ,var

max2 and max2for  ,var
1expfor  0,

var

1

2

2

σσµ
σ

 

The variance is always greater than the largest, positive representable 
number in binary double (64-bit) floating-point precision whenever the 
term 2σ  overflows. 

Whenever either 2µ or 2σσ overflows but not both, var1 = var2 in binary 

double (64-bit) floating-point precision. Underflow of the term 







2
σσ  in 

mean1 and the term 2σσ in var1 is not an issue since: 

( ) ( )xx expminexp =+  

for all x in binary double (64-bit) floating-point precision. The term 

( )( ) 







− σσexp

11ln  could never underflow since: 

( ) minln >x  

for all x ≠ 1 in binary double (64-bit) floating-point precision. When x = 1, 
1n(x) is exactly zero. 
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Computation of the pdf 

As with the Gaussian distribution, the following simple formulation of the 
lognormal pdf, defined for 0≥x , ℜ∈µ , and σ > 0, is also susceptible to 

premature overflow and underflow issues, including premature overflow 

by the exponent term ( )( )
2

2

2
ln

σ
µ−

−
x  which would, in turn, cause premature 

underflow of the exponentiated expression ( )( )
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A simple reformulation, however, eliminates the risk of premature over-
flow and underflow: 
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where the term ( ) 2ln






 −

σ
µx  overflows only when the true value of the pdf is 

zero. 

Underflow of the term ( ) 2ln






 −

σ
µx  is not an issue since: 

( ) 1min
2
1exp =



 ±− a  for { }min: ±≠∈ aaFa  

where F is the set of all numbers representable in binary double (64-bit) 
floating-point precision and a is set as the expression, ( ) ( ) ( )πσ 2lnln2ln2 ++x . 

Since the above rearrangement always computes NaN for x = 0, the pdf of 
x = min is computed instead in this case, which may or may not necessari-
ly limit to zero depending on the values of µ and σ. Thus, the final algo-
rithm for computing the pdf is as follows: 

( ) ( )
( )


 =

=
otherwise ,pdf

0for  ,minpdf
pdf

1 x
x

x
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Computation of the cdf 

Where the error function is numerically stable for any real number input 
and has the range [-1,1], the following formula for the lognormal cdf is ac-

curate only when computation of the term ( )
2

ln
σ

µ−x  is numerically stable: 

( ) ( )















 −
+=

2
lnerf1

2
1cdf

σ
µxx  

A numerically stable calculation of the term ( )
2

ln
σ

µ−x  is done simply by 

computing parts of it in a certain order as follows: 

( ) ( )







 −
=

−
2

ln1
2

ln µ
σσ

µ xx  

Here, the term ( )






 −

2
ln µx  can never overflow or underflow by itself for all 

finite µ and nonzero x in binary double (64-bit) floating-point precision 
since: 

min
2

min
=  

and 

( ) maxmaxln ±=±x  

for all finite x in binary double (64-bit) floating-point precision. 

The error function is computed with the same algorithm described for 
computation of the Gaussian cdf. 

Exponential distribution 

Parametrization 

The exponential distribution is characterized by a single, scale parameter β 
that is equivalent to the mean. The variance is the square of the mean. 
Since conversions are one step, no rearrangement is necessary or possible: 

2var
mean

β

β

=

=  
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Computation of the pdf 

Without computing a rearranged form, the following expression for the 
exponential pdf, defined for 0≥x  and β > 0, could result in premature un-

derflow of the exponentiated expression, 







−
β
xexp , when β < 1: 

( ) 







−=
ββ
xx exp1pdf  

The following algebraically equivalent but rearranged expression is accu-
rate for all x and β: 

( ) ( )







−−=




























−=








−= β

βββββ
lnexpexp1lnexpexp1pdf xxxx  

where the term 
β
x  overflows only when the true value of the pdf is zero. 

 

Underflow of the term 
β
x  is not an issue since: 

[ ] 1minexp =−a  for { }min: ±≠∈ aaFa  
 
where F is the set of all numbers representable in binary double (64-bit) 
floating-point precision and a is set as the expression ( )βln− . 

Computation of the cdf 

The exponential cdf can be stably computed by the following, simple  
expression for all x and β: 

( ) 







−−=
β
xx exp1cdf  

Computation of the quantile (cdf-1) 

Since the cdf expression can be easily solved for x, a closed-form formula 
for the exponential quantile exists, which is stable for all x and β: 

( )( )xx cdf1ln −−= β  
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Gamma distribution 

Conversion of mean and variance to/from α and β 

Given mean and variance, it is possible to compute the unique parameters 
for the gamma distribution, α and β, by the following formulae: 

mean
var
var

mean 2

=

=

β

α  

While the expression for β is stable for all mean and variance, α should be 
computed as follows: 


















>
=

otherwise mean,
var

mean

max
var

meanfor  ,
var

mean2

α  

The converse operation computes mean and variances of the gamma dis-
tribution from α and β, by the following formulae: 

2var
mean

αβ

αβ

=

=  

The expression for mean is stable for all α and β, but variance should be 
computed as follows: 

( )αββαβ == 2var  

Computation of pdf 

The following expression for the gamma pdf, defined for x ≥ 0, α > 0, and 
β > 0, must be formulated carefully to prevent inaccuracies from numer-
ous potential premature overflow and underflow issues: 

( )
( ) 








−

Γ
=

−

ββα α

α xxx exppdf
1

 

But, to obtain a stable rearrangement of the gamma pdf, it is first neces-
sary to notice how the term ( )αΓ  is computed using the following expres-

sion for Lanczos approximation of the gamma function (Lanczos 1964): 
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( ) ( )αγαγαπα γ

α

A













 ++−






 ++=+Γ

+

2
1exp

2
121

2
1

 

 
with 

 

( ) ( ) ( ) ( ) ( )
( )( ) +

++
−

+
+

+=
21

1
12

1
210 αα

ααγρ
α
αγργραγA  

 
and 

 

( ) !
2
1

2
1exp

2
12 2

1

0

2
2 






 −





 ++






 ++=







 +−

=
∑ δγδγδ

π
γρ

δ

δ
δ

k
k

k C  

where γ is an arbitrarily chosen constant such that 0
2
1

>





 ++ℜ γα  so that 

the infinite series, ( )αγA , converges as required and i
jC  denotes the coeffi-

cient of the j-th-degree term in the i-th-degree Chebyshev polynomial of 
the first kind. 

Since ( ) ( )ααα Γ=+Γ 1 , we have: 

( ) ( ) ( )αγαγα
α
π

α
αα γ

α

A













 ++−






 ++=

+Γ
=Γ

+

2
1exp

2
121 2

1

.
 

Since the series, ( )αγA , is convergent, it may be truncated to obtain an ap-

proximation with desired precision. For fixed γ and truncation order N, 
computational efficiency is enhanced by resolving the rational fractions in 
the series ( )αγA  into their constituent partial fractions so that: 

( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( )∑

= +
+≈+

++
−

+
+

+=
N

n

n

n
b

bA
1

0210 21
1

12
1

α
γ

γ
αα

ααγρ
α
αγργραγ   

where the coefficients ( )γb  are pre-computed for fixed γ, which are related 
to the original coefficients ( )γρ  of the series ( )αγA  and similarly indepen-

dent of α. 

To illustrate how the coefficients ( )γb  are pre-computed after decomposing 
rational fractions of the series ( )αγA  the process is shown for a simpler 

case, when the truncation order is 3. First the following is obtained by 
combining like terms after partial-fraction decomposition of the rational 
fractions in the truncated series: 
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( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( )( )

( )( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3

30
2
246

1
32

2
1

3
30

2
24

1
31

2
6

1
21

1
11

2
1

321
21

21
1

12
1

332321
3210

3210

3210

+
−

+
+
+−

+
+

−+−
++++=









+
−

+
+

+
−+








+
−

+
++








+
−+=

+++
−−

+
++

−
+

+
+≈

α
γρ

α
γργρ

α
γργργρ

γργργργρ

ααα
γρ

αα
γρ

α
γργρ

ααα
αααγρ

αα
ααγρ

α
αγργργγA

.

 

Then we notice that: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )∑
= +

+=
+

+
+

+
+

+=

+
−

+
+
+−

+
+

−+−
++++≈

3

1
0

321
0

332321
32103

321

3
30

2
246

1
32

2
1

n

n

n
b

b
bbbb

A

α
γ

γ
α

γ
α

γ
α

γ
γ

α
γρ

α
γργρ

α
γργργρ

γργργργργ

 

when we let: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )γργ

γργργ
γργργργ

γργργργργ

33

322

3211

32100

30
246

32
2
1

−=
+−=

−+−=

+++=

b
b
b

b

.

 

 
After examining the dependence of relative error as a function of γ and the 
truncation order of the series, ( )αγA , it has been determined that using γ = 

10.900511 and a truncation order of 10 guarantees 16-digit floating-point 
accuracy required for implementation in binary double (64-bit) floating-
point precision, which yields the following coefficients (Pugh 2004): 

9
10

6
9

4
8

2
7

1
6

5

4

3

2

1

5
0

1086077039107199490848.2

1099056367086339947335.4

1043057812837192611740.5

1044412243077097054340.1

1016458695839542877319.1

71267130770563971157.1
35766557219828522532.2

68948237005122770946.4
20162354694568709722.3

17219742100514237858.1
1087535655464857408913.2

−

−

−

−

−

−

×−=

×=

×−=

×=

×−=

=
−=

=
−=

=
×=

b
b
b
b
b
b
b
b
b
b
b

 

Currently, EASEE uses an implementation of the Lanczos approximation 
by M. T. Flanagan in his Java Scientific and Numerical Library with γ = 
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5.0, a truncation order of 6, and an error bound less than 2×10-10, which 
has the following coefficients: 

5-
6

2-
5

4

3

2

1

0

10384953-0.5395239

10738661790.12086509

72450155-1.2317395
408309124.0140982
32941677-86.505320
294714676.1800917

900150000000001.1

×=

×=

=
=
=
=
=

b
b
b
b
b
b
b

 

 
Now return to the original, problematic formulation of the gamma pdf: 

( )
( ) 








−

Γ
=

−

ββα α

α xxx exppdf
1

 

 
and set: 

( ) ( )

( ) ( )








+

+













 ++−






 ++≈















 ++−






 ++=Γ

∑
=

+

+

N

n

n

n
bb

A

1
0

2
1

2
1

2
1exp

2
12

2
1exp

2
12

α
γ

γγαγα
α
π

αγαγα
α
πα

α

γ

α

 

 
to obtain: 

( ) ( )
( ) ( ) α

α

α

α

α

β
α

γ
γγαγα

α
π

β
ββα






















+

+













 ++−






 ++









−

≈







−

Γ
=

∑
=

+

−
−

N

n

n

n
bb

xx
xxx

1
0

2
1

1
1

2
1exp

2
12

exp
exppdf

 

 
which is the actual, full expression of the approximated gamma pdf. 

This formulation of pdf is unstable when computed within binary double 
(64-bit) floating-point precision, mostly due to premature overflow by the 
approximation expression for the term ( )αΓ  and the term 1−αx  as well as 

premature underflow by the term 







−
β
xexp . In fact, there are many (even 

relatively small) values for x and α that cause ( )αΓ  and 1−αx  to overflow si-

multaneously, since both are rapidly increasing functions as α increases, 
generating NaN due to the computation of ∞/∞, even though the true ratio 
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of 
( )α
α

Γ

−1x  is a simple, finite number that is easily representable in binary 

double (64-bit) floating-point precision. NaN may also be returned even 

when only 1−αx  overflows, if the term 







−
β
xexp  underflows to zero, which  

results in the indeterminate form, 0×∞, in the numerator. These observa-
tions along with many other potential scenarios that could cause inaccu-
rate (or more often unviable) solutions to the gamma pdf make this formu-
lation quite unpredictable and unsatisfactory. 

Firstly, a few basic manipulations of the original formula result in the  
following, more stable form: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )









+−=

























































 ++







+

+







 ++

=















 ++







+

+







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=






















+

+













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




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







−

≈









−

Γ
=

+

=

−

+

=

−

=

+

−

−

∑

∑

∑

BxA

x
n
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x

x
n
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x

n
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xxx

N

n

n

N

n

n

N

n

n
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β
γα

α
γ

γπβ

γαα

β
γα

α
γ

γπβ

γαα

β
α

γ
γγαγα

α
π

β

ββα

α
α

α

α
α

α

α
α

α

α

α

exp

exp
2
12

2
1exp

lnexp

exp
2
12

2
1exp

2
1exp

2
12

exp
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2
1

1
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1

2
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1
0

1

1
0

2
1

1

1
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where ( ) ( ) ( ) ( ) ( )
2

2
1ln

ln
2
2ln

2
1lnln

1
0







 ++

−







+

+−−+++−= ∑
=

γα

α
γ

γπγαα
N

n

n

n
b

bxA  and 

( ) ( ) 





 ++−−=

2
1lnlnln γαβxB , which is stable for most x, α, and β. When the 

term 
β
x  overflows and B > 0, the following is computed instead: 

 

( ) ( )
( )( )








 +−
=








+−≈








−

Γ
=

−

β
αββα

βββα α

α BxABxAxxx expexpexppdf
1

2
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To avoid automatically computing a pdf value of +∞ for x = 0 using these 
rearrangements, the pdf of x = min is returned instead as a very close ap-
proximation, which would only limit to zero for sufficiently large α. 

Thus, the final algorithm for the gamma pdf computation is as follows: 
 

( )
( )

( )
( )









>>

=

=

otherwise ,pdf

0 and maxfor  ,pdf

0for  ,minpdf

pdf

1

2

x

Bxx

x

x
β

 

Here, the term A never overflows for all nonzero, finite, positive values of x 
and α in binary double (64-bit) floating-point precision and γ = 5.0, as re-
quired to prevent premature overflow. 

To confirm this, we first notice that the expressions ( ) ( )∑
= +

+
N

n

n

n
b

b
1

0 α
γ

γ  and 

2
1

++γα  are nonzero and finite in binary double (64-bit) floating-point pre-

cision in the given domain of x, α, and γ (i.e., x ≥ 0, α > 0, and γ = 5.0). 

This is easy to see with the expression 2
15

2
1

++=++ αγα  which can never 

equal zero because it is the summation of nonzero, positive numbers and 
can never overflow since: 

max
2
15max =++  

in binary double (64-bit) floating-point precision. The expression 

( ) ( ) ( ) ( )∑∑
== +

+=
+

+
N

n

n
N

n

n

n
bb

n
bb

1
0

1
0

55
αα

γ
γ  can never overflow by examination of the ( )5b  

coefficients for truncation order 6 and noting that 1≥+ nα  for any positive, 

nonzero integer, n. It can never equal zero since ( ) ( )
0

1
0 =

+
+∑

=

N

n

n

n
b

b
α

γ
γ  implies 

that ( ) 0=Γ α , which contradicts the fact that ( ) 0>Γ α  for 0>α . 

Hence, given that: 

( ) ( ) ( ) 893384709.782712maxlnlnminln9213812744.440071- ≈≤≤≈ a  for { }0: ≠∈ aFa . 
 

where F is the set of all numbers representable in binary double (64-bit) 
floating-point precision, we have: 
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( ) ( ) ( ) ( ) ( ) ( )minln5
2
1

2
2
1ln

ln
2
2ln

2
1lnln

1
0 ×+++≤







 ++

−







+

+−−+++−= ∑
=

γα
γα

α
γ

γπγαα
N

n

n

n
b
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The expression ( ) ( )minln5
2
15minln5

2
1

×+++=×+++ αγα  can never overflow 

since: 

( ) maxminln5
2
15max =×+++  

in binary double (64-bit) floating-point precision. 

The term, B, never overflows for all nonzero, finite, positive values of x, α, 
and β in binary double (64-bit) floating-point precision and γ = 5.0: 

( ) ( ) ( ) maxminln3
2
1lnlnln <≤





 ++−−= γαβxB  

 
Underflow of A is not an issue since: 

0
max
min

=  

 
in binary double (64-bit) floating-point precision. 

Underflow of any of one or more of the terms A, 
β
x , and αB may be ignored 

since: 

( ) 1minexp =±a  for { }min: ±≠∈ aaFa , 
 

( ) 1min2exp =±a  for { }min2: ±≠∈ aaFa , and 
 

( ) 1min3exp =±  

where F is the set of all numbers representable in binary double (64-bit) 
floating-point precision and a is set as the expression for the non-
underflowing term(s). 

Computation of the cdf 

Like the error function in the Gaussian and lognormal cdfs, the gamma cdf 
is also related to the regularized incomplete gamma function 
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11,, γ , which is likewise computed using either the se-

ries or continued fraction representation: 
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While the individual terms 







β

αγ x,  and ( )αΓ  overflow at modest values of x, 

α, and β, the regularized incomplete gamma function itself never overflows 
since it has the limiting values: 

( ) 00, =sP  and ( ) 1, =∞sP . 
 

Thus, it is better to implement the exponentiation of the difference of the 
logarithms of the two terms: 
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With this rearrangement, the gamma cdf is computable for a much more 
expansive domain of x, α, and β, since it is only required that the loga-

rithm of the two terms 







β

αγ x,  and ( )αΓ  not overflow. For the vast majority 

of cases, this rearranged formulation of the gamma cdf is stable. In the 
rare instance that the rearrangement proves unstable, the algorithm com-
putes a direct numerical integration of the gamma pdf, which is always 
stable. Information on the implementation of the Gauss-Legendre quadra-
ture rule for efficiently integrating pdfs is given in the final section of the 
report on numerical issues. 

X → X2 transformed Rice-Nakagami distribution 

The distributions of the powers of certain acoustic and seismic signals are 
closely approximated by the Rice-Nakagami model. Specifically, the sig-
nal-power distribution resembles the 2XX →  transformed Rice-Nakagami 
distribution when the amplitude is Rice-Nakagami distributed, since sig-
nal power is the square of signal amplitude. For consistency, all sensors 
are modeled to work with signal power rather than amplitude, thus the 

2XX →  transformed Rice-Nakagami distribution is encoded. It turns out 
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that it is also simpler to implement the 2XX →  transformed Rice-
Nakagami distribution, whose expressions for computing mean and va-
riance from its unique parameters υ and σ are clean polynomials and, un-
like the untransformed version, do not involve the half-degree Laguerre 
polynomial. 

Derivation of the X → X2 transformed Rice-Nakagami distribution 

Statistically, the 2XX →  transformed Rice-Nakagami distribution is the 
distribution of X2 where X is a random variable with a Rice-Nakagami dis-
tribution. A fundamental theorem for random variable transformation 
states that, if ( )tpT  is the value of the probability density of the continuous 
random variable T at t and the function ( )tx Φ=  is differentiable and mono-
tonic for all values within the range of T for which its probability density 
does not equal 0 (i.e., ( ) 0≠tpT ), the probability density of X is given by: 

( ) ( )[ ] ( ) ( )
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



≠⋅=

−
−

otherwise ,0

0 if ,
1

1

dt
tdΦ

dx
xdΦxΦpxp T

X
 

 
Hence, for the Rice-Nakagami distribution, where ( ) 2ttx =Φ= , we have: 

( ) [ ]
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

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≠⋅=
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0 if ,
2

1 t
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where: 

 
( ) xxΦ +=−1  since 0t ≥ , 

 
( ) ( )

xdx
xd
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xdΦ

2
11

==
−

, and 

 
( ) t

dt
tdΦ 2 = . 
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Thus, for t ≠ 0: 
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where I0 is the zeroth order modified Bessel function of the first kind and υ 
and σ are the nonnegative parameters of the Rice-Nakagami distribution. 

Parameters of the X → X 2 transformed Rice-Nakagami distribution 

By definition, the mean of transformed pdf, ( )xpX , is the integral of all val-
ues within the range of X with respect to (i.e., weighted by) its probability 
density: 

( ) ( )dxxxpXE X∫
∞

∞−

=  

which, for ( ) 2ttx =Φ=  and t ≠ 0, is equal to the second raw moment ′
2µ  of 

the untransformed pdf ( )tpT : 
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Since 22
2 2 νσµ +=′  for the Rice-Nakagami distribution, we have: 

( ) 22
2 2 νσµ +=′=XE  

Also by definition, the variance of the transformed random variable, X, can 
be expanded as follows: 

( ) ( )( )[ ] ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222222
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2

XEXEXEXEXEXEXEXEXE

XEXXEXEXEXEXVar
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which, for ( ) 2ttx =Φ=  and t ≠ 0, may be expressed using the second and 
fourth raw moments ′

2µ  and ′
4µ  of the untransformed pdf ( )tpT : 
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( ) ( ) 2244224422442244224

2224224
2

24
22422

4444884488

288

νσσννσσννσσννσσννσσ

νσννσσµµ

+=−−−++=++−++=

+−++=




 ′−′=−=−= TETEXEXEXVar  



ERDC/CRREL TR-10-12 52 

 

Given ( ) 222 νσ +=XE and ( ) 224 44 νσσ +=XVar  for the 2XX → transformed Rice-
Nakagami distribution, the parameters, σ and υ, of the transformed pdf 

( )xpX  may be obtained from ( )XE and ( )XVar by the following formulae: 

( ) ( ) ( )

( ) ( )[ ]412

2

2

XVarXE

XVarXEXE

−=

−−
=

ν

σ  

Conversion of mean and variance to/from ν and σ 

From the previous section, we have the following formulae for computing 
the parameters, σ and υ, from mean and variance for the 2XX →  trans-
formed Rice-Nakagami distribution: 

[ ]412

2

varmean

2
varmeanmean

−=

−−
=

ν

σ  

 
Conversely, we have the following expressions for mean and variance with 
respect to the parameters, σ and υ, for the 2XX →  transformed Rice-
Nakagami distribution: 

224

22

44var
2mean

νσσ

νσ

+=

+=  

 
While the exact details are not included here, these conversion expressions 
are made stable using similar techniques used for the other previously de-
scribed distributions.  

Computation of the pdf 

As derived earlier, the 2XX →  transformed Rice-Nakagami pdf, defined for 
0≥x , 0≥ν , and 0≥σ , is as follows: 
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where I0 is the zeroth order modified Bessel function of the first kind. 
Again, details on implementing this pdf are not included here. As with the 
gamma function in the gamma pdf, it is important to examine and dissect 
the approximating method used to compute I0 when manipulating the en-
tire pdf expression into stable rearrangements. 
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Computation of the cdf 

To compute the 2XX →  transformed Rice-Nakagami cdf, the transformed 
pdf is numerically integrated using Gauss-Legendre quadrature. While this 
approach is generally more computationally intensive than a direct ap-
proximation, its stability is guaranteed if the algorithm for the pdf compu-
tation is fully stable. More importantly, it is a simpler alternative to devis-
ing a stable approximation of the first-order Marcum Q-Function in the 

2XX →  transformed Rice-Nakagami cdf. An overview on implementing 
Gauss-Legendre quadrature to numerically integrate pdfs is in the final 
section of this appendix. 

As with the pdf, it is also possible to derive the 2XX →  transformed Rice-
Nakagami cdf. In general, any continuous random variable X that is re-
lated to another continuous random variable T by a function ( )TX Φ=  has 

the following cdf: 

( ) ( ) ( )( ) ( ){ }( ) ( )
( ){ }
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=≤∈=≤=≤=
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TX dttfxTΨ:ΦtPxTΦPxXPxF  

where Ψ is the support set of T, FX is the cdf of X, and fT is the pdf of T. 

Given that the function Φ is strictly increasing, as is the case for 
( ) 2TTX =Φ= , we have: 
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where FT is the cdf of T. 

Since the untransformed Rice-Nakagami distribution has the following 
cdf: 

( ) 


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we have the following expression for the 2XX →  transformed Rice-
Nakagami cdf: 
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where ( ) xxΦ +=−1 , since { }0t:t ≥ℜ∈=Ψ  and Q1 is the first-order Marcum Q-
Function. A numerical integration of the pdf is favored in this case to avoid 
formulating stable implementations of Q1, the first-order Marcum Q-
Function. 

Stable implementation of Gauss-Legendre quadrature on arbitrary integration 
intervals 

Given the abscissas { }N
kkNx

1, =  and weights { }N
kkNw

1, =  for the N-point Gauss-

Legendre rule over [-1,1], it is possible to apply the rule on a function ( )tf  

over an arbitrary interval [a,b] by the following change of variable: 
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Then the following relationship: 
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is used to obtain this N-point Gauss-Legendre quadrature formula: 
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For the technique to stably integrate a function ( )tf  over the interval [a,b], 

it is only required that the abovementioned change-of-variable operation 
is made stable, provided that the algorithm for the N-point Gauss-
Legendre rule stably computes all the abscissas and weights over [-1,1] for 
some specified N and that the function ( )tf  is stable over the specified  

interval [a,b]. For integrating pdfs with nonnegative support, the expres-
sion (b – a) / 2 is always stable. However, whenever the expression  
(a + b) / 2 overflows, it should be computed using the distributed formula 
x / 2 + y / 2 (but only then). Thus, we have for all pdf with nonnegative 
support: 
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