
ER
DC

/C
RR

EL
 T

R-
10

-1
2

Geospatial Research and Engineering

Probability and Statistics in Sensor
Performance Modeling

Co
ld

 R
eg

io
ns

 R
es

ea
rc

h
an

d
En

gi
ne

er
in

g
La

bo
ra

to
ry

Kenneth K. Yamamoto, D. Keith Wilson, and Chris L. Pettit

December 2010

Approved for public release; distribution is unlimited.

Geospatial Research and Engineering ERDC/CRREL TR-10-12
December 2010

Probability and Statistics in Sensor
Performance Modeling

Kenneth K. Yamamoto, D. Keith Wilson, and Chris L. Pettit
Cold Regions Research and Engineering Laboratory
U.S. Army Engineer Research and Development Center
72 Lyme Road
Hanover, NH 03755-1290

Final report
Approved for public release; distribution is unlimited.

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

 Under AT42 GEOINT Exploitation in Man-Made Environments: Nations to Insurgents
(GEMENI)

ERDC/CRREL TR-10-12 ii

Abstract: Signals from many military targets of interest are often
strongly randomized, due to the irregular mechanisms by which the
signals are generated and propagated. In particular, complicated and
dynamic terrestrial/atmospheric environments (with man-made objects,
vegetation, and turbulence) randomize signals through random
atmospheric and terrestrial processes affecting the propagation. Signals
may also be considered random due to uncertainties in the knowledge of
the propagation environment and target-sensor geometry. Predictions of
sensor performance and recommendations of sensor types and placements
derived from them, thus, should account for the random nature of the
sensed signals. This report discusses software-modeling approaches for
characterizing signals subject to random generation and propagation
mechanisms. By representing signals with random variables, they are
manipulated statistically to make probabilistic predictions of sensor
performance. Both the theory and implementation in a general, object-
oriented software design for battlefield signal transmission and sensing is
explained. The Java-language software program is called Environmental
Awareness for Sensor and Emitter Employment. Some important
numerical issues in the implementation are also discussed.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

ERDC/CRREL TR-10-12 iii

Contents
Acronyms... iv

Preface.. v

1 Introduction.. 1

2 Statistical Modeling of Signals .. 3
Signature data features ... 3
Probabilistic modeling of features ... 3
Statistical analysis for measuring sensor performance ... 4

3 Software Implementation .. 7
Signal model objects .. 7
Signal model inheritance relationships .. 8
Representing a specific feature via a signal model ... 9

4 Sums of Random Variables ...11
A very simple scheme .. 11
Using the Laplace approximation .. 14
The convolution approach.. 14
Central limit theorem ... 15

5 Numerical Issues .. 17
Computing the quantile using the bisection method ... 17
Computing the cdf using Gauss-Legendre quadrature on the pdf 18
Numerical stability and well-posed problems ... 20
Illustrative examples of numerically stable statistical computations.................................. 22

6 Conclusions.. 28

References ... 29

Appendix: Floating-Point Implementations of Statistical Formulae ... 31
Floating point .. 31
Stable statistical implementations.. 33

Gaussian distribution ... 33
Lognormal distribution ... 36
Exponential distribution ... 40
Gamma distribution .. 42
X → X2 transformed Rice-Nakagami distribution ... 49

Report Documentation Page .. 55

ERDC/CRREL TR-10-12 iv

Acronyms

ccdf complementary cumulative distribution function

cdf cumulative distribution function

DST decision-support tool

EASEE Environmental Awareness of Sensor and Emitter Employment

FFT fast Fourier transform

IEEE Institute of Electrical and Electronics Engineers

NaN not a number (value)

pdf probability density function

ERDC/CRREL TR-10-12 v

Preface

This study was conducted for the U.S. Army Corps of Engineers. Funding
was provided by the Engineer Research and Development Center (ERDC)
Geospatial Intelligence (GEOINT) program, Exploitation in Man-made
Environments: Nations to Insurgents (GEMENI).

The work was performed by the Signature Physics Branch (RR-D) of the
Research and Engineering Division (RR) at ERDC’s Cold Regions Re-
search and Engineering Laboratory (ERDC-CRREL). The principal inves-
tigator was Dr. D. Keith Wilson (RR-D). The authors thank Dr. George G.
Koenig of ERDC-CRREL’s Terrestrial and Cryospheric Sciences Branch
(RR-G) and Mr. Michael Parker of ERDC-CRREL’s Force Projection and
Sustainment Branch (RR-H) for providing helpful comments on a draft
version of this report.

At the time of publication, Dr. Lindamae Peck was Chief, RR-D; Dr. Justin
B. Berman was Chief, RR; and Mr. Dale R. Hill was the Acting Technical
Director for Geospatial Research and Engineering. The Deputy Director of
ERDC-CRREL was Dr. Lance D. Hansen, and the Director was Dr. Robert
E. Davis.

COL Kevin J. Wilson was the Commander and Executive Director of
ERDC, and Dr. Jeffery P. Holland was the Director.

ERDC/CRREL TR-10-12 1

1 Introduction

A variety of modern-day Army missions rely on effective sensing capa-
bilities that provide intelligence on the adversary and to protect friendly
forces from enemy detection. Sensors that are stationary (e.g., micro-
phones, geophones, and ground-based radars) and moving (e.g., cameras
on unattended aerial vehicles and ground vehicles) assist operations such
as persistent surveillance of small, forward-operating bases and rapid
covert troop maneuvers in the air and on the ground. When advantageous,
sensing is often performed in multiple signal modalities including visible,
infrared, acoustic, seismic, radiofrequency, chemical, and biological.

Yet, despite the increasing assortment of sensors available, knowledge and
expertise of how to use them efficiently in particular environments and
missions is quite frequently lacking (Hieb et al. 2007). Since terrain and
weather effects on signals are complex and oftentimes counterintuitive,
computational simulations are valuable to both facilitate quick and accu-
rate decision making when planning the use of sensors in an actual mis-
sion as well as to guide the development of sensor technologies in general.
When multiple diverse signal modalities are involved, it would be ideal to
integrate them all into a single simulation environment rather than having
one for each modality.

Environmental Awareness of Sensor and Emitter Employment (EASEE) is
a software framework that provides a single environment for analyzing
sensor performance involving many different signal modalities. This abili-
ty for multimodal signal analysis then enables EASEE to also perform
higher-level data synthesis needed to answer critical sensing questions
such as the sensor types and locations best suited for accomplishing mis-
sion objectives within the constraints of a particular environment. A com-
prehensive description of the software design and structure of EASEE is
provided in Wilson et al. (2009).

In addition to reconciling models of many, differing signal modalities into
a common software framework, a decision-support tool (DST) must also
systematically assess the uncertainty with its predictions. Accounting for
and measuring uncertainty is often overlooked in current software tools
predicting sensor performance, but the reliability of a DST’s recommenda-

ERDC/CRREL TR-10-12 2

tions is obviously key to well-informed decision making. In the compli-
cated process of modeling environmental effects on signal transmission
and sensing, many types and levels of uncertainty are involved. A thorough
explanation of practical uncertainty issues is available in Wilson et al.
(2008).

Generally, uncertainties may be due to incomplete and/or inaccurate
knowledge (of, say, the weather for a particular time and location) or due
to processes that are purely stochastic (e.g., sensitivity of wave propaga-
tion to irresolvable and highly variable environmental details). It is the lat-
ter type of uncertainty—namely stochastic/random uncertainty—with
which this report is concerned. (Note that sensor performance is also af-
fected by non-stochastic processes not addressed here.) In principle, prop-
agation of acoustic, seismic, and electromagnetic (including visual and
infrared) waves as well as the dispersion of transient gases are still sensi-
tive to many fine-scale and even dynamic environmental variations that
cannot be known or determined. Practically speaking, second-to-second
variability in signal characteristics (e.g., sound level, seismic energy, con-
centration of a chemical agent, etc.) caused by unobservable and unpre-
dictable environmental features (e.g., turbulent eddies, vegetation, dust
particles, precipitation, small urban structures) are essentially random, so
statistical models are necessary to represent signal and noise (Strohbehn
1978; Andrews and Phillips 2005). Wilson et al. (2008) outlines specific
examples in greater detail. Probabilistic information about signal and
noise may then be processed to compute statistical metrics on sensor per-
formance and signal-emitter detectability.

The report begins by first explaining the premise and theory of modeling
signals statistically in Chapter 2, which also describes how statistical mod-
eling of signals lead to probabilistic predictions on sensor performance.
Then, Chapter 3 explains how the statistical modeling is implemented effi-
ciently in EASEE’s general, object-oriented structure. A discussion on var-
ious approaches for summing multiple random variables is given in Chap-
ter 4, which is required when simulating multiple target and noise signals
arriving at a sensor. Some general numerical issues in programming statis-
tical computations are illustrated in Chapter 5, while the Appendix sup-
plies specific information on how particular statistical calculations were
implemented.

ERDC/CRREL TR-10-12 3

2 Statistical Modeling of Signals

Signature data features

The EASEE software design (Wilson et al. 2009) operates on basic, identi-
fying qualities of a signal called signature data features (or features for
short). The features can be thought of as the most essential characteristics
of signals that might identify their source (i.e., an observable that is a func-
tion of time at the source, sensor, or somewhere in between). Generally,
features are extracted from raw sensor data after some low-level
processing (e.g., calibrations to remove sensor response or filtering into
spectral bands), typically being a conservative quantity (such as energy or
mass). Examples include: sound power of a harmonic line or in a standard
octave band; infrared brightness in near, shortwave, midwave, longwave,
or far bands; components of an electromagnetic field vector; and concen-
tration of a particular chemical or biological species. By using features ra-
ther than raw signals, simulations like EASEE are made not only quicker
and much more efficient but also more general and nonspecific to any par-
ticular sensor system.

Probabilistic modeling of features

As discussed earlier, irregular generation mechanisms and random propa-
gation processes may make it impractical to predict feature characteristics
deterministically; rather, they can only be described probabilistically.
Thus, signal and noise features may be regarded as random variables.
Then, statistical distributions of signal features are generated, propagated,
and processed.

A variety of statistical models are appropriate for representing sensor data.
For example, the exponential distribution describes a single, strongly scat-
tered signal, which often arises when acoustic or electromagnetic waves
are scattered by both objects and turbulent wind. A version of the Rice-
Nakagami model (specifically with a variable transformation of 2XX →)
may closely approximate signal power distributions of certain acoustic and
seismic signals. Since the lognormal distribution models variables that can
be the multiplicative product of many independent, positive random va-
riables, atmospheric scientists often use it to describe plume sizes and fre-
quency distributions of transient gases from turbulent processes in the air

ERDC/CRREL TR-10-12 4

(Baker et al. 1983; Limpert et al. 2001). Generally, signals are represented
with probability density functions (pdfs) that have nonnegative support
because signal power or concentration can never be negative. However, if
the mean is positive and much larger than the standard deviation, pdfs
with real-number support like the Gaussian may also be suitable for
representing a signal. Currently, EASEE implements five continuous sta-
tistical models—namely, the Gaussian, lognormal, exponential, gamma,
and the 2XX → transformed Rice-Nakagami—as well as a discrete model.
(Other examples of statistical models for signals are in Burdic 1984; Wil-
son et. al. 2002; and Nadarajah 2008)

For consistency, all of these models are used to describe distributions of
signal power (or intensity) rather than amplitude. Thus, while the untrans-
formed Rice-Nakagami model may describe the distribution of signal am-
plitudes of various acoustic and seismic signals, it is necessary to find the
corresponding model that would represent the distribution of the signal
powers. Since signal power is related to the square of the amplitude, the
correct model for the signal-power distribution is the Rice-Nakagami with
a variable transformation of 2XX → , which is what is coded in EASEE.
(Whenever the “transformed Rice-Nakagami” is referred to in this report,
the 2XX → transformed Rice-Nakagami model is meant.) Details, includ-
ing the derivation of the 2XX → transformed Rice-Nakagami random vari-
able, are provided in the Appendix.

Statistical analysis for measuring sensor performance

When features are described probabilistically, it is subsequently possible
to derive statistical metrics of sensor performance. There are actually four
probabilities that are generally of interest:

1. Pcd = probability that noise only is present when the sensor determines
that noise only is present (a correct dismissal)

2. Pfa = probability that noise only is present when the sensor determines that
a target is present (a false alarm)

3. Pfd = probability that a target is present when the sensor determines that
noise only is present (a false dismissal)

4. Pd = probability that a target is present when the sensor determines that a
target is present (a correct detection)

ERDC/CRREL TR-10-12 5

These probabilities are given by the following integrals:

()

()

()

() fd1d

d
0

1fd

cd0fa

fa
0

0cd

1

1

1

1

PdxxfP

PdxxfP

PdxxfP

PdxxfP

∫

∫

∫

∫

∞

∞

−==

−==

−==

−==

β

β

β

β

where: f0 = pdf of the noise signal alone,

 f1 = pdf of the target and noise signals together, and

 β = the detection threshold set by the detection algorithm.

A detection algorithm computes an appropriate β that ideally optimizes
sensor performance by increasing probability of detection and decreasing
probability of false alarm. Some examples (which are currently imple-
mented in EASEE) include:

1. Neyman-Pearson (constant false-alarm rate) criterion
2. absolute threshold detection
3. relative threshold detection
4. error minimization
5. Bayes risk minimization

As the integrals above suggest, various probabilities of interest are com-
puted by manipulating pdfs of signal and noise. In fact, integrations of
pdfs below and above a threshold value are the cumulative distribution
function (cdf) and the complementary cumulative distribution function
(ccdf), respectively. Thus, we may also write:

() ()

() () ()

() ()

() () ()ββ

β

ββ

β

β

β

β

β

1
C

11d

1
0

1fd

0
C

00fa

0
0

0cd

1

1

FFdxxfP

FdxxfP

FFdxxfP

FdxxfP

−===

==

−===

==

∫

∫

∫

∫

∞

∞

ERDC/CRREL TR-10-12 6

where: f = pdf,

 F = cdf, and

 F C = ccdf

with the subscripts 0 and 1 denoting the pdf, cdf, or ccdf of the noise signal
and combined target and noise signal, respectively. Strictly speaking, the
cdf is actually the integral of the pdf from negative infinity to the threshold
value; however, the integral from zero would only be negligibly different (if
at all) when signals are represented with appropriate statistical models,
whose measure limits to zero (or is even nonexistent) in the negative do-
main, since negative signal power or concentration is impossible. The
aforementioned detection algorithms also compute the quantile (or in-
verse-cdf) function when determining signal-power (or concentration)
thresholds corresponding to specified probabilities.

To obtain a particular statistical representation, both the type of random
variable and the values for its parameters are needed. While the pdf and
cdf for each type of random variable are coded to use its unique parame-
ters (e.g., location, shape, scale, etc.), it is useful to also describe random
variables with the universal parameters, mean and variance. For two-
parameter random variables, closed-form expressions may be found to
convert its unique parameters to/from mean and variance.

Finally, the signal pdfs within the integrals above are often joint pdfs, since
multiple signals of interest and noise may arrive at a sensor simultaneous-
ly. When multiple signal sources are present within a sensor’s vicinity,
random variables representing each signal source must be summed at the
receiver. Depending on the type of random variables being summed, com-
puting the exact summation can be complicated and intensive. Thus, ob-
taining a quick approximation may be more practical. A couple of approx-
imating approaches and the most efficient method for computing exact
results are described later in this report.

ERDC/CRREL TR-10-12 7

3 Software Implementation

The EASEE software design is formulated within the conceptual frame-
work of object-oriented programming in the Java language. For a compre-
hensive description on the object-oriented structure and approach to sig-
nal transmission and sensing in EASEE, it is recommended to consult
Wilson et al. (2009). Here, only a more thorough and updated explanation
of the signal model objects will be given.

Signal model objects

As previously described, random environmental effects on transmitted and
received features are accounted for by representing them as random
variables. Parametric descriptions of these random variables are pro-
grammed in EASEE within Java classes. These Java classes are denoted as
signal models and instances of them are signal model objects. Signal
model objects are key in the architecture of EASEE, since they are what are
actually transmitted, received, and processed, as outlined in Figure 1. The
purple arrows in the figure specify where signal models are passed from
one of the five components (illustrated in boxes) to another. Specifically,
the feature generator produces a signal model object that is inputted and
then altered by the feature propagator and feature sensor before it is
finally analyzed by the feature processor to produce an inference, which
represents desired information derived from the data features such as
probability of detection or error of target location estimates.

Signal model classes contain methods for the various, previously described
statistical operations necessary for making probabilistic predictions on
sensor performance, including:
1. setting the mean and variance
2. converting from mean and variance to unique parameter values
3. computing the pdf, cdf, and quantile
4. summing a random variable described by an instance of the class with

another one.

ERDC/CRREL TR-10-12 8

Figure 1. Generalized flow diagram for transmitting, receiving, and processing signature data

features in EASEE.

These signal model objects also store arrays of parameter values defining
different random variables of the same type, which may later be distri-
buted across a terrain grid. Computations for each array component are
parallelized when possible to improve computational efficiency. As men-
tioned earlier, EASEE currently has implementations for five continuous
statistical models—namely, the Gaussian, lognormal, exponential, gamma
and the 2XX → transformed Rice-Nakagami—as well as a discrete model.
Each of these models is represented via its own signal model class.

Signal model inheritance relationships

The overall signal-transmission and sensing process in EASEE is described
generally enough to apply for all signal modalities described by potentially
very different statistics so that each of the generalized components in the
above figure is coded to work with an abstract representation of all statis-
tical models. This abstract representation is the parent abstract Java class
of all signal models and is called the abstract signal model. It defines ab-
stract methods for the various required statistical operations, which are
then individually implemented or overridden by subclass signal models
representing different statistical models. Figure 2 shows the inheritance
relationships of the signal models currently available in EASEE.

Figure 2. Inheritance tree of statistical signal models.

ERDC/CRREL TR-10-12 9

The constant signal model that extends the base abstract signal model
represent constant (i.e., time-invariant) signals involving only one variable
for the signal mean. A collection of variable signal models extend the con-
stant signal. Presently, the inheritance relationships are organized so that
deeper subclasses add more characteristics to their parent classes. Sub-
classes “inherit” and then modify the fields and/or methods of its parent
class. For example, nonconstant signal models allow nonzero variance;
whereas, the constant signal model does not. The gamma distribution ge-
neralizes the exponential distribution, which is, in fact, a special case of
the gamma distribution with shape parameter equal to 1 and the scale pa-
rameter equal to the mean.

It may be useful, however, to structure inheritance relationships different-
ly. For example, it may be useful to somehow categorize various distribu-
tions into similar statistical families so the sum of multiple closely related
random variables may be approximated by a parametric pdf within the
same family. One of the simplest methods for summing multiple random
variables (described later) may, in fact, be made more efficient if inherit-
ance is organized in such a way. Otherwise, it may be more appropriate to
use interfaces to delineate statistical families within the current signal
model inheritance tree, which can be used to make the described approxi-
mation method for summing random variables more efficient.

While the generalized components in the simulation scheme are coded to
accept and return abstract signal models, specific subclass signal models
will actually be used in actual simulations as appropriate via polymor-
phism. This programming approach using inheritance and polymorphism
greatly improves software efficiency and the potential for EASEE to conti-
nuously develop and include new capabilities. Namely, existing signal-
generation, propagation, and processing algorithms would automatically
operate on all new signal models that extend the abstract signal model
and, conversely, new processing methods that work with the abstract sig-
nal model would instantly apply to all existing and future subclass signal
models.

Representing a specific feature via a signal model

While the signal models fully describe a parametric statistical model, they
are not explicitly associated with any particular signature data feature.
Features are separately defined as Java-enumerated types, whose repre-
sentation by a signal model are assigned by a given subclass implementa-

ERDC/CRREL TR-10-12 10

tion of the feature generator as appropriate. Thus, the “signal data trans-
missions” passed from one generalized component to another in Figure 1
are essentially “packets” of information assembled by the feature genera-
tor that lists transmitted features and their corresponding signal-model
representations. For organization and utility, features are defined and
grouped in different Java enum classes, typically by modality. For in-
stance, all seismic features and all radiofrequency features are enumerated
in their own, separate classes. When appropriate, further distinctions are
defined within a single signal modality such as with acoustic features,
which have separate enum classes for acoustic octave bands (both stan-
dard and third-octave) and linearly spaced spectral bands.

ERDC/CRREL TR-10-12 11

4 Sums of Random Variables

When simulating multiple signals of interest and noise arriving at a sen-
sor, probability-of-detection calculations are performed on the pdf of the
sum of multiple signals. Thus, the final pdf that is analyzed at the sensor
represents a sum of multiple random variables, where each individual sig-
nal is described by a unique pdf. The calculation is trivial for summing
multiple Gaussian random variables, since the pdf of the sum is another
Gaussian pdf with mean and variance equal to the sum of the means and
variances, respectively, of each contributing random variable. In fact, the
mean and variance of the sum of any (even potentially dissimilar) types of
random variables is always, by definition, the sum of the means and va-
riances of each summed random variable. (This property is referred to in
the rest of this report by saying that the means and variances of the
summed random variables are “conserved.”) Yet, despite this property,
implementation for summing multiple non-Gaussian random variables is
not straightforward because an analytical form for the pdf of the sum is
usually not available.

A very simple scheme

One of the simplest methods for representing the sum of multiple random
variables of related types is to approximate the sum with a pdf that con-
serves the mean and variance of the original contributions. The pdf for the
sum may be the same as one of the original random variables, or a genera-
lized form of the pdf of the original variables. This approach is exact if all
the summed random variables are constant or Gaussian, and also for some
other very particular cases, such as for gamma random variables with the
same scale parameter. Otherwise, it is only an approximation that is not
necessarily accurate in all cases. For instance, Stewart et al. (2007) ob-
serve that this approach is only reasonably accurate when summing two
gamma random variables if the shape parameters are not lower than 0.1
and the scale parameters do not differ by more than a factor of 10. Accura-
cy of approximating the sum of two lognormal random variables by anoth-
er lognormal random variable may be adequate in one tail of the summed
distribution but not the necessarily the other (Mehta et al. 2007). The ac-
curacy of this approximation with other distributions such as the trans-
formed Rice-Nakagami is unverified. While the method seems to make in-
tuitive sense, the accuracy of the approach is difficult to confirm or predict

ERDC/CRREL TR-10-12 12

for various distributions and cases. It is reasonable to assume that there
are limitations and that it is not good in all cases.

However, this method is a very simple alternative to other more robust yet
computationally intensive approaches and much easier to implement. It is
also important to note that parametric pdfs representing various signals
are themselves only estimates to begin with because both the models and
the parameters in the models used to generate them are approximate due
to idealizations of the signal physics and uncertainties in the weather,
ground conditions, source signature and directivity, noise background, etc.
Especially if it will greatly increase computational intensity, it is not neces-
sarily worthwhile to compute the sum of multiple, imprecise random va-
riables with very high precision.

Although the exact sum of multiple random variables of related type can-
not typically be represented by an analytical pdf, this method essentially
suggests selecting one that will serve as a good approximation with mean
and variance conserved. Generally, the sum is best approximated by the
pdf of one of the summed random variables, but sometimes it is better to
use a pdf that is different but still a generalized form of the summed ran-
dom variables. For example, the sum of multiple exponential random va-
riables would be better approximated by a gamma distribution rather than
another exponential distribution, where means and variances are con-
served. In fact, this would be exact if the exponential random variables
were all identical (with the same mean). Likewise, the summation of mul-
tiple random variables of different but related type is represented as a pdf
of the most generalized form of the related random variables. An example
of this is the sum of an exponential random variable and a gamma random
variable, which would be a gamma random variable with the means and
variances conserved. Here, the exponential and gamma distributions are
closely related, belonging to the exponential class of density functions,
where the gamma distribution with shape parameter equal to 1 reduces to
the exponential distribution with a mean equal to the scale parameter (i.e.,
the exponential distribution is a special case of the gamma distribution).
So, in fact, the sum of exponential and gamma random variables is essen-
tially just a sum of gamma random variables.

Conceivably (but not necessarily), the method could well approximate the
sum of many different kinds of random variables, so long as a parametric
distribution that generalizes a diverse set of random variables is available.

ERDC/CRREL TR-10-12 13

For instance, the sum of any combination of two or more of the lognormal,
exponential, Weibull, and gamma distributions may be well approximated
by a generalized gamma distribution with means and variances conserved,
since the aforementioned, well-known distributions are actually special
cases of the generalized, three-parameter gamma distribution. Indeed,
there are other three-parameter distributions that generalize various well-
known distributions such as the generalized and skew normal distribu-
tions, both of which can mimic other skewed distributions like the gamma,
lognormal, and Weibull distributions but also includes the normal distri-
bution as a special case.

Though there is an added complication in representing the sum of random
variables with a three-parameter distribution, since the three parameters
must be estimated numerically via maximum likelihood or method of
moments, it is possible and potentially worthwhile if the process proves to
be relatively less computationally intensive (Stacy and Mihram 1965;
Ashkar et al. 1988; Varanasi and Aazhang 1989). When using the method
of moments, it is helpful to notice that the third unstandardized central
moment can be computed exactly for the sum, since they are also “con-
served” like the means and variances, which, in fact, are the first raw mo-
ment and the second unstandardized central moment, respectively. This
results in three moments that can be computed exactly for the sum, which
can be used to estimate the required three parameters to obtain the gene-
ralized distribution. Otherwise, it may be advantages to compute a few
particular cumulants of the generalized distribution of the sum to estimate
its parameters instead, since all cumulants are conserved.

As described, this method only applies for summing multiple random va-
riables of related type. If no generalized distribution for two or more di-
verse random variables is available, it is impossible to predict the appro-
priate analytical pdf that best approximates their sum. For example, the
lognormal and the transformed Rice-Nakagami random variables are not
of related type and do not have a parametric distribution that generalizes
both of them, so this method does not apply in this case.

Finally, this method is both commutative and associative in that the order
in which multiple random variables are summed together does not affect
the final representation of their sum. This follows first from the fact that
the summation of means and variances (and the third unstandardized cen-
tral moment, if necessary) is itself commutative and associative. Then, the

ERDC/CRREL TR-10-12 14

method selects the analytical pdf of the same type or of a more generalized
type than that which describes the two summed random variables, regard-
less of which one is presented first in the method’s algorithm.

Using the Laplace approximation

The Laplace approximation is another approach that introduces the ap-
proximation at a different stage in the summation of random variables.
Rather than approximating the resulting sum of multiple random va-
riables with an appropriate analytical pdf as in the previously described
method, it is possible to approximate each non-Gaussian random variable
addend by a Gaussian pdf. Then, the sum of these Gaussian approxima-
tions may be computed exactly, since the exact sum of multiple Gaussian
random variables is simply another Gaussian random variable with means
and variances conserved.

Since many familiar, unimodal random variables may be roughly approx-
imated by a Gaussian pdf, the Laplace approximation is widely used in
many situations requiring manipulation of multiple random variables that
must be or is greatly preferred to be Gaussian. In our case, obtaining a
good Gaussian approximation of multiple random variables greatly simpli-
fies their summation by avoiding the use of a more computationally inten-
sive, numerical approach. It is also likely that the Laplace approximation is
within the precision errors inherent in the idealizations and uncertainties
of the models and parameters used in simulating the signal-transmission
and sensing process.

Since the Laplace method involves the second-degree Taylor expansion of
the given, non-Gaussian pdf’s logarithm centered on the mode, both the
mode and the second derivative of the pdf’s logarithm at the mode must be
computed. Often these can be calculated with simple, closed-form expres-
sions. If not, quick numerical computations can be devised noting that the
mode is defined as where the maximum of the pdf occurs. Details on the
theory and definition of the Laplace approximation can be found in Bishop
(2006).

The convolution approach

Though it is the most computationally intense, it is possible to always
compute the pdf of the sum of two independent random variables via the
convolution of their pdfs. Since all pdfs are compactly supported and

ERDC/CRREL TR-10-12 15

locally integrable, the convolution of two pdfs, f and g, denoted as f * g, is
the following well-defined and continuous integral transform:

()() () ()∫
ℜ

−=∗ τττ dtgftgf
def

The preferred method for computing the convolution is via the forward
and inverse discrete Fourier transforms, for which fast Fourier transform
algorithms are available. According to the convolution theorem, the Fouri-
er transform of a convolution is the pointwise product of the Fourier trans-
forms of the two functions being convoluted together:

[] [] []gFfFkgfF ⋅⋅=*

where k is a constant that depends on the normalization of the Fourier
transform and []fF denotes the Fourier transform of f. Then, the inverse

Fourier transform may be applied to obtain the convolution, f * g:

[][] [] [][] [] [][]gFfFkFgFfFkFgfFFgf ⋅=⋅⋅== −−− 111 **

Since the characteristic function of a random variable is a Fourier trans-
form of its pdf and is available for every type of random variable, it is then
possible to compute the sum of multiple random variables using the
inverse Fourier transform and characteristic functions by the general
formula above.

By using the convolution theorem and the fast Fourier transform (FFT)
algorithms, an implementation for computing the sum of multiple random
variables via the numerical convolution of two pdfs may be made practical.
In practice, the FFT algorithm must be implemented carefully to avoid
errors from discretization and truncation of integrals as much as possible.
This can be quite difficult, but, if done correctly, the convolution approach
would make it possible to sum multiple random variables of even vastly
different type. It is also commutative and associative, as required.

Central limit theorem

As more independent random variables are summed, the joint random
variable monotonically converges into a Gaussian distribution given
certain conditions. By the classical central limit theorem, the sum must be
of many independent and identically distributed random variables, each
having positive variance with both mean and variance being finite.

ERDC/CRREL TR-10-12 16

However, the theorem actually also holds for non-identically distributed
random variables if Lyapunov’s condition is satisfied, which further
implies that Lindeberg’s condition is also met (Ash and Doléans-Dade
2000). Though the rate of convergence depends on the type(s) of the
identical or non-identically distributed random variable addends, it is
conceivable that the sum of even three to five non-Gaussian random
variables may already be well approximated by a Gaussian distribution.
Hence, in cases where enough random variables are added together, where
at least one of them is non-Gaussian, the sum may be simply represented
by a Gaussian distribution with means and variances conserved. Any
implementation for summing multiple random variables should take this
limit theorem into account to improve both accuracy as well as com-
putational speed. When the theorem applies, the sum should be directly
represented as Gaussian with means and variances conserved rather than
computing many Laplace approximations, numerically evaluating many
convolutions, or using a different pdf for the final representation.

ERDC/CRREL TR-10-12 17

5 Numerical Issues

Although most statistical operations required for the pdfs described in this
report are relatively straightforward to program, it is helpful to illustrate
some of the operations that make use of certain numerical algorithms. It is
also worthwhile to describe how more complicated operations must be
programmed carefully so that they compute properly using floating-point
arithmetic on a computer. For the latter concern, only a selection of exam-
ples is presented to illustrate some common problems that may arise. The
Appendix includes further details.

Computing the quantile using the bisection method

With the exception of the exponential model, for which a closed-form for-
mula for evaluating the quantile is available, all other statistical models are
coded to numerically solve for the quantile, x, by approximating the root,
y0, of the following function, ()yQ , using the bisection method for a given

()xP cdf= with the tolerance set to the lowest representable number in bi-
nary double (64-bit) floating-point precision (approximately -1.8 × 10308):

() () PyyQ −= cdf

where the root, y0, is equal to the quantile, x:

() () () () () () xyxyxyPyyQ =⇔=⇔=−=−= 00000 cdfcdf0cdfcdfcdf

The lower- and upper-bounds used for the bisection method is set to span
the entire domain supported by a particular statistical distribution that is
representable in binary double (64-bit) floating-point precision. Specifical-
ly, the lower- and upper-bounds for the lognormal, gamma, and 2XX →
transformed Rice-Nakagami models are set to zero and the highest repre-
sentable number (approximately 1.8 × 10308). For random variables with
real-number support like the Gaussian, the lower- and upper-bound is set
to the lowest and highest representable number (approximately -1.8 ×
10308 and +1.8 × 10308), respectively. The bisection method used to solve
for the quantile requires that the cdf be always computable within the
bounds. Since the bounds are set to span very large domains, the cdf must
be programmed carefully so that it remains computable for all input values
within the domain. Concerns related to how the cdf should be pro-
grammed to satisfy this required condition are discussed in the last two

ERDC/CRREL TR-10-12 18

sections of this chapter (“Numerical stability and well-posed problems”
and “Illustrative examples of numerically stable statistical computations”).

Although the bisection method only converges linearly (i.e., the absolute
error of the true and estimated roots is halved at each step), it is preferred
here because of it robustness. Unfortunately, other methods with higher
convergence rates such as the Newton and Secant methods fail due to the
nature of the cdf curve, which is asymptotically a horizontal line (with the
first derivative equal to zero) at both ends. An optimized algorithm with a
mixture of different methods is conceivable but does not necessarily im-
prove the convergence rate appreciably.

Computing the cdf using Gauss-Legendre quadrature on the pdf

Usually there is an expression for the cdf that could be directly imple-
mented, but, if it is complicated (e.g., it contains a special function that is
difficult to program), numerical integration of the pdf may be a simpler
alternative, although it is generally more computationally intensive:

() ()∫=
x

dttx
0

pdfcdf

The Gauss-Legendre quadrature rule is a very efficient method for per-
forming the integration. Basically, the method approximates the definite
integral of a function via a weighted sum of function values at specified
points within the domain of integration. More details about stably imple-
menting this method for arbitrary integration domains are provided in the
Appendix.

In addition to the lower- and upper-bounds of the integration, the method
requires specification of the number of weighted function values, N, to be
summed. The appropriate number of points for the Gauss-Legendre rule,
N, so that the integration of the pdf is computed to a sufficient level of pre-
cision depends on the nature of the pdf curve over the specified range of
integration. Since the theory behind the N-point Gauss-Legendre rule en-
sures that it computes exact integrals for the class of polynomials of de-
gree 2N-1 or less, one must essentially predict the degree of the polynomial
that adequately approximates the pdf over the specified range of integra-
tion to find the appropriate N. As N is increased, the numerical integration
becomes more computationally intensive (and time-consuming), so it is

ERDC/CRREL TR-10-12 19

important to choose an N that is not greater than what suffices to obtain
results of sufficient precision.

To minimize the number of points necessary in the Gauss-Legendre rule

and still compute () ()∫=
x

dttx
0

pdfcdf with sufficient precision, it is helpful to

minimize the range of integration as much as possible by programming cdf
computation differently depending on x:

()

()
() ()

() ()
()














>=

≥>−

<>

<=

=

∫

∫

mean and 0pdffor ,1

mean and 0pdffor ,pdf1

mean and 0pdffor ,pdf

mean and 0pdffor ,0

cdf

xx

xxdtt

xxdtt

xx

x u

x

x

l

where l and u are approximations of the lowest and highest values for x
with nonzero pdf values, respectively. More precisely, l and u are com-
puted as the first integer standard deviate below and above the mean with
a pdf value of zero, respectively. If l and/or u is beyond the given statistical
distribution’s representable support domain, it is set as the lowest and
highest representable value of the support domain. Then, empirical inves-
tigations suggest that the 50-point Gauss-Legendre rule would be suffi-
ciently precise for computing any desired cdf value (Figure 3). Although all
parameters cannot be tested, it is reasonable to assume that the general
behavior of all pdfs of the same type is similar enough that the 50-point
rule would always suffice.

This approach is currently used for the 2XX → transformed Rice-
Nakagami model to avoid implementing the first-order Marcum Q-
Function in its cdf expression. It is also included in the gamma model as
an alternative in the potential event that the implementation for the direct
approximation fails for certain inputs. As it turns out, some care must be
taken in programming floating-point implementations of certain pdfs and
cdfs (including the gamma cdf), as will be discussed in the following sec-
tions.

ERDC/CRREL TR-10-12 20

Figure 3. Comparison of cdf generated using different N-point Gauss-Legendre rules to
integrate the X → X2 transformed Rice-Nakagami pdf with mean = 100 and var = 70.

Vertical axis: pdf(x); horizontal axis: x. From left to right on the top row: N = 2, 5, and 10. From
left to right on the bottom row: N = 20, 50, and 100. As N is increased, accuracy of the pdf

integration is improved and a smooth cdf curve is generated.

Numerical stability and well-posed problems

When programming the various statistical operations, it is important to
code calculations so that they function properly when performed using
floating-point arithmetic on a computer. For programming very simple
calculations, it is not necessarily important to understand the mechanics
of floating-point arithmetic. It is, however, essential to understand when
formulating more complicated functions and numerical algorithms. When
a calculation is programmed to function properly within the limitations of
floating point, it is called numerically stable. Goldberg (1991) has a much
more comprehensive treatment of the subject than that which is provided
here.

The basic problem is caused by computers with limited memory that can
only represent (and, therefore, work with) a finite, discrete set of numbers.
Floating point describes a system for allocating computer memory effi-
ciently so that a very large set of numbers can be made “representable.” A
more thorough background on floating point is provided in the Appendix.

A variety of issues due to floating point are well known. First, there is
round-off error, which is the difference between the calculated approxima-
tion of a number and its exact mathematical value. This type of error is in-

ERDC/CRREL TR-10-12 21

troduced when the inputs and outputs of an arithmetic operation must be
rounded to the nearest representable number. Typically, round-off errors
are insignificant in simple computations, except in relatively rare instances
(e.g., when two large, nearly equal numbers are subtracted, causing the
number of accurate significant digits in the difference to be greatly re-
duced, sometimes called a catastrophic cancellation). But, small round-off
errors may accumulate unacceptably when performing operations that re-
quire a sequence of many calculations (e.g., large summations, matrix in-
version, eigenvector computation, and solving differential equations).

Another concern is more critical in our case, particularly when program-
ming the pdf, cdf, and quantile. Given that the final result of a computa-
tion is indeed representable, it is important that the results of the various
arithmetic operations within that computation remain within the given
floating-point representation’s domain of representable numbers. Ideally,
a computation should be programmed so that this condition is met for all
representable inputs. When this condition is not met, the final result is
typically either very inaccurate or not computable at all, since an arithmet-
ic operation has resulted in an overflow or underflow (which is denoted by
saying that the computation has suffered from premature overflow or un-
derflow, respectively). Then, the computation could unpredictably return
an undefined or infinite number (e.g., +∞, -∞, or NaN), although the true,
mathematical solution to the computation is within the representable
range. For example, computation of the average of two nonzero numbers,
x and y, that are within the representable domain using the formula,
(x + y) / 2, may return +∞ or -∞ if (x + y) overflows, although the average
would always lie within the representable range.

To address this latter issue, it is helpful to notice that sometimes a single
calculation can be achieved in several ways. In the previous example for
computing the average of the two numbers, x and y, it is better to program
the distributed formula, x / 2 + y / 2, which does not have the overflow
problem. But, this formula is now susceptible to underflow by the terms,
x / 2 or y / 2, for small enough x or y. Since premature underflow would
only present, at most, an absolute error of twice the smallest representable
number, it is more important to program against premature overflow than
premature underflow in this case—for other situations when underflow
may present a division-by-zero operation, premature underflow is much
more important to prevent. The final, numerically stable algorithm for
averaging the two numbers, x and y, would compute the distributed

ERDC/CRREL TR-10-12 22

formula, x / 2 + y / 2, only if the original formula, (x + y) / 2, results in an
overflow.

If a computation is rather complicated, a careful, numerically stable float-
ing-point computer implementation of it can be quite difficult to program.
Although various algebraic manipulations are commonly used, each com-
putation is unique and requires different techniques. While it is easier to
program a computation that must be stable only within a limited domain
of inputs, the inputs that the computation must be able to handle may be
difficult to know or predict.

Illustrative examples of numerically stable statistical computations

Since they share some general similarities, many statistical formulae suffer
from common issues. For instance, many pdfs are of the following form:

() () ()cd
abcdabx

exp
exppdf =−= .

A simple, direct implementation of the pdf expression may not normally
present issues with ordinary values for a, b, c, and d. However, this formu-
lation is certainly not robust for all representable a, b, c, and d. Namely,
the numerator and denominator may both overflow, although their ratio is
a perfectly ordinary value (that always lies within the representable range).

This potential problem is easily remedied by a single, straightforward al-
gebraic rearrangement. Specifically, the division of two potentially large
numbers, A and B, is better encoded via the difference of their logarithms:

() ()[]BA
B
A lnlnexp −=

so that the ratio becomes computable for a much more expansive domain
of A and B, since it is only required that their logarithms not overflow. Us-
ing this rearrangement, the general pdf expression above becomes:

() () () () ()()[] ()[] () ()[]cdbacdabcdab
cd

ab
cd

abx −+=−=−=















== lnlnexplnexpexplnlnexp

exp
lnexp

exp
pdf

It is important to note here that not all overflows are necessarily an issue
but that they become problematic only when inaccuracies may result. For
example, the potential overflow of the term, cd, in the above rearrange-
ment is not an issue because it would always imply that the pdf is zero

ERDC/CRREL TR-10-12 23

and, in fact, actually results in a zero to be returned for the pdf. (It is
helpful to notice here that the rearranged pdf would always equal zero
when the term, cd, becomes large enough even before it overflows.) Over-
flow of A and/or B in the previous expression is troublesome because it
does not imply anything about the true value of A / B and inaccurately
returns 0, +∞, or NaN.

Since computing exponentials and logarithms are more computationally
expensive, it is better to calculate the stable rearrangement as an alterna-
tive only when the floating-point computation of A / B fails, if the simpler
formulation is only rarely unstable. In certain cases, however, it may be
that the straightforward formula, A / B, is actually more often unstable
than it is stable. This is true, for example, with the gamma cdf, which will
be described shortly. In these cases, it would be more efficient to just com-
pute the stable rearrangement directly. The Appendix includes specific de-
tails on how to apply this rearrangement for each type of distribution.

As just stated, this technique is useful in coding the gamma cdf, defined
for 0≥x , α > 0, and β > 0:

() ()α
β

αγ

β
α

Γ










=







=

x
xPx

,
,cdf

where P is the regularized incomplete gamma function:

() ()
() () ∫

−−

Γ
=

Γ
=

x
rs drer

ss
xsxsP

0

11,, γ

and Γ and γ are the gamma function and the lower incomplete gamma
function, respectively.

In this formula, the individual terms, 







β

αγ x, and ()αΓ , overflow at modest

values of x, α, and β, although the regularized incomplete gamma function
itself has the limiting values:

() 00, =sP and () 1, =∞sP .

Thus, it is also helpful in this case to implement the exponentiation of the
difference of the logarithms of the two terms:

ERDC/CRREL TR-10-12 24

() () () ()()











Γ−
















=









































Γ










=
Γ










=







= α

β
αγ

α
β

αγ

α
β

αγ

β
α ln,lnexp

,
lnexp

,
,cdf x

xx
xPx

.

Though they are used less frequently, various other manipulations are use-
ful in more specific circumstances (and often in combination with the first
technique). For instance, after using this first technique, the Gaussian cdf
still contains a term that resembles the following:

()ba +ln .

For all representable a and b, the true value of this term is always within
the representable range, but +∞ would be returned whenever (a + b) over-
flows. This issue can be avoided by programming the following:

() ()c
c
b

c
ac

c
b

c
ac

c
baba lnlnlnlnln +






 +=














 +=














 +

=+

where c is set as the largest representable number in the given floating-
point system.

A similar distributive approach is used in multiple other situations, includ-
ing the formula for the gamma pdf, which presents the following general
expression:

cab − .

When implemented directly, the subtraction by c is ignored whenever the
term, ab, overflows and results in the entire expression being automatical-
ly equated to +∞ or -∞. This is unfortunate if c is of the same sign as ab,
since the entire expression may very well be within the representable
range (if c is of large enough magnitude). This problem can be easily
avoided by programming the following instead:







 −=






 −

=−
d
c

d
abd

d
cabdcab

where d is selected to be large enough so that the term, d
ab

, does not over-

flow.
In many instances, it is only important to simply pay attention to the order

of operations. This, in fact, applies for programming the term, d
ab

, in the

ERDC/CRREL TR-10-12 25

technique explained above. It also applies in many other situations, in-
cluding when programming a term in the lognormal cdf, which is of the
following form:

bc
a .

For even a simple expression like this, there are many ways to program it:

() () b
c
a

c
b
a

bc
a

c
a

bcb
a

bc
a

bc
a









=








=







=













=













==

111 .

With some quick investigation, it is relatively easy to confirm that (usually)
only one of these implementations (if any) is stable given certain limita-
tions on the domain of a, b, and c. But, in a couple of special cases of this
general expression, it is always best to implement them in the following
way:

b
b
a

b
a









=2

and







=

b
aa

b
a 2

.

Simply changing the order of operations is often sufficient throughout
parts of various statistical formulae; however, attention to this detail is
quite easily overlooked. Application of this technique in specific cases is
described within the Appendix.

When no particular ordering of operations is universally stable for the giv-
en domains of a, b, and c, it is always possible to resort to the following
general rearrangement that is stable for all representable a, b, and c:

() () ()[]cba
bc
a

bc
a lnlnlnexplnexp −−=














= .

Finally, it is helpful to note certain consequences of finite-precision arith-
metic when analyzing and implementing stable mathematical expressions
in floating point. Essentially, any floating-point system represents a finite,
discrete set of numbers along the real number line that retains the same
relative difference only between each representable number (Figure 4).

ERDC/CRREL TR-10-12 26

This results in additions or subtractions by sufficiently small numbers to
be ignored because the floating-point system is not precise enough to
represent the difference. This observation is useful when programming,
for instance, the following general expression, which arises in lognormal
parameter conversions:

()bca +ln

which becomes the following for sufficiently large differences in magni-
tude between a and bc:

() () () ()cbbcbca bca lnlnlnln += →+ <<

.

This is a simpler alternative to the earlier, distributive technique:

() ()c
c
b

c
ac

c
b

c
ac

c
baba lnlnlnlnln +






 +=














 +=














 +

=+

if it can be known that there will always be a sufficiently large magnitude
difference between the added or subtracted terms.

This observation is often useful in analyzing the stability of an implemen-
tation and concluding that certain potential underflow issues are accepta-
ble to ignore. Specifically, the magnitude difference of a given representa-
ble number and an underflowing number may be large enough that the
underflow to zero would not affect their summation, since the contribution
by the underflowing number would be ignored anyways even if it was not
necessarily underflowing. However, there are situations when it is prudent

Figure 4. Floating-point number line (Recktenwald 2006).

ERDC/CRREL TR-10-12 27

to check and fix a complicated implementation for potential underflow
issues, particularly if the underflow would result in a division or multipli-
cation by zero. For example, it would be better to program the following
two expressions as shown:

()() ()()()[] () ()[] () () () ()[]dcbacdabcdabcdab lnlnlnlnexplnlnexplnexp +++=+==

and

()
()

()
() () ()[] () () () ()[]dcbacdab
cd
ab

cd
ab lnlnlnlnexplnlnexplnexp −−+=−=
















=

so that underflow by the terms, ab and/or cd, would not result in potential
inaccuracies due to the expressions being automatically computed as 0,
+∞, -∞, or NaN. The Appendix includes more detailed explanations of po-
tential underflow issues for particular statistical computations.

There are obviously many more algebraic manipulations that could be use-
ful in different situations; the listed techniques here are by no means
exhaustive. They are, however, what is most helpful for carefully pro-
gramming various statistical operations in floating point. As the mechan-
ics of floating point are better understood, it becomes easier to discover
other appropriate techniques and improve coding habits. Gradually, it
becomes obvious that certain expressions should be coded always in a
certain way such as:

() () ()baab lnlnln +=

and

baab =

As it turns out, designing stable floating-point implementations is highly
nontrivial. But, it is essential if the domain of inputs is expansive or
unknown and/or if a particular numerical algorithm depends on it to func-
tion properly. In the case here, for example, stable implementations of the
cdf is vital if the algorithm that solves for the quantile uses a root-finding
method with bounds set to span a very expansive domain (e.g., the entire
representable region). Only a broad, conceptual discussion is given here
for brevity. The Appendix gives specific details for implementing a particu-
lar computation.

ERDC/CRREL TR-10-12 28

6 Conclusions

Given the randomness of most signal-generation and propagation
processes, predictions of sensor performance are inherently probabilistic
in nature. While it is important to minimize (e.g., using accurate parame-
ters and models), various types and levels of uncertainty would still exist
in virtually all situations when modeling a complicated process such as
signal transmission and sensing. Especially when small variations in the
environmental state dramatically alter outcomes, calculating and commu-
nicating predictions in a statistical manner is critical.

This report focused on representing target and noise signals as random
variables to account for variations in sensor data (e.g., sound level, seismic
energy, concentration of a chemical agent, etc.) that are essentially sto-
chastic due to many unknown and potentially dynamic environmental var-
iations affecting signal generation and propagation. By modeling signals
statistically, the report discussed how to make probabilistic predictions on
sensor performance. Both the software implementation of the statistical
framework and some important numerical issues in programming statis-
tical computations were also explained.

ERDC/CRREL TR-10-12 29

References
Andrews, L. C., and R. L. Phillips. 2005. Laser beam propagation through random

media. 2nd ed. Bellingham, WA: SPIE.

Ash, R. B., and C. A. Doléans-Dade. 2000. Probability and measure theory. 2nd ed. pp
307–317. San Diego, CA: Academic Press.

Ashkar, F., B. Bobée, D. Leroux, and D. Morisette. 1988. The generalized method of
moments applied to the generalized gamma distribution. Stoch. Hydrol.
Hydraul. 2:161-174.

Baker, M. B., M. Eylander, and H. Harrison. 1983. The statistics of chemical trace
concentrations in the steady state. Atmos. Environ. 18:969-975.

Bishop, C. M. 2006. Pattern recognition and machine learning. New York, NY: Springer-
Verlag.

Burdic, W. S. 1984. Underwater acoustic system analysis. Englewood Cliffs, NJ: Prentice
Hall.

Goldberg, D. 1991. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23:5-48.

Hieb, M. R., S. Mackay, M. W. Powers, H. Yu, M. Kleiner, and J. M. Pullen. 2007.
Geospatial challenges in a net centric environment: Actionable information
technology, design, and implementation, report 657816. In Proceedings of SPIE
Defense and Security Symposium, Defense Transformation and Net-Centric
Systems, edited by R. Suresh.

Lanczos, C. 1964. A precision approximation of the gamma function. J. Soc. Ind. Appl.
Math: Series B, Numerical Analysis 1:86-96.

Limpert, E., W. A. Stahel, and M. Abbt. 2001. Log-normal distributions across the
sciences: Keys and clues. BioScience 51:341-352.

Mehta, N. B., J. Wu, A. F. Molisch, and J. Zhang. 2007. Approximating a sum of random
variables with a lognormal. IEEE T. Wirel. Commun. 6:2690-2699.

Nadarajah, S. 2008. A review of results on sums of random variables. Acta Appl. Math
103:131.140.

Pugh, G. R. 2004. An analysis of the Lanczos gamma approximation. Ph.D. dissertation,
pp 114-116. Vancouver, Canada: The University of British Columbia.

Recktenwald, G. W. 2006. Unavoidable errors in computing. Accessed July 2010.
<<http://web.cecs.pdx.edu/~gerry/nmm/course/slides/ch05Slides.pdf>>

Stacy, E. W., and G. A. Mihram. 1965. Parameter estimation for a generalized gamma
distribution. Technometrics 7:349-358.

ERDC/CRREL TR-10-12 30

Stewart, T., L. Strijbosch, H. Moors, and P. Batenburg. 2007. A simple approximation to
the convolution of gamma distributions, report 2007-70. A CentER Discussion
Paper. ISSN 0924-7815.

Strohbehn, J. W. editor. 1978. Laser beam propagation in the atmosphere. New York,
NY: Springer-Verlag.

Varanasi, M. K., and B. Aazhang. 1989. Parametric generalized Gaussian density
estimation. J. Acoust. Soc. Am. 86:1404-1415.

Wilson, D. K., R. Bates, and K. K. Yamamoto. 2009. Object-oriented software model for
battlefield signal transmission and sensing. ERDC/CRREL TR-09-17/
ADA522523. Hanover, NH: U.S. Army Engineer Research and Development
Center.

Wilson, D. K., C. L. Pettit, S. Mackay, M. S. Lewis, and P. M. Seman. 2008. Addressing
uncertainty in signal propagation and sensor performance predictions.
ERDC/CRREL TR-08-21/ ADA4591357. Hanover, NH: U.S. Army Engineer
Research and Development Center.

Wilson, D. K., B. M. Sadler, and T. Pham. 2002. Simulation of detection and
beamforming with acoustical ground sensors, 50-61. In Proceedings of SPIE
AeroSense Symposium, Unattended Ground Sensor Technologies and
Applications IV, edited by E. M. Carapezza.

ERDC/CRREL TR-10-12 31

Appendix: Floating-Point Implementations of
Statistical Formulae

This appendix includes specific details on floating-point implementations
of the various statistical formulae described in the report. Mathematical
expressions are programmed so that they always return a representable
number whenever the true solution is representable for all representable
parameter inputs. When this condition is met, it is said that the implemen-
tation is numerically stable. The representable numbers are often defined
by the binary double (64-bit) floating-point precision system, which has
approximately 16 decimal digits of precision and spans numbers from
approximating -1.8 × 10308 to +1.8 × 10308. A short background on floating
point is given as an introduction.

Floating point

To be able to represent the widest range of numbers possible using a fixed
number of bytes in computer memory, modern machines approximate
numbers to a fixed number of significant digits (called the significand),
which is scaled by multiplication with a base (normally 2, 10, or 16) raised
to a specified exponent:

exponentbasedigitst significan ×

This numeral system, called floating point, allows the radix point that
separates the integer part of a number (to the left of the point) from the
fractional part (to the right of the point) to be placed anywhere relative to
the significant digits of the number (i.e., to “float”), making it conceptually
similar to scientific notation. While several different floating-point imple-
mentations have been used in the past, the Institute of Electrical and Elec-
tronics Engineers (IEEE) has standardized the practice in IEEE 754, which
is now followed by almost all modern computers.

The IEEE 754 Standard for Floating-Point Arithmetic defines several basic
floating-point formats using different radixes (i.e., bases) and amounts of
computer bits, of which two are most widely used in computer hardware
and programming languages:

ERDC/CRREL TR-10-12 32

1. binary (i.e., base 2) single precision, which occupies a total 32 bits (4 bytes)
and has a significand precise to 24 bits (about 7 decimal digits)

2. binary double precision, which occupies a total of 64 bits (8 bytes) and has
a significand precise to 53 bits (about 16 decimal digits).

Other basic floating-point formats include binary quadruple precision
(occupying 128 bits) and decimal (i.e., base 10) formats encoded using 64
or 128 bits. All basic floating-point formats also define representations of
special values, including positive and negative infinities (+∞ and -∞),
negative zero (-0) distinct from ordinary (“positive”) zero, and a “not a
number” value (NaN), where NaN is generated by three kinds of opera-
tions:
1. operations that produce indeterminate forms:

a. the divisions 0/0, ∞/∞, ∞/-∞, -∞/∞, and -∞/-∞
b. the multiplications 0× ∞ and 0×-∞
c. the power 1∞
d. the additions ∞+(-∞), (-∞)+∞, and equivalent subtractions (i.e., ∞-∞

and -∞-(-∞))
2. real operations with complex results:

a. the square root of a negative number
b. the logarithm of a negative number
c. the inverse sine or cosine of a number which is less than -1 or greater

than +1
3. any operation with a NaN as at least one operand

The standard further defines how to simulate arithmetic operations (e.g.,
add, subtract, multiply, divide, square root, exponentiation, sine, cosine,
etc.) on floating-point numbers, recognizing certain exceptional situations,
which include:
1. invalid operations (e.g., square root of a negative number)
2. division by zero
3. overflow (a number that is too large to represent correctly)
4. underflow (a number that is very small and is inexact)
5. inexact (an approximated number)

Finally, the standard also defines various algorithms for rounding floating-
point numbers during arithmetic and conversions, where the default me-
thod rounds to the nearest representable value or to the nearest represent-
able even number if the number lies midway between two representable
values.

ERDC/CRREL TR-10-12 33

Stable statistical implementations

Details given here for the Gaussian, lognormal exponential, and gamma
distributions are thorough enough that a reader may understand exactly
how they were implemented. Although the details for the 2XX → trans-
formed Rice-Nakagami model are not as complete, the ideas and tech-
niques used in its implementation are very similar to those of the other
models. The derivation for the random variable transformation to obtain
the 2XX → transformed Rice-Nakagami distribution is also provided.

When variance is set to zero, the density function does not exist and the
probability distribution becomes degenerate, describing a discrete random
variable whose support consists of only one value. While such a distribu-
tion is not random in the practical sense, it does still satisfy the definition
of a random variable and may be described as such in order to provide a
way to deal with constant values in a probabilistic framework. Namely, the
probability mass function (pmf) for this case is given by:

()


 =

=
otherwise ,0

meanfor ,1
f

x
x

Then, the cdf of the degenerate distribution is the Heaviside step function
about the mean:

()


 ≥

=
otherwise ,0

meanfor ,1
F

x
x

Here, “mean” is denoted as the single, constant value represented by the
distribution.

The described implementations in the following sections do not apply
when variance is set to zero. An implementation of the probabilistic de-
scription explained above is invoked instead in this case.

Gaussian distribution

Computation of the pdf

The following straightforward formulation of the Gaussian pdf , defined
for ℜ∈µ ,x and σ2 >0, is vulnerable to a variety of premature overflow and
underflow issues, including premature overflow by the exponent term

ERDC/CRREL TR-10-12 34

()
2

2

2σ
µ−

−
x

, which would, in turn, cause premature underflow of the exponen-

tiated expression,
()








 −
− 2

2

2
exp

σ
µx

:

() ()







 −
−= 2

2

2
exp

2
1pdf

σ
µ

πσ
xx

where µ and σ are the mean and standard deviation of the Gaussian distri-
bution, respectively.

A simple reformulation, however, eliminates the risk of premature over-
flow and underflow:

() ()()() ()

() () () 















++






 −

−−=































 −
−==

πµµ

σ
µ

πσ

2lnvarln
var2

1exp

2
exp

2
1lnexppdflnexppdf 2

2

xx

xxx

where the term () 





 −

−
var
µµ xx overflows only when the true value of the pdf

is zero, even when premature overflow occurs by the terms ()µ−x or







 −

var
µx

.

Underflow of the term () 





 −

−
var
µµ xx is not an issue since:

() 1min
2
1exp =



 ±− a for { }min: ±≠∈ aaFa

where F is the set of all numbers representable in binary double (64-bit)
floating-point precision and a is set as the expression 1n(var)+1n(2π).

Computation of the cdf

Where the error function is numerically stable for any real number input
and has the range [-1,1], the following formula for the Gaussian cdf is ac-

curate only when computation of the term
2σ
µ−x is numerically stable:

() 














 −
+=

2
erf1

2
1cdf

σ
µxx

ERDC/CRREL TR-10-12 35

A numerically stable calculation of the term
2σ
µ−x is done first by changing

the order of operations:

()

σ

µ

σ
µ 







 −

=
− 2

2

x
x

.

When the term µ−x overflows, the term
2σ
µ−x is computed as follows:

() ()() () () ()








−−−+=−−−=







 −
=

−
2
2lnln

22
ln2lnexp2lnlnlnexp

2
lnexp

2
σµσµ

σ
µ

σ
µ xxxx

where max = highest representable number in binary double (64-bit) float-
ing-point precision (approximately 1.8×10308).

The absolute value is computed to avoid the potential, impossible compu-

tation of a negative logarithm. The negative of the computed term
2σ
µ−x is

inputted into the error function for 00
2

<−⇔<
− µ

σ
µ xx .

The term ()
2
µ−x cannot underflow for all representable x and µ since:

min
2

min
=

in binary double (64-bit) floating-point precision.

Computing the rearrangement for when the term µ−x overflows allows

the final value of the term
2σ
µ−x to compute to as low as

2
1 rather than

returning ∞, depending on the value of the term σ in the denominator.

A numerically stable algorithm of the error function for any real number
input and with a range [-1,1] computes the regularized incomplete gamma

function () ()
() () ∫

−−

Γ
=

Γ
=

x
rs drer

ss
xsxsP

0

11,, γ , using either the series or continued

fraction representation:

() ()
()


 <−

=
otherwise ,,

0for ,,
erf 2

2
1

2
2
1

tP
ttP

t

ERDC/CRREL TR-10-12 36

Since the algorithm for computing the lower incomplete gamma function
is only stable for finite representable inputs, where max2 ≤t , which already
computes to 1 at 102 =t , the error function is set to -1 and +1 for 10−≤t and

10≥t , respectively.

Lognormal distribution

Conversion of mean and variance to/from μ and σ

Given mean and variance, it is possible to compute the unique parameters
for the lognormal distribution µ and σ by the following formulae:

()







 +=







 +−=

2

2

mean
var1ln

mean
var1ln

2
1meanln

σ

µ

However, both of these expressions are susceptible to premature overflow

or underflow by the term 2mean
var . The formulas may be made numerically

stable by rearrangement.

Firstly, rearranging the term 2mean
var to the term 








mean
var

mean
1 eliminates the

potential of premature underflow or overflow of mean2, thereby modifying
the expression for µ and σ to the following:

() ()















+=






 +=















+−=






 +−=

mean
var

mean
11ln

mean
var1ln

mean
var

mean
11ln

2
1meanln

mean
var1ln

2
1meanln

21

21

σ

µ

In the case where the term 







mean
var

mean
1 overflows the expression for µ and

σ reduces to the following computable forms in binary double (64-bit)
floating-point precision:

() () () ()

() ()meanln2varln
mean

varln
mean

var1ln

varln
2
1meanln2

mean
varln

2
1meanln

mean
var1ln

2
1meanln

22

max
mean
var

mean
1for

2

22

max
mean
var

mean
1for

2

−=





= →






 +=

−=





−= →






 +−=

>







>







σσ

µµ

ERDC/CRREL TR-10-12 37

Assuming round-off errors are negligible, premature overflow is eliminated when
calculating µ by computing µ2 when the term 








mean
var

mean
1 overflows and compu-

ting µ1 otherwise:







>







=
otherwise ,

max
mean
var

mean
1for ,

1

2

µ

µµ

Similarly, a numerically stable algorithm for calculating σ computes σ2

when the term 







mean
var

mean
1 overflows and computes σ1 otherwise:







>







=
otherwise ,

max
mean
var

mean
1for ,

1

2

σ

σσ

Underflow of the term 







mean
var

mean
1 can be ignored when computing µ and σ

since:
11 =+ a

for min≤a in binary double (64-bit) floating-point precision, where min =
smallest representable number in binary double (64-bit) floating-point
precision (approximately 4.9 × 10-324).

Conversely, it is possible to compute mean and variance, given µ and σ, by
the following formulae:

()() ()22

2

2exp1expvar

2
expmean

σµσ

σµ

+−=









+=

A numerically stable algorithm for performing these operations compute
different expressions that are manipulated yet equivalent for different
combinations of µ and σ.

To stably compute the mean, only a simple change in the order of opera-
tions is necessary:















+=








+=

2
exp

2
expmean

2 σσµσµ

where the term, 







2
σσ , overflows only when the true value of the mean

overflows.

ERDC/CRREL TR-10-12 38

Two rearranged but mathematically equivalent expressions are also used
in different situations to compute variance:

()() () ()() ()[]()

()

()
()









































++








−

=









++








−=











++








−=

+−=+−=

2
2

22

2

2222
1

2
exp

11ln
2exp22

exp
11lnexpvar

22
exp

11lnexp

2exp1explnexp2exp1expvar

σµ
σ

σσµ
σ

σσµ
σ

σµσσµσ

Firstly, the variance is always computed to zero when ()2exp σ is equal to 1.

Var2 is computed whenever 2µ < -max and 2σσ > max. Var1 is computed in
all other cases:

()






>−<
=

=
otherwise ,var

max2 and max2for ,var
1expfor 0,

var

1

2

2

σσµ
σ

The variance is always greater than the largest, positive representable
number in binary double (64-bit) floating-point precision whenever the
term 2σ overflows.

Whenever either 2µ or 2σσ overflows but not both, var1 = var2 in binary

double (64-bit) floating-point precision. Underflow of the term 







2
σσ in

mean1 and the term 2σσ in var1 is not an issue since:

() ()xx expminexp =+

for all x in binary double (64-bit) floating-point precision. The term

()() 







− σσexp

11ln could never underflow since:

() minln >x

for all x ≠ 1 in binary double (64-bit) floating-point precision. When x = 1,
1n(x) is exactly zero.

ERDC/CRREL TR-10-12 39

Computation of the pdf

As with the Gaussian distribution, the following simple formulation of the
lognormal pdf, defined for 0≥x , ℜ∈µ , and σ > 0, is also susceptible to

premature overflow and underflow issues, including premature overflow

by the exponent term ()()
2

2

2
ln

σ
µ−

−
x which would, in turn, cause premature

underflow of the exponentiated expression ()()







 −
− 2

2

2
lnexp

σ
µx :

() ()()







 −
−= 2

2

2
lnexp

2
1pdf

σ
µ

πσ
x

x
x

A simple reformulation, however, eliminates the risk of premature over-
flow and underflow:

() ()()() ()()

() () () ()





















+++






 −

−=































 −
−==

πσ
σ

µ

σ
µ

πσ

2lnln2ln2ln
2
1exp

2
lnexp

2
1lnexppdflnexppdf

2

2

2

1

xx

x
x

xx

where the term () 2ln






 −

σ
µx overflows only when the true value of the pdf is

zero.

Underflow of the term () 2ln






 −

σ
µx is not an issue since:

() 1min
2
1exp =



 ±− a for { }min: ±≠∈ aaFa

where F is the set of all numbers representable in binary double (64-bit)
floating-point precision and a is set as the expression, () () ()πσ 2lnln2ln2 ++x .

Since the above rearrangement always computes NaN for x = 0, the pdf of
x = min is computed instead in this case, which may or may not necessari-
ly limit to zero depending on the values of µ and σ. Thus, the final algo-
rithm for computing the pdf is as follows:

() ()
()


 =

=
otherwise ,pdf

0for ,minpdf
pdf

1 x
x

x

ERDC/CRREL TR-10-12 40

Computation of the cdf

Where the error function is numerically stable for any real number input
and has the range [-1,1], the following formula for the lognormal cdf is ac-

curate only when computation of the term ()
2

ln
σ

µ−x is numerically stable:

() ()















 −
+=

2
lnerf1

2
1cdf

σ
µxx

A numerically stable calculation of the term ()
2

ln
σ

µ−x is done simply by

computing parts of it in a certain order as follows:

() ()







 −
=

−
2

ln1
2

ln µ
σσ

µ xx

Here, the term ()






 −

2
ln µx can never overflow or underflow by itself for all

finite µ and nonzero x in binary double (64-bit) floating-point precision
since:

min
2

min
=

and

() maxmaxln ±=±x

for all finite x in binary double (64-bit) floating-point precision.

The error function is computed with the same algorithm described for
computation of the Gaussian cdf.

Exponential distribution

Parametrization

The exponential distribution is characterized by a single, scale parameter β
that is equivalent to the mean. The variance is the square of the mean.
Since conversions are one step, no rearrangement is necessary or possible:

2var
mean

β

β

=

=

ERDC/CRREL TR-10-12 41

Computation of the pdf

Without computing a rearranged form, the following expression for the
exponential pdf, defined for 0≥x and β > 0, could result in premature un-

derflow of the exponentiated expression, 







−
β
xexp , when β < 1:

() 







−=
ββ
xx exp1pdf

The following algebraically equivalent but rearranged expression is accu-
rate for all x and β:

() ()







−−=




























−=








−= β

βββββ
lnexpexp1lnexpexp1pdf xxxx

where the term
β
x overflows only when the true value of the pdf is zero.

Underflow of the term
β
x is not an issue since:

[] 1minexp =−a for { }min: ±≠∈ aaFa

where F is the set of all numbers representable in binary double (64-bit)
floating-point precision and a is set as the expression ()βln− .

Computation of the cdf

The exponential cdf can be stably computed by the following, simple
expression for all x and β:

() 







−−=
β
xx exp1cdf

Computation of the quantile (cdf-1)

Since the cdf expression can be easily solved for x, a closed-form formula
for the exponential quantile exists, which is stable for all x and β:

()()xx cdf1ln −−= β

ERDC/CRREL TR-10-12 42

Gamma distribution

Conversion of mean and variance to/from α and β

Given mean and variance, it is possible to compute the unique parameters
for the gamma distribution, α and β, by the following formulae:

mean
var
var

mean 2

=

=

β

α

While the expression for β is stable for all mean and variance, α should be
computed as follows:


















>
=

otherwise mean,
var

mean

max
var

meanfor ,
var

mean2

α

The converse operation computes mean and variances of the gamma dis-
tribution from α and β, by the following formulae:

2var
mean

αβ

αβ

=

=

The expression for mean is stable for all α and β, but variance should be
computed as follows:

()αββαβ == 2var

Computation of pdf

The following expression for the gamma pdf, defined for x ≥ 0, α > 0, and
β > 0, must be formulated carefully to prevent inaccuracies from numer-
ous potential premature overflow and underflow issues:

()
() 








−

Γ
=

−

ββα α

α xxx exppdf
1

But, to obtain a stable rearrangement of the gamma pdf, it is first neces-
sary to notice how the term ()αΓ is computed using the following expres-

sion for Lanczos approximation of the gamma function (Lanczos 1964):

ERDC/CRREL TR-10-12 43

() ()αγαγαπα γ

α

A













 ++−






 ++=+Γ

+

2
1exp

2
121

2
1

with

() () () () ()
()() +

++
−

+
+

+=
21

1
12

1
210 αα

ααγρ
α
αγργραγA

and

() !
2
1

2
1exp

2
12 2

1

0

2
2 






 −





 ++






 ++=







 +−

=
∑ δγδγδ

π
γρ

δ

δ
δ

k
k

k C

where γ is an arbitrarily chosen constant such that 0
2
1

>





 ++ℜ γα so that

the infinite series, ()αγA , converges as required and i
jC denotes the coeffi-

cient of the j-th-degree term in the i-th-degree Chebyshev polynomial of
the first kind.

Since () ()ααα Γ=+Γ 1 , we have:

() () ()αγαγα
α
π

α
αα γ

α

A













 ++−






 ++=

+Γ
=Γ

+

2
1exp

2
121 2

1

.

Since the series, ()αγA , is convergent, it may be truncated to obtain an ap-

proximation with desired precision. For fixed γ and truncation order N,
computational efficiency is enhanced by resolving the rational fractions in
the series ()αγA into their constituent partial fractions so that:

() () () () ()
()() () ()∑

= +
+≈+

++
−

+
+

+=
N

n

n

n
b

bA
1

0210 21
1

12
1

α
γ

γ
αα

ααγρ
α
αγργραγ 

where the coefficients ()γb are pre-computed for fixed γ, which are related
to the original coefficients ()γρ of the series ()αγA and similarly indepen-

dent of α.

To illustrate how the coefficients ()γb are pre-computed after decomposing
rational fractions of the series ()αγA the process is shown for a simpler

case, when the truncation order is 3. First the following is obtained by
combining like terms after partial-fraction decomposition of the rational
fractions in the truncated series:

ERDC/CRREL TR-10-12 44

() () () () ()
()() () ()()

()()()

() () () ()

() () () () () () () () () ()
3

30
2
246

1
32

2
1

3
30

2
24

1
31

2
6

1
21

1
11

2
1

321
21

21
1

12
1

332321
3210

3210

3210

+
−

+
+
+−

+
+

−+−
++++=









+
−

+
+

+
−+








+
−

+
++








+
−+=

+++
−−

+
++

−
+

+
+≈

α
γρ

α
γργρ

α
γργργρ

γργργργρ

ααα
γρ

αα
γρ

α
γργρ

ααα
αααγρ

αα
ααγρ

α
αγργργγA

.

Then we notice that:

() () () () () () () () () () ()

() () () () () ()∑
= +

+=
+

+
+

+
+

+=

+
−

+
+
+−

+
+

−+−
++++≈

3

1
0

321
0

332321
32103

321

3
30

2
246

1
32

2
1

n

n

n
b

b
bbbb

A

α
γ

γ
α

γ
α

γ
α

γ
γ

α
γρ

α
γργρ

α
γργργρ

γργργργργ

when we let:

() () () () ()

() () () ()
() () ()
() ()γργ

γργργ
γργργργ

γργργργργ

33

322

3211

32100

30
246

32
2
1

−=
+−=

−+−=

+++=

b
b
b

b

.

After examining the dependence of relative error as a function of γ and the
truncation order of the series, ()αγA , it has been determined that using γ =

10.900511 and a truncation order of 10 guarantees 16-digit floating-point
accuracy required for implementation in binary double (64-bit) floating-
point precision, which yields the following coefficients (Pugh 2004):

9
10

6
9

4
8

2
7

1
6

5

4

3

2

1

5
0

1086077039107199490848.2

1099056367086339947335.4

1043057812837192611740.5

1044412243077097054340.1

1016458695839542877319.1

71267130770563971157.1
35766557219828522532.2

68948237005122770946.4
20162354694568709722.3

17219742100514237858.1
1087535655464857408913.2

−

−

−

−

−

−

×−=

×=

×−=

×=

×−=

=
−=

=
−=

=
×=

b
b
b
b
b
b
b
b
b
b
b

Currently, EASEE uses an implementation of the Lanczos approximation
by M. T. Flanagan in his Java Scientific and Numerical Library with γ =

ERDC/CRREL TR-10-12 45

5.0, a truncation order of 6, and an error bound less than 2×10-10, which
has the following coefficients:

5-
6

2-
5

4

3

2

1

0

10384953-0.5395239

10738661790.12086509

72450155-1.2317395
408309124.0140982
32941677-86.505320
294714676.1800917

900150000000001.1

×=

×=

=
=
=
=
=

b
b
b
b
b
b
b

Now return to the original, problematic formulation of the gamma pdf:

()
() 








−

Γ
=

−

ββα α

α xxx exppdf
1

and set:

() ()

() ()








+

+













 ++−






 ++≈















 ++−






 ++=Γ

∑
=

+

+

N

n

n

n
bb

A

1
0

2
1

2
1

2
1exp

2
12

2
1exp

2
12

α
γ

γγαγα
α
π

αγαγα
α
πα

α

γ

α

to obtain:

() ()
() () α

α

α

α

α

β
α

γ
γγαγα

α
π

β
ββα






















+

+













 ++−






 ++









−

≈







−

Γ
=

∑
=

+

−
−

N

n

n

n
bb

xx
xxx

1
0

2
1

1
1

2
1exp

2
12

exp
exppdf

which is the actual, full expression of the approximated gamma pdf.

This formulation of pdf is unstable when computed within binary double
(64-bit) floating-point precision, mostly due to premature overflow by the
approximation expression for the term ()αΓ and the term 1−αx as well as

premature underflow by the term 







−
β
xexp . In fact, there are many (even

relatively small) values for x and α that cause ()αΓ and 1−αx to overflow si-

multaneously, since both are rapidly increasing functions as α increases,
generating NaN due to the computation of ∞/∞, even though the true ratio

ERDC/CRREL TR-10-12 46

of
()α
α

Γ

−1x is a simple, finite number that is easily representable in binary

double (64-bit) floating-point precision. NaN may also be returned even

when only 1−αx overflows, if the term 







−
β
xexp underflows to zero, which

results in the indeterminate form, 0×∞, in the numerator. These observa-
tions along with many other potential scenarios that could cause inaccu-
rate (or more often unviable) solutions to the gamma pdf make this formu-
lation quite unpredictable and unsatisfactory.

Firstly, a few basic manipulations of the original formula result in the
following, more stable form:

() ()

() ()

() ()

() ()









+−=

























































 ++







+

+







 ++

=















 ++







+

+







 ++

=






















+

+













 ++−






 ++









−

≈









−

Γ
=

+

=

−

+

=

−

=

+

−

−

∑

∑

∑

BxA

x
n

bb

x

x
n

bb

x

n
bb

xx

xxx

N

n

n

N

n

n

N

n

n

α
β

β
γα

α
γ

γπβ

γαα

β
γα

α
γ

γπβ

γαα

β
α

γ
γγαγα

α
π

β

ββα

α
α

α

α
α

α

α
α

α

α

α

exp

exp
2
12

2
1exp

lnexp

exp
2
12

2
1exp

2
1exp

2
12

exp

exppdf

2
1

1
0

1

2
1

1
0

1

1
0

2
1

1

1

1

where () () () () ()
2

2
1ln

ln
2
2ln

2
1lnln

1
0







 ++

−







+

+−−+++−= ∑
=

γα

α
γ

γπγαα
N

n

n

n
b

bxA and

() () 





 ++−−=

2
1lnlnln γαβxB , which is stable for most x, α, and β. When the

term
β
x overflows and B > 0, the following is computed instead:

() ()
()()








 +−
=








+−≈








−

Γ
=

−

β
αββα

βββα α

α BxABxAxxx expexpexppdf
1

2

ERDC/CRREL TR-10-12 47

To avoid automatically computing a pdf value of +∞ for x = 0 using these
rearrangements, the pdf of x = min is returned instead as a very close ap-
proximation, which would only limit to zero for sufficiently large α.

Thus, the final algorithm for the gamma pdf computation is as follows:

()
()

()
()









>>

=

=

otherwise ,pdf

0 and maxfor ,pdf

0for ,minpdf

pdf

1

2

x

Bxx

x

x
β

Here, the term A never overflows for all nonzero, finite, positive values of x
and α in binary double (64-bit) floating-point precision and γ = 5.0, as re-
quired to prevent premature overflow.

To confirm this, we first notice that the expressions () ()∑
= +

+
N

n

n

n
b

b
1

0 α
γ

γ and

2
1

++γα are nonzero and finite in binary double (64-bit) floating-point pre-

cision in the given domain of x, α, and γ (i.e., x ≥ 0, α > 0, and γ = 5.0).

This is easy to see with the expression 2
15

2
1

++=++ αγα which can never

equal zero because it is the summation of nonzero, positive numbers and
can never overflow since:

max
2
15max =++

in binary double (64-bit) floating-point precision. The expression

() () () ()∑∑
== +

+=
+

+
N

n

n
N

n

n

n
bb

n
bb

1
0

1
0

55
αα

γ
γ can never overflow by examination of the ()5b

coefficients for truncation order 6 and noting that 1≥+ nα for any positive,

nonzero integer, n. It can never equal zero since () ()
0

1
0 =

+
+∑

=

N

n

n

n
b

b
α

γ
γ implies

that () 0=Γ α , which contradicts the fact that () 0>Γ α for 0>α .

Hence, given that:

() () () 893384709.782712maxlnlnminln9213812744.440071- ≈≤≤≈ a for { }0: ≠∈ aFa .

where F is the set of all numbers representable in binary double (64-bit)
floating-point precision, we have:

ERDC/CRREL TR-10-12 48

() () () () () ()minln5
2
1

2
2
1ln

ln
2
2ln

2
1lnln

1
0 ×+++≤







 ++

−







+

+−−+++−= ∑
=

γα
γα

α
γ

γπγαα
N

n

n

n
b

bxA .

The expression () ()minln5
2
15minln5

2
1

×+++=×+++ αγα can never overflow

since:

() maxminln5
2
15max =×+++

in binary double (64-bit) floating-point precision.

The term, B, never overflows for all nonzero, finite, positive values of x, α,
and β in binary double (64-bit) floating-point precision and γ = 5.0:

() () () maxminln3
2
1lnlnln <≤





 ++−−= γαβxB

Underflow of A is not an issue since:

0
max
min

=

in binary double (64-bit) floating-point precision.

Underflow of any of one or more of the terms A,
β
x , and αB may be ignored

since:

() 1minexp =±a for { }min: ±≠∈ aaFa ,

() 1min2exp =±a for { }min2: ±≠∈ aaFa , and

() 1min3exp =±

where F is the set of all numbers representable in binary double (64-bit)
floating-point precision and a is set as the expression for the non-
underflowing term(s).

Computation of the cdf

Like the error function in the Gaussian and lognormal cdfs, the gamma cdf
is also related to the regularized incomplete gamma function

ERDC/CRREL TR-10-12 49

() ()
() () ∫

−−

Γ
=

Γ
=

x
rs drer

ss
xsxsP

0

11,, γ , which is likewise computed using either the se-

ries or continued fraction representation:

() ()α
β

αγ

β
α

Γ










=







=

x
xPx

,
,cdf

While the individual terms 







β

αγ x, and ()αΓ overflow at modest values of x,

α, and β, the regularized incomplete gamma function itself never overflows
since it has the limiting values:

() 00, =sP and () 1, =∞sP .

Thus, it is better to implement the exponentiation of the difference of the
logarithms of the two terms:

() () () ()()











Γ−
















=









































Γ










=
Γ










=







= α

β
αγ

α
β

αγ

α
β

αγ

β
α ln,lnexp

,
lnexp

,
,cdf x

xx
xPx

With this rearrangement, the gamma cdf is computable for a much more
expansive domain of x, α, and β, since it is only required that the loga-

rithm of the two terms 







β

αγ x, and ()αΓ not overflow. For the vast majority

of cases, this rearranged formulation of the gamma cdf is stable. In the
rare instance that the rearrangement proves unstable, the algorithm com-
putes a direct numerical integration of the gamma pdf, which is always
stable. Information on the implementation of the Gauss-Legendre quadra-
ture rule for efficiently integrating pdfs is given in the final section of the
report on numerical issues.

X → X2 transformed Rice-Nakagami distribution

The distributions of the powers of certain acoustic and seismic signals are
closely approximated by the Rice-Nakagami model. Specifically, the sig-
nal-power distribution resembles the 2XX → transformed Rice-Nakagami
distribution when the amplitude is Rice-Nakagami distributed, since sig-
nal power is the square of signal amplitude. For consistency, all sensors
are modeled to work with signal power rather than amplitude, thus the

2XX → transformed Rice-Nakagami distribution is encoded. It turns out

ERDC/CRREL TR-10-12 50

that it is also simpler to implement the 2XX → transformed Rice-
Nakagami distribution, whose expressions for computing mean and va-
riance from its unique parameters υ and σ are clean polynomials and, un-
like the untransformed version, do not involve the half-degree Laguerre
polynomial.

Derivation of the X → X2 transformed Rice-Nakagami distribution

Statistically, the 2XX → transformed Rice-Nakagami distribution is the
distribution of X2 where X is a random variable with a Rice-Nakagami dis-
tribution. A fundamental theorem for random variable transformation
states that, if ()tpT is the value of the probability density of the continuous
random variable T at t and the function ()tx Φ= is differentiable and mono-
tonic for all values within the range of T for which its probability density
does not equal 0 (i.e., () 0≠tpT), the probability density of X is given by:

() ()[] () ()







≠⋅=

−
−

otherwise ,0

0 if ,
1

1

dt
tdΦ

dx
xdΦxΦpxp T

X

Hence, for the Rice-Nakagami distribution, where () 2ttx =Φ= , we have:

() []






≠⋅=
otherwise ,0

0 if ,
2

1 t
x

xpxp T
X

where:

() xxΦ +=−1 since 0t ≥ ,

() ()

xdx
xd

dx
xdΦ

2
11

==
−

, and

() t

dt
tdΦ 2 = .

ERDC/CRREL TR-10-12 51

Thus, for t ≠ 0:

() []
()

()















 +−
=

⋅


























 +−
=

⋅=

202

2

2

202

2

2

2
exp

2
1

2
1

2
exp

2
1

σ
ν

σ
ν

σ

σ
ν

σ
ν

σ

xIx

x
xIxx

x
xpxp TX

where I0 is the zeroth order modified Bessel function of the first kind and υ
and σ are the nonnegative parameters of the Rice-Nakagami distribution.

Parameters of the X → X 2 transformed Rice-Nakagami distribution

By definition, the mean of transformed pdf, ()xpX , is the integral of all val-
ues within the range of X with respect to (i.e., weighted by) its probability
density:

() ()dxxxpXE X∫
∞

∞−

=

which, for () 2ttx =Φ= and t ≠ 0, is equal to the second raw moment ′
2µ of

the untransformed pdf ()tpT :

() () () ()[] () () () ()() () ′==Φ=Φ=⋅Φ== ∫∫∫
∞

∞−

∞

∞−

−
−

∞

∞−
2

2
1

1 µTETEdttptdx
dx

xdΦxΦptdxxxpXE TTX

Since 22
2 2 νσµ +=′ for the Rice-Nakagami distribution, we have:

() 22
2 2 νσµ +=′=XE

Also by definition, the variance of the transformed random variable, X, can
be expanded as follows:

() ()()[] () ()[]
() () () () () () () () ()2222222

222

22

2

XEXEXEXEXEXEXEXEXE

XEXXEXEXEXEXVar

−=+−=+−=

+−=−=

which, for () 2ttx =Φ= and t ≠ 0, may be expressed using the second and
fourth raw moments ′

2µ and ′
4µ of the untransformed pdf ()tpT :

() () () () () () ()
() () 2244224422442244224

2224224
2

24
22422

4444884488

288

νσσννσσννσσννσσννσσ

νσννσσµµ

+=−−−++=++−++=

+−++=




 ′−′=−=−= TETEXEXEXVar

ERDC/CRREL TR-10-12 52

Given () 222 νσ +=XE and () 224 44 νσσ +=XVar for the 2XX → transformed Rice-
Nakagami distribution, the parameters, σ and υ, of the transformed pdf

()xpX may be obtained from ()XE and ()XVar by the following formulae:

() () ()

() ()[]412

2

2

XVarXE

XVarXEXE

−=

−−
=

ν

σ

Conversion of mean and variance to/from ν and σ

From the previous section, we have the following formulae for computing
the parameters, σ and υ, from mean and variance for the 2XX → trans-
formed Rice-Nakagami distribution:

[]412

2

varmean

2
varmeanmean

−=

−−
=

ν

σ

Conversely, we have the following expressions for mean and variance with
respect to the parameters, σ and υ, for the 2XX → transformed Rice-
Nakagami distribution:

224

22

44var
2mean

νσσ

νσ

+=

+=

While the exact details are not included here, these conversion expressions
are made stable using similar techniques used for the other previously de-
scribed distributions.

Computation of the pdf

As derived earlier, the 2XX → transformed Rice-Nakagami pdf, defined for
0≥x , 0≥ν , and 0≥σ , is as follows:

() ()















 +−
= 202

2

2 2
exp

2
1pdf

σ
ν

σ
ν

σ
xIxx

where I0 is the zeroth order modified Bessel function of the first kind.
Again, details on implementing this pdf are not included here. As with the
gamma function in the gamma pdf, it is important to examine and dissect
the approximating method used to compute I0 when manipulating the en-
tire pdf expression into stable rearrangements.

ERDC/CRREL TR-10-12 53

Computation of the cdf

To compute the 2XX → transformed Rice-Nakagami cdf, the transformed
pdf is numerically integrated using Gauss-Legendre quadrature. While this
approach is generally more computationally intensive than a direct ap-
proximation, its stability is guaranteed if the algorithm for the pdf compu-
tation is fully stable. More importantly, it is a simpler alternative to devis-
ing a stable approximation of the first-order Marcum Q-Function in the

2XX → transformed Rice-Nakagami cdf. An overview on implementing
Gauss-Legendre quadrature to numerically integrate pdfs is in the final
section of this appendix.

As with the pdf, it is also possible to derive the 2XX → transformed Rice-
Nakagami cdf. In general, any continuous random variable X that is re-
lated to another continuous random variable T by a function ()TX Φ= has

the following cdf:

() () ()() (){ }() ()
(){ }
∫

≤∈

=≤∈=≤=≤=
xTΨ:Φt

TX dttfxTΨ:ΦtPxTΦPxXPxF

where Ψ is the support set of T, FX is the cdf of X, and fT is the pdf of T.

Given that the function Φ is strictly increasing, as is the case for
() 2TTX =Φ= , we have:

() ()
(){ }

()() ()
()

()()xΦFdttfxΦtPdttfxF T

xΦ

T
xTΨ:Φt

TX
11

1

−

∞−

−

≤∈

==≤== ∫∫
−

where FT is the cdf of T.

Since the untransformed Rice-Nakagami distribution has the following
cdf:

() 





−=

σσ
ν xQx ,1cdf 1

we have the following expression for the 2XX → transformed Rice-
Nakagami cdf:

() ()() ()








−=








−==

−
−

σσ
ν

σσ
ν xQxΦQxΦFxF TX ,1,1 1

1

1
1

ERDC/CRREL TR-10-12 54

where () xxΦ +=−1 , since { }0t:t ≥ℜ∈=Ψ and Q1 is the first-order Marcum Q-
Function. A numerical integration of the pdf is favored in this case to avoid
formulating stable implementations of Q1, the first-order Marcum Q-
Function.

Stable implementation of Gauss-Legendre quadrature on arbitrary integration
intervals

Given the abscissas { }N
kkNx

1, = and weights { }N
kkNw

1, = for the N-point Gauss-

Legendre rule over [-1,1], it is possible to apply the rule on a function ()tf

over an arbitrary interval [a,b] by the following change of variable:

xabbat
22
−

+
+

= and dxabdt
2
−

=

Then the following relationship:

() dxabxabbafdttf
b

a 222

1

1

−






 −

+
+

=∫ ∫
−

is used to obtain this N-point Gauss-Legendre quadrature formula:

()∫ ∑
=







 −

+
+−

=
b

a

N

k
kNkN xabbafwabdttf

1
,, 222

.

For the technique to stably integrate a function ()tf over the interval [a,b],

it is only required that the abovementioned change-of-variable operation
is made stable, provided that the algorithm for the N-point Gauss-
Legendre rule stably computes all the abscissas and weights over [-1,1] for
some specified N and that the function ()tf is stable over the specified

interval [a,b]. For integrating pdfs with nonnegative support, the expres-
sion (b – a) / 2 is always stable. However, whenever the expression
(a + b) / 2 overflows, it should be computed using the distributed formula
x / 2 + y / 2 (but only then). Thus, we have for all pdf with nonnegative
support:

()
() ()

() () ()∫
∑

∑
















 −

+
+−

>+





 −

++
−

==

=

=
b

a
N

k
kNkN

N

k
kNkN

xabbafwab

baxabbafwab

dttb

1
,,

1
,,

otherwise ,
222

maxfor ,
2222pdf)(cdf

since () maxmax
2

>+⇔>
+ baba .

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

31-12-2010
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Probability and Statistics in Sensor Performance Modeling

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Kenneth K. Yamamoto, D. Keith Wilson, and Chris L. Pettit

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
 NUMBER

U.S. Army Engineer Research and Development Center
Cold Regions Research and Engineering Laboratory
72 Lyme Road
Hanover, NH 03755-1290

ERDC/CRREL TR-10-12

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Headquarters
U.S. Army Corps of Engineers
Washington, DC 20314-1000

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Signals from many military targets of interest are often strongly randomized, due to the irregular mechanisms by which the signals are
generated and propagated. In particular, complicated and dynamic terrestrial/atmospheric environments (with man-made objects, vege-
tation, and turbulence) randomize signals through random atmospheric and terrestrial processes affecting the propagation. Signals may
also be considered random due to uncertainties in the knowledge of the propagation environment and target-sensor geometry. Predic-
tions of sensor performance and recommendations of sensor types and placements derived from them, thus, should account for the ran-
dom nature of the sensed signals. This report discusses software-modeling approaches for characterizing signals subject to random gen-
eration and propagation mechanisms. By representing signals with random variables, they are manipulated statistically to make
probabilistic predictions of sensor performance. Both the theory and implementation in a general, object-oriented software design for
battlefield signal transmission and sensing is explained. The Java-language software program is called Environmental Awareness for
Sensor and Emitter Employment. Some important numerical issues in the implementation are also discussed.

15. SUBJECT TERMS
battlefield sensors, battlespace signal modeling, decision-support tool, modeling and simulation, object-oriented programming, EASEE,
uncertainty, environmental effects, probability, statistics

16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U U 62
19b. TELEPHONE NUMBER (include
area code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

	Cover
	Title page
	Abstract
	Contents
	Acronyms
	Preface
	1 Introduction
	2 Statistical Modeling of Signals
	Signature data features
	Probabilistic modeling of features
	Statistical analysis for measuring sensor performance

	3 Software Implementation
	Signal model objects
	Signal model inheritance relationships
	Representing a specific feature via a signal model

	4 Sums of Random Variables
	A very simple scheme
	Using the Laplace approximation
	The convolution approach
	Central limit theorem

	5 Numerical Issues
	Computing the quantile using the bisection method
	Computing the cdf using Gauss-Legendre quadrature on the pdf
	Numerical stability and well-posed problems
	Illustrative examples of numerically stable statistical computations

	6 Conclusions
	References
	Appendix: Floating-Point Implementations of Statistical Formulae
	Floating point
	Stable statistical implementations
	Gaussian distribution
	Computation of the pdf
	Computation of the cdf

	Lognormal distribution
	Conversion of mean and variance to/from μ and σ
	Computation of the pdf
	Computation of the cdf

	Exponential distribution
	Parametrization
	Computation of the pdf
	Computation of the cdf
	Computation of the quantile (cdf-1)

	Gamma distribution
	Conversion of mean and variance to/from α and β
	Computation of pdf
	Computation of the cdf

	X → X2 transformed Rice-Nakagami distribution
	Derivation of the X → X2 transformed Rice-Nakagami distribution
	Parameters of the X → X2 transformed Rice-Nakagami distribution
	Conversion of mean and variance to/from ν and σ
	Computation of the pdf
	Computation of the cdf
	Stable implementation of Gauss-Legendre quadrature on arbitrary integration intervals
	Report documentation

