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Abstract 
The curve number method first developed by the US Department of 
Agriculture Soil Conservation Service (now the Natural Resources 
Conservation Service) is often used for post-wildfire runoff assessments. 
These assessments are critical for land and emergency managers making 
decisions on life and property risks following a wildfire event. Three 
approaches (i.e., historical event observations, linear regression model, 
and regression tree model) were used to help estimate a post-wildfire 
curve number from watershed and wildfire parameters. For the first 
method, we used runoff events from 102 burned watersheds in Colorado, 
southern Wyoming, northern New Mexico, and eastern Utah to quantify 
changes in curve number values from pre- to post-wildfire conditions. The 
curve number changes from the measured runoff events vary substantially 
between positive and negative values. The measured curve number 
changes were then associated with watershed characteristics (e.g., slope, 
elevation, northness, and eastness) and land cover type to develop 
prediction models that provide estimates of post-wildfire curve number 
changes. Finally, we used a regression tree method to demonstrate that 
accurate predications can be developed using the measured curve number 
changes from our study domain. These models can be used for future post-
wildfire assessments within the region. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 
1.1 Background 

Worldwide, wildfire and hazards associated with wildfire place 
communities and infrastructure at risk. Researchers expect the frequency 
of wildfire occurrence and magnitude of wildfire effects to increase in the 
future (Brown et al. 2021). Jolly et al. (2015) found wildfire season has 
lengthened for over one-quarter of the Earth’s vegetated surface and the 
burnable area has doubled during the period of 1979–2013 because of the 
lengthened fire season. The risk will continue to increase in the future 
because of climate change, especially as areas of moisture-limited fire 
regimes become drier (Ellis et al. 2022). Wildfire activity has already 
increased in the western United States (US), with substantial increases in 
large-wildfire frequency in the mid-1980s especially in midelevation, 
Northern Rocky Mountain forests (Dennison et al. 2014; Westerling et al. 
2006). A more recent analysis indicates that other regions of the western 
US have also showed increased wildfire activity in response to warming 
and early spring snowmelt (Westerling 2016). The 2003–2012 increase in 
wildfire occurrence ranged from approximately 250% (Southern Rockies) 
to 1,000% (Northwest) relative to the 1973–1982 average (Westerling 
2016). Increases in wildfire activity in the western US are also linked to 
changes in summer seasonal precipitation. Holden et al. (2018) reported 
that May–September total precipitation and the number of wetting rain 
days had negative trends (–5 mm per decade or 1 day per decade, 
respectively) for 82%–94% of forested areas in the western US. These 
trends were calculated using multiple gridded data sets from 1984–2015. 

Increased streamflow from a watershed immediately following a fire event 
is well documented (Ebel et al. 2012; Moody and Martin 2001; Neary et al. 
2003; Stoof et al. 2012). As the revegetation process begins, the changes to 
overall water supply and mean annual streamflow are more site specific. 
Following fires in the Gila River watershed in Arizona, the mean annual 
streamflow increased (controlling for climate and snowpack variability) 
although there was no evidence of a streamflow increase in the Jemez River 
watershed in New Mexico (Wine and Cadol 2016). However, Wine et al. 
(2018) found that mean streamflow values increase by 2%–14% for 
watersheds that have very large wildfires. This indicates that both flood risk 
modeling immediately after the wildfire and long-term water supply 
estimates should be considered when assessing wildfire effects to the water 
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balance and streamflow regime. In the Cache La Poudre River watershed in 
Colorado, following the 2012 High Park Fire, a 75% increase in runoff was 
observed for certain high-burn severity subwatersheds, whereas the 
hydrologic response at the watershed scale was minimally affected (Havel et 
al. 2018). For detectable changes at larger catchment scales, at least 20% of 
the watershed must be affected by wildfire (Wine and Cadol 2016). 

In recent years, the importance of developing models to evaluate post-
wildfire shifts in streamflow metrics has been highlighted and a variety of 
hydrologic models were used to estimate post-wildfire streamflow. These 
models range from process based representations that include vegetation 
recovery (Bart et al. 2020) to relatively simple models used by land 
managers (Robichaud and Ashmun 2013) to assess potential changes in 
streamflow. The process based models include the Limburg Soil Erosion 
Model (LISEM) (De Roo et al. 1996) which was applied by Van Eck et al. 
(2016) to burned eucalypt and pine plantations in central Portugal. 
Another study using the Integrated Hydrology Model (VanderKwaak 1999) 
by Ebel et al. (2016) simulated changes in streamflow caused by wildfire 
along the Colorado Front Range. Wang et al. (2020) created a post-
wildfire hydrology modeling tool (PFHydro) by integrating soil water 
repellency into an existing hydrology model (UFORE-Hydro; Wang et al. 
2005). The model KINEROS2 (Smith et al. 1995; Smith and Quinton 
2000), is another process based hydrology model that was used to model 
burned conifer watersheds in the southwestern US (Canfield et al. 2005) 
and chaparral areas of California (Chen et al. 2013). Another model that is 
used is the Hydrologic Engineering Center–Hydrologic Modeling System 
(HEC-HMS) from the US Army Corps of Engineers (USACE). This model 
was used by Cydzik and Hogue (2009) to estimate post-wildfire 
streamflow in the San Bernardino Mountains in California. Chen et al. 
(2013) also used HEC-HMS for comparison to KINEROS2 results in the 
Arroyo Secco watershed in California. 

Ebel et al. (2023) provides a summary of post-wildfire hydrologic studies 
for locations in North America, Europe, and Australia. Within the US, 
many studies were conducted on watersheds in California and Southern 
Rockies. The accuracy of post-wildfire modeling simulations varies by 
modeling tool. The model performance summarized by Ebel et al. (2023) 
shows both process based and simple hydrology models have substantial 
variation in model accuracy. A cross-comparison of models can be useful 
but controlling for available calibration data and skill by the modeler can 
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be challenging. The range of post-wildfire hydrology models that were 
used in recent years is substantial and is likely going to continue to 
increase as other hydrology modeling tools are developed or adapted to 
estimate both short and long-term post-wildfire watershed conditions. 
Although process based models may be needed to understand the complex 
interactions at the land surface following wildfires, there could still be 
applications for relatively simple models by land and emergency managers 
performing rapid risk assessments. The curve number method (NRCS 
2004a) is one of the simplest methods for estimating runoff from a 
watershed and important for post-wildfire hydrology modeling (NRCS 
2016). Details of this method are discussed in Section 2 of this report. 

1.2 Study Area 

This study is focused within the forested areas of the southern Rocky 
Mountains, including the majority of central and western Colorado, 
southern Wyoming, eastern Utah, and northern New Mexico (Figure 1). 
The High Plains and Tableland Ecoregions of eastern Colorado were 
excluded from this study due to the documented erosion and vegetation 
recovery periods from wildfire in grassland and shrubland environments 
are different compared to forested mountainous regions (Stavi 2019). 
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Figure 1. Digital elevation map (DEM) of the study area with watershed boundaries (black) for 
each of the 102 streamgages used in the analysis (Appendix A). The burned area perimeters 
from Welty and Jeffries (2021) are shown in red. The base map is elevation from the North 
American Datum of 1983 (NAD 83) horizontal datum and North American Vertical Datum of 

1988 (NAVD 88) vertical datum. 
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1.3 Regional Climate 

The majority of the study area falls within the Southern Rocky Mountain 
Ecoregion (Omernik and Griffith 2014). The Southern Rocky Mountain 
Ecoregion is characterized by varied topography and high mountainous 
elevations, which directly influence the temperature and precipitation 
patterns across the region. The central portion of the study area has the 
highest elevations leading to cooler temperatures throughout the year 
compared to areas at lower elevations. Like the elevation-driven 
temperature gradients, precipitation is also highly variable in the region 
with high mountains receiving substantial snowfall while lower elevation 
areas to the east and west of the Continental Divide have semiarid and 
high-desert climates. For example, in Colorado, the state-wide average 
annual precipitation is 18 in., yet there is high variability with some areas 
receiving approximately 7 in. whereas others receive more than 60 in. a 
year.1 For the high elevation areas of the region, most precipitation falls as 
snow during the winter, whereas monsoonal thunderstorm patterns are a 
primary source of precipitation at low elevations. The southern Rocky 
Mountains experience four distinct seasons which directly affect 
temperature and precipitation patterns in the region. This high variability 
can lead to frequent drought, which can increase the likelihood of 
wildfires. 

1.4 Objective 

The overall objective of our study is to identify the potential changes in 
rainfall-driven runoff events in burned areas of Colorado and associate 
those changes in runoff to differences in curve number (CN) estimates that 
can be used in post-wildfire hydrologic studies. To accomplish this 
objective, the research team has been assembled to include engineers and 
scientists with specialized experience in hydrology, watershed modeling, 
and post-fire runoff analysis. To achieve the study objectives, the project 
scope included the following: 

  

 
1. For a full list of the spelled-out forms of the units of measure used in this document 

and their conversions, please refer to US Government Publishing Office Style Manual, 31st ed. 
(Washington, DC: US Government Publishing Office, 2016), 248–52 and 345–47, https://www 
.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf. 

https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
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• Provide a summary of methods used to adjust CN values following a 
wildfire. 

• Develop empirical estimates of CN value adjustments based on 
streamgage information. 

• Provide CN value adjustment guidelines for modelers performing 
post-wildfire risk assessments. 

1.5 Approach 

In this study, our approach used streamflow data from streamgages 
located in or downstream of wildfire affected watersheds to estimate CNs 
for each runoff event. Using the population of estimated CN values for 
hundreds of individual storm events, we determined the change in median 
pre- and post-wildfire CNs. From this assessment, we developed models to 
predict the post-wildfire CN change based on watershed characteristics 
(i.e., slope, elevation, northness, eastness, land cover type, and percent 
burned) and the years since the wildfire occurred. 

1.6 Scope 

The scope of our study was limited to areas of the Southern Rocky 
Mountains including southern Wyoming, Colorado, northern New 
Mexico, and eastern Utah. The methodology can be applied to other 
regions of the US provided streamflow, precipitation, and historical 
wildfire information are available. 
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2 Summary of Curve Number (CN) Method 
2.1 CN Background 

The CN method is a simple method that relates precipitation and 
watershed characteristics to runoff magnitude. The CN method is widely 
used for estimating surface runoff from watersheds (Hawkins et al. 2005; 
Ponce and Hawkins 1996; Soulis 2018). This method was developed in the 
1950s by the USDA Soil Conservation Service (SCS) (Rallison 1980; 
Plummer and Woodward 1998). The agency would later be renamed the 
Natural Resources Conservation Service (NRCS) and the method is still 
published in the NRCS National Engineering Handbook (NRCS 2004a). 
The CN method assumes that precipitation is divided into water that is 
stored in the soil column and water that produces surface runoff. The ratio 
of storage to runoff amounts is dependent on watershed characteristics 
(e.g., vegetation and soil type). 

The derivation of the generalized CN equations we present in this report 
follows the process described in Ponce and Hawkins (1996). The equations 
describing the CN method match those found in the NRCS National 
Engineering Handbook (NRCS 2004a). The CN method assumes a 
proportionality between water retention and surface runoff, 

 𝐹𝐹
𝑆𝑆

= 𝑄𝑄
𝑃𝑃

, (1) 

where 

 F = actual water retention, 
 S = the potential water retention, 
 P = total precipitation, and 
 Q = actual runoff. 

The actual water retention (F) is equal to the difference between total 
precipitation (P) and actual runoff (Q). The method also assumes that at 
the beginning of the precipitation event an initial amount of rainfall is 
abstracted, or retained, in the watershed (Ia) as a combination of 
interception, infiltration, and surface storage before runoff begins (Ponce 
and Hawkins 1996). This amount is subtracted from the precipitation (P) 
and when substituted into Equation 1 results in, 
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 𝑃𝑃−𝐼𝐼𝑎𝑎−𝑄𝑄
𝑆𝑆

= 𝑄𝑄
𝑃𝑃−𝐼𝐼𝑎𝑎

. (2) 

When solving Equation 2 for Q, the resulting function for surface runoff is 

 𝑄𝑄 = (𝑃𝑃−𝐼𝐼𝑎𝑎)2

𝑃𝑃−𝐼𝐼𝑎𝑎+𝑆𝑆
. (3) 

Ia has a linear relation with S and is described by the following equation: 

 𝐼𝐼𝑎𝑎 = 𝜆𝜆𝜆𝜆. (4) 

In Equation 4, λ is the initial abstraction ratio and ranges from 
0.0 ≤ λ ≤ 0.3 (Ponce and Hawkins 1996). Finally, when Equation 4 is 
substituted into Equation 3, the generalized form of the surface runoff 
function is 

 𝑄𝑄 = (𝑃𝑃−𝜆𝜆𝑆𝑆)2

𝑃𝑃+(1−𝜆𝜆)𝑆𝑆
. (5) 

Part of the simplicity of the CN method is that the potential retention (S) 
can be mapped into a dimensionless CN parameter (CN) using the 
following relations: 

 𝜆𝜆 = 25400
CN

− 254, (6)2 

and 

 𝜆𝜆 = 1000
CN

− 10. (7)3 

CN values range from 0 to 100. A CN value of zero results in all 
precipitation being abstracted in the watershed, whereas a CN value of 100 
results in no abstraction and all precipitation contributing to surface runoff. 

Determining the CN value for a specific watershed and precipitation event 
is required to accurately estimate runoff. Because CN represents many 
watershed-specific variables (e.g., slope, vegetation, and regional soil 
characteristics) and temporally dependent variables (e.g., antecedent soil 
moisture), estimation of CN for a watershed can be challenging. Typically, 

 
2. International System of Units (SI). 
3. US Customary System of Units. 
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users of the CN method will either estimate CN values using the NRCS 
table of median values for varying soil, cover, and vegetation conditions 
(NRCS 2004b) or through local calibration of measured runoff and 
precipitation events (Hawkins et al. 2005). As described by Hawkins et al. 
(2005), there are three principal methods for using observed precipitation 
and streamflow to estimate CN values for a watershed. These methods are 
(1) asymptotic determination, (2) least squares determination, and (3) 
model simulation. The first two methods aim at determining an overall CN 
value that can be used for higher precipitation depths (i.e., large rainfall 
events). The third method is often used by hydrologic modelers to relate 
antecedent conditions of a watershed to CN values. 

The asymptotic determination method rank orders P and Q separately for 
runoff events within a watershed over a period of interest (effectively 
decoupling the rainfall input from the streamflow response), S and CN are 
then calculated for each ranked pair. The CN values are plotted against P 
and an exponential decay curve is fit to the points on a linear plotting 
scale. If the curve asymptotically approaches a CN value, then the 
watershed is considered “standard” and the CN value is considered 
appropriate for higher precipitation depths. The details of this method are 
further described in Hawkins et al. (2020). Alternatively, the CN value for 
a watershed can be determined using the least squares method by finding 
an S value which minimizes the error between the calculated and observed 
runoff (i.e., ∑(Qcalc – Qobs)2). Once the S value is determined, the CN value 

can be found using Equation (6) or (7) depending on the system of units. 
The model simulation method can be effective but generally requires in-
depth knowledge of the watershed and additional information like soil 
moisture and vegetation health prior to the observed runoff events. 

2.2 Literature Summary of Post-wildfire CN Estimation 

Although the CN method is widely used in hydrologic applications, there 
are relatively few publications that describe how to adjust CNs following a 
wildfire event in a watershed. Estimated post-wildfire CNs for fires in New 
Mexico were published by both Livingston et al. (2005) and Springer and 
Hawkins (2005). Although these studies provide some insight to the 
magnitude of change in that specific region, their conclusion indicated that 
additional data were needed to determine generalized CN values for 
wildfire affected watersheds. Kinoshita et al. (2014) evaluated four 
hydrologic models for post-wildfire CN value determinations in several 
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western US watersheds. The four models assessed by Kinoshita et al. 
(2014) were (1) the USGS Linear Peak-Streamflow Regional Regression 
Equations (Farmer et al. 2019), (2) USDA Windows Technical Release 55 
(https://data.nal.usda.gov/data set/small-watershed-hydrology-wintr-55), (3) Wildcat 5 
(https://www.fs.usda.gov/research/treesearch/50557), and (4) HEC-HMS (https://www.hec 
.usace.army.mil/software/hec-hms/). The primary goal of their analysis was 
assessing the versatility and accuracy of the commonly used hydrology 
methods and models following wildfire. In the analysis, The Kinoshita et 
al. (2014) methods for adjusting the CN include a pre-wildfire modifier 
based on total burn area and severity. The changes in CN values were 
adjusted with a fixed translation between 5 to 15 units depending on burn 
severity. The Kinoshita et al. (2014) conclusion was that Wildcat 5 overall 
performed the best of the models evaluated but was limited by the 
maximum watershed size appropriate for the tool. Another study by 
Leopardi and Scorzini (2015) in Italy, also used fixed translations of CN 
values to test the sensitivity of the peak streamflow estimates following 
wildfire in a small urban wildfire affected basin. Leopardi and Scorzini 
(2015, p. 305) found that the “. . . lack of any consistent and verified 
guidelines . . .” resulted in the development of post-wildfire CN values 
which had a high degree of uncertainty. 

Soulis (2018) evaluated three methods that used pre- and post-wildfire 
streamflow observations to determine CN adjustments for an experimental 
watershed in Greece. The three methods of CN adjustments for the entire 
watershed were (1) taking the arithmetic mean, median and geometric 
mean CN values for individual events which occurred both pre and post-
wildfire and assuming λ = 0.2; (2) asymptotic CN values for both pre and 
post-wildfire periods following the procedure described by Hawkins et al. 
(2005); and (3) finding the best fit CN value by allowing λ to be treated as 
a free parameter in fitting Equations (5) and (6) (or 7). Using method 1, 
Soulis (2018) found the median CN value difference between pre- and 
post-wildfire periods was approximately 5 units. Method 2 resulted in a 
change of over 25 units, whereas method 3 with λ as a free parameter 
resulted in approximately a 30 unit change in the CN value. Soulis (2018) 
also estimated CN changes using a two-step process that split the 
watershed between burned and unburned areas, allowing for a spatially 
distributed CN estimation. Based on our review of the literature, these 
methods are not used in any other studies and the general applicability has 
not been determined. Therefore, we focused on the first of Soulis (2018) 
methods for this analysis. 

https://data.nal.usda.gov/data%20set/small-watershed-hydrology-wintr-55
https://www.fs.usda.gov/research/treesearch/50557
https://www.hec.usace.army.mil/software/hec-hms/
https://www.hec.usace.army.mil/software/hec-hms/
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The NRCS has published methodologies for estimating CN changes post-
wildfire which are often used as background information for many federal 
and local government agencies reports on flood risk following wildfire 
(NRCS 2016). NRCS (2016) provides post-wildfire CN ranges for a limited 
number of USDA Forest Service regions, which are derived from 
individual Burned Area Emergency Response (BAER) team reports. 
Several tables within the NRCS (2016) report lists CN value 
approximations according to burn severity, CN values as high as 98 are 
reported in regions with high burn severity and hydrophobic soils. The 
NRCS (2016) report also provides a range of CN values by hydrologic soil 
group and burn severity. The CN changes from prewildfire conditions for 
hydrologic soil groups C and D are 18 and 23, respectively (assuming high 
burn severity). NRCS (2016, p. 15) concludes: 

The lack of field data in burned catchments and 
related research to verify the effect on CN hampers 
postfire runoff modeling with CNs. There is little 
research adequate to determine best-fit runoff CNs, 
even for unburned mountain and forested watersheds. 

No additional publications reporting either CN changes or post-wildfire 
CN value ranges for all areas of the western US were identified. In 
addition, there were no studies identified that attempted to relate CN 
changes to watershed characteristics, which is an important step when 
performing simulations of post-wildfire runoff in watersheds that have no 
streamflow observations available. 
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3 Data 
To complete this study we incorporated streamflow, precipitation, and 
snow water equivalent (SWE) (i.e., climate), wildfire perimeter, and basin 
characteristic data from several data sources. In this section we will 
describe each of the data sources. 

3.1 Streamflow 

The primary source of streamflow data were from the USGS streamgages 
(USGS 2023). Another source of streamflow data for selected gages 
included the Colorado Division of Water Resources (CODWR) (CODWR 
2023). We also investigated data sources from the New Mexico and 
Wyoming State Engineer Offices, but no runoff events were identified in 
wildfire affected watersheds. The State of Utah relies on the USGS 
streamgage network and does not operate an independent streamgage 
network like other states. Streamgages included in the study are listed in 
Appendix A:. 

3.2 Climate 

Precipitation was the primary climate data input for estimating CN values. 
We used NOAA’s Analysis of Record for Calibration (AORC) gridded 
precipitation data (NOAA 2021). This product provides hourly 
accumulated precipitation depths for all of the continental United States 
(CONUS) at a 1 km spatial resolution. These precipitation data shows 
reduced bias compared relatively to other hourly precipitation products 
(Fall et al. 2023). In addition, the AORC data set has sufficient concurrent 
records with the wildfire perimeter data set (Welty and Jeffries 2021) to 
identify multiple runoff events in each watershed and was used in other 
post-wildfire studies in Colorado (Giovando et al. 2023). 

The SWE data set developed by Broxton et al. (2019) was used to identify 
runoff events that were caused by rainfall only. This data set has a 4 km 
spatial resolution at a daily temporal resolution for CONUS for water years 
1982–2022. Dawson et al (2018) showed this data set to provide accurate 
representation of SWE conditions in western US watersheds. 

https://waterdata.usgs.gov/nwis
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3.3 Wildfire Perimeters 

The wildfire perimeter data used to locate wildfire affected watersheds in 
the study area were taken from the Combined Wildfire Datasets for the 
United States and Certain Territories, 1800s-Present data set (Welty and 
Jeffries 2021). This data set merges 40 different wildfire and prescribed 
burn layers to obtain the greatest historical spatial resolution of wildfire 
for the United States and certain territories. For this study, we focused on 
fire events with perimeters greater than 1,000 acres that occurred during 
the period of record of the streamgages. 

3.4 Land Cover and Topography 

We summarized land cover and topographic characteristics of each 
watershed using the LANDFIRE 2022 data sets (LANDFIRE 2022a–d). 
We calculated and assigned each watershed the majority (mode) 
vegetation type based on the Existing Vegetation Type data set 
(LANDFIRE 2022c). A total of 17 unique existing vegetation types were 
assigned to the watersheds included in our analysis (Table 1). Using the 
LANDFIRE elevation products (30 m spatial resolution), we calculated 
the mean watershed elevation (meters; LANDFIRE 2022b) and slope 
(degrees; LANDFIRE 2022d). Additionally, using the LANDFIRE 
elevation (LANDFIRE 2022b) and aspect (LANDFIRE 2022a) products, 
we calculated the mean northness (degree to which the watershed is 
oriented towards the north) and eastness (degree to which the watershed 
is oriented east) for each watershed. North facing slopes tend to have 
more persistent snowpack and denser vegetation, whereas east facing 
watersheds can be affected by the prevailing westerly winds (Sexstone 
and Fassnacht 2014). The formulation for calculating northness and 
eastness are documented in Sexstone and Fassnacht (2014). Post-wildfire 
remediation efforts, including mulching, were not accounted for in the 
analysis because of lack of geographical information indicating the use of 
mulch within a burned area. Watersheds varied in mean elevation 
between 1,984 m and 3,460 m with a median elevation of 2,678 m. The 
watersheds also covered a range of aspects and slopes with northness 
values ranging between –0.003 and 0.90 (median of 0.01), and eastness 
values between –0.124 and 0.010 (median of –0.011). 

Using the wildfire burn perimeters from Welty and Jeffries (2021), we 
calculated the percentage of each watershed that was burned. There was a 
total of 325 individual wildfires (Reis et al. 2024) that occurred within at 
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least one watershed. The percentage of burned area for individual 
watersheds ranged from less than 1% to over 75% with a median of 1.4% 
(Figure 2). Because of the relative size of the watersheds captured by the 
streamgages for this analysis, only 31 watersheds were burned across more 
than 2% of the total watershed area. 

Table 1. LANDFIRE existing vegetation types (LANDFIRE 2022c) determined to be the majority 
(mode) existing vegetation type in the watersheds used in the analysis. 

Existing 
Vegetation Type—
ID Existing Vegetation Type Name 

Existing Vegetation Type 
Subclass 

7011 Rocky Mountain Aspen Forest and Woodland 
Deciduous open tree 
canopy 

7016 Colorado Plateau Pinyon-Juniper Woodland 
Evergreen open tree 
canopy 

7050 Rocky Mountain Lodgepole Pine Forest 
Evergreen closed tree 
canopy 

7052 
Southern Rocky Mountain Mesic Montane Mixed 
Conifer Forest and Woodland 

Evergreen closed tree 
canopy 

7054 
Southern Rocky Mountain Ponderosa Pine 
Woodland 

Evergreen open tree 
canopy 

7055 
Rocky Mountain Subalpine Dry-Mesic Spruce-Fir 
Forest and Woodland 

Evergreen closed tree 
canopy 

7059 
Southern Rocky Mountain Pinyon-Juniper 
Woodland 

Evergreen open tree 
canopy 

7080 Inter-Mountain Basins Big Sagebrush Shrubland Evergreen shrubland 

7086 
Rocky Mountain Lower Montane-Foothill 
Shrubland 

Mixed evergreen-
deciduous shrubland 

7126 
Inter-Mountain Basins Montane Sagebrush 
Steppe 

Mixed evergreen-
deciduous shrubland 

7127 Inter-Mountain Basins Semi-Desert Shrub-Steppe 
Mixed evergreen-
deciduous shrubland 

7146 
Southern Rocky Mountain Montane-Subalpine 
Grassland 

Perennial graminoid 
grassland 

7147 
Western Great Plains Foothill and Piedmont 
Grassland 

Perennial graminoid 
grassland 

7149 Western Great Plains Shortgrass Prairie 
Perennial graminoid 
grassland 

7299 Developed-Roads Developed 
9016 Rocky Mountain Alpine Bedrock and Scree Sparsely vegetated 
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Figure 2. Histogram of the percentage of watershed burned by each individual wildfire used 
in the analysis based on the Welty and Jeffries (2021) dataset. The total number of 

wildfires included is 325. Note the logarithmic scale on the vertical axis. 
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4 Methods 
In the following sections we will describe in-depth the methodology used 
to identify rainfall driven runoff events in wildfire affected watersheds. 
Using the identified events the CN change is calculated following wildfire. 
The CN changes are then modeled using regression trees and generalized 
linear models to provide guidelines for how practitioners can alter CN to 
model runoff following wildfire. A brief methodological flow chart is 
included here to help visualize how each input dataset and calculated 
variable is used to develop the final models (Figure 3). 

Figure 3. Flow chart of the methods used in the report. The flow chart includes the input data 
(orange) and the primary processes used (blue) to develop the curve number (CN) change models. 

 

4.1 Wildfire Affected Streamgage Identification 

Using the wildfire perimeter data set (Welty and Jeffries 2021), we 
identified all USGS and CODWR streamgage watersheds within our study 
area affected by at least one wildfire. This initial search provided us with 
several hundred potentially wildfire affected watersheds. We then filtered 
the watersheds by the fire type attribute (e.g., “Wildfire,” “Prescribed Burn,” 
or “Unknown”) provided in the USGS data set (Welty and Jeffries 2021). 
This step captures only watersheds with the fire disturbance classified as 
Wildfire, because the hydrology effects of prescribed burns are less severe 
than those of wildfires (Bêche et al. 2005; Vadilonga et al. 2008). 
Additionally, we limited the minimum burn area to 1,000 acres to eliminate 
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watersheds with minimal land surface effects from wildfire burned areas. 
We only included wildfires from the USGS data set (Welty and Jeffries 
2021) that occurred within the watershed during the period of record for the 
streamgage (USGS 2023). After applying these criteria, we identified 102 
wildfire affected watersheds to include in the study (Reis et al. 2024). 

Each of these river systems have varying levels of anthropogenic effects 
including dams, levees, diversions, interwatershed water transfers, and 
groundwater pumping. The CN method assumes rainfall input and the 
associated streamflow response are not influenced by any of these 
anthropogenic activities. Therefore, Capesius and Stephens (2009) and 
Kohn et al. (2016) were used to distinguish anthropogenic effects on 
streams and identified 24 watersheds (out of the 102) that have minimal 
anthropogenic effects to use in the final model development. These 
watersheds, referred to as “best subset” in the model naming convention, 
provide a comparison of both observed CN value changes and model 
performance to the larger sample that includes all 102 identified 
watersheds in the study domain. A summary table of specific streamgages 
used in our analysis is provided in Appendix A. 

4.2 Watershed Average Precipitation 

Streamflow represents a spatial integration of land surface and hydrologic 
processes acting upstream of a measurement point in a watershed. 
Therefore, to determine CN values from streamflow, we needed to 
spatially average precipitation data over the area upstream of the 
streamgage location. We completed this by delineating the upstream 
watersheds for each streamgage location that was identified to have been 
affected by wildfire and calculated the spatial average of the AORC 
precipitation data within the delineated watershed. 

4.3 Identification of Rainfall Driven Runoff Events 

The CN method was specifically designed to predict the runoff from rain 
events (Rallison 1980; Plummer and Woodward 1998). However, in the 
snowmelt dominated watersheds that are common in Colorado, most high 
runoff events are in response to snowmelt runoff. Because of the 
complexities in identifying rainfall only streamflow responses, runoff events 
in each of the wildfire affected watersheds, we identified each event through 
visual inspection of the daily mean streamflow, daily SWE, and hourly 
incremental precipitation timeseries (Figure 4). We selected events if there 



ERDC TR-24-12 18 

 

was no SWE within the watershed and the event was a clear response to 
precipitation. We estimated the start and end date of each event through the 
visual inspection of the timeseries data. We ensured independent events by 
only selecting events that started and ended with an approximately equal 
base flow. Runoff events were identified between 1979 and 2021, with each 
streamgage period of record varying substantially. Event length ranged 
between 1 and 53 days, with a median of 8 days; however, due to the close 
proximity of the watersheds analyzed, many event start dates occurred 
within a few days of each other (median of 1 day between event start dates). 
Additionally, we removed streamgages from the analysis if there was a clear 
pattern of decoupling between the precipitation and streamflow response, 
typically in response to anthropogenic influences upstream from the 
streamgage (e.g., dams and irrigation diversions). As a result, we identified 
a total of 2,946 runoff events caused by rainfall in the 102 wildfire affected 
watersheds (Reis et al. 2024), these events were then used to evaluate the 
pre- and post-wildfire CN values. 

Runoff events were assigned an identifier based on the following three 
criteria: (i) if the runoff event occurred before or after a wildfire in the 
watershed, (ii) if the runoff event occurred after a wildfire, the number of 
wildfires (i.e. “First Wildfire”, or “Second Wildfire”) that occurred before 
the runoff event (hereon “fire number”), and (iii) the number of years 
prior to the runoff event that the most recent wildfire occurred. If a runoff 
event occurred between two wildfires, it was assigned only to the grouping 
of “After” the previous fire. Only runoff events that occurred before any 
recorded wildfire in the watershed were described as “Before” and were 
used in the pre-wildfire CN value estimation. We also compared the 
wildfire year with the first year of operation of the streamgage to confirm if 
any wildfires had occurred prior to the establishment of the streamgage, 
removing all wildfires prior to the gage period of record. If there were no 
runoff events identified before the first wildfire, the streamgage was not 
used in the analysis due to the lack of baseline streamflow information. 
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Figure 4. Example runoff event selection from the Colorado Division of Water Resources 
(CODWR) North Inlet streamgage using timeseries data of daily mean streamflow, daily snow 
water equivalent (SWE), and incremental hourly precipitation. Examples of runoff events that 
were included in the analysis (purple) and those which are excluded (yellow) are highlighted. 

 

4.4 Determination of CN by Runoff Event 

To calculate the CN for each runoff event, we summed the total 
precipitation and resulting streamflow accordant with the runoff event 
dates. We then converted the event precipitation and streamflow to total 
depth or watershed-averaged depth using the watershed area. Runoff 
event watershed average precipitation depth ranged between 0.3 in. and 
10.4 in. (0.7 cm and 26.4 cm), with a median of 1.4 in. (3.6 cm). From the 
total runoff event depth of precipitation and total runoff event depth of 
runoff, we calculated the runoff event storage value (S) using Equation (5) 
for an initial abstraction ratio (λ) of 0.05 and 0.2. We then calculated the 
CN value using both resulting storage values (Equation 7). The historical 
formulation of the CN equation used an initial abstraction ratio of 0.2; 
however, more recent studies have found the initial abstraction ratio of 
0.05 to be more appropriate (Hawkins et al. 2020). By calculating the CN 
using both storage values, we were able to link our changes in CN to 
historical values commonly found in the literature while also providing a 
range in the estimated CN changes following wildfire. 
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4.5 Development of Relation of CN Change to Watershed 
Characteristics 

From the runoff event-based CN values, we then calculated the median CN 
values within each watershed for each runoff event period. The “Before” 
wildfire period represents the years prior to any wildfire event occurring 
within a watershed when streamflow measurements were available. In 
contrast, the “After” wildfire period was assigned to five unique planning 
horizons (0–4 years, 5–9 years, 10–14 years, 15+ years, and all years) 
following the first or second wildfire event (Figure 5). For example, “After 
First Fire 0–4 yrs” are runoff events immediately following the first 
identified wildfire in the watershed up to 4 years later. 

We then calculated the watershed median change in CN by subtracting the 
after-wildfire CN median value from the before-wildfire median CN value. 
A median CN change was calculated for both the 5% and 20% initial 
abstraction storage values (S05 and S20, respectively) for each runoff 
event. CN changes were identified for at least one post-wildfire period in 
102 watersheds. We further subset the number of total watersheds to those 
with two or fewer wildfires for a total of 77 watersheds which were then 
used for our model development. Depending on the specific watershed, 
runoff events did not occur within each planning horizon (i.e., Before Fire, 
0–4 years After First Fire, etc.), which further reduced the sample size to 
between 19 and 68 of all 77 watersheds (Reis et al. 2024). 
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Figure 5. The histogram of the number of runoff events included in calculating the median CN for 
each period used for analysis in the CN change estimates following wildfire. The total number (n) 

of runoff events for each planning horizon is based on the number of fires per watershed. 

 

4.6 Model Development 

Using the change in CN, we developed generalized linear models and 
regression tree models to identify the characteristics of the watersheds and 
wildfire alterations that resulted in the CN change between pre- and post-
wildfire conditions. These models were developed so they could be used in 
future burned watersheds to predict the increase in runoff expected 
following a wildfire. 

4.6.1 Linear Model 

We developed generalized linear models (GLM) of the change in CN for 
rainfall driven runoff events in a watershed for each of the five planning 
horizons (e.g., 0–4 yr and 5–9 yr) and fire number (e.g., First wildfire). 
For each linear model, the equations were defined by the general form, 

 𝑌𝑌 =  𝛽𝛽0 +  𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 +  .  .  .  +  𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 (8) 
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where Y is the change in CN (ΔCN), β0 is the y-intercept, or base CN 
change, β is the coefficient for each dependent variable term (X) included 
in the GLM. GLMs can use both continuous, categorical, and binary 
variables. For example, if the GLM equation was 

 ΔCN =  25 +  5(Mean Elevation) + 45(Landcover = 7011) (9) 

to identify the predicted change in CN for a watershed (ΔCN), the mean 
elevation of the watershed would be multiplied by the coefficient (5) and a 
binary operator (0 = no) or (1 = yes) based on if the majority of landcover 
type of the watershed is Rocky Mountain Aspen Forest and Woodland 
(7011) multiplied by the landcover coefficient (45). 

The input variables included in the GLM development are mean watershed 
elevation, slope, eastness, northness, LANDFIRE mode landcover type, and 
wildfire burn percentage. Our initial step in the process of developing the 
GLMs was to identify the input variables which resulted in the best 
performance metrics. Using the leaps package (Lumley 2020) in R (R Core 
Team 2023), we conducted an exhaustive evaluation of input variable 
combinations while also implementing a 5-fold, k-fold cross validation 
process to determine the root-mean-square error (RSME) for each model. 
The k-fold process subdivides a dataset into k subsets and the model is 
trained and evaluated k times; the k-fold process was implemented using 
the caret package in R (Kuhn et al. 2023). The 5-fold cross validation 
produces robust results for high variance data sets (James et al. 2013). For 
each model that was produced, we calculated the mean absolute error 
(MAE), Kling-Gupta efficiency (KGE) (Gupta et al. 2009), and coefficient of 
determination (R2) along with the RMSE. Using these statistical metrics, we 
then selected the final linear models based on minimizing RMSE while also 
keeping the number of input variables limited to 1 per 10–15 response 
variable values as recommended by Jenkins and Quintana-Ascencio (2020). 
GLM models were created for all planning horizons, fire numbers, and 
storage values (S) for the full set of watersheds along with the “best subset” 
of watersheds that are known to have minimal anthropogenic influenced 
streamflows. Using both sets of watersheds (i.e., “full set” of 102 analyzed 
and 24 “best subset” with limited anthropogenic influence) resulted in 30 
unique models. 
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4.6.2 Regression Tree Model 

Regression tree models are a form of machine learning that allows for 
partitioning of the data set for identification of input variable groupings 
associated with similar responses values (Figure 6). These partitions 
(Figure 6h) are recursive, and the tree is a simple visualization of the 
recursive model with each terminal node (Figure 6d), representing the end 
point of a singular path through the data, allowing for complex systems to 
be described through simple flow-chart type logic. The splits in the tree 
model are identified by incremental improvement in the coefficient of 
determination (R2). For this project, we identified the top five preforming 
regression trees for each runoff event period and storage value using an 
iterative search of the minimum number of data points required for a split 
(1 to 20), the minimum number of data points required in a terminal node 
(1 to 10), and maximum number of split levels allowed in the trees (1 to 5). 
The regression trees were created using the rpart package in R (Therneau 
et al. 2023). From the top five best performing models, we selected the 
final models based on RMSE, MAE, KGE, and R2. During this selection 
process, we emphasized the statistical validity of the models along with the 
applicability of the models for practitioners. The output of final regression 
tree models was then created from R using the rattle package (Williams et 
al. 2022). The k-fold process was not used in the creation of the regression 
trees due to compatibility issues between the rpart and caret packages, 
which did not allow the user to have control over the final tree output and 
resulted in oversimplifying some models. In total, 30 regression tree 
models were constructed with 20 trees for the full data set (102 
watersheds) based on the runoff event period and the storage value. An 
additional 10 regression trees were constructed for the known low 
anthropogenic influence watersheds (24 “best subset” watersheds). 

The interpretation of a regression tree model diagram is important for 
understanding the results and how the models can be used for estimating 
streamflow changes in the 102 wildfire affected watersheds. Figure 6 
shows an example of a regression tree diagram. Several important pieces 
of information are labeled in the figure. The primary components of a 
tree model are the root node (a), branches (b and c), and leaf or terminal 
nodes (d). Every tree model has a root node that contains information 
about the entire sample used in training of the model. This information 
includes the sample size (e), the percentage of the total sample grouped 
at the node (f), and the average CN change value of the sample (g). When 
the tree model splits the input sample based on incremental 
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improvement of the R2, branches are formed based on the splitting 
criterion (h). In Figure 6, the splitting criterion is evaluating if the mean 
watershed elevation is less than 3,118 m. From the original sample of 71 
watersheds, there are 57 watersheds that have a mean elevation less than 
this threshold and have an average CN value change of 0.032 units. In 
contrast, only 14 watersheds have a mean elevation greater than the 
3,118 m elevation and have a mean CN value change of 9.5 units. 

Figure 6. Example regression tree model diagram with labels of important information. 

 



ERDC TR-24-12 25 

 

5 Results  
5.1 Wildfire Affected Streamgages 

The 102 wildfire affected watersheds are in 12 four-digit hydrologic unit 
codes (HUC4) (Figure 7). These 12 HUC4 watersheds include six states 
and the headwaters to major river systems in the western US (Figure 7). 
The “best subset” of fire affected watersheds are in nine HUC4 watersheds, 
primarily in north- and south-central Colorado. The watershed size 
distribution has a similar range between the “all watersheds” and “best 
subset” data sets (Figure 8), with the total area for the majority of 
watersheds analyzed falling below 1,000 km2. In the “best subset” 
watersheds, only two watersheds are greater than 4,000 km2 (Figure 8b), 
while the full watershed data set includes several more sites (Figure 8a). 
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Figure 7. Map of four-digit hydrologic unit code (HUC4) watersheds within the study domain. 
The 102 analyzed watersheds are included along with the subset of 24 watersheds (best 

subset) known to have minimal anthropogenic influence. 
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Figure 8. Histogram of watershed area for all 102 analyzed watersheds (a). Histogram of watershed 
area for the 24 “best subset” watersheds that have minimal anthropogenic influence (b). 

 

5.2 Observed CN Changes 

In the 102 wildfire affected watersheds, the observed changes in CN values 
vary by both storage (S) and HUC4 (Figure 9). In the majority of the HUC4 
locations, the change in CN values is both negative and positive, indicating 
runoff both decreases and increases, respectively, following wildfire. The 
only exceptions are the Lower Green (Figure 9b) and Upper Pecos (Figure 
9k) HUC4 watersheds which have only positive or negative CN value 
changes, respectively. The largest CN value ranges for both S05 and S20 
are in the Yampa-White HUC4 (Figure 9l). In contrast, the minimum 
range for both S levels was the Lower Green HUC4 (Figure 9b). The 
median CN change values for the S05 and S20 storage levels are positive 
for the Colorado Headwaters, Lower Green, North Platte, Rio Grande-
Elephant Butte, Rio Grande Headwaters, Upper Arkansas (S05 only), and 
Upper Colorado-Dolores (Figure 9a–e, Figure 9h, and Figure 9j). The rest 
of the median CN change values for HUC4 watersheds are negative. The 
South Platte HUC4, which includes large portions of the Colorado Front 
Range, has negative CN value changes following wildfire except for only a 
few individual watersheds (Figure 9g). The San Juan HUC4 has a median 
CN value change of approximately zero for both storage levels (Figure 9f). 
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Figure 9. Boxplot of the median CN pre-fire, post-fire, and change for each HUC4 watershed within the study 
domain (a–l) and for all 102 wildfire affected watersheds (m). Each HUC4 watershed contains individual 
watersheds delineated for specific streamgages. The CN value distributions are for all years following the 
first wildfire. The number of runoff events and sites included within each HUC4. CN change distribution is 

reported for each runoff event period following the wildfire using both storage levels (S05, S20). 

 

Figure 10 shows the distribution of CN value changes by period. The 
distribution for most periods is generally normally distributed around zero 
with some notable exceptions. These exceptions include the periods 10–
14 years and more than 15 years following the second fire which appear to 
approach a uniform distribution (Figure 10m, n, and r–s). This may be 
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due to the limited sample size of watersheds with post-wildfire periods 
extending beyond 10 years. In addition, the all yrs distributions (Figure 
10j, Figure 10o, and Figure 10t) do not resemble a normally distributed 
data set and appear to be positively skewed. 

The post-wildfire period 0–4 years immediately after a wildfire is likely 
the most critical for emergency response and infrastructure vulnerability 
assessment (Ebel et al. 2012; Ebel et al. 2016). From our analysis, the 0–4 
years following the first fire indicates there are an equal number of 
watersheds that have CN value increases (more runoff) and decreases (less 
runoff; Figure 10a and Figure 10f). In contrast, after the second fire there 
is a slight shift to most watersheds in our analysis showing positive CN 
value changes (Figure 10k and Figure 10p). 

Using the “best subset” watersheds data, a uniform distribution is evident 
for nearly all periods and both storage levels (Figure 11). However, when 
considering all post-wildfire years, there is a difference between the S05 
and S20 storage levels (Figure 11e and Figure 11j). The S20 storage level 
(Figure 11j) is more consistent with a positively skewed distribution, 
similar to that found in Figure 10j. In contrast, the distribution for S05 can 
be described as a discontinuous uniform distribution with a shift near the 
zero CN change value (Figure 11e). 
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Figure 10. Histogram of the change in CN following the first and second wildfire in each of the 102 
watersheds. CN change distribution is reported for each runoff event period following the wildfire using 

both storage levels. CN change distribution is reported for each runoff event period following the wildfire 
using both storage levels (S05, S20). 
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Figure 11. Histogram of CN change following wildfire using the “best subset” of 24 
watersheds known to have minimal anthropogenic influence. CN change distribution is 

reported for each runoff event period following the wildfire using both storage levels (S05, 
S20). 

 

5.3 Prediction Models CN Changes 

The estimated median CN changes for all planning horizons are discussed 
in this section. However, only models for the planning horizon of 0–
4 years post-wildfire are discussed in detail because the most urgent need 
for assessing flood risk is immediately following the wildfire event. 
Additional results for other planning horizons for the GLM and regression 
tree models are shown in Appendix B: and Appendix C:, respectively. 
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5.3.1 Linear Models 

The GLMs provide estimated changes in the CN following the first and 
second wildfire for all planning horizons. To better understand the input 
variables that had the greatest effect on the creation of the GLMs, we 
tallied the input variables for each fire number and for each storage value 
that was used (Figure 12). Each storage value and fire had five GLMs in 
total (i.e., 0–4 yrs, 5–9 yrs, 10–14 yrs, +15 yrs, and all yrs). From this 
analysis, we determined that mean elevation and landcover type classified 
as Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland 
(7055) were used in 3 of the 5 GLMs following the first fire for both 
storage values (Figure 12a and 12c). Inter-Mountain Basins Big Sagebrush 
Shrubland (7080) was included in three models following both the first 
fire and assuming S05 (Figure 12a). The percentage of watershed area 
burned was only included in the After First Fire and S20 (Figure 12c). 

While the GLMs for the full watershed data set used 18 unique input 
variables, the “best subset” watersheds models only used 5 variables 
(Figure 13). The “best subset” models did not use of burn percentage and 
an input variable following the first fire (Figure 13). In addition, watershed 
mean elevation was used less in the “best subset” watershed models (2 
models; Figure 13) than it was in the full data set (102 watersheds) models 
(10 models; Figure 12). Mean watershed slope, a variable used in 4 models 
in the full data set (102 watersheds), was not used in any models for the 
“best subset” watershed data set. Additionally, only 3 landcover types, 
Rocky Mountain Lodgepole Pine Forest (7050), Rocky Mountain 
Subalpine Dry-Mesic Spruce-Fir Forest and Woodland (7055), and Inter-
Mountain Basins Big Sagebrush Shrubland (7080) were included in the 
“best subset” watershed models while 13 landcover types were included in 
the full data set (102 watersheds) models. 
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Figure 12. The number of times each variable was used by the 102-watersheds generalized 
linear model (GLM) equations based on the fire number in each watershed and the storage 

(S) value. Five models were created for the number of fires and storage values using all 
identified watersheds with fire occupancy in the study domain. 
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Figure 13. The number of times each variable was used by the GLM equations for the 24 “best 
subset” watersheds that are known to have minimal anthropogenic influence data set  following 

the first fire in each watershed for both storage (S) values. Five models were created for each 
number of fires and storage values using the 24 “best subset” watersheds with fire occupancy in 

the study domain. The plot is limited to the variables used in the “best subset” watersheds 
models. 

 

5.3.1.1 All Watersheds Linear Models 

The final GLMs for the 0–4 years planning horizon following the first 
and second fires in all 102 watersheds are included in Table 2, and linear 
equations for all 102 analyzed watersheds for all scenarios can be found 
in Table 2. The linear model that we developed for the first wildfire 0–4 
Year planning horizon assuming S05, relied on watershed mean 
elevation, mean slope, and binary operators based on if the majority 
landcover type is Rocky Mountain Subalpine Dry-Mesic Spruce-Fir 
Forest and Woodland (7055), Rocky Mountain Lower Montane-Foothill 
Shrubland (7086), or Rocky Mountain Alpine Bedrock and Scree (9016; 
Table 2). Landcover names and numbers can be found in Table 1. The 
change in CN for the immediate 4 years following the first fire, assuming 
S05, is positively correlated with mean elevation, Rocky Mountain Lower 
Montane-Foothill Shrubland (7086), and Rocky Mountain Alpine 
Bedrock and Scree (9016) landcover types, but negatively correlated with 
mean watershed slope, and Rocky Mountain Subalpine Dry-Mesic 
Spruce-Fir Forest and Woodland (7055) landcover. The RMSE of the CNs 
estimated by the GLM is 14.3 units (Table 4). 

The GLM for 0–4 years following the first fire with S20, is very similar to 
the S05 GLM (Table 2). The GLM for the S20 relies on the watershed 
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mean elevation, and landcover types of Rocky Mountain Subalpine Dry-
Mesic Spruce-Fir Forest and Woodland (7055) or Rocky Mountain Lower 
Montane-Foothill Shrubland (7086) as input variables. For this model, the 
only negatively correlated coefficient is the landcover type Rocky 
Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland (7055). 
All other variables are positively correlated to CN change. This model 
produces an RMSE of 9.7 units (Table 4). 

For the first 4 years following the second fire in a watershed, mean 
elevation along with Rocky Mountain Subalpine Dry-Mesic Spruce-Fir 
Forest and Woodland (7055) landcover types are included in the linear 
models for both S05 and S20 (Table 2). For S05, the model also includes 
landcover types of Rocky Mountain Lodgepole Pine Forest (7050), 
Southern Rocky Mountain Pinyon-Juniper Woodland (7059), and Inter-
Mountain Basins Big Sagebrush Shrubland (7080). Mean elevation is 
positively correlated to CN change in the models for both storage values 
while all landcover types are negatively correlated with the exception of 
Inter-Mountain Basins Big Sagebrush Shrubland (7080) in the S05 model. 
The S05 and S20 models had similar RSME values, 16.2 and 13.2 units, 
respectively (Table 4). 

Table 2. Linear models for the change in CN for the 0–4 yr planning horizon following the first 
and second wildfire within each watershed. Landcover type definitions are included in Table 

1. Statistical metrics are included in Table 4. 

Wildfire Scenario Storage Value Linear Equation 

After First Fire: 
0–4 years S05 

ΔCN = −38.27 + 0.02(Mean Elevation) 
−0.87(Mean Slope) 
−9.07(Landcover=7055) 
+34.42(Landcover=7086) 
+22.77(Landcover=9016) 

After Second Fire: 
0–4 years S05 

ΔCN = −63.48 + 0.03(Mean Elevation) 
−22.62(Landcover=7050) 
−25.20(Landcover=7055) 
−18.07(Landcover=7059) 
+30.27(Landcover=7080) 

After First Fire: 
0–4 years S20 

ΔCN = −24.48 + 0.01(Mean Elevation) 
−7.36(Landcover=7055) 
+21.71(Landcover=7086) 

After Second Fire: 
0–4 years S20 

ΔCN = −27.93 + 0.01(Mean Elevation) 
−11.59(Landcover=7055) 
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5.3.1.2 “Best Subset” Watersheds Linear Models 

The linear models for the 0–4 years planning horizon following the first 
fire in the 24 “best subset” watershed subsets are included in Table 3. All 
linear equations for the “best subset” watersheds can be found in Table 3. 
The final linear models for the “best subset” watersheds generally used 
fewer variables than the same models used to capture the full watershed 
data set, primarily because the sample size of the “best subset” watershed 
subset is limiting the appropriate number of variables used to fit the 
models. The S05 storage value linear model only includes mean northness 
and landcover type of Rocky Mountain Subalpine Dry-Mesic Spruce-Fir 
Forest and Woodland (7055; Table 3). Both variables are negatively 
correlated with the predicted change in CN for the first four years 
following the first wildfire. 

The final linear model created for the S20 following the first fire uses the 
mean elevation and northness of the watershed with both variables being 
positively correlated with the change in CN (Table 3). The RMSE resulting 
from the S05 is 13.7 units, whereas the S20 RMSE is 9.4 units (Table 5). 

Table 3. Linear models for the 0–4 yr planning horizon following the first fire within 
each of the 24 “best subset” watersheds. 

Wildfire Scenario Storage Value Linear Equation 

After First Fire: 
0–4 years S05 

ΔCN = 2.74 −5.29(Mean Northness) 
−4.50(Landcover=7055) 

After First Fire: 
0–4 years S20 

ΔCN = −11.66 + 0.004(Mean Elevation) 
+42.86(Mean Northness) 

5.3.2 Regression Tree Models 

5.3.2.1 All Watersheds Tree Models 

The final tree models for the planning horizon of 0–4 years immediately 
following the wildfire using all watersheds are shown in Figure 14 
through Figure 17. The tree model in Figure 14 uses a starting sample size 
of 68 watersheds that only had one wildfire event and assumed a storage 
value S05. The variables used for splitting in this tree model are land 
cover type, northness, eastness, and elevation. In this tree model, any 
watershed with a northness at approximately 0.0 would have a negative 
CN value change whereas all other watersheds would have an average CN 
value increase of 2.5. The next splitting criterion was based on land cover 
type (Table 1). If the land cover type is Rocky Mountain Aspen Forest and 
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Woodland (7011), Colorado Plateau Pinyon-Juniper Woodland (7016), 
Southern Rocky Mountain Mesic Montane Mixed Conifer Forest and 
Woodland (7052), Southern Rocky Mountain Ponderosa Pine Woodland 
(7054), Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and 
Woodland (7055), Southern Rocky Mountain Pinyon-Juniper Woodland 
(7059), Inter-Mountain Basins Montane Sagebrush Steppe (7126), Inter-
Mountain Basins Semi-Desert Shrub-Steppe (7127), Western Great 
Plains Foothill and Piedmont Grassland (7147), Western Great Plains 
Shortgrass Prairie (7149), or Developed-Roads (7299), the average CN 
value change is 27 units. If the land cover type does not match those 
listed, then northness of the watershed is considered. If the watershed 
northness is very close to 0.o (north facing) then the CN value change is 
−15 units; however, if the watershed is oriented slightly east or west, then 
the average CN value change is 0.46 units and can be further split into 
additional branches. Eastness is the next splitting criteria and for 
watersheds that have an eastness value of less than 0.0012 (very close to 
due east orientation), the average CN value change is −0.73 units 
whereas watersheds with an eastness value greater than the threshold 
have an average CN value change of 13 units. Finally for watersheds that 
have an eastness value of less than 0.0012 and an elevation less than 
3,171 m, then the average CN value change is 13 units. For watersheds 
with an elevation of greater than 3,171 m, the CN value change averages 
−1.8 units. The RMSE for this tree model is 10.8 units (Table 4). 

The tree diagram in Figure 15 is based on CN change values using an 
assumed storage value S20 for the planning horizon of 0–4 years 
following the first wildfire (68 total watersheds). The initial variables 
used for splitting in this tree model are land cover type, northness, 
elevation, and slope. For watersheds with land cover types Rocky 
Mountain Aspen Forest and Woodland (7011), Colorado Plateau Pinyon-
Juniper Woodland (7016), Southern Rocky Mountain Mesic Montane 
Mixed Conifer Forest and Woodland (7052), Southern Rocky Mountain 
Ponderosa Pine Woodland (7054), Rocky Mountain Subalpine Dry-Mesic 
Spruce-Fir Forest and Woodland (7055), Southern Rocky Mountain 
Pinyon-Juniper Woodland (7059), Inter-Mountain Basins Montane 
Sagebrush Steppe (7126), Inter-Mountain Basins Semi-Desert Shrub-
Steppe (7127), Western Great Plains Foothill and Piedmont Grassland 
(7147), Western Great Plains Shortgrass Prairie (7149), or Developed-
Roads (7299), the average CN value change is 17 units, otherwise the 
average is −0.87 units. Stepping through the tree model results for the 
majority of watersheds have a predicted positive CN value change slightly 
greater than zero. The RMSE for this tree model is 7.3 units (Table 4). 



ERDC TR-24-12 38 

 

Figure 14. Regression tree diagram for CN change in 68 analyzed watersheds (n) that 
had runoff events in the 0–4 years following the first wildfire. The storage value was 

assumed to be 5% (S05). Landcover types are listed in Table 1. 

 

Figure 15. Regression tree diagram for CN change in 68 analyzed watersheds (n) that 
had runoff events between 0 to 4 years following the first wildfire. The storage value was 

assumed to be 20% (S20). Landcover types are listed in Table 1. 
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The tree diagram in Figure 16 assumes S05 and was created for the 
planning horizon of 0–4 years following the second wildfire within each 
watershed. The total number of analyzed watersheds that recorded a 
runoff event following the second wildfire within the watershed during the 
streamgage period of record is 50. This is a reduction of approximately 
26% relative to the total number of watersheds used in Figure 14. The 
variables used for splitting in this tree model are land cover type and 
northness. For watersheds that do not have land cover type Rocky 
Mountain Aspen Forest and Woodland (7011), Rocky Mountain Lodgepole 
Pine Forest (7050), Rocky Mountain Subalpine Dry-Mesic Spruce-Fir 
Forest and Woodland (7055), Southern Rocky Mountain Pinyon-Juniper 
Woodland (7059), Western Great Plains Foothill and Piedmont Grassland 
(7147), or Western Great Plains Shortgrass Prairie (7149), and northness 
of greater than or equal to 0.0014, the average CN value is 5.2 units. The 
majority of watershed CN value changes are predicted to be positive after 
stepping through the tree model. The RMSE for the tree model following 
the second wildfire assuming S05 is 14.2 units (Table 4). 

Figure 16. Regression tree diagram for CN change in 50 analyzed watersheds (n) that had 
runoff events for 0–4 years following the second wildfire. The storage level was assumed to be 

5% (S05). Landcover types are listed in Table 1. 

 

The tree diagram in Figure 17 is for the 0–4 year planning horizon 
following the second wildfire with an assumed S20. The variables used for 
splitting in this tree model are burn percentage, land cover type, mean 
elevation, and mean slope. These results indicate that a single watershed 
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with a relatively low total burn percentage had a CN value change of 37 
units following the second wildfire event. Otherwise, the rest of the 
watersheds follow a similar first splitting criterion of land cover type. If the 
watershed has a land cover type of Rocky Mountain Aspen Forest and 
Woodland (7011), Colorado Plateau Pinyon-Juniper Woodland (7016), 
Rocky Mountain Lodgepole Pine Forest (7050), Southern Rocky Mountain 
Ponderosa Pine Woodland (7054), Rocky Mountain Subalpine Dry-Mesic 
Spruce-Fir Forest and Woodland (7055), Southern Rocky Mountain 
Pinyon-Juniper Woodland (7059), Rocky Mountain Lower Montane-
Foothill Shrubland (7086), Inter-Mountain Basins Semi-Desert Shrub-
Steppe (7127), Western Great Plains Foothill and Piedmont Grassland 
(7147), or Western Great Plains Shortgrass Prairie (7149), and the slope is 
between 14% and 16%, then the average CN value change is 9.9 units. If 
the slope is less than 14% then the average is −2.2 units. If the slope is 
greater than 16% and the elevation is 3,058 m, then the average change is 
2.5 units. The results of this model indicate the majority of watersheds are 
predicted to have a negative CN value change. Both slope and elevation 
have an impact on the magnitude and direction of the CN value change. 
The RMSE for the tree model in Figure 17 is 8.5 units (Table 4). 

Figure 17. Regression tree diagram for CN change in 50 analyzed watersheds (n) that had 
runoff events for 0–4 years following the second wildfire. The storage level was assumed to 

be 20% (S20). Landcover types are listed in Table 1. 
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5.3.2.2 “Best Subset” Watersheds Tree Models 

The 24 “best subset” watersheds that have minimal anthropogenic effects 
final regression tree models for the first four years (0–4 years) immediately 
following the first wildfire are shown in Figure 18 and Figure 19. Models 
following the second fire in 24 “best subset” watersheds that have minimal 
anthropogenic effects were not constructed due to a lack of data for those 
watersheds. Both figures have an initial watershed sample size of 16 and 
begin by splitting the watersheds based on the mean northness (Figure 18 
and Figure 19). The 5% storage value (S05) identifies watersheds with a 
mean northness value less than 0.0048 (Figure 18). If the mean northness is 
less than −0.0024, the average CN change is −18 units (three watersheds). If 
northness is greater than or equal to 0.0011 but less than 0.0048, CN 
changes by −11 units, however when mean northness is between −0.0024 
and 0.0011 average CN change is approximately 0 units (0.19). When 
northness is greater than 0.0048, mean watershed slope is less than 11%, 
and burn percentage is greater than or equal to 0.41, average CN change is 
−17 units. If the watershed meets the same northness and slope conditions 
but burn percentage is less than 0.41, the average CN change is 3.4 units. 
When watershed northness is greater than or equal to 0.0048 and slope is 
greater than or equal to 11%, the CN changes by 15 units. The RMSE for the 
tree model shown in Figure 18 is 2.6 units (Table 5). 

When using the S20, we found that if the watershed northness was less 
than −0.0024, the average median CN change is −12 units. Otherwise, 
when northness is greater than (inclusive) −0.0024 and the watershed 
mean elevation is greater than (inclusive) 3,167 m, the average CN change 
was 11 units. If the northness was between −0.0024 and 0.052, watershed 
elevation is less than 3,167 m, and watershed eastness is less than −0.0014 
the CN change was −7.7 units. However, if the eastness is greater than or 
equal to −0.0014, average CN change was 3.4 units. For watersheds with a 
mean elevation less than 3,167 m and a mean northness greater than 
0.052, average CN change was 8.4 units following the first wildfire. The 
RMSE for the tree model shown in Figure 19 was 3.1 units (Table 5). 
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Figure 18. Regression tree diagram for median CN change following first wildfire and using 0–
4 years post-wildfire in the 24 “best subset” watersheds that have minimal anthropogenic 

effects. The storage level was assumed to be 5% (S05). 

 

Figure 19. Regression tree diagram for median CN change following first wildfire and using 
0–4 years post-wildfire in the USGS “best subset” watersheds. The storage level was 

assumed to be 20% (S20). 
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5.3.3 Summary of Model Performance 

Using the final models for both the linear (GLM) and regression tree 
methods, the predicted CN change values using all watersheds were plotted 
against the observed CN changes for all 102 watersheds (Figure 20). The 1:1 
line (perfect fit) was also displayed to help evaluate the model performance. 
Our overall results indicate both model structures have similar ranges for 
changes of CN values following wildfire. The overall accuracy of the tree 
models was slightly better compared to the GLM for several of the post-
wildfire periods. For example, periods 10–14 years and 15+ years the tree 
models show substantial improvement over the linear models (Figure 20c–
d, Figure 20h–i, Figure 20m and n, and Figure 20r–s) based on the smaller 
residuals from the 1 to 1 line. There was also improved model accuracy for 
the important period immediately following a wildfire (0–4 years) (Figure 
20a, Figure 20f, Figure 20k, and Figure 20p). 

Figure 21 shows the regression tree model results using the subset of the 24 
“best subset” watersheds that have minimal anthropogenic effects. Because 
of the reduced sample size of the “best subset” watersheds, results following 
only the first wildfire event were developed. Instead of using all watersheds 
(Figure 20), the accuracy of regression tree model results was substantially 
improved compared to linear models for the “best subset” watersheds. The 
predicted CN value changes using the tree models match observed values 
closely for a majority of periods and storage levels (Figure 21). 

The regression tree models had lower RMSE values for each post-wildfire 
period and storage value combination compared to the GLMs (Figure 22). 
The difference in RMSE between the GLM and tree model was larger for 
the “best subset” watershed models when compared to using all 
watersheds. When comparing model error using the “best subset” of 
watersheds, the tree model RMSE values were less than half of GLM 
values (Figure 22k–o). Model RMSE, MAE, KGE, and R2 statistics for all 
GLM and regression tree models are listed in Table 4 (All Watersheds) and 
Table 5 (“best subset” Watersheds). 
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Figure 20. Predicted and observed CN change using the GLMs and the regression tree 
models for all 102 watersheds included in the analysis. 
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Figure 21. Predicted and observed CN change using the GLMs and the regression tree 
models for the subset of 24 watersheds known to have minimal anthropogenic influence. 
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Figure 22. Root-mean-square error (RMSE) of the final regression tree and GLMs for the first 
and second fire during each period following fire for both storage scenarios (S05 and S20). 

 

Table 4. GLM and regression tree model statistics for the models developed using all watersheds 
data set. The RSME, mean absolute error (MAE), Kling-Gupta efficiency (KGE), and R2 statistics 

are included for all planning horizons using the 20% (S20) and 5% (S05) storage values. 

Model Type Fire Number Planning Horizon Years Storage Value RMSE MAE KGE R2 

GLM First 0–4 S05 12.32 10.26 0.28 0.24 
GLM First 0–4 S20 8.74 7.26 0.15 0.16 
Tree First 0–4 S05 10.84 8.23 0.49 0.41 
Tree First 0–4 S20 7.26 5.88 0.50 0.42 
GLM First 5–9 S05 14.14 10.09 0.33 0.28 
GLM First 5–9 S20 10.04 6.96 0.34 0.28 
Tree First 5–9 S05 12.84 10.24 0.49 0.41 
Tree First 5–9 S20 8.97 6.63 0.51 0.43 
GLM First 10–14 S05 16.94 13.09 0.06 0.11 
GLM First 10–14 S20 11.89 9.20 0.16 0.17 
Tree First 10–14 S05 13.41 11.06 0.53 0.44 
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Table 4 (cont.). GLM and regression tree model statistics for the models developed using all 
watersheds data set. The RSME, mean absolute error (MAE), Kling-Gupta efficiency (KGE), and R2 
statistics are included for all planning horizons using the 20% (S20) and 5% (S05) storage values. 

Model Type Fire Number Planning Horizon Years Storage Value RMSE MAE KGE R2 

Tree First 10–14 S20 9.10 7.71 0.60 0.51 
GLM First +15 S05 13.46 9.93 0.22 0.20 
GLM First +15 S20 9.28 7.52 0.36 0.30 
Tree First 15+ S05 8.38 6.86 0.76 0.69 
Tree First +15 S20 6.85 5.21 0.70 0.62 
GLM First all yrs S05 10.83 8.52 0.29 0.25 
GLM First all yrs S20 7.86 6.17 0.13 0.15 
Tree First all yrs S05 10.89 8.74 0.28 0.24 
Tree First all yrs S20 6.87 5.43 0.42 0.35 

GLM Average (First Fire) S05 13.54 10.38 0.24 0.22 
GLM Average (First Fire) S20 9.56 7.42 0.23 0.21 
Tree Average (First Fire) S05 11.27 9.03 0.51 0.44 
Tree Average (First Fire) S20 7.81 6.17 0.55 0.46 

GLM Second 0–4 S05 14.69 11.46 0.37 0.31 
GLM Second 0–4 S20 12.65 9.45 0.04 0.10 
Tree Second 0–4 S05 14.27 11.32 0.42 0.35 
Tree Second 0–4 S20 8.47 6.98 0.68 0.60 
GLM Second 5–9 S05 18.67 14.33 0.13 0.15 
GLM Second 5–9 S20 12.01 9.21 0.32 0.27 
Tree Second 5–9 S05 10.03 7.89 0.82 0.76 
Tree Second 5–9 S20 11.26 8.54 0.44 0.36 
GLM Second 10–14 S05 12.31 9.46 0.13 0.15 
GLM Second 10–14 S20 8.16 7.03 0.27 0.23 
Tree Second 10–14 S05 9.06 7.32 0.62 0.54 
Tree Second 10–14 S20 7.03 5.90 0.51 0.43 
GLM Second +15 S05 11.43 9.44 0.14 0.16 
GLM Second +15 S20 9.25 7.66 0.17 0.17 
Tree Second +15 S05 5.18 4.51 0.87 0.83 
Tree Second +15 S20 4.52 4.16 0.85 0.80 
GLM Second all yrs S05 11.20 8.84 0.42 0.34 
GLM Second all yrs S20 8.44 6.61 0.35 0.29 
Tree Second all yrs S05 10.08 8.09 0.55 0.47 
Tree Second all yrs S20 7.81 6.22 0.48 0.40 

GLM Average (Second Fire) S05 13.66 10.71 0.24 0.22 
GLM Average (Second Fire) S20 10.10 7.99 0.23 0.21 
Tree Average (Second Fire) S05 9.72 7.83 0.66 0.59 
Tree Average (Second Fire) S20 7.82 6.36 0.59 0.52 
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Table 5. GLM and regression tree model statistics for the models developed using the “best 
subset” watershed data set. The RSME, MAE, KGE, and R2 statistics are included for all 

planning horizons using the 20% (S20) and 5% (S05) storage values. No models were created 
for any planning horizons following the second fire due to lack of data. 

Model Type Fire Number Planning Horizon Years Storage Value RMSE MAE KGE R2 

GLM First 0–4 S05 13.97 11.50 −0.20 0.02 
GLM First 0–4 S20 9.42 7.75 −0.22 0.02 
Tree First 0–4 S05 2.60 2.04 0.97 0.96 
Tree First 0–4 S20 3.08 2.65 0.91 0.88 
GLM First 5–9 S05 16.19 12.59 −0.08 0.06 
GLM First 5–9 S20 11.52 8.78 −0.08 0.06 
Tree First 5–9 S05 8.08 6.50 0.88 0.84 
Tree First 5–9 S20 2.83 1.80 0.97 0.96 
GLM First 10–14 S05 17.37 13.65 −0.05 0.07 
GLM First 10–14 S20 12.39 9.91 0.02 0.10 
Tree First 10–14 S05 5.04 3.86 0.95 0.93 
Tree First 10–14 S20 3.82 3.30 0.96 0.94 
GLM First +15 S05 14.03 10.62 0.10 0.13 
GLM First +15 S20 10.33 8.26 0.09 0.13 
Tree First +15 S05 3.70 3.22 0.93 0.91 
Tree First +15 S20 2.08 1.52 0.97 0.95 
GLM First all yrs S05 12.47 9.73 −0.35 0.00 
GLM First all yrs S20 8.52 6.81 −0.39 0.00 
Tree First all yrs S05 5.77 4.85 0.88 0.83 
Tree First all yrs S20 4.71 4.20 0.82 0.76 

GLM Average (First Fire) S05 14.80 11.62 −0.12 0.06 
GLM Average (First Fire) S20 10.43 8.30 −0.12 0.06 
Tree Average (First Fire) S05 5.04 4.09 0.92 0.89 
Tree Average (First Fire) S20 3.30 2.69 0.92 0.90 
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6 Discussion 
The CN value changes resulting from the data at the 102 streamgages used 
in our study indicate both positive and negative CN value changes. We 
would expect the CN values to increase, especially immediately after a 
wildfire due to increase runoff in burned watersheds (Ebel et al. 2012; 
Moody and Martin 2001; Neary et al. 2003; Stoof et al. 2012).; however, 
our results show there are substantial variations. There are likely several 
potential causes for negative change in CN values related to the data used 
in our analysis. First, the sample size of rainfall driven runoff events and 
watersheds (full set of 102 and “best subset” of 24) for this study is 
relatively small. Because of most streams in our study area are being 
driven by snowmelt hydrology, the period for rainfall runoff events is 
limited to the summer months. Second, the rainfall events that are typical 
of the region, especially outside the snowmelt period, are convective 
storms that can be highly localized, and the effects of localized storms on 
streamflow response may not be apparent when averaged over the larger 
watersheds represented by the streamgage data. Third, wildfires typically 
are small relative to the watershed size (Figure 2) and affect headwater 
streams (Figure 1) that often are ephemeral or have minimal perennial 
streamflow whereas the streamgage network in Colorado and across much 
of the western US is focused on large perennial streams. This network 
configuration results in relatively few streamgages that have watershed 
areas affected by wildfire. In addition, wildfire effects as a percentage of 
the total watershed area are typically very small (Figure 2). Additionally, 
runoff most likely flows over areas not affected by wildfire which allows for 
infiltration of the runoff in arid regions with high infiltration losses. 
Finally, the initial soil moisture conditions for each runoff event were not 
considered in our analysis. Not considering soil moisture means that 
runoff events with similar rainfall could produce different runoff 
responses regardless of the area of watershed affected by wildfire.  

Although there are some modeled soil moisture products that could help 
inform antecedent conditions for each runoff event we identified, there are 
challenges with directly integrating those estimates to the storage or initial 
abstraction values used in the CN method and there is uncertainty in the 
best value for predicting the streamflow magnitude of future runoff events. 
Quantification of the uncertainty for each of the aforementioned factors is 
challenging; however, Monte Carlo simulations using hydrology modeling 
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software (e.g., HEC-HMS) may be useful in identifying both total and 
variable specific uncertainty for the post-wildfire CN value changes. 

The negative change in CN value may also have some physical basis. One 
potential explanation is vegetation recovery during the post-wildfire period 
could results in soil moisture regime changes (Hamilton and Burton 2023). 
This would be consistent with a forested area being converted to grasslands 
following wildfire. The change in vegetation could result in decreased soil 
moisture between rainfall events compared to the pre-wildfire condition 
which could potentially decrease surface runoff (increased soil storage). To 
confirm this could be a cause of decreased CN values, a remote sensing 
analysis along with collection of field data could be beneficial. 

Three approaches (i.e., historical runoff event observations, linear 
regression model, and regression tree model) were used to help estimate a 
post-wildfire curve number from watershed and wildfire parameters. 
Although we have lower confidence in linear models, we have moderate 
confidence in the tree model results based on the observed CN value 
changes and using the tree models for post-wildfire analysis are highly 
beneficial. Using all watersheds, the RMSE of the tree models was reduced 
by 20%–30% for the majority of post-wildfire periods compared to the 
GLMs. In addition, the R2 values for the tree models are typically 2–3 times 
greater than the GLM for the same post-wildfire period and storage level 
(Table 2). This indicates the regression tree models produce less error and 
greater correlations to observed CN value changes. The KGE values are also 
approximately double those produced by the GLMs (Table 2). The 
differences are even more pronounced with the “best subset” of watersheds. 
The RMSE values for the tree models are less than half the GLMs and the 
KGE is relatively high at 0.92 (1.0 is perfect agreement) (Table 3). Again, 
these results indicate the tree models perform substantially better for the 
subset of watersheds that have minimal anthropogenic influences. 

Using the tree models still involves judgement, lowering the CN values 
while performing a post-wildfire flood risk assessment may not be 
advisable provided the many publications that seem to indicate otherwise. 
However, our results indicate more variability between burned watersheds 
than previously described in the literature. The predicted positive changes 
provided by the tree models can provide guidance on the magnitude of the 
CN value change based on specific land cover and watershed 
characteristics. Based on the information in Hawkins et al. (2020), using 
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an initial abstraction storage value of 0.05 (S05) is preferred when 
developing both the pre- and post-wildfire CN values. The positive CN 
change values produced in our study follow the same magnitudes as 
produced by the NRCS (2016) ranging between 5 and 15 units. The results 
within this report provide additional resolution for important variables to 
consider other than the burn severity when performing a post-wildfire 
runoff analysis. 
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7 Conclusions and Additional Research 
7.1 Conclusions 

The study used observed runoff events from wildfire affected watersheds 
in the Southern Rocky Mountain region to estimate changes in CN values 
from pre- to post-wildfire conditions. Three approaches (i.e., historical 
runoff event observations, linear regression model, and regression tree 
model) were used to help estimate a post-wildfire curve number from 
watershed and wildfire parameters. The computed CN value changes from 
the observed runoff events indicate there is variation in both magnitude 
and direction of the CN value change following wildfire. Limitations in this 
study could help account for the large variation in CN found post-fire. The 
CN value changes estimated from observed runoff events do not account 
for antecedent conditions (e.g., soil moisture) before the runoff events, 
which could be contributing to the unexpected negative CN value after 
wildfire. In addition, the relatively limited sample size for rainfall only 
runoff events (both pre- and post-wildfire) could also be contributing to 
the range of estimated values. Even with these uncertainties and 
limitations, the empirically derived CN values demonstrate that selecting a 
single CN value for modeling all rainfall events in a watershed is likely not 
appropriate, and simple translations of the CN values for post-wildfire 
conditions based only on burn area and severity are also likely to have high 
uncertainty. Therefore, using watershed characteristics (i.e., elevation, 
slope, northness, and eastness) combined with the wildfire information 
(i.e., burn extents) could allow for watershed specific CN value changes to 
be used by hydrologic modelers and emergency managers when wildfire 
events occur in Southern Rocky Mountain watersheds. 

7.2 Additional Research 

The runoff event identification and model development process we used 
can be applied to other geographic regions where data are available. The 
precipitation, SWE, wildfire, land cover, and topographic data sets used 
are available for other regions of CONUS which allows for prediction 
models of CN value changes to be developed anywhere in CONUS that has 
streamflow data. From our results the regression tree models have the 
overall best performance, especially when using streamflow information 
not affected by anthropogenic activities. For streamflow data sets which do 
have anthropogenic influences (e.g., reservoir regulation, irrigation 
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diversions, trans-watershed diversions, etc.), careful consideration may be 
given to how much these factors decouple the streamflow response from 
the precipitation input. 

There are several areas for additional research indicated from this analysis 
that could improve CN estimates and improve modelling results: 

• Consider adding antecedent soil moisture information for each runoff 
event and using those values in the development of the regression tree 
models. 

• Develop hydrology models calibrated to observed runoff events to test 
the computed CN value changes. 

• Increase the number of streamgages and the availability of 
streamflow data for watersheds affected by wildfire. 

• Repeat our analysis in a region where rainfall is the dominant 
hydrologic driver which could provide a larger sample size of runoff 
events. 

• Repeat our analysis using only large precipitation events (e.g., greater 
than 5-year return period). 

• Implement the equations developed in this report into an online 
calculator where a user could easily compute the expected CN and 
thus streamflow value based on the characteristics of the basin of 
interest for future wildfire affected watersheds. 

Applying this analysis to other regions and watersheds affected by greater 
percent burned areas relative to the watershed size could be important for 
comparing the CN variability found in our results. The comparison can 
confirm that the variability in Colorado watersheds is common or perhaps 
unique to the region. In addition, application of these methods to regions 
affected primarily by rainfall-runoff events rather than snowmelt-
dominated runoff could help inform the range of observed CN value 
changes in context of larger domains (e.g., western US). 
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Appendix A: : Wildfire Affected Streamgages 
Used for CN Analysis 

Table 1. A list of all 102 wildfire-affected streamgages used in the curve number (CN) 
analysis. Watersheds with two streamgages listed indicate incremental watersheds, and only 

the area between the two gages was used for analysis. 

Streamgage Name 
Streamgage 

Number 
Watershed Area 

(km2) 
Streamgage 

Agency 
Streamgage 
Latitude (°) 

Streamgage 
Longitude (°) 

Animas River at Durango, 
Colorado 09361500 1817 USGS 37.2792 −107.8803 
Animas River near Cedar Hill, 
New Mexico 09363500 2855 USGS 37.0366 −107.8753 
Arkansas River at Canon City, 
Colorado 07096000 7935 USGS 38.4339 −105.2572 
Arroyo Chico nr Guadalupe, 
New Mexico1 08340500 3564 USGS 35.5923 −107.1894 
Big Thompson River at Estes 
Park, Colorado 06733000 355 USGS 40.3783 −105.5139 
Big Thompson River at Mouth 
near La Salle BIGLASCO 2150 CODWR1 40.3500 −104.7850 
Boulder Creek At Mouth near 
Longmont, Colorado 06730500 1160 USGS 40.1388 −105.0202 
Bummers Gulch near El Vado, 
Colorado 06726900 10 USGS 40.0117 −105.3486 
Camp Creek At Garden of the 
Gods, Colorado 07103703 25 USGS 38.8769 −104.8728 
Cherry Creek at Denver, 
Colorado 06713500 1062 USGS 39.7425 −105.0000 
Cherry Creek at Glendale, 
Colorado 06713300 1048 USGS 39.7061 −104.9375 
Cimarron River near Cimarron, 
New Mexico 07207000 707 USGS 36.5198 −104.9786 
Colorado River at Grand Lake 
(North Fork) COLGRAND 264 CODWR 40.2189 −105.8575 
Colorado River at Hot Sulphur 
Springs, Colorado COLSULCO 2134 CODWR 40.0833 −106.0881 
Colorado River at K Barger 
Ditch Near Kremmling COLKBDCO 3091 CODWR 40.0545 −106.2877 
Colorado River at Windy Gap, 
near Granby, Colorado 09034250 2041 USGS 40.1083 −106.0042 
Colorado River below Baker 
Gulch nr Grand Lake, Colorado 09010500 165 USGS 40.3258 −105.8567 
Colorado River near Grand 
Lake, Colorado 09011000 264 USGS 40.2189 −105.8575 
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Table 1 (cont.). A list of all 102 wildfire-affected streamgages used in the curve number (CN) 
analysis. Watersheds with two streamgages listed indicate incremental watersheds, and only 

the area between the two gages was used for analysis. 

Streamgage Name 
Streamgage 

Number 
Watershed Area 

(km2) 
Streamgage 

Agency 
Streamgage 
Latitude (°) 

Streamgage 
Longitude (°) 

Cottonwood Creek at Mouth at 
Pikeview, Colorado 07103990 48 USGS 38.9272 −104.8142 
Coyote Creek near 
Golondrinas, New Mexico 07218000 626 USGS 35.9165 −105.1641 
Cucharas River at Boyd Ranch 
near Louisiana, Veta CRBRLVCO 137 CODWR 37.4200 −105.0528 
Cucharas River at Harrison 
Bridge near La Veta, Colorado CRHBLVCO 511 CODWR 37.4500 −105.0372 
Dolores River at Bedrock, 
Colorado 09169500 5254 USGS 38.3103 −108.8854 
Dolores River at Dolores, 
Colorado 09166500 1308 USGS 37.4725 −108.4976 
Dolores River near Bedrock, 
Colorado 09171100 5570 USGS 38.3569 −108.8334 
Ef San Juan R Ab Sand Creek, 
nr Pagosa Spgs, Colorado1 09339900 169 USGS 37.3897 −106.8412 
Elk River at Clark, Colorado 09241000 561 USGS 40.7175 −106.9159 
Elk River near Milner, Colorado 09242500 1190 USGS 40.5147 −106.9539 
Elkhead Creek above Long 
Gulch, near Hayden, Colorado 09246200 444 USGS 40.5916 −107.3209 
Embudo Creek at Dixon, New 
Mexico 08279000 829 USGS 36.2109 −105.9136 
Encampment River at mouth, 
near Encampment, Wyoming 06625000 678 USGS 41.3033 −106.7153 
Florida River above Lemon 
Reservoir Near Durango FLOALECO 136 CODWR 37.4267 −107.6744 
Florida River at Bondad, 
Colorado FLOBONCO 572 CODWR 37.0567 −107.8698 
Goose Creek at Wagonwheel 
Gap, Colorado GOOWAGCO 236 CODWR 37.7520 −106.8300 
Joe Wright Creek above Joe 
Wright Reservoir, Colorado 06746095 8 USGS 40.5400 −105.8828 
La Plata River at Colorado-New 
Mexico State Line 09366500 802 USGS 36.9997 −108.1887 
Lake Fork River ab Moon Lake, 
nr Mountain Home, Utah 09289500 203 USGS 40.6066 −110.5271 
Little Fountain Creek near 
Fountain, Colorado 07105940 69 USGS 38.6427 −104.7484 
Little Laramie River near 
Filmore, Wyoming 06661000 411 USGS 41.2950 −106.0347 
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Table 1 (cont.). A list of all 102 wildfire-affected streamgages used in the curve number (CN) 
analysis. Watersheds with two streamgages listed indicate incremental watersheds, and only 

the area between the two gages was used for analysis. 

Streamgage Name 
Streamgage 

Number 
Watershed Area 

(km2) 
Streamgage 

Agency 
Streamgage 
Latitude (°) 

Streamgage 
Longitude (°) 

Little Snake River near Lily, 
Colorado 09260000 10455 USGS 40.5490 −108.4243 
Little Snake River near Slater, 
Colorado 09253000 652 USGS 40.9994 −107.1434 
Los Pinos River at La Boca, 
Colorado 09354500 1346 USGS 37.0094 −107.5995 
Monument Cr abv Woodmen 
Rd at Colorado Springs, 
Colorado 07103970 467 USGS 38.9339 −104.8172 
Mora River at La Cueva, New 
Mexico 07215500 464 USGS 35.9451 −105.2557 
Mora River near Golondrinas, 
New Mexico 07216500 689 USGS 35.8909 −105.1636 
Muddy Creek above Antelope 
Creek nr Kremmling, Colorado 09041090 374 USGS 40.2025 −106.4225 
North Fork Big Thompson River 
at Drake, Colorado BTNFDRCO 220 CODWR 40.4329 −105.3387 
North Fork White River at 
Buford, Colorado 09303000 672 USGS 39.9875 −107.6145 
North Inlet Creek NORINLET 119 CODWR 40.2509 −105.8144 
North Platte River near 
Northgate, Colorado 06620000 3699 USGS 40.9366 −106.3392 
Pecos River above Santa Rosa 
Lake, New Mexico 08382650 6041 USGS 35.0594 −104.7611 
Pecos River near Pecos, New 
Mexico 08378500 444 USGS 35.7084 −105.6827 
Piceance Creek at White River, 
Colorado 09306222 1689 USGS 40.0780 −108.2365 
Piceance Creek bl Ryan Gulch, 
nr Rio Blanco, Colorado1 09306200 1310 USGS 39.9211 −108.2976 
Piedra River near Arboles, 
Colorado 09349800 1692 USGS 37.0883 −107.3978 
Plum Creek at Titan Road near 
Louviers, Colorado 06709530 817 USGS 39.5074 −105.0245 
Ponil Creek near Cimarron, 
New Mexico 07207500 480 USGS 36.5737 −104.9468 
Purgatoire River at Madrid, 
Colorado 07124200 1305 USGS 37.1295 −104.6400 
Red River below Fish Hatchery, 
near Questa, New Mexico 08266820 466 USGS 36.6828 −105.6541 
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Table 1 (cont.). A list of all 102 wildfire-affected streamgages used in the curve number (CN) 
analysis. Watersheds with two streamgages listed indicate incremental watersheds, and only 

the area between the two gages was used for analysis. 

Streamgage Name 
Streamgage 

Number 
Watershed Area 

(km2) 
Streamgage 

Agency 
Streamgage 
Latitude (°) 

Streamgage 
Longitude (°) 

Red River near Questa, New 
Mexico 08265000 290 USGS 36.7033 −105.5684 
Rio Grande above San Juan 
Pueblo, New Mexico 08281100 15096 USGS 36.0570 −106.0822 
Rio Grande at Embudo, New 
Mexico 08279500 14696 USGS 36.2056 −105.9640 

Rio Grande at Thirty Mile 
Bridge near Creede, Colorado, 
to Wagon Wheel Gap, Colorado 

Upstream: 
RIOMILCO 
Downstream: 
RIOWAGCO 1568 

Upstream: 
CODWR 
Downstream: 
CODWR 

Upstream: 
37.7247 
Downstream: 
37.7670 

Upstream: 
-107.2550 
Downstream: 
-106.8314 

Rio Grande at Wagon Wheel 
Gap RIOWAGCO 1679 CODWR 37.7670 −106.8314 
Rio Grande Del Rancho near 
Talpa, New Mexico 08275500 208 USGS 36.3031 −105.5810 
Rio Grande near Arroyo Hondo, 
New Mexico 08268700 11388 USGS 36.5345 −105.7100 
Rio Grande near Cerro, New 
Mexico 08263500 10366 USGS 36.7400 −105.6834 
Rio Grande near Del Norte, 
Colorado 08220000 3396 USGS 37.6886 −106.4599 
Rio Grande near Lobatos, 
Colorado 08251500 19378 USGS 37.0786 −105.7569 
Rio Mora near Terrero, New 
Mexico 08377900 139 USGS 35.7771 −105.6580 

Rio Mora near Terrero, New 
Mexico, to Pecos River near 
Pecos, New Mexico 

Upstream: 
08377900 
Downstream: 
08378500 306 

Upstream: 
USGS 
Downstream: 
USGS 

Upstream: 
35.7771 
Downstream: 
35.7084 

Upstream: 
-105.6580 
Downstream: 
-105.6827 

Rio Pueblo de Taos below Los 
Cordovas, New Mexico 08276300 1004 USGS 36.3793 −105.6678 
Rio Pueblo de Taos near Taos, 
New Mexico 08269000 163 USGS 36.4394 −105.5036 
Rio Pueblo nr Penasco, New 
Mexico 08277470 258 USGS 36.1685 −105.6028 
Rio San Jose at Acoma Pueblo, 
New Mexico 08343500 3723 USGS 35.0744 −107.7511 
Rio San Jose at Correo, New 
Mexico 08351500 7278 USGS 34.9681 −107.1870 
Rio San Jose at Grants, New 
Mexico 08343000 2620 USGS 35.1545 −107.8703 
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Table 1 (cont.). A list of all 102 wildfire-affected streamgages used in the curve number (CN) 
analysis. Watersheds with two streamgages listed indicate incremental watersheds, and only 

the area between the two gages was used for analysis. 

Streamgage Name 
Streamgage 

Number 
Watershed Area 

(km2) 
Streamgage 

Agency 
Streamgage 
Latitude (°) 

Streamgage 
Longitude (°) 

San Juan River at Pagosa 
Springs, Colorado 09342500 727 USGS 37.2655 −107.0110 
San Juan River at Shiprock, 
New Mexico 09368000 33097 USGS 36.7767 −108.6831 
San Juan River near Carracas, 
Colorado 09346400 3238 USGS 37.0136 −107.3123 
Sangre de Cristo Creek Near 
Fort Garland, Colorado SANFTGCO 474 CODWR 37.4250 −105.4144 
Santa Cruz River near Cundiyo, 
New Mexico 08291000 239 USGS 35.9647 −105.9047 
South Fork Rio Grande at 
South Fork, Colorado 08219500 546 USGS 37.6569 −106.6492 
St Charles River at Vineland, 
Colorado 07108900 1226 USGS 38.2456 −104.4864 

Strawberry River near Soldier 
Springs, Utah, to Pinnacles 
near Fruitland, Utah 

 Upstream: 
09285000 
Downstream: 
09285900 414 

Upstream: 
USGS 
Downstream: 
USGS 

Upstream: 
40.1333 
Downstream: 
40.1272 

Upstream: 
-111.0249 
Downstream: 
-110.7418 

Sybille Creek ab Mule Creek, 
near Wheatland, Wyoming 06664400 504 USGS 41.8441 −105.2214 
Turkey Creek ab Teller Res 
near Stone City, Colorado 07099230 161 USGS 38.4650 −104.8272 
Turkey Creek near Fountain, 
Colorado 07099215 34 USGS 38.6117 −104.8947 

Turkey Creek near Fountain, 
Colorado, to ab Teller Res Near 
Stone City, Colorado1 

Upstream: 
07099215 
Downstream: 
07099230 128 

Upstream: 
USGS 
Downstream: 
USGS 

Upstream: 
38.4650 
Downstream: 
38.4650  

Upstream: 
-104.8272 
Downstream: 
-104.8272  

Vallecito Creek near Bayfield, 
Colorado 09352900 188 USGS 37.4775 −107.5437 
Vermejo River near Dawson, 
New Mexico 07203000 893 USGS 36.6810 −104.7864 
White River below Boise Creek, 
near Rangely, Colorado 09306290 6559 USGS 40.1797 −108.5654 
White River below Meeker, 
Colorado 09304800 2652 USGS 40.0226 −108.1199 
Williams Fork above Darling 
Creek, near Leal, Colorado 09035700 91 USGS 39.7972 −106.0256 
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Table 1 (cont.). A list of all 102 wildfire-affected streamgages used in the curve number (CN) 
analysis. Watersheds with two streamgages listed indicate incremental watersheds, and only 

the area between the two gages was used for analysis. 

Streamgage Name 
Streamgage 

Number 
Watershed Area 

(km2) 
Streamgage 

Agency 
Streamgage 
Latitude (°) 

Streamgage 
Longitude (°) 

Williams Fork at Mouth, near 
Hamilton, Colorado 09249750 1184 USGS 40.4372 −107.6478 
Williams Fork near Leal, 
Colorado 09036000 232 USGS 39.8339 −106.0564 
Williams Fork near Parshall, 
Colorado 09037500 477 USGS 40.0002 −106.1804 
Yampa River at Steamboat 
Springs, Colorado 09239500 1470 USGS 40.4830 −106.8324 
Yampa River below Craig, 
Colorado 09247600 5514 USGS 40.4808 −107.6142 
Yampa River near Maybell, 
Colorado 09251000 8763 USGS 40.5027 −108.0334 
Yellowstone River near Altonah, 
Utah 09292500 337 USGS 40.5119 −110.3415 
1 nr (near), Ef (East fork), Ab (above), Spgs (Springs), bl (below), Res (reservoir). CODWR (Colorado 
Division of Water Resources). 
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Appendix B: : Linear Models 
The final set of linear models for all scenarios using all analyzed 
watersheds are shown below in Table 2, and the “best subset” watershed 
models are included in Table B-2. The input variables and model 
parameters vary by scenario and can be used for the appropriate planning 
horizon following wildfire impacts to a watershed. 

Table 2. Generalized linear models (GLMs) for median curve number (CN) change following 
the first and second wildfire for each planning horizon and storage value (S05 and S20) at all 

102 analyzed watersheds. 

Wildfire Scenario Storage Value 
 

Linear Equation 

After First Fire: 
0–4 years 

S05 ΔCN = −38.27 + 0.02 (Mean Elevation) 
−0.87 (Mean Slope) 
−9.07 (Landcover = 7055) 
+34.42 (Landcover = 7086) 
+22.77 (Landcover = 9016) 

After First Fire: 
5–9 years 

S05 ΔCN = −54.87 + 0.03 (Mean Elevation) 
+8.02 (Landcover = 7016) 
−18.80 (Landcover = 7055) 
+26.12 (Landcover = 7080) 
−14.40 (Landcover = 7149) 

After First Fire: 
10–14 years 

S05 ΔCN = −0.76 + 7.19 (Landcover = 7016) 
−31.08 (Landcover = 7050) 
+21.28 (Landcover = 7149) 

After First Fire: 
15+ years 

S05 ΔCN = −4.21 + 24.96 (Landcover = 7016) 
+24.39 (Landcover = 7147) 

After First Fire: 
All years 

S05 ΔCN = −41.04 + 0.02 (Mean Elevation) 
−13.56 (Landcover = 7055) 
+24.10 (Landcover = 7080) 

After Second Fire: 
0–4 years 

S05 ΔCN = −63.48+ 0.03 (Mean Elevation) 
−22.62 (Landcover = 7050) 
−25.20 (Landcover = 7055) 
−18.07 (Landcover = 7059) 
+30.27 (Landcover = 7080) 

After Second Fire: 
5–9 years 

S05 ΔCN = −5.74 + 297.52 (Mean Northness) 

After Second Fire: 10–14 years S05 ΔCN = −4.88 + 10.72 (Landcover = 7054) 
After Second Fire: 15+ years S05 ΔCN = −2.26 + 15.94 (Landcover = 7080) 
After Second Fire: All years S05 ΔCN = −47.32 + 0.02 (Mean Elevation) 

−18.86 (Landcover = 7055) 
−15.05 (Landcover = 7059) 
+19.79 (Landcover = 7080) 
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Table 2 (cont.). Generalized linear models (GLMs) for median curve number (CN) change 
following the first and second wildfire for each planning horizon and storage value (S05 and 

S20) at all 102 analyzed watersheds. 

Wildfire Scenario Storage Value 
 

Linear Equation 

After First Fire: 
0–4 years 

S20 ΔCN = −24.48 + 0.01 (Mean Elevation) 
−7.36 (Landcover = 7055) 
+21.71 (Landcover = 7086) 

After First Fire: 
5–9 years 

S20 ΔCN = −26.61 + 0.01 (Mean Elevation) 
+0.47 (Mean Slope) 
−9.71 (Landcover = 7011) 
−13.04 (Landcover = 7055) 
+17.66 (Landcover = 7080) 
−13.02 (Landcover = 7149) 

After First Fire: 
10–14 years 

S20 ΔCN = 1.11 −0.62 (Percent Burn) 
−27.29 (Landcover = 7050) 
+13.81 (Landcover = 7052) 
+13.06 (Landcover = 7149) 

After First Fire: 
15+ years 

S20 ΔCN = −5.08 + 6.29 (Landcover = 7054) 
+19.75 (Landcover = 7080) 
+18.30 (Landcover = 7126) 

After First Fire: 
All years 

S20 ΔCN = −24.38 + 0.01 (Mean Elevation) 
−8.80 (Landcover = 7055) 

After Second Fire: 
0–4 years 

S20 ΔCN = −27.93 + 0.01 (Mean Elevation) 
−11.59 (Landcover = 7055) 

After Second Fire: 
5–9 years 

S20 ΔCN = −21.79 + 1.00(Mean Slope) 
+987.05 (Mean Northness) 
+491.43 (Mean Eastness) 

After Second Fire: 10–14 years S20 ΔCN = −3.89 + 0.54 (Mean Slope) 
−11.32 (Landcover = 7055) 

After Second Fire: 15+ years S20 ΔCN = −3.89 −102.88(Mean Eastness) 
After Second Fire: All years S20 ΔCN = −28.37 + 0.01 (Mean Elevation) 

−12.43(Landcover = 7055) 
−10.24(Landcover = 7059) 
+14.41 (Landcover = 7080) 
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Table 3. GLMs for median CN change following the first wildfire for each planning 
horizon and storage value (S05 and S20) using the 24 “best subset” watersheds that 

have minimal anthropogenic affect. 

Wildfire Scenario Storage Value Linear Equation 

After First Fire: 
0–4 years 

S05 ΔCN = 2.74 −5.29 (Mean Northness) 
−4.50(Landcover = 7055) 

After First Fire: 
5–9 years 

S05 ΔCN = 4.62 + 21.15 (Landcover = 7080) 

After First Fire: 
10–14 years 

S05 ΔCN = 0.76 −32.60 (Landcover = 7050) 

After First Fire: 
15+ years 

S05 ΔCN = −3.52 + 24.26 (Landcover = 7080) 

After First Fire: 
All years 

S05 ΔCN = −0.15 + 20.82 (Mean Northness) 

After First Fire: 
0–4 years 

S20 ΔCN = −11.66 + 0.004 (Mean Elevation) 
+ 42.86 (Mean Northness) 

After First Fire: 
5–9 years 

S20 ΔCN = 3.09 + 15.32(Landcover = 7080) 

After First Fire: 
10–14 years 

S20 ΔCN = 0.27 − 28.18 (Landcover = 7050) 

After First Fire: 
15+ years 

S20 ΔCN = −2.78 + 17.45 (Landcover = 7080) 

After First Fire: 
All years 

S20 ΔCN = 0.22 + 5.20 (Mean Northness) 
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Appendix C: : Regression Tree Diagrams 
The regression tree diagrams from the all watersheds data set for all 
scenarios with planning horizons longer than 4 years are shown in Figure 
1 through Figure 16. Figure 1 through Figure 8 represent median curve 
number (CN) changes after one wildfire and Figure 9 through Figure 16 
median CN changes after two wildfires in a watershed. The 24 “best 
subset” watershed regression trees following one fire for all scenarios 
with planning horizons greater than 4 years are shown in Figure 17 
through Figure 24. No models were created using the “best subset” 
watersheds following two wildfires due to a lack of data. The 
interpretation of these diagrams is consistent with the description 
provided in Section 5.3.2. Landcover data for these figures are from 
LANDFIRE (2022c). 

Figure 1. Regression tree diagram for median curve number (CN) change in 77 analyzed 
watersheds that recorded runoff events all years following the first wildfire in the watershed. 

The storage value was assumed to be 5% (S05). 

 



ERDC TR-24-12 71 

 

Figure 2. Regression tree diagram for median CN change in 77 analyzed watersheds that 
recorded runoff events all years following the first wildfire in the watershed. The storage 

value was assumed to be 20% (S20). 

 

Figure 3. Regression tree diagram for median CN change in 57 analyzed watersheds that 
recorded runoff events 5–9 years following the first wildfire in the watershed. The storage 

value was assumed to be 5% (S05). 
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Figure 4. Regression tree diagram for median CN change in 57 analyzed watersheds that 
recorded runoff events 5–9 years following the first wildfire in the watershed. The storage 

value was assumed to be 20% (S20). 

 

Figure 5. Regression tree diagram for median CN change in 48 analyzed watersheds that 
recorded runoff events 10–14 years following the first wildfire in the watershed. The 

storage value was assumed to be 5% (S05). 
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Figure 6. Regression tree diagram for median CN change in 48 analyzed watersheds that 
recorded runoff events 10–14 years following the first wildfire in the watershed. The 

storage value was assumed to be 20% (S20). 

 

Figure 7. Regression tree diagram for median CN change in 37 analyzed watersheds that 
recorded runoff events 15+ years following the first wildfire in the watershed. The storage 

value was assumed to be 5% (S05). 
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Figure 8. Regression tree diagram for median CN change in 37 analyzed watersheds that 
recorded runoff events 15+ years following the first wildfire in the watershed. The storage 

value was assumed to be 20% (S20). 

 

Figure 9. Regression tree diagram for median CN change in 54 analyzed watersheds that 
recorded runoff events all years following the second wildfire in the watershed. The 

storage value was assumed to be 5% (S05). 
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Figure 10. Regression tree diagram for median CN change in 54 analyzed watersheds 
that recorded runoff events all years following the second wildfire in the watershed. The 

storage value was assumed to be 20% (S20). 

 

Figure 11. Regression tree diagram for median CN change in 32 analyzed watersheds 
that recorded runoff events 5–9 years following the second wildfire in the watershed. The 

storage value was assumed to be 5% (S05). 
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Figure 12. Regression tree diagram for median CN change in 32 analyzed watersheds that 
recorded runoff events 5–9 years following the second wildfire in the watershed. The storage 

value was assumed to be 20% (S20). 

 

Figure 13. Regression tree diagram for median CN change in 27 analyzed watersheds that 
recorded runoff events 10–14 years following the second wildfire in the watershed. The 

storage value was assumed to be 5% (S05). 
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Figure 14. Regression tree diagram for median CN change in 27 analyzed watersheds that 
recorded runoff events 10–14 years following the second wildfire in the watershed. The 

storage value was assumed to be 20% (S20). 

 

Figure 15. Regression tree diagram for median CN change in 19 analyzed watersheds that 
recorded runoff events 15+ years following the second wildfire in the watershed. The storage 

value was assumed to be 5% (S05). 
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Figure 16. Regression tree diagram for median CN change in 19 analyzed watersheds that 
recorded runoff events all years following the second wildfire in the watershed. The storage 

value was assumed to be 20% (S20). 

 

Figure 17. Regression tree diagram for median CN change in 19 analyzed watersheds that 
recorded runoff events all years following the first wildfire in the 24 “best subset” watersheds. 

The storage value was assumed to be 5% (S05). 
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Figure 18. Regression tree diagram for median CN change in 19 analyzed watersheds that 
recorded runoff events all years following the first wildfire in the 24 “best subset” watersheds. 

The storage value was assumed to be 20% (S20). 

 

Figure 19. Regression tree diagram for median CN change in 14 analyzed watersheds that 
recorded runoff events 5–9 years following the first wildfire in the 24 “best subset” 

watersheds. The storage value was assumed to be 5% (S05). 
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Figure 20. Regression tree diagram for median CN change in 14 analyzed watersheds that 
recorded runoff events 5–9 years following the first wildfire in the 24 “best subset” 

watersheds. The storage value was assumed to be 20% (S20). 

 

Figure 21. Regression tree diagram for median CN change in 11 analyzed watersheds that 
recorded runoff events 10–14 years following the first wildfire in the 24 “best subset” 

watersheds. The storage value was assumed to be 5% (S05). 
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Figure 22. Regression tree diagram for median CN change in 11 analyzed watersheds that 
recorded runoff events 10–14 years following the first wildfire in the 24 “best subset” 

watersheds. The storage value was assumed to be 20% (S20). 

 

Figure 23. Regression tree diagram for median CN change in 11 analyzed watersheds that 
recorded runoff events 15+ years following the first wildfire in the 24 “best subset” 

watersheds. The storage value was assumed to be 5% (S05). 
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Figure 24. Regression tree diagram for median CN change in 11 analyzed watersheds that 
recorded runoff events 15+ years following the first wildfire in the 24 “best subset” 

watersheds. The storage value was assumed to be 20% (S20). 
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Abbreviations 
AORC Analysis of Record for Calibration 

BAER Burned Area Emergency Response 

CN Curve number 

CODWR Colorado Division of Water Resources 

CONUS Continental United States 

DEM Digital elevation map 

GLM General Linear Model 

HEC-HMS Hydrologic Engineering Center–Hydrologic 
Modelling System 

HUC4 Hydrologic Unit Code (4-digit) 

KGE Kling-Gupta efficiency 

LISEM Limburg Soil Erosion Model 

MAE Mean absolute error 

NAD 83 North American Datum of 1983 

NAVD 88 North American Vertical Datum of 1983 

NRCS Natural Resource Conservation Service 

NSE Nash-Sutcliffe model efficiency 

PFHydro Post-wildfire hydrology modeling tool 

RSME Root-mean-square error 

S Storage 

SCS Soil Conservation Service 

SWE Snow water equivalent 

US United States 
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USACE United States Army Corps of Engineers 

USGS United States Geological Survey 
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