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Abstract 
Extreme weather variation, natural disasters, and anthropogenic actions 
negatively impact coastal communities through flooding and erosion. To 
safeguard coastal settlements, shorelines are frequently reinforced with 
seawalls and bulkheads. Hardened shorelines, however, result in 
biodiversity loss and environmental deterioration. The creation of 
sustainable solutions that engineer with nature is required to lessen  
natural and anthropogenic pressures. Nature-based solutions (NbS) are a 
means to enhance biodiversity and improve the environment while meeting 
engineering goals. To address this urgent need, the US Army Corps of 
Engineers (USACE) Engineering With Nature® (EWN) program balances 
economic, environmental, and social benefits through collaboration.  

This report presents how design and engineering practice can be enhanced 
through organized decision-making and landscape architectural renderings 
that integrate engineering, science, and NbS to increase biodiversity in 
coastal marine habitats. When developing new infrastructure or updating 
or repairing existing infrastructure, such integration can be greatly 
beneficial. Further, drawings and renderings exhibiting EWN concepts can 
assist in decision-making by aiding in the communication of NbS designs. 
Our practical experiences with the application of EWN have shown that 
involving landscape architects can play a critical role in effective 
collaboration and result in solutions that safeguard coastal communities 
while maintaining or enhancing biodiversity. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction  
1.1 Purpose  

Global environmental hazards that pose a threat to human communities 
are ranked highest in the annual Global Risks Report and include extreme 
weather, ineffective climate action, natural disasters, and environmental 
degradation caused by human interventions (Schwab and Zahidi 2021). 
Coastal areas frequently bear the brunt of these dangers because of storm 
storms, storm surge, and increasing sea levels. Due to rising competition 
and conflicts brought on by population growth and climate change, the 
effects of these threats are likewise expanding in size, scope, and 
complexity (e.g., Hurricanes Harvey and Ian in 2017 and 2022, 
respectively). In this report, we argue that these pressures demand 
creative solutions that adjust to shifting environmental and societal needs 
through improved landscape design to enhance biodiversity goals. 

1.2 Background  

Many coastal areas are currently fortified with hardened (gray) 
infrastructure, such as levees, seawalls, floodwalls, breakwaters, dykes, 
groynes, tidal gates, and storm-surge barriers, that are intended to defend 
against coastal flooding. However, the widespread global technique of 
coastal hardening or armoring can hasten beach erosion and tidal wetland 
loss (Gittman et al. 2016). Hardened shorelines also contribute to the loss 
of biodiversity, a worldwide environmental problem (Gittman et al. 2016). 
Biodiversity refers to all living things in a particular area or habitat. In the 
context of this report, biodiversity refers to all living things on a coastal 
infrastructure feature such as a breakwater. When comparing riprap and 
breakwater structures, for instance, sea barriers result in poorer 
biodiversity than natural shorelines, albeit project type variability may 
conceal differences (Gittman et al. 2016). Alternatively, a combination of 
natural and nature-based features (NNBFs) (e.g., salt marshes, 
mangroves, reefs, and dunes) and hard infrastructure can increase 
economic and societal value (e.g., recreation), provide flood and storm 
protection, lower the cost of building coastal structures, improve coastal 
and community resilience, adapt to climate change, and enhance 
biodiversity (Firth et al. 2014a; Sutton-Grier et al. 2015; Browne and 
Chapman 2011; Narayan et al. 2016; Morris et al. 2018; Bouw and van 
Eekelen 2020; EEA 2021). 
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A systems-based approach necessitates the identification of a variety of 
nature-based solutions (NbS) that could leverage existing physical, 
ecological, and socioeconomic infrastructure. Such NbS can help reduce 
impacts and life-cycle costs while also providing multiple benefits, buying 
time for future adaptation, and improving biodiversity. Planners and 
engineers can protect coastal communities by strengthening sand dunes, 
constructing salt marshes and barrier islands, and constructing new 
offshore reefs, among other techniques. The protection also improves 
public amenities and provides habitat for fish and wildlife, supporting 
local economies and mitigating the negative effects of hard infrastructure 
(Nelson et al. 2020; Bridges et al. 2018; Bridges et al. 2021). The US 
Army Corps of Engineers (USACE) 2011 Civil Works Strategic Plan 
(USACE 2011) sought to balance economic, environmental, and social 
objectives while increasing stakeholder engagement and active partnering 
through innovative and environmentally sustainable solutions to the 
nation’s water resources challenges. Goal #4 proposes restoring, 
safeguarding, and maintaining aquatic habitats that have degraded, with 
biodiversity playing a meaningful role. The Engineering With Nature® 
(EWN®; www.engineeringwithnature.org) initiative was launched by USACE in 
2010 with the goal of utilizing NbS to balance social, environmental, and 
economic benefits through collaboration (King et al. 2020). 

The Convention on Biodiversity’s (CBD) 2050 Vision for Biodiversity calls 
for the preservation and restoration of marine and coastal ecosystems to 
ensure sustainability, the use of NbS in built landscapes and spatial 
planning to lessen the adverse effects of urban infrastructure on 
biodiversity, and the provision of resilient ecosystems for adaptation while 
minimizing negative impacts on biodiversity (CBD 2020). The loss of 
biodiversity is also mentioned in three Sustainable Development Goals 
(SDGs) of the UN 2030 Agenda for Sustainable Development (UN General 
Assembly 2015). SDG #14 encourages protecting and sustainably using the 
oceans, seas, and marine resources, while SDG #15 urges sustainably 
managing forests, stopping and reversing land degradation, and halting 
biodiversity loss. SDG #13 on climate action tackles the drivers of 
biodiversity loss. Together, the 2050 Vision for Biodiversity and UN SDGs 
encourage the use of NbS to address biodiversity issues related to climate 
change and to improve the synergy between climate change adaptation 
and disaster risk reduction (EEA 2021; Cohen-Shacham et al. 2019). 
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NbS have improved coastal infrastructure at numerous scales and 
locations (Chapman and Blockley 2009; Bulleri and Chapman 2010; 
Coombes et al. 2015; Strain et al. 2018; Suedel et al. 2022b; Perkol-Finkel 
and Sella 2015). Through the Building with Nature (BwN) initiative in the 
Netherlands, the EcoShape consortium has created precise design 
renderings to communicate with practitioners implementing coastal 
biodiversity benefits using NbS (Bouw and van Eekelen 2020). A four-step 
strategy to avoid, minimize, restore, and offset is presented by Milner-
Gulland et al. (2021) for reducing and compensating the biodiversity 
impacts of human development. According to Díaz et al. (2020), there are 
three main ways to use NbS to stop biodiversity loss: set multiple goals to 
address nature’s complexity, create goals that are comprehensive and 
minimize trade-offs, and integrate the goals with a high level of ambition 
(set lofty goals). These lofty goals include using NbS to lower climate risk 
and promote more resilient natural and managed ecosystems (Firth et al. 
2014a; Firth et al. 2014b). Firth et al. (2014a) provided easy ways to 
improve hardened coastal buildings at three project phases: during 
quarrying and concrete casting, during construction, and retrospectively. 
They also developed guidelines for boosting biodiversity through the 
production of targeted habitat types.  

Decision-making that helps communicate designs using NbS within a 
structured decision-making process can be facilitated using drawings and 
renderings exhibiting EWN concepts (Holmes et al. 2021). Our 
experiences implementing EWN into practice have shown that integrating 
landscape architects (LAs) into project planning can be essential in 
achieving successful collaboration centered on finding and selecting NbS. 
There are a multitude of project examples of LAs working with engineers 
and scientists on NbS globally to enhance decision-making. For instance, 
in the Rebuild By Design (New York and New Jersey, 2013–19) and 
Resilient By Design Bay Area (California, 2017–18) design competitions, 
multidisciplinary teams collaborated with a wide spectrum of expert and 
community voices to propose NbS to solve coastal resilience concerns 
(Ovink and Boeijenga 2018; Brown-Stevens 2019). In the Netherlands, 
LAs have significantly contributed to the development, rollout, and scaling 
up of NbS for water-related infrastructure through BwN (Bouw and van 
Eekelen 2020). Regarding these cases, multidisciplinary project teams 
tasked with implementing EWN that include LA capabilities have been 
helpful in gaining support for suggested NbS. For example, abstract ideas, 
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like a desire to design a specific habitat feature, become linked to effective 
imagery (King et al. 2021). 

1.3 Objectives  

In this report, we build upon the USACE Civil Works Strategic Plan 
(USACE 2011) to demonstrate how creative designs that use EWN 
concepts might improve biodiversity related to coastal projects. We 
provide an example of how a structured decision-making process might be 
used to create coastal infrastructure that has minimal negative effects on 
biodiversity and maximizes its positive effects. Our emphasis is on design 
because the construction and administration aspects of coastal projects are 
covered in other publications (e.g., Bridges et al. 2021). We demonstrate 
how incorporating structured decision-making can boost engineering 
practice. This method integrates landscape architecture, engineering, 
ecological sciences, and NbS into a generally applicable approach for 
promoting biodiversity through conventional infrastructure during 
renovation, replacement, or design of new infrastructure projects. 

1.4 Approach 

In this report, we build on the approach presented in Suedel et al. 
(2022a). This is accomplished by providing additional detailed renderings 
of coastal engineering structures that highlight how NNBF (a subset of 
NbS that lowers flood risks) can be integrated into the structures’ design 
to enhance biodiversity benefits while maintaining the underlying coastal 
engineering function. 



ERDC TR-24-9 5 

  

2 Methods  
2.1 Description of the Approach 

Projects that utilize NbS are not inherently different from gray infra-
structure, so existing frameworks that foster coastal infrastructure 
planning and engineering projects can incorporate NbS and habitat 
features into the project design. However, those implementing NbS in 
coastal strategies require direction on how NNBF fit into the larger project 
development process. One such strategy that can be adopted generally is 
the International Guidelines on Natural and Nature-Based Features for 
Flood Risk Management (Bridges et al. 2021), which served as the inspire-
ation for the strategy presented in Figure 1. The USACE NNBF framework 
in pursuit of coastal resilience (Bridges et al. 2015) and the World Bank 
(2017) framework, which concentrated on the implementation of nature-
based flood protection measures, are the two complementary frameworks 
on which the NNBF guidelines are based (Sayers et al. 2013). Future NbS 
applications that aim to include components that improve coastal bio-
diversity can follow this strategy, or road map. According to Mace et al. 
(2012), NbS are intrinsically sustainable and enhance ecosystem services 
(e.g., provision, regulating, habitat, and cultural services) as well as pro-
viding other environmental, social, and economic advantages (ECDRI 
2021). This strategy views biodiversity as a resource for the development 
of coastal projects (Figure 1).  

Figure 1. Design strategy for coastal infrastructure that prioritizes biodiversity 
(Image reproduced with permission from Suedel et al. 2022a). 
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Scoping, planning, decision-making, implementation, and operations are 
the five stages of the strategy. Although they are shown in a sequential 
order, these phases serve to emphasize a general evolution. The framework 
is iterative, allowing for the incorporation of new data that is discovered in 
later phases. Since several actions are connected and may occur simul-
taneously, the order and sequencing of the phases are meant to be 
illustrative rather than mandatory. Each stage of the strategy is described 
in more detail below. 

2.2 Scoping 

Scoping involves performing an initial assessment of the needs and 
objectives, as well as identifying, organizing, and meaningfully engaging 
stakeholders and partners in integrating their knowledge of local coastal 
ecology and hydrodynamics into the project design. The problem is also 
identified and defined during scoping. Biodiversity goals, with biodiversity 
as an asset, are established based on project objectives and local knowl-
edge, such as including microhabitats in the structure (Aguilera et al. 
2014; Aguilera et al. 2019). Prioritizing appropriate habitat creation and 
restoration to enhance biodiversity is one way to increase sustainability; 
projects that are intentionally linked with other existing projects can 
improve habitat connectivity. 

Opportunities to improve infrastructure can arise at any time during the 
design life cycle, including during new construction, repair, maintenance, 
or modification (Suedel et al. 2021). Projects that are likely candidates for 
enhancement include deteriorating existing structures that require repair, 
modification, or replacement. Other candidates include new projects with 
a large construction footprint in areas where biodiversity is impaired or 
declining. In this case, ecological connections bridge to adjacent, more 
biodiverse areas. Rather than mitigating short-term ecologically negative 
impacts, the goal is to incorporate ecological principles beginning with 
planning and progressing through design and construction. Such designs 
provide opportunities to use biomimetic technologies that mimic nature’s 
forms and functions to improve structural and ecological performance 
(Makram 2019). 

While scoping infrastructure projects, keep in mind that coastal 
infrastructure is subject to harsh environmental conditions and must 
adhere to applicable building codes and standards. This applies to the 
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materials used (e.g., concrete mix), construction methods, and phasing or 
sequencing (Perkol-Finkel and Sella 2015; Firth et al. 2014a). Enhancing 
structures for biodiversity can take many forms, serving as a continuum of 
measures at various scales and structure types in coastal and fluvial 
environments (Schoonees et al. 2019; Suedel et al. 2021). These design 
elements are important to contemplate during the project’s scoping phase 
to help identify potential constraints and opportunities. 

Funding sources may include the federal, state, and local governments, 
nongovernmental organizations, and the private sector due to the 
multiobjective character of many coastal infrastructure projects that 
contain elements for enhancing biodiversity. Other funding options, such 
as public-private partnerships, should also be sought. When identifying 
funding sources for such coastal projects, both the cost and funding 
strategies for the actual studies, evaluations, and analyses that will be 
conducted as part of the alternative’s design and construction should be 
examined along with funding life cycle costs associated with project 
monitoring and maintenance. The funding strategy begins with scoping, 
which is improved during the planning and decision-making phases and is 
completed during the implementation phase. 

2.3 Planning 

Planning provides an opportunity to better understand and characterize 
the existing system, as well as explore alternatives that meet project 
biodiversity goals and objectives using a systems approach. Considerations 
during planning include identifying the objectives of the structure slated 
for enhancement (e.g., stop or slow the water; high energy versus low 
energy environment), which native species reside in the system, and 
feature selection to encourage a diverse assemblage of organisms while 
achieving the engineering objectives. Any challenges associated with 
incorporating NbS for biodiversity into the design, including the ability to 
improve biodiversity beyond conventional approaches, are important 
considerations (Nelson et al. 2020; Chapman and Underwood 2011). To 
more fully comprehend the site-specific hydrodynamic circumstances and 
habitat elements that can be incorporated into the design, these factors 
must also be weighed during planning (Strain et al. 2018). 

Planning involves assessing the system’s vulnerability to storms and 
flooding as well as the related physical, biological, and social processes. 
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These analyses may include analyzing the available data and information; 
performing the necessary hazard, vulnerability, and risk assessments; and 
using modeling to comprehend how water levels, erosional pressures, and 
sediment transport patterns vary over time. Understanding local con-
ditions may be crucial for developing alternative solutions. This can be 
done with the help of coastal and riverine models, such as Advanced 
Circulation (ADCIRC), Adaptive Hydraulics (AdH), and others. The 
project team can engineer with nature with the aid of modeling tools (see 
examples in Bridges et al. 2018, 2021). Hybrid options, which combine 
coastal NbS (e.g., salt marshes) with hard structures (Sutton-Grier et al. 
2015), may be compared using socioeconomic analysis to determine their 
likely economic, social, and ecological costs and benefits. Through 
modeling, it is possible to argue for the importance of biodiversity and to 
highlight its potential benefits not only for the environment but also for 
the economy and society in general. Metrics need to be determined that 
are suitable for site-specific conditions, meaningfully connect to project 
goals and objectives, and can be measured or subjectively assessed quickly 
and affordably. The outcome of planning is a transparent evaluation, 
including numerical rankings of the alternatives being considered. During 
the decision-making phase, the results of the alternative analysis highlight 
high-priority options. 

2.4 Decision-Making 

The preferred alternative is chosen during decision-making from the list of 
high-priority alternatives created during planning. This preferred 
alternative best meets project objectives and manages identified risks of 
storms and flooding to the system. Designs that provide the desired 
engineering function, enhanced biodiversity, and coastal resilience may 
combine NbS, structural, and nonstructural elements. The flood and storm 
risk reduction function of the structure should be maintained by features 
incorporated into the design (King et al. 2021; Suedel et al. 2021; Holmes 
et al. 2021). The chosen preferred alternative is further distinguished from 
the other alternatives in the decision-making phase. The complexity and 
scope of the resulting biodiversity, as well as the associated social and 
economic benefits, become deciding considerations for choosing the 
favored alternative. Additional elements that could influence the 
evaluation’s findings include investor contributions; land acquisition 
requirements; and regulatory, governance, or financial requirements 
(Milner-Gulland et al. 2021). A structured decision-making process is 
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recommended to help illustrate how to apply design elements in practice, 
highlight how tradeoffs can happen, and involve stakeholders in the 
decision-making process (Gregory et al. 2012; Kiker et al. 2005). The value 
that biodiversity provides can be identified and quantified to make it 
easier to compare the costs and benefits of implementing improvements to 
more traditional structural approaches (Suedel et al. 2021). 

Successful decision-making must meaningfully interact with stakeholders, 
members of the community, and the public during the scoping and 
planning phases (e.g., floodplain managers, city or county planners, 
coastal planners, and resource agency representatives). One of the 
essential components of a successful project is effective communication 
with partners, stakeholders, and the public on the results of decision-
making and the expected project benefits. Engineering With Nature 
landscape architecture (EWN-LA) drawings and renderings can aid to 
enhance effective communication by demonstrating how alternate designs 
can be created and chosen to guide the decision-making process. The final 
alternative design and its inherent benefits can then be seen by 
stakeholders and decision-makers thanks to renderings acting as 
communication tools (Holmes et al. 2021; King et al. 2021). One instance 
is the EWN-LA partnership with the USACE Philadelphia District, where 
several design renderings were created and assessed for use in the New 
Jersey Back Bay area. The conclusions are detailed in Holmes et al. (2021), 
which also offers methods for combining NbS with nonstructural actions 
to achieve coastal storm risk management (CSRM) and ecological benefits. 

2.5 Implementation 

After being chosen, the preferred alternative undergoes further revision 
and finalization during the implementation phase, at which time 
construction is completed. This stage entails adjusting budget and 
financing plans, pursuing final designs and permits, creating the 
construction timeline, and securing regulatory approvals. Once completed, 
the construction of the project can commence. Those working in the 
project who have experience with biodiversity should provide oversight 
to verify that features are built as intended and that any necessary 
engineering adjustments do not conflict with features intended to improve 
biodiversity. The system should not be “overengineered,” and project parts 
do not have to be built all at once. This means that the precise engineering 
goal is defined because it affects the engineering solutions that are 
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available. Alternatives to enhance the design for biodiversity in phases 
over time should consider objectives (e.g., stop the water versus slow the 
water; see Dugan et al. 2018 for example), local conditions (e.g., high 
energy versus low energy, subtidal versus supratidal, pulsed; see Odum et 
al. 1995), and species the infrastructure is intended to attract such as fish 
(Ziegler et al. 2021). Future changes in environmental conditions, like sea-
level rise and storm strength, may necessitate the adaptation or modifi-
cation of some design elements. Given that improved designs that 
incorporate biodiversity elements may mitigate certain regulatory and 
compliance concerns by minimizing the project’s footprint, environmental 
compliance issues may become less challenging to navigate. 

2.6 Operations 

When the project’s construction is finished, the operations phase starts. A 
well-developed monitoring and maintenance plan that implements actions 
promoting the long-term performance of the project is necessary to enable 
optimal project performance in the face of the dynamic nature of coastal 
environments and anticipated future system changes (e.g., natural or 
built). Plans integrating NbS will assist adaptive management, and the 
lessons acquired can be used to advise upcoming coastal infrastructure 
initiatives that incorporate biodiversity goals. A crucial component of 
operations is reporting on monitoring and maintenance tasks since it 
keeps communities, stakeholders, and decision-makers interested and 
informed. Metrics selected during planning and utilized in operations 
should reflect regional conditions, species, and scales, and meaningfully 
relate to the aims and objectives of the project. Benefits can be estimated 
using metrics that compare biodiversity gains and losses. 
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3 Coastal Infrastructure Renderings  
This section identifies 10 common types of coastal infrastructure that can 
be improved to support a more biodiverse community using NbS deploying 
the strategy described above. We present ways to improve each structure 
type, either alone or in combination with other structural features. Finally, 
we show how these structural types can be rendered using EWN-LA 
techniques to aid in coastal infrastructure decision-making. 

3.1 Thin-Layer Placement 

Thin-layer placement (TLP) is a technique for restoring ecological function 
by placing dredged sediment to simulate natural accretion (Myszewski and 
Alber 2017). Sediment is placed at various depths to meet project 
objectives, typically ranging from about 10 cm* to a maximum depth of 
36 cm (Figure 2) (Berkowitz et al. 2019). TLP is frequently used to stabilize 
or nourish marshes, as well as elevate areas in shallow open water. TLP is 
a more environmentally friendly method of placing dredged sediments in 
thin layers on wetlands and other natural infrastructure with the goal of 
preserving established natural processes, supporting existing vegetation, 
and promoting new vegetative growth and related habitat.  

Due to sea-level rise, some coastal marshes, such as those in New England, 
are losing area and converting from high to low marsh. This type of marsh 
loss reduces biodiversity and may impact the nesting success of bird species 
that rely on high marsh habitats. TLP can help prevent or postpone high 
marsh loss while having no short-term negative effects on native high marsh 
vegetation (Payne et al. 2021). Furthermore, the use of TLP can aid in the 
restoration of sediment-starved ecosystems and is consistent with EWN 
principles of keeping dredged sediments in the system (Parson et al. 2015). 

 
* For a full list of the spelled-out forms of the units of measure used in this document, 

please refer to US Government Publishing Office Style Manual, 31st ed. (Washington, DC: US 
Government Publishing Office, 2016), 248–52, https://www.govinfo.gov/content/pkg 
/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf. 

https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
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Figure 2. Rendering of thin-layer placement in a coastal environment. 

 

3.2 Living Shoreline 

A living shoreline is a sloped, erosion-control technique used to protect an 
embankment that mimics natural habitat, increases opportunities for 
species diversity and productivity, and helps improve water quality and 
ecological integrity of the area (Georgia Department of Natural Resources 
2013). Living shorelines can offer a more natural alternative to “hard” 
shoreline stabilization methods while also improving long-term coastal 
resilience. Unlike traditional coastal erosion techniques, which use hard 
infrastructure and materials such as steel, concrete, and large rock, living 
shoreline projects use natural materials such as oyster shells to promote 
oyster recruitment and growth (Figure 3). Natural cements produced by 
organisms as they adhere to each other and the underlying structures can 
help to stabilize living shoreline features; roots of native vegetation, such 
as marsh grasses, can be used to stabilize soils and sediments and provide 
additional habitat (Gittman et al. 2016). Living shorelines can thus 
improve the ecological integrity of the coastal environment; promote 
biodiversity; and provide additional water filtration, habitat, recreational, 
commercial, and coastal resilience benefits (Georgia Department of 
Natural Resources 2013; Smith et al. 2020). 
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Figure 3. Rendering of a living shoreline in a coastal environment. 

 

3.3 Seawall 

USACE has defined seawalls as onshore structures built parallel to the 
shoreline. Their main purpose is to prevent overtopping and subsequent 
flooding of land and infrastructure caused by storm surges and waves 
(USACE 1995). Although the terms seawall and bulkhead are inter-
changeable, seawalls are generally larger and serve the primary purpose of 
intercepting waves to protect high-value property. Concrete and stone are 
common conventional materials used to construct seawalls, and various 
designs and materials are used to prevent the structure from collapsing. 
However, seawall design can be altered to increase the habitat value 
associated with these structures (Figure 4). Seawalls can be designed, 
modified, or built to increase biodiversity by planting native vegetation 
both on land and at sea, creating a submerged reef in front of the seawall, 
using different construction materials, retrofitting habitat features (e.g., 
vertipools), and adding roughness to the seawall face (Browne and 
Chapman 2011; Suedel et al. 2021; NSW Government 2009; Cordell et al. 
2017; Rasna et al. 2019). An example is the Seattle, Washington, seawall 
designed to encourage juvenile salmon migration and generally improve 
habitat (Cordell et al. 2017). 
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Figure 4. Rendering of an enhanced seawall designed and constructed in a coastal 
environment. 

 

3.4 Revetment 

Revetments are onshore sloped structures that protect the shoreline from 
erosion by dissipating wave action, storm surge, and currents. Revetments, 
like other coastal structures, are intended to reduce coastal erosion rather 
than prevent flooding. They can be exposed or buried and are typically built 
with rock, concrete, and other building materials (USACE 1995). Rock or 
other natural and nature-based materials can be placed with enough 
spacing between them to provide habitat for marine life and vegetation in a 
revetment to increase biodiversity (Figure 5). To increase habitat value and 
biodiversity, some habitat features can be designed to be dry, submerged, 
or both during low tide. Microhabitats can be created by scoring or 
texturing rocks, and conventional materials such as concrete can be 
designed and fabricated to include shapes and textures that enhance 
habitat value (Bouw and van Eekelen 2020; MacArthur et al. 2020). 
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Figure 5. Rendering of an enhanced revetment designed and constructed in a coastal 
environment. 

 

3.5 Bulkhead 

A bulkhead’s primary function is to retain or prevent land sliding, with a 
secondary function of protecting the upland area from wave action 
(USACE 1995). Bulkheads are typically vertical walls made of concrete, 
rock, or other hard materials. Bulkheads made of conventional materials 
have been linked to decreased submerged aquatic vegetation abundance 
(Patrick et al. 2016) and other negative effects (Currin et al. 2010). How-
ever, bulkheads can be combined with other coastal protection features to 
increase biodiversity while concomitantly protecting the shoreline (Figure 
6). Living shorelines, for example, can be placed seaward of the bulkhead 
to prevent erosion while greatly increasing habitat value (Nordstrom 
2019). Other researchers have developed alternative materials and designs 
(e.g., enhanced concrete designed to mimic mangrove root structures) for 
bulkhead structures that improve habitat value while meeting underlying 
engineering objectives (e.g., see Bridges et al. 2021, 128–130). 



ERDC TR-24-9 16 

  

Figure 6. Rendering of a living shoreline feature combined with a conventional bulkhead to 
create hybrid infrastructure that enhances biodiversity value in a coastal environment.  

 

3.6 Detached Breakwaters and Jetties 

Detached breakwaters are nearshore structures constructed parallel to the 
shore in shallow water depths. The primary function is to reduce beach 
erosion by lowering wave height, which in turn reduces longshore and 
cross-shore sediment transport (USACE 2002). To create or stabilize 
coastal wetlands, detached breakwaters can be used. For many years, they 
have been used in conjunction with sediment dredged from adjacent 
federal navigation channels (Chasten et al. 1993). To increase biodiversity, 
detached breakwaters can be designed or modified in a variety of ways 
(e.g., to attract fish and other species to the rocky structure; Geisthardt et 
al. 2022). Detached breakwaters can be submerged for aesthetic purposes 
or segmented to promote water circulation and habitat value. A detached 
breakwater can be made of a variety of materials, but structures like reef 
balls can help to stimulate reef habitats (Figure 7) (Harris 2009). 
Multipurpose breakwaters, which are designed to provide additional 
environmental or social benefits, or both, in addition to structural benefits, 
play an important role in harbor and coastal resiliency efforts (Fredette et 
al. 2016; Manson et al. 2018; Hardaway et al. 2020). 

Jetties are perpendicular to shore structures and are placed adjacent to 
tidal inlets and harbors to control inlet migration and minimize sediment 
deposition within the inlet. Jetties are like breakwaters in design and 
materials but differ in function (USACE 1989). Jetties have the potential to 
disrupt natural sediment regimes and cause erosion along the coast. 
Jetties can be made more biodiverse by using natural building materials 
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and materials that can promote habitat enhancement (see King et al. 2021) 
for an example jetty rendering).  

Figure 7. Rendering of a detached breakwater reef seaside of a coastal shore. Placement of 
the reef balls in this rendering has promoted the growth and expansion of seagrasses 

landward of this natural infrastructure. 

 

3.7 Sill 

A sill is a rock structure that is placed parallel to the shore to absorb wave 
energy. Sills are like breakwaters, but they are usually smaller and placed 
closer to the shore (Hardaway and Byrne 1999). Fill is frequently required 
to supplement the backshore to help establish a marsh fringe in the lee of 
the sill. Sills can be used to establish intertidal marsh grasses in higher 
wave energy environments; and as features in living shorelines, sills 
provide opportunities to improve biodiversity through design elements 
and backshore fill material selection (Figure 8). Sills help to stabilize the 
shoreline while also encouraging the development of a marsh fringe 
landward of the sill to promote biodiversity (Bilkovic and Mitchell 2017; 
Bilkovic et al. 2021). 
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Figure 8. Rendering of an enhanced oyster sill feature in a coastal environment. 

 

3.8 Tidal Control Structure 

Tidal control structures, such as dykes and tide gates, are used to drain 
wetlands in estuaries and river valleys influenced by tides. Tide control 
structures are constructed into levees and other structures to restrict 
incoming tides and thus reduce tidal influx. Structures remain open to 
allow water to drain into receiving waters. Unfortunately, the way these 
structures have been designed, built, and operated has had a negative 
impact on ecosystems (Giannico and Souder 2005). Adverse effects 
include severing connectivity within tidal floodplains, which has an impact 
on water quality, fish passage, and biodiversity (Scott et al. 2016); this 
highlights the difficulties in balancing flood protection and floodplain 
connectivity. Recently, tidal and flood control structures have been 
designed and operated to be more friendly to native fish and coastal marsh 
habitats (Figure 9) (Bridges et al. 2021).  

In the Tomago Wetlands of New South Wales, Australia, for example, 
novel tidal control gates were designed and built to restore 450 ha of 
coastal marsh habitat, including avifauna migration. In another case, the 
Southern Flow Corridor project in Tillamook Bay, Oregon, used an 
existing tide gate in conjunction with other measures, such as levee 
removal and the addition of setback levees, to restore nearly 180 ha of land 
and over 21 km of tidal channels for migratory salmonids (Bridges et al. 
2021). In both cases, how the tide gates were operated played a key role in 
improving habitat because the gates were operated while considering both 
flooding and habitat objectives. 
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Figure 9. Rendering of an enhanced tidal gate structure. In some cases, such gates can be 
designed, built, and operated to achieve both engineering and environmental objectives. 

 

3.9 Groyne 

Groynes are designed and built to hold sand on a subaerial beach (Basco 
and Pope 2004; USACE 2002). Groynes, typically constructed using large 
rock or stone, can cause beach material to accumulate on the updrift side 
and material to erode on the downdrift side. Typically, erosion extends 
from the structure down the coast, prompting the construction of 
additional groynes and causing a ripple effect (USACE 2013). A groyne, 
like jetties, can be retrofitted with the addition of plant material or 
included as part of a living shoreline or other nature-based solution  
(van der Spek et al. 2020; The Nature Conservancy 2021). The rendering 
in Figure 10 shows how native coastal plant species can be incorporated 
into the design of a groyne structure. Such plant species can be placed 
directly on the structure itself and in surrounding areas. The top of the 
structure could incorporate a flattened pervious surface of smaller rock or 
stone to allow for public access, improving the recreational benefits. 
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Figure 10. Renderings of an enhanced groyne. Enhancements can include features directly on 
the structure itself and may include enhancements to the surrounding infrastructure. 

Enhancements (as rendered) may also include a flat level surface to allow for public access. 
This figure focuses on vegetation enhancement and does not emphasize littoral processes.  
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4 Discussion 
The structured decision-making approach described herein can be used to 
design and develop a variety of structural enhancement features for 
alternatives that can be implemented within each of these coastal 
infrastructure types. Aspects of EWN-LA that promote biodiversity on 
coastal infrastructure can be applied to each of the five phases of the 
overall strategic approach.  

Using a failing bulkhead as an example of conventional infrastructure that 
can be enhanced through repair of the existing structure, we show how 
EWN-LA can play a meaningful role in each phase. Scoping should identify 
and include EWN-LA expertise on the project team to help define the 
nature and scope of the bulkhead repair and the prospects for including 
EWN concepts into the alternatives being considered. LAs create drawings 
and renderings of various bulkhead designs in the planning phase to aid in 
the transparent evaluation of alternatives and to inform the analysis and 
identification of those with the highest priority. EWN-LA drawings and 
renderings can serve as communication tools in decision-making, allowing 
stakeholders and decision-makers to visualize the final alternative 
bulkhead design and its inherent benefits, as shown in Figure 6. During 
implementation, LAs would develop bulkhead design alternatives that 
promote biodiversity while taking other project objectives, local 
hydrodynamic conditions, and the species the enhanced bulkhead is 
designed to support into account. EWN-LA can also communicate design 
features that are convertible or modifiable based on lessons learned or in 
response to changing environmental conditions. Finally, in operations, 
lessons learned could be documented with EWN-LA renderings and 
presented during webinars or workshops reporting on the findings of the 
preferred repair alternative. 

As with any coastal infrastructure project, opportunities for success 
require consideration of the risks and uncertainties associated with 
incorporating NbS that promote biodiversity. Such risks and uncertainties 
include obtaining project approval (in terms of costs, etc.), impeding 
future maintenance, jeopardizing structural integrity, and selecting project 
materials, along with the timing, location, ecological connectivity, project 
scale, and aspects of a changing community and climate. Several actions, 
however, can be taken to increase the likelihood of project success. As 
outlined by Suedel et al. (2021), actions to advance infrastructure 
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enhancement practice include (1) early and often stakeholder commu-
nications, (2) meaningful community engagement, (3) partnering and 
collaborating with stakeholders to monitor project success, (4) developing 
designs with the intent to achieve multiple benefits (engineering as well as 
economic, social, and environmental) simultaneously, and (5) developing 
a monitoring program that identifies and quantifies the costs and multiple 
short- and long-term benefits of the project. 

The value that NbS provides should be identified and quantified so that 
the full range of project benefits and costs can be calculated. Biodiversity 
enhancements are framed in terms of both short- and long-term benefits 
to current risks and uncertainties; the enhancements should not reduce 
the structure’s engineering objective or limit access for maintenance or 
repairs. Sea-level rise and increased storm intensity, which may have an 
impact on NbS implementation, should be considered during planning. 
NbS features can serve as lines of defense alone or in tandem with conven-
tional infrastructure when managing coastal flood risk. When considering 
a “hold-the-line” goal against sea-level rise, structural measures can be 
designed to provide future accommodation space for intertidal species, 
thereby reducing the risks associated with coastal squeeze (Perkol-Finkel 
and Sella 2015; Perkol-Finkel et al. 2018; Naylor et al. 2017). 

Coordination and education activities can help reduce NbS risks and 
uncertainties. Education is vital because NbS may be a new concept for 
some stakeholders and project managers. The introduction of the concept 
may cause a shift in how a risk manager perceives a proposed project. 
While the primary goal of the project may be to reduce coastal flood risk, 
NbS consider what can be accomplished beyond the engineering objective 
to enhance biodiversity on coastal infrastructure. Education, training, and 
technology transfer can also include case study documentation, webinar or 
workshop development, and site visits to successful coastal NbS projects. 
This approach has proven successful in the United Kingdom, where these 
activities have helped raise awareness and boost the confidence of 
practitioners who are eager to help promote NbS (Naylor et al. 2017). 

Effective communication is required both internally within the project 
team and externally with stakeholders for the approach to be successfully 
applied elsewhere. Monitoring should include data collection to improve 
understanding of the future value that such an approach can achieve in 
practice and how effectively the NbS can integrate into larger coastal risk 
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reduction measures. Maintenance activities appropriate for improved 
structures may include slightly modified engineering inspections, such as 
scraping off nonnative biota (Perkol-Finkel and Sella 2015) or using 
unmanned technologies in situations where access is restricted due to 
safety concerns. Projects meeting success criteria that relay lessons 
learned are more informative and useful for applying these concepts in 
other contexts. 
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5 Conclusion 
In this report, we outline a strategy for enhancing biodiversity in coastal 
infrastructure at different geographical and temporal scales using NbS. 
When working with partners and stakeholders, decision-making is 
structured into the following phases: scoping, planning, decision-making, 
implementation, and operations. Landscape architecture renderings that 
incorporate ecological sciences and NbS into an integrated approach for 
promoting biodiversity in coastal marine areas can promote engineering 
practice through this structured strategy.  

The likelihood of success when reconstructing reinforced shorelines 
should be evaluated for the challenges and uncertainties of using NbS. 
Gaining project approval (for costs, etc.), estimating future maintenance 
needs, protecting structural integrity, and selecting project materials are 
keys to success, along with considering the timing, location, ecological 
connectivity, and scale of the project in a changing climate.  

The identification and quantification of the short- and long-term value of 
NbS, coordination and education efforts, and efficient internal and 
external project team interactions are all part of promoting best NbS 
practices. In addition, LA visualizations when used as a communications 
tool can positively impact coastal biodiversity projects. Finally, guidance 
manuals like USACE Engineering Manuals and Coastal Engineering 
Manuals can be updated as new information is learned from the design, 
construction, and use of such improved structures, helping to advance NbS 
as a best practice and thereby enhancing value to the nation. 
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