

Water Quality Special Study Report

U.S. Army Corps of Engineers Omaha District

Existing Physicochemical Condition and Elutriate Testing of Missouri River Alluvial Sediments from Fort Randall Dam to Ponca State Park, Nebraska as an Indicator of the Potential Water Quality Impacts Posed by Dredging these Sediments to Construct Emergent Sandbar Habitat

Constructed Emergent Sandbar Habitat in the Missouri River Headwaters of Lewis and Clark Lake

Report Number: CENWO-ED-HA/WQSS/Missouri River/2010

September 2010

(Page left intentionally blank)

Water Quality Special Report

Existing Physicochemical Condition and Elutriate Testing of Missouri River Alluvial Sediments from Fort Randall Dam to Ponca, Nebraska as an Indicator of the Potential Water Quality Impacts Posed by Dredging these Sediments to Construct Emergent Sandbar Habitat

Report Number: CENWO-ED-HA/WQSS/Missouri River/2010

Prepared by:

Water Control and Water Quality Section Hydrologic Engineering Branch Engineering Division Omaha District U.S. Army Corps of Engineers

September 2010

For Information Regarding This Document Please Contact:

Dave Jensen
Water Control and Water Quality Section
Hydrologic Engineering Branch
Engineering Division
Department of the Army
Corps of Engineers Omaha District
1616 Capitol Avenue
Omaha, NE 68102-4901
(402)-995-2314
DLL-CENWO-WATER-QUALITY@nwo02.usace.army.mil

TABLE OF CONTENTS

		Page
1	Background Information	1
	Creation and Maintenance of Emergent Sandbar Habitat (ESH) Pursuant to the Missouri	1
	River Biological Opinion	
	Creation of Emergent Sandbar Habitat on the Missouri River	
	Emergent Sandbar Habitat Construction Methods	
	Section 404 Permitting Requirements	
2	S Specific Water Quality Concerns	3
2	Methods Representative Sites Sampled to Characterize Missouri River BiOp Segments	
	2 Sample Collection	
	2.2.1 Sampling Design	
	2.2.2 Water Measurements and Sample Collection	
	2.2.3 Sediment Sample Collection	
	3 Elutriate Testing	
	2.3.1 Standard Elutriate Samples	
	2.3.2 Pre-Elutriate Samples	
	2.3.3 Laboratory Analyses	
3	Results	
J	Missouri River BiOp Segment 8 – Fort Randall Dam to Niobrara River	
	3.1.1 Sediment Sampling Site Locations	
	3.1.2 Field Measured Water Quality Conditions	
	3.1.3 Laboratory Results	
	2 Missouri River BiOp Segment 9 – Niobrara River to Gavins Point Dam	
	3.2.1 Sediment Sampling Site Locations	
	3.2.2 Field Measured Water Quality Conditions	
	3.2.3 Laboratory Results	
	Missouri River BiOp Segment 10 – Gavins Point Dam to Ponca, Nebraska	
	3.3.1 Sediment Sampling Site Locations	
	3.3.2 Field Measured Water Quality Conditions	26
	3.3.3 Laboratory Results	27
4	Discussion and Conclusions	37
	General Sediment Chemical Conditions	37
	Comparison of Elutriate Samples to Nebraska's Surface Water Quality Standards Criteria	
	for the Protection of Aquatic Life	
	4.2.1 General Criteria for Aquatic Life	
	4.2.2 Total Ammonia Criteria for the Protection of Class A – Warmwater	
	THM Formation Potential	
	Nutrients	
5	References	
A _j	endix A Particle Size Distribution Reports Prepared by Midwest Laboratories, Inc. for Collected	ed
,	Sediment samples	
A	endix B Laboratory Reports Prepared by Midwest laboratories, Inc. for Analyses of Sediment,	
,	Receiving Water, and Elutriate Testing	
	endix C Data Quality Assessment Report	
A _j	endix D. Sampling and Assessment Plan	

List of Tables

		age
Table 1.	Parameters analyzed in collected sediment samples.	
Table 2.	Parameters analyzed in collected receiving water samples.	
Table 3.	Parameters analyzed in standard elutriate water samples.	
Table 4.	Parameters analyzed in pre-elutriate water samples.	8
Table 5.	Individual metals included in the metals scan of sediment and water samples and the appropriate detection limits.	9
Table 6.	Individual constituents included in the organochlorine pesticide and PCB scan of sediment and water samples and the appropriate detection limits	9
Table 7.	Field determined latitude and longitude for sediment sampling site locations on segment 8	
Table 8.	Field measured water quality conditions of the main-channel Missouri River at sites RM867 and RM853.	
Table 9.	Composition of sediment samples collected at sites RM867 and RM853	
	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM867SSM.	
Table 11.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM867SSC.	
Table 12.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM867BWD	
Table 13.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM853SSM.	
Table 14.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM853SSC.	
Table 15.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM853BWD	
Table 16.	Field determined latitude and longitude for sediment sampling site locations on segment 9	
	Field measured water quality conditions of the main-channel Missouri River at sites RM842 and RM827.	
Table 18.	Composition of sediment samples collected at sites RM842 and RM827	. 19
	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM842SSM.	
Table 20.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM842SSC.	
Table 21.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM842BWD	
Table 22.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM827SSM.	
Table 23.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM827SSC.	. 24
Table 24.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM827BWD	. 25
Table 25.	Field determined latitude and longitude for sediment sampling site locations on segment 9	
	Field measured water quality conditions of the main-channel Missouri River at sites RM800, RM779, and RM756.	
Table 27.	Composition of sediment samples collected at sites RM842 and RM827	
Table 28.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM800SSM	

	water analyses for site location RM800SSC.	29
Table 30.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM800BWD	
Table 31.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate	30
	water analyses for site location RM779SSM.	31
Table 32.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate	
	water analyses for site location RM779SSC.	32
Table 33.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate	22
T-1-1-24	water analyses for site location RM779BWD.	33
Table 34.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate	24
T.1.1. 25	water analyses for site location RM756SSM.	34
Table 35.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate	٥.
T 11 06	water analyses for site location RM756SSC.	35
Table 36.	Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate	
	water analyses for site location RM756BWD	
	General conditions of the collected alluvial sediment samples	37
Table 38.	Numeric criteria defined by Nebraska water quality standards for analyzed pesticides and	
	PCBs and the detection limits of the organochlorine pesticide and PCB scan applicable to	
	the elutriate samples.	38
Table 39.	Numeric criteria defined by Nebraska water quality standards for analyzed metals and	
	inorganics and the laboratory detection limits applicable to the elutriate samples. (Criteria	
	apply to dissolved concentrations unless otherwise noted.)	39
Table 40.	Concentrations (µg/l) of dissolved metals and inorganics measured in the prepared	
	elutriate samples.	39
Table 41.	Zinc concentrations measured in sampled media along the Missouri River from Fort	
	Randall Dam, SD to Ponca State Park, NE.	40
Table 42	Ammonia concentrations measured in sampled media. Water temperature and pH levels	
1 4010 42.	for receiving water are measured field conditions and were used to calculate the listed	
	Nebraska water quality standards criteria for ammonia.	<i>1</i> 1
Table 43.	THM formation potential, organic carbon, and true color levels measured in Missouri	+1
1 abic 43.	River receiving water and prepared elutriate samples.	12
T-1-1- 44		42
Table 44.	Total Kjeldahl nitrogen, nitrate-nitrite nitrogen, and total phosphorus levels measured in	12
	Missouri River receiving water and prepared elutriate samples.	43
	List of Figures	
	_	=
T: 1	Pa	ıge
Figure 1.	BiOp identified segment 8, 9, and 10 along the Missouri River from Fort Randall Dam,	_
-	South Dakota to Ponca, Nebraska.	. 2
Figure 2.	Locations of the seven sites selected for sampling to characterize alluvial sediment	
	conditions along the three Missouri River BiOp segments	5

Table 29. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate

List of Plates

		Page
Plate 1.	General sediment sampling location at site RM756 as shown on 2006 aerial photo	44
Plate 2.	General sediment sampling location at site RM779 as shown on 2006 aerial photo	45
Plate 3.	Sediment sampling locations at site RM800 as shown on 2006 aerial photo.	46
Plate 4.	Sediment sampling locations at site RM827 as shown on 2006 aerial photo.	47
Plate 5.	Sediment sampling locations at site RM842 as shown on 2006 aerial photo.	
Plate 6.	Sediment sampling locations at site RM853 as shown on 2006 aerial photo.	
Plate 7.	Sediment sampling locations at site RM867 as shown on 2006 aerial photo.	50
Plate 8.	Photograph of site location RM867SSM taken at the time sediment sample collected	51
Plate 9.	Photograph of site location RM867SSC taken at the time sediment sample collected	52
Plate 10.	Photograph of site location RM867BWD taken at the time sediment sample collected	53
Plate 11.	Photograph of site location RM853SSM taken at the time sediment sample collected	54
Plate 12.	Photograph of site location RM853SSC taken at the time sediment sample collected	55
Plate 13.	Photograph of site location RM853BWD taken at the time sediment sample collected	56
Plate 14.	Photograph of site location RM842SSM taken at the time sediment sample collected	57
Plate 15.	Photograph of site location RM842SSC taken at the time sediment sample collected	58
Plate 16.	Photograph of site location RM842BWD taken at the time sediment sample collected	59
Plate 17.	Photograph of site location RM827SSM taken at the time sediment sample collected	60
Plate 18.	Photograph of site location RM827SSC taken at the time sediment sample collected	61
Plate 19.	Photograph of site location RM827BWD taken at the time sediment sample collected	62
Plate 20.	Photograph of site location RM800SSM taken at the time sediment sample collected	63
Plate 21.	Photograph of site location RM800SSC taken at the time sediment sample collected	64
Plate 22.	Photograph of site location RM800BWD taken at the time sediment sample collected	65
Plate 23.	Photograph of site location RM779SSM taken at the time sediment sample collected	66
Plate 24.	Photograph of site location RM779SSC taken at the time sediment sample collected	67
Plate 25.	Photograph of site location RM779BWD was inadvertently not taken or digital file was	as
	lost	68
Plate 26.	Photograph of site location RM756SSC taken at the time sediment sample collected	69
Plate 27.	Photograph of site location RM756SSC taken at the time sediment sample collected	70
Plate 28.	Photograph of site location RM756BWD taken at the time sediment sample collected	71

1 BACKGROUND INFORMATION

1.1 CREATION AND MAINTENANCE OF EMERGENT SANDBAR HABITAT (ESH) PURSUANT TO THE MISSOURI RIVER BIOLOGICAL OPINION

In 2000, the U.S. Fish and Wildlife Service (USFWS) issued a Biological Opinion with recommendations for the U.S. Army Corps of Engineers' (Corps) operations of the Missouri River Mainstem System for protection and enhancement of threatened and endangered species (USFWS, 2000). In 2003, the USFWS issued an amendment that supplemented the recommendations of the 2000 Biological Opinion (USFWS, 2003). The amended Biological Opinion (BiOp) was the result of continuing consultation between the Corps and USFWS under the Endangered Species Act (ESA). The BiOp found that the Corps' operations on the Missouri River were not likely to jeopardize the endangered interior least tern (*Sterna antillarum*) and threatened piping plover (*Charadrius melodus*) populations if the Reasonable and Prudent Alternative (RPA) set forth in the BiOp was implemented. Element IVB of the RPA includes recommendations for the mechanical creation and maintenance of Emergent Sandbar Habitat (ESH) as nesting habitat for these two species in terms of habitat acres per river mile.

The BiOp separates the Missouri River from Fort Randall Dam downstream to Ponca, Nebraska into three separate segments: 1) Segment 8 – Fort Randall Dam to Niobrara River; 2) Segment 9 – Niobrara River to Gavins Point Dam; and 3) Segment 10 – Gavins Point Dam to Ponca, NE (Figure 1). All three segments are identified as "High Priority" reaches for the interior least tern and piping plover. ESH goals of 10 acres per river mile by the year 2005 and 20 acres per river mile by the year 2015 have been established for Segment 8. ESH goals of 40 acres per river mile by the year 2005 and 80 acres per river mile by the year 2015 have been established for Segments 9 and 10. Existing ESH acreages within these segments are currently below these goals.

1.2 CREATION OF EMERGENT SANDBAR HABITAT ON THE MISSOURI RIVER

In accordance with the BiOp, the Corps is conducting ongoing efforts to create and/or reclaim a sufficient amount of ESH to stabilize, and eventually recover, interior least tern and piping plover populations along the Missouri River. The creation of ESH was necessitated by the unforeseen loss of the habitat due to channelization and flood control efforts along the Missouri River, and the resulting decline of tern and plover numbers. The specific purpose for the Corps' actions is to implement the portion of RPA Element IVB of the BiOp that relates to artificially or mechanically created ESH.

The importance of constructed ESH in the lower Missouri River to the least tern and piping plover populations was witnessed with the recent return of normal navigation flows to the Missouri River downstream of Gavins Point Dam. ESH projects constructed downstream of Gavins Point Dam produced 80 percent of the interior least terns and piping plovers that fledged on the lower Missouri River with over 100 successful nests documented. In 1997, the last time high water and flows occurred prior to recent drought conditions, only one successful nest was documented in the reach.

1.3 EMERGENT SANDBAR HABITAT CONSTRUCTION METHODS

Past construction of ESH on the Missouri River by the Corps has utilized hydraulic dredges, sand scrapers, bulldozers and other construction equipment to build up sandbars. Hydraulic dredges are used to pump and place material to build up existing shallowly submerged sandbars. The hydraulic dredges typically use a cutter-head to break up sediment and a pump and pipeline to transport the dredged material to the deposition site. The dredged material is usually mined from "sediments" within the "high-water elevation" of the Missouri River. It is believed that using deposited material from the "river channel" emulates a natural process of redistribution of sediments within the river, and results in no net addition or

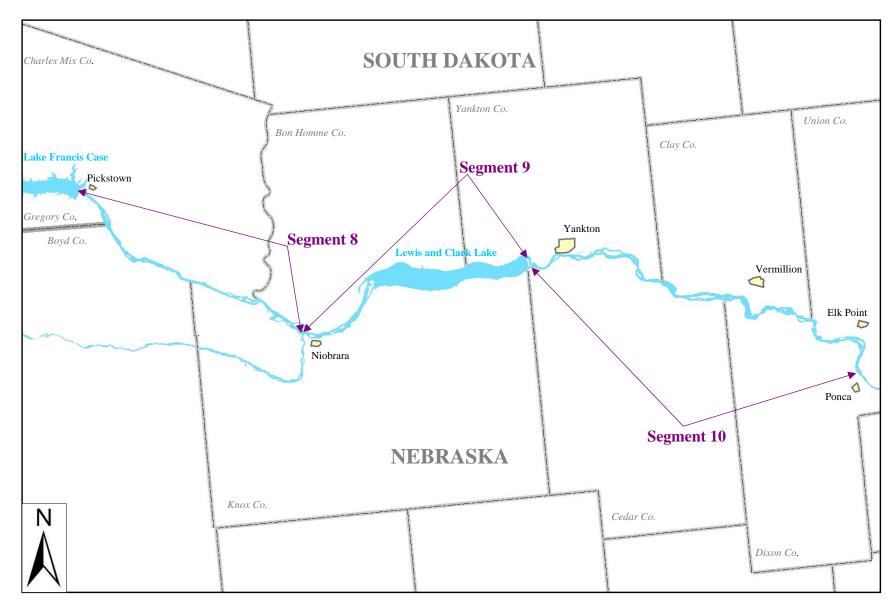


Figure 1. BiOp identified segment 8, 9, and 10 along the Missouri River from Fort Randall Dam, South Dakota to Ponca, Nebraska.

removal of sediment from the system. Sand Scrapers, bulldozers and other construction equipment are used to form the dredged sand to the specified elevations in order to create sandbars that closely resemble naturally formed ESH.

Avoiding bottom sediments high in organic matter and utilizing coarser, "sandy" material for fill material improves the habitat quality of the ESH created. Coarser fill material is easier to "work" and contour and is better suited for the construction of ESH. Typically, coarser material also contains significantly less nutrients and seed stocks which should slow down the encroachment of vegetation on the created sandbars. This maximizes the time period the created sandbars provide quality habitat for the terns and plovers, and extends the time before control measures are needed to manage encroaching vegetation.

1.4 SECTION 404 PERMITTING REQUIREMENTS

The requirements for a Individual Section 404 permit must be met for most dredging activities conducted on the Missouri River. To meet the Section 404 Individual Permit requirements, a Section 401 Certification must be obtained from the appropriate States that "certifies" that the proposed actions will not "violate" State water quality standards. To facilitate review of past "Shallow Water Habitat" (SWH) projects for Section 401 Certification, "elutriate testing" of material from the proposed dredging sites has been conducted. It has been recently requested by the State of Nebraska that elutriate testing also be conducted on ESH projects. It has also been suggested by Nebraska that representative sediment samples for elutriate testing could be collected from the three priority segments to ascertain that sediment contamination was not a concern within the segments. This information could then be utilized to facilitate Section 401 Certification of future ESH projects on Segment 8, 9, and 10. In this regard, a monitoring project was implemented to collect representative sediment samples from Segments 8, 9, and 10 as identified in the BiOp. Elutriate testing of the collected sediment samples was conducted pursuant to the Inland Testing Manual, "Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual (USEPA and USACE, 1998).

1.5 SPECIFIC WATER QUALITY CONCERNS

The States of Nebraska and South Dakota have not identified any portions of Segments 8, 9, or 10 as an impaired waterbody pursuant to Section 303(d) of the Federal Clean Water Act. Neither State has issued fish consumption advisories applicable to the three segments.

In a 401 Certification letter for a proposed Corps ESH project on the Missouri River at RM842, the State of Nebraska stated the following:

"In order to establish certainty of compliance, an elutriate test must be conducted first on appropriate samples of the sediment which will be discharged to the waterway. The test should cover the following contaminants:

Heavy metals: lead, arsenic, mercury, chromium, zinc, copper

Ammonia

Persistent pesticides such as:

Chlordane, Dieldrin, Aldrin, DDT and its metabolites

PCB's

If the concentration of any of these pollutants is sufficient to cause violation of Title 117 – Nebraska Surface Water Quality Standards when the sediments are discharged to the river, the applicant must make arrangements for disposal elsewhere or revise the discharge schedule and/or volume to bring it into compliance."

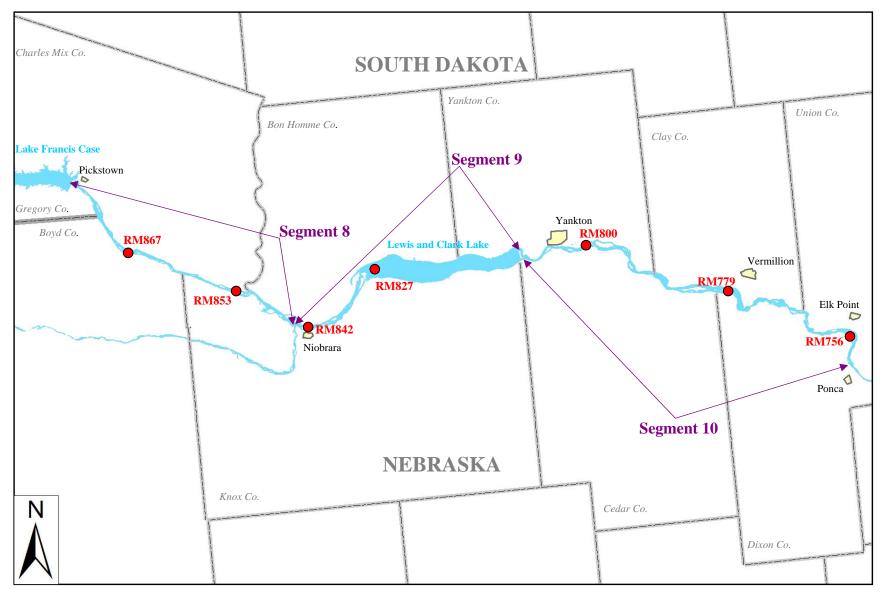
Some public drinking water facilities that use the Missouri River and Lewis and Clark Lake for source water have expressed concerns that creation of ESH increases the loading of organic matter in their raw water supply. They believe this may cause them to exceed drinking water standards for trihalomethanes (THMs) in their treated water. Increasing the amount of organic matter in water can increase the levels of THM precursors. This may pose a problem for facilities with inadequate treatment processes as THMs can form when the "raw" water is chlorinated.

2 METHODS

2.1 REPRESENTATIVE SITES SAMPLED TO CHARACTERIZE MISSOURI RIVER BIOP SEGMENTS

Seven sites were selected to represent alluvial sediment conditions along the three Missouri River BiOp segments from Fort Randall Dam to Ponca, Nebraska (Figure 2). Sediment samples for elutriate testing were collected at these sites. Two sites were sampled to characterize Segment 8: RM867 and RM853 (Plate 1 and Plate 2). The site at RM 867 is believed to represent conditions in the upper half of Segment 8. The site at RM853 is believed to represent conditions in the lower half of Segment 8. Two sites were sampled to characterize Segment 9: RM 842 and RM827 (Plate 3 and Plate 4). The site at RM 842 is believed to represent conditions downstream from the confluence of the Niobrara River to the "delta area" of Lewis and Clark Lake. The site at RM827 is believed to represent conditions in the "delta area" of Lewis and Clark Lake. Three sites were sampled to characterize Segment 10: RM800, RM779, and RM756 (Plate 5, Plate 6, and Plate 7). The site at RM800 is believed to represent conditions from just downstream of Gavins Point Dam to the James River. The site at RM 779 is believed to represent conditions downstream of the James River and upstream of the Vermillion River. The site at RM756 is believed to represent conditions downstream of the Vermillion River.

2.2 SAMPLE COLLECTION


2.2.1 Sampling Design

Sediment samples were collected at seven sites (RM867, RM853, RM842, RM827, RM800, RM779, and RM756) on the Missouri River. At each site three locations were sampled: 1) shallow submerged sandbar in main river channel (SSM), 2) shallow "side-channel" area (SSC), and 3) depositional backwater area with vegetative growth and accumulated detritus (BWD). It is believed these three location types characterize the sediment conditions that could be dredged for ESH creation. At each of the seven sites sediment core samples were collected to represent the three locations (i.e., SSM, SSC, and BWD). Plate 1, Plate 2, Plate 3, Plate 4, Plate 5, Plate 6, and Plate 7 show the three locations sampled at the seven sites.

2.2.2 Water Measurements and Sample Collection

Water from the Missouri River was collected at each of the seven sites to prepare elutriate samples (see Section 1.41.4). The laboratory required 2 to 3 gallons of receiving water for each 1 gallon of sediment to be analyzed. In addition to the 2 to 3 gallons of water for each 1 gallon of sediment, an additional 1 gallon of receiving water was collected for "background" analysis. The receiving water was collected from the main river channel at each site.

At the time the receiving water was collected, the following field measurements were taken: water temperature, dissolved oxygen, pH, conductivity, oxidation-reduction potential, and turbidity. The measurements were obtained with a "HydroLab" equipped with a MS5 DataSonde and Surveyor data logger in accordance with the Water Quality Unit's SOP Number WQ-21201, "Using a Hydrolab DS4a and DS5 to Directly Measure Water Quality (USACE, 2008). Measurements were taken by immersing the DataSonde directly into the river where the receiving water was collected.

Figure 2. Locations of the seven sites selected for sampling to characterize alluvial sediment conditions along the three Missouri River BiOp segments.

2.2.3 Sediment Sample Collection

Locations representative of SSM, SSC, and BWD conditions were identified for sediment sampling in the field. Once a location was identified, a hand-held GPS unit (Garmin GPS Map765) was used to obtain the latitude and longitude of the location. Sediment samples were then collected with a Wildco® 2-inch (5.13 cm) stainless steel hand-corer sampler. The sampler was used to collect a sediment core sample to a depth of 2 to 3 feet (61.5 to 92.3 cm). The collected sediment core sample was deposited into a field-rinsed plastic bucket for compositing. Repeated sediment core samples were collected and deposited in the plastic bucket until 1 to 2 gallons (4.4 to 8.8 liters) of sediment were accumulated. The composited sediment was hand-mixed in the plastic bucket until it was deemed homogenous. A 1-gallon glass jar was then filled with the mixed sediment, labeled, and transported to the laboratory for elutriate testing.

2.3 ELUTRIATE TESTING

Preparation of elutriate samples was done by Midwest Laboratories, Inc. in Omaha, Nebraska. Midwest Laboratories is a NELAC (National Environmental Laboratory Accreditation Committee) certified laboratory, and under contract to the Omaha District to provide water quality analyses.

2.3.1 Standard Elutriate Samples

Standard elutriate samples were prepared in accordance with the "Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual: Inland Testing Manual" (USEPA and USACE, 1998). The elutriate samples were prepared by using receiving water collected from the appropriate seven sites that were sampled along the Missouri River (i.e., RM756, RM779, RM800, RM827, RM842, RM853, and RM867). A 1-liter aliquot of sediment was taken from the collected sediment sample. The sediment material and unfiltered receiving water were then combined in a sediment-to-water ratio of 1:4 on a volume basis at room temperature ($22 \pm 2^{\circ}$ C). After the correct ratio was achieved, the mixture was stirred vigorously for 30 minutes with a mechanical stirrer/shaker. After the 30 minute mixing period, the mixture was allowed to settle for at least one hour. The supernatant was then siphoned off and filtered through a 0.45 micron filter. The filtered water is the standard elutriate sample that was analyzed. Standard elutriate samples indicate the levels of dissolved constituents that could be liberated from agitated sediment. Many chemical constituents are more harmful to aquatic life in the dissolved phase.

2.3.2 Pre-Elutriate Samples

As an additional indicator of the physicochemical conditions of the collected sediment, "preelutriate" samples were prepared and analyzed. Pre-elutriate samples were prepared the same way as standard elutriate samples through the point of vigorous mixing for 30 minutes. At that point, the mixture was allowed to settle for a "few minutes" (allow heavier, coarse material to settle) and an aliquot of water was siphoned off without filtration and identified as the pre-elutriate sample. The pre-elutriate samples were prepared and analyzed to get an indication of the total levels of selected constituents that could be mobilized with the resuspension of the alluvial sediments. Mobilization of alluvial sediment occurs naturally in river systems, and would also occur when sediments are dredged for ESH construction.

2.3.3 Laboratory Analyses

Laboratory analyses were conducted on the following samples: sediment, receiving water, preelutriate, and standard elutriate. Table 1, Table 2, Table 3, and Table 4, respectively, list the parameters, analytical methods, method detection limits, and reporting limits for the analyses conducted on the sediment, receiving water, standard elutriate, and pre-elutriate samples. All samples were analyzed by Midwest Laboratories, Inc. located in Omaha, Nebraska.

Table 1. Parameters analyzed in collected sediment samples.

Parameter	Method	Detection Limit
PHYSICAL AND AGGREGATE PROPERTIES		
Particle Size	Sieve (Minimum Sieve #200)	0.001 mm
Alkalinity, Total	SM2320B	4 mg/l
Oxidation Reduction Potential	SM2580B	1 mV*
рН	EPA 150.1	0.1 S.U.*
NUTRIENTS		
Ammonia, Total as N	EPA 350.1	0.2 mg/kg
Kjeldahl Nitrogen, Total as N	EPA 351.3	2 mg/kg
Nitrate/Nitrite, Total as N	EPA 353.2	0.2 mg/kg
Phosphorus, Total	SM4500PF	0.2 mg/kg
AGGREGATE ORGANIC CONSTITUENTS		
Total Organic Carbon	EPA 415.1	2 mg/kg
METALS		
Metals Scan (Total)	EPA 6010B	See Table 5
PESTICIDES AND PCBs		
Organochlorine Pesticide and PCB Scan	EPA 8081 and EPA 8082	See Table 6
organicement resticide and red beam	E171 0001 and E171 0002	See Table 0

^{*} Resolution Limit

Table 2. Parameters analyzed in collected receiving water samples.

Parameter	Method	Detection Limit
PHYSICAL AND AGGREGATE PROPERTIES		
Alkalinity, Total	SM2320B	4 mg/l
Total Dissolved Solids	EPA 160.1	5 mg/l
Total Suspended Solids	EPA 160.2	4 mg/l
True Color	ASTM D-1209-05	1 S.U.
NUTRIENTS		
Ammonia, Total as N	EPA 350.1	0.02 mg/l
Kjeldahl Nitrogen, Total as N	EPA 351.3	0.2 mg/l
Nitrate/Nitrite, Total as N	EPA 353.2	0.02 mg/l
Phosphorus, Dissolved	SM4500PF	0.02 mg/l
Phosphorus, Total	SM4500PF	0.02 mg/l
Orthophosphate Phosphorus, Dissolved	EPA 365.1	0.02 mg/l
AGGREGATE ORGANIC CONSTITUENTS		
Chemical Oxygen Demand	ASTM D1252	3 mg/l
Chlorophyll a (corrected)	SM10200H2	1 ug/l
Dissolved Organic Carbon	EPA 415.1	0.2 mg/l
Total Organic Carbon	EPA 415.1	0.2 mg/l
Trihalomethane Formation Potential	SM5710	1 ug/l
METALS		
Metals Scan (Total)	EPA 6010B	See Table 5
PESTICIDES AND PCBs		
Organochlorine Pesticide and PCB Scan	EPA 8081 and EPA 8082	See Table 6

Table 3. Parameters analyzed in standard elutriate water samples.

Parameter*	Method	Detection Limit
	Method	Detection Limit
SAMPLE PREPARATION		
Elutriate Sample Preparation	1:4 Sediment:Receiving Water	
PHYSICAL AND AGGREGATE PROPERTIES		
Alkalinity	SM2320B	4 mg/l
Color	ASTM D-1209-05	1 S.U.
рН	EPA 150.1	0.1 S.U.**
Total Dissolved Solids	EPA 160.1	5 mg/l
NUTRIENTS		
Ammonia, Dissolved as N	EPA 350.1	0.02 mg/l
Kjeldahl Nitrogen, Dissolved as N	EPA 351.3	0.2 mg/l
Nitrate/Nitrite, Dissolved as N	EPA 353.2	0.02 mg/l
Phosphorus, Dissolved	SM4500PF	0.02 mg/l
Ortho-Phosphorus, Dissolved	EPA 365.1	0.02 mg/l
AGGREGATE ORGANIC CONSTITUENTS		
Chemical Oxygen Demand, Dissolved	ASTM D1252	3 mg/l
Dissolved Organic Carbon	EPA 415.1	0.2 mg/l
Trihalomethane Formation Potential, Dissolved	SM5710	1 ug/l
METALS		
Metals Scan (Dissolved)	EPA 6010B	See Table 5
PESTICIDES AND PCBs		
Organochlorine Pesticide and PCB Scan (Dissolved)	EPA 8081 and EPA 8082	See Table 6

^{*} Since the final step in preparing elutriate samples is filtration (0.45 micron filter), the results for all parameters are reported as dissolved.

** Resolution limit.

 Table 4. Parameters analyzed in Pre-Elutriate Water Samples.

Parameter*	Method	Detection Limit
PHYSICAL AND AGGREGATE PROPERTIES		
Total Suspended Solids	EPA 160.1	4 mg/l
Turbidity	EPA 180.1	1 NTU
NUTRIENTS		
Ammonia, Total as N	EPA 350.1	0.02 mg/l
Kjeldahl Nitrogen, Total as N	EPA 351.3	0.2 mg/l
Nitrate/Nitrite, Total as N	EPA 353.2	0.02 mg/l
Phosphorus, Total	SM4500PF	0.02 mg/l
AGGREGATE ORGANIC CONSTITUENTS		
Total Organic Carbon	EPA 415.1	0.2 mg/l
Trihalomethane Formation Potential, Total	SM5710	1 ug/l

Table 5. Individual metals included in the metals scan of sediment and water samples and the appropriate detection limits.

	Sediment Detection Limit	Water Detection Limit		Sediment Detection Limit	Water Detection Limit
Metal	(mg/kg)	(ug/l)	Metal	(mg/kg)	(ug/l)
Aluminum	2	25	Lead	1	0.5
Antimony	1	0.5	Magnesium	2	1,000
Arsenic	1	1	Manganese	1	2
Beryllium	0.1	2	Mercury	0.2	0.02
Cadmium	0.5	0.2	Nickel	0.2	10
Calcium	5	1,000	Selenium	1	1
Chromium	0.2	1	Silver	1	1
Copper	0.2	1	Thallium	1	0.5
Cyanide	0.5	8	Zinc	1	10
Iron	4	7			

Table 6. Individual constituents included in the organochlorine pesticide and PCB scan of sediment and water samples and the appropriate detection limits.

	Sediment	Water		Sediment	Water
Parameter	Detection Limit	Detection Limit	Parameter	Detection Limit	Detection Limit
	$(\mu g/kg)$	(µg/l)		(µg/kg)	(μg/l)
DDE	0.8	0.005	Alpha-BHC (alpha-Lindane)	0.4	0.009
DDD	0.7	0.005	Beta-BHC (beta-Lindane)	0.9	0.009
DDT	1.0	0.004	Delta-BHC (delta-Lindane)	1.8	0.014
Methoxychlor	1.2	0.005	Gamma-BHC (gamma-Lindane)	0.6	0.035
Aldrin	0.7	0.008	Gamma-Chlordane	0.8	0.006
Dieldrin	0.7	0.004	PCB - Aroclor1016	16	0.110
Endosulfan 1	0.7	0.006	PCB - Aroclor1221	14	0.194
Endosulfan 2	0.8	0.003	PCB - Aroclor1232	10	0.171
Endosulfan Sulfate	1.0	0.010	PCB - Aroclor1242	10	0.107
Endrin	1.0	0.003	PCB - Aroclor1248	12	0.218
Endrin Aldehyde	1.0	0.011	PCB - Aroclor1254	16	0.155
Endrin Ketone	0.8	0.006	PCB - Aroclor1260	15	0.129
Heptachlor	0.5	0.009	PCB - Aroclor1262	9	0.157
Heptachlor Epoxide	0.8	0.007	PCB - Aroclor1268	10	0.236
Alpha-Chlordane	0.8	0.011			

3 RESULTS

3.1 MISSOURI RIVER BIOP SEGMENT 8 – FORT RANDALL DAM TO NIOBRARA RIVER

3.1.1 Sediment Sampling Site Locations

Sediment samples were collected on 29-July-2009 at site RM867 and on 27-August-2009 at site RM853. The field determined latitude and longitude of the sediment sampling locations (i.e., SSM, SSC, and BWD) at sites RM867 and RM853 are given in Table 7. Plate 8, Plate 9, and Plate 10, respectively, are photographs taken at site locations RM867SSM, RM867SSC, and RM867BWD at the time sediment samples were collected. Plate 11, Plate 12, and Plate 13, respectively, are photographs taken of site locations RM853SSM, RM853SSC, and RM853BWD at the time of sediment sampling.

Table 7. Field determined latitude and longitude for sediment sampling site locations on segment 8.

Site	Location	Latitude*	Longitude*
RM867	SSM – Main Channel	42° 55' 40.6" N	98° 25' 18.4" W
RM867	SSC – Side Channel	42° 55' 41.0" N	98° 24' 50.2" W
RM867	BWD – Backwater/Detritus	42° 55' 43.2" N	98° 25' 00.5" W
RM853	SSM – Main Channel	42° 50' 36.8" N	98° 11' 42.3" W
RM853	SSC – Side Channel	42° 50′ 31.0″ N	98° 10′ 53.2″ W
RM853	BWD – Backwater/Detritus	42° 50′ 31.8″ N	98° 11' 00.1" W

^{*} NAD27 CONUS

3.1.2 Field Measured Water Quality Conditions

Field measured water quality conditions of the main-channel Missouri River at the time of sediment and receiving water sample collection at sites RM867 and RM853 are given in Table 8.

Table 8. Field measured water quality conditions of the main-channel Missouri River at sites RM867 and RM853.

Parameter	RM867	RM853
Date Sampled	29-Jul-09	27-Aug-09
Water Temperature (°C)	20.3	23.6
Dissolved Oxygen (mg/l)	7.6	8.4
Dissolved Oxygen (% Sat.)	86.0	102.1
pH (S.U.)	7.9	8.4
Specific Conductance (µmhos/cm)	768	772
Oxidation-Reduction Potential (mV)	318	311
Turbidity (NTU)	2	0

3.1.3 Laboratory Results

3.1.3.1 Composition of Collected Sediment Samples

Table 9 summarizes the composition of the collected sediment samples at site locations RM867SSM, RM867SSC, RM867BWD, RM853SSM, RM853SSC, and RM853BWD. Appendix A includes the "Particle Size Distribution Reports" received from Midwest laboratories, Inc. for the collected sediment samples.

Table 9. Composition of sediment samples collected at sites RM867 and RM853.

Site	Percent Gravel		Percent Sand			Gravel Percent Sand Percent Fines			t Fines
Location	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
RM867SSM	0.0	0.0	0.0	6.2	91.5	1.1	1.2		
RM867SSC	0.0	0.2	1.0	13.1	84.9	0.0	1.2		
RM867BWD	0.0	0.0	0.2	15.3	76.7	6.6	1.2		
RM853SSM	0.0	0.0	0.0	7.2	91.5	0.5	0.8		
RM853SSC	0.0	0.0	0.0	1.3	94.4	3.5	0.8		
RM853BWD	0.0	0.0	0.0	3.6	91.8	3.8	0.8		

3.1.3.2 Sediment and Elutriate Test Results

Table 10, Table 11, and Table 12, respectively, provide laboratory results of the physicochemical analyses of the collected sediment samples at site locations RM867SSM, RM867SSC, and RM867BWD. Pre-elutriate and standard-elutriate test results of the collected sediment samples at the three locations sampled at site RM867, and the quality of the receiving water used in the elutriate testing, are also provided in the Tables. Table 13, Table 14, and Table 15, respectively, provide laboratory results of the physicochemical analyses of the collected sediment samples at site locations RM853SSM, RM853SSC, and RM853BWD. Pre-elutriate and standard-elutriate test results of the collected sediment samples at the three locations sampled at site RM853, and the quality of the receiving water used in the elutriate testing, are also provided in the Tables. Appendix B includes the "Analytical Reports" received from Midwest laboratories, Inc. that give the analytical results for the collected soil (i.e., sediment) and receiving water samples, and the prepared pre-elutriate and elutriate samples.

Table 10. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM867SSM.

			Receiving Water	Pre-Elutriate	Standard Elutriate
Parameter	Units*	Sediment	(RM867)	Water**	Water***
Alkalinity	mg/kg mg/l	n.d.	152		169
Carbon, Organic (Dissolved)	mg/l		2.6		n.d.
Carbon, Organic (Total)	mg/kg mg/l	300	2.8	4.6	
Chemical Oxygen Demand	mg/kg mg/l		9		13
Chlorophyll a	μg/l		1		
Color, True	S.U. (APHA)		5		6
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		234		
Nitrogen, Ammonia (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Ammonia (Total)	mg/kg mg/l	n.d.	0.03	n.d.	
Nitrogen, Kjeldahl (Dissolved)	mg/l		0.5		n.d.
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	74.7	0.5	1.4	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	n.d.	0.05	n.d.	
Oxidation-Reduction Potential	mV	-160	-188		-135
pH	S.U.	7.9	8.3		8.1
Phosphorus, Dissolved	mg/l		n.d.		n.d.
Phosphorus, Orthophosphate	mg/l		n.d.		n.d.
Phosphorus, Total	mg/kg mg/l	365	0.02	0.18	
Solids, Total Dissolved	mg/l		626		673
Solids, Total Suspended	mg/l		13	134	
Turbidity	NTU		n.d.	205	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	2,523	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	n.d.		0.6
Arsenic	mg/kg μg/l	8.49	n.d.		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	0.15	n.d.		n.d.
Calcium	mg/kg mg/l	9,338	60		60
Chromium	mg/kg μg/l	0.15	n.d.		n.d.
Copper	mg/kg μg/l	4.7	n.d.		20
Iron	mg/kg μg/l	11,993	n.d.		130
Lead	mg/kg μg/l	7.97	n.d.		n.d.
Magnesium	mg/kg mg/l	3,021	20.5		20.7
Manganese	mg/kg μg/l	439	n.d.		30
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	15.3	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	4		4
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	29.9	40		110
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/kg μg/1 μg/l		191	170	184
THMFP-Bromodichloromethane	μg/I μg/l		28	26	29
THMFP-Bromoform	•••		n.d.	n.d.	
THMFP-Chlorodibromomethane	μg/l		6	11.d. 5	n.d.
	μg/l				6
THMFP-Chloroform	μg/l		157	138	149

^{*} Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

^{***} All reported values for parameters are dissolved.

^{****} See Table 6.

Table 11. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM867SSC.

			Receiving Water	Pre-Elutriate	Standard Elutriate
Parameter	Units*	Sediment	(RM867)	Water**	Water***
Alkalinity	mg/kg mg/l	n.d.	152		164
Carbon, Organic (Dissolved)	mg/l		2.6		n.d.
Carbon, Organic (Total)	mg/kg mg/l	200	2.8	5.6	
Chemical Oxygen Demand	mg/kg mg/l		9		11
Chlorophyll a	μg/l		1		
Color, True	S.U. (APHA)		5		6
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		234		
Nitrogen, Ammonia (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Ammonia (Total)	mg/kg mg/l	n.d.	0.03	n.d.	
Nitrogen, Kjeldahl (Dissolved)	mg/l		0.5		n.d.
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	76.2	0.5	1.0	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	n.d.	0.05	n.d.	
Oxidation-Reduction Potential	mV	-179	-188		-141
рН	S.U.	7.5	8.3		8.2
Phosphorus, Dissolved	mg/l		n.d.		n.d.
Phosphorus, Orthophosphate	mg/l		n.d.		n.d.
Phosphorus, Total	mg/kg mg/l	322	0.02	0.15	
Solids, Total Dissolved	mg/l		626		626
Solids, Total Suspended	mg/l		13	97	
Turbidity	NTU		n.d.	130	n.d.
Metals (Water - Dissolved)				·	
Aluminum	mg/kg μg/l	1,990	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	n.d.		n.d.
Arsenic	mg/kg μg/l	10.4	n.d.		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	0.17	n.d.		n.d.
Calcium	mg/kg mg/l	8,500	60		60
Chromium	mg/kg μg/l	4.3	n.d.		n.d.
Copper	mg/kg μg/l	4.3	n.d.		n.d.
Iron	mg/kg μg/l	13,102	n.d.		50
Lead	mg/kg μg/l	6.73	n.d.		n.d.
Magnesium	mg/kg mg/l	1,902	20.5		20.7
Manganese	mg/kg μg/l	833	n.d.		10
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	16.5	n.d.		n.d.
Selenium	mg/kg μg/l	0.64	4		4
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc		31.6	40		100
Pesticides, Organochlorine****	mg/kg μg/l				
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
	μg/kg μg/l	n.d.	n.d.	166	n.d.
THM Formation Potential	μg/l		191	166	182
THMFP-Bromodichloromethane	μg/l		28	26	28
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		6	n.d.	6
THMFP-Chloroform	μg/l		157	135	148

^{*} Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

^{***} All reported values for parameters are dissolved.

^{****} See Table 6.

Table 12. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM867BWD.

			Receiving Water	Pre-Elutriate	Standard Elutriate
Parameter	Units*	Sediment	(RM867)	Water**	Water***
Alkalinity	mg/kg mg/l	1,630	152		178
Carbon, Organic (Dissolved)	mg/l		2.6		1.1
Carbon, Organic (Total)	mg/kg mg/l	290	2.8	2.1	
Chemical Oxygen Demand	mg/kg mg/l		9		16
Chlorophyll a	μg/l		1		
Color, True	S.U. (APHA)		5		7
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		234		
Nitrogen, Ammonia (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Ammonia (Total)	mg/kg mg/l	n.d.	0.03	0.05	
Nitrogen, Kjeldahl (Dissolved)	mg/l		0.5		n.d.
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	15.8	0.5	1.2	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	n.d.	0.05	n.d.	
Oxidation-Reduction Potential	mV	-140	-188		-135
pН	S.U.	7.7	8.3		8.0
Phosphorus, Dissolved	mg/l		n.d.		n.d.
Phosphorus, Orthophosphate	mg/l		n.d.		n.d.
Phosphorus, Total	mg/kg mg/l	406	0.02	0.23	
Solids, Total Dissolved	mg/l		626		786
Solids, Total Suspended	mg/l		13	237	
Turbidity	NTU		n.d.	298	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	2,250	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	n.d.		1
Arsenic	mg/kg μg/l	11	n.d.		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	0.22	n.d.		n.d.
Calcium	mg/kg mg/l	9,883	60		60
Chromium	mg/kg μg/l	5	n.d.		n.d.
Copper	mg/kg μg/l	4.7	n.d.		n.d.
Iron	mg/kg μg/l	13,230	n.d.		n.d.
Lead		6.64	n.d.		n.d.
	mg/kg μg/l mg/kg mg/l	2,716	20.5		17.7
Magnesium		511	n.d.		n.d.
Manganese	mg/kg μg/l				
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	15	n.d.		n.d.
Selenium	mg/kg μg/l	1.23	4		3
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	34.0	40		80
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		191	141	192
THMFP-Bromodichloromethane	μg/l		28	23	29
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		6	n.d.	n.d.
THMFP-Chloroform	μg/l		157	114	159
TIME CINCIOIOI	μ5/1		137	11-7	137

^{*} Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

^{***} All reported values for parameters are dissolved.

^{****} See Table 6.

 Table 13.
 Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate
 water analyses for site location RM853SSM.

			Receiving		Standard
			Water	Pre-Elutriate	Elutriate
Parameter	Units*	Sediment	(RM853)	Water**	Water***
Alkalinity	mg/kg mg/l	281	156		169
Carbon, Organic (Dissolved)	mg/l		2.8		2.8
Carbon, Organic (Total)	mg/kg mg/l	110	3.0	3.2	
Chemical Oxygen Demand	mg/kg mg/l		9		15
Chlorophyll a	μg/l		n.d.		
Color, True	S.U. (APHA)		6		6
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		240		
Nitrogen, Ammonia (Dissolved)	mg/l		0.08		n.d.
Nitrogen, Ammonia (Total)	mg/kg mg/l	n.d.	0.10	n.d.	
Nitrogen, Kjeldahl (Dissolved)	mg/l		n.d.		0.2
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	129	0.2	0.5	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	n.d.	0.03	n.d.	
Oxidation-Reduction Potential	mV	-160	-170		-110
pH	S.U.	8.6	8.1		8.4
Phosphorus, Dissolved	mg/l		n.d.		n.d.
Phosphorus, Orthophosphate	mg/l		n.d.		n.d.
Phosphorus, Total	mg/kg mg/l	295	0.02	0.12	
Solids, Total Dissolved	mg/l		570		630
Solids, Total Suspended	mg/l		n.d.	33	
Turbidity	NTU		n.d.	159	n.d.
Metals – (Water - Dissolved)					
Aluminum	mg/kg μg/l	1,879	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	n.d.		n.d.
Arsenic	mg/kg μg/l	8.94	2		1
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	0.15	n.d.		n.d.
Calcium	mg/kg mg/l	7,591	61		58
Chromium	mg/kg mg/l	4.3	n.d.		n.d.
Copper	mg/kg μg/l	4.22	n.d.		n.d.
Iron		12,905	40		20
	mg/kg μg/l				
Lead	mg/kg μg/l	4.57	n.d.		n.d.
Magnesium	mg/kg mg/l	1,756	21.4		20.4
Manganese	mg/kg μg/l	492	n.d.		n.d.
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg µg/l	15	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	2		2
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	33.3	60		80
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		165	302	182
THMFP-Bromodichloromethane	μg/l		25	34	27
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane			6	6	6
THMFP-Chloroform	μg/l				149
THIVIFF-CIIIOTOTOTIII	μg/l		134	262	149

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

 Table 14.
 Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate
 water analyses for site location RM853SSC.

			Receiving		Standard
			Water	Pre-Elutriate	Elutriate
Parameter	Units*	Sediment	(RM853)	Water**	Water***
Alkalinity	mg/kg mg/l	1,131	156		167
Carbon, Organic (Dissolved)	mg/l		2.8		2.5
Carbon, Organic (Total)	mg/kg mg/l	260	3.0	2.3	
Chemical Oxygen Demand	mg/kg mg/l		9		12
Chlorophyll a	μg/l		n.d.		
Color, True	S.U. (APHA)		6		8
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		240		
Nitrogen, Ammonia (Dissolved)	mg/l		0.08		0.11
Nitrogen, Ammonia (Total)	mg/kg mg/l	n.d.	0.10	0.10	
Nitrogen, Kjeldahl (Dissolved)	mg/l		n.d.		0.6
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	119	0.2	1.1	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	n.d.	0.03	n.d.	
Oxidation-Reduction Potential	mV	-180	-170		-117
pH	S.U.	8.2	8.1		8.2
Phosphorus, Dissolved	mg/l		n.d.		n.d.
Phosphorus, Orthophosphate	mg/l		n.d.		n.d.
Phosphorus, Total	mg/kg mg/l	355	0.02	0.14	
Solids, Total Dissolved	mg/l		570		694
Solids, Total Suspended	mg/l		n.d.	104	
Turbidity	NTU		n.d.	232	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	2,881	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	n.d.		n.d.
Arsenic	mg/kg μg/l	7.18	2		1
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	0.22	n.d.		n.d.
Calcium	mg/kg mg/l	7,944	61		61
Chromium	mg/kg μg/l	6.3	n.d.		n.d.
Copper	mg/kg μg/l	4.08	n.d.		n.d.
Iron		10,071	40		n.d.
Lead	mg/kg μg/l	5.60	n.d.		n.d.
	mg/kg μg/l				
Magnesium	mg/kg mg/l	3,165	21.4		18
Manganese	mg/kg μg/l	325	n.d.		n.d.
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	14	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	2		3
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	29.8	60		190
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		165	262	122
THMFP-Bromodichloromethane	μg/l		25	34	22
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		6	6	5
THMFP-Chloroform			134	222	95
THMFF-CHIOIOIOIIII	μg/l		134	222	93

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

 Table 15.
 Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate
 water analyses for site location RM853BWD.

			Receiving		Standard
			Water	Pre-Elutriate	Elutriate
Parameter	Units*	Sediment	(RM853)	Water**	Water***
Alkalinity	mg/kg mg/l	795	156		169
Carbon, Organic (Dissolved)	mg/l		2.8		2.0
Carbon, Organic (Total)	mg/kg mg/l	300	3.0	2.1	
Chemical Oxygen Demand	mg/kg mg/l		9		13
Chlorophyll a	μg/l		n.d.		
Color, True	S.U. (APHA)		6		9
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		240		
Nitrogen, Ammonia (Dissolved)	mg/l		0.08		n.d.
Nitrogen, Ammonia (Total)	mg/kg mg/l	n.d.	0.10	n.d.	
Nitrogen, Kjeldahl (Dissolved)	mg/l		n.d.		0.6
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	128	0.2	0.9	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	n.d.	0.03	n.d.	
Oxidation-Reduction Potential	mV	-160			
pH	S.U.	7.9	8.1		8.0
Phosphorus, Dissolved	mg/l		n.d.		n.d.
Phosphorus, Orthophosphate	mg/l		n.d.		n.d.
Phosphorus, Total	mg/kg mg/l	365	0.02	0.18	
Solids, Total Dissolved	mg/l		570		598
Solids, Total Suspended	mg/l		n.d.	207	
Turbidity	NTU		n.d.	248	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	2,848	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	n.d.		n.d.
Arsenic	mg/kg μg/l	8.06	2		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	0.18	n.d.		n.d.
Calcium	mg/kg mg/l	8,160	61		64
Chromium	mg/kg mg/l	6.3	n.d.		n.d.
Copper	mg/kg μg/l	4.04	n.d.		n.d.
Iron		10,444	40		n.d.
	mg/kg μg/l				
Lead	mg/kg μg/l	5.27	n.d.		n.d.
Magnesium	mg/kg mg/l	3,166	21.4		19.4
Manganese	mg/kg μg/l	354	n.d.		n.d.
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	14	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	2		2
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	29.9	60		80
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		165	229	113
THMFP-Bromodichloromethane	μg/l		25	32	20
THMFP-Bromoform	μg/l μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane			6	11.d. 5	n.d.
THMFP-Chloroform	μg/l			192	11.u. 89
THMFF-CIII01010IIII	μg/l		134	192	89

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

3.2 MISSOURI RIVER BIOP SEGMENT 9 – NIOBRARA RIVER TO GAVINS POINT DAM

3.2.1 Sediment Sampling Site Locations

Sediment samples were collected on 16-July-2009 at sites RM842 and RM827. The field determined latitude and longitude of the sediment sampling locations (i.e., SSM, SSC, and BWD) at sites RM842 and RM827 are given in Table 16. Plate 14, Plate 15, and Plate 16, respectively, are photographs taken at site locations RM842SSM, RM842SSC, and RM842BWD at the time sediment samples were collected. Plate 17, Plate 18, and Plate 19, respectively, are photographs taken of site locations RM827SSM, RM827SSC, and RM827BWD at the time of sediment sampling.

Table 16. Field determined latitude and longitude for sediment sampling site locations on segment 9.

Site	Location	Latitude*	Longitude*
RM842	SSM – Main Channel	42° 45' 58.8" N	98° 00' 33.1" W
RM842	SSC – Side Channel	42° 46' 13.1" N	98° 00' 24.6" W
RM842	BWD – Backwater/Detritus	42° 46' 10.7" N	98° 00' 30.7" W
RM827	SSM – Main Channel	42° 51' 06.4" N	97° 47′ 38.4″ W
RM827	SSC – Side Channel	42° 51' 22.5" N	97° 47' 57.7" W
RM827	BWD – Backwater/Detritus	42° 51' 21.0" N	97° 48' 02.0" W

^{*} NAD27 CONUS

3.2.2 Field Measured Water Quality Conditions

Field measured water quality conditions of the main-channel Missouri River at the time of sediment and receiving water sample collection at sites RM842 and RM827 are given in Table 17.

Table 17. Field measured water quality conditions of the main-channel Missouri River at sites RM842 and RM827.

Parameter	RM842	RM827
Date Sampled	16-Jul-09	16-Jul-09
Water Temperature (°C)	21.5	23.4
Dissolved Oxygen (mg/l)	7.9	7.8
Dissolved Oxygen (% Sat.)	94.1	94.6
pH (S.U.)	8.1	7.8
Specific Conductance (µmhos/cm)	751	688
Oxidation-Reduction Potential (mV)	294	285
Turbidity (NTU)	60	29

3.2.3 Laboratory Results

3.2.3.1 Composition of Collected Sediment Samples

Table 18 summarizes the composition of the collected sediment samples at site locations RM842SSM, RM842SSC, RM842BWD, RM827SSM, RM827SSC, and RM827BWD. Appendix A includes the "Particle Size Distribution Reports" received from Midwest laboratories, Inc. for the collected sediment samples.

Table 18. Composition of sediment samples collected at sites RM842 and RM827.

Site	Percent	Gravel	Percent Sand			Percent Fines	
Location	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
RM842SSM	0.0	0.0	0.0	1.1	96.6	1.0	1.3
RM842SSC	0.0	0.0	0.2	0.9	96.2	1.4	1.3
RM842BWD	0.0	0.0	0.0	1.4	76.5	19.0	3.1
RM827SSM	0.0	0.0	0.0	0.1	55.2	37.4	7.3
RM827SSC	0.0	0.0	0.0	0.5	70.8	24.2	4.5
RM827BWD	0.0	0.0	0.0	0.3	92.9	5.5	1.3

3.2.3.2 Sediment and Elutriate Test Results

Table 19, Table 20, and Table 21, respectively, provide laboratory results of the physicochemical analyses of the collected sediment samples at site locations RM842SM, RM842SSC, and RM842BWD. Pre-elutriate and standard-elutriate test results of the collected sediment samples at the three locations sampled at site RM842, and the quality of the receiving water used in the elutriate testing, are also provided in the Tables. Table 22, Table 23, and Table 24, respectively, provide laboratory results of the physicochemical analyses of the collected sediment samples at site locations RM827SSM, RM827SSC, and RM827BWD. Pre-elutriate and standard-elutriate test results of the collected sediment samples at the three locations sampled at site RM827, and the quality of the receiving water used in the elutriate testing, are also provided in the Tables. Appendix B includes the "Analytical Reports" received from Midwest laboratories, Inc. that give the analytical results for the collected soil (i.e., sediment) and receiving water samples, and the prepared pre-elutriate and elutriate samples.

Table 19. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM842SSM.

Parameter				Receiving		Standard
Alkalminy	_			Water	Pre-Elutriate	Elutriate
Carbon, Organic (Dissolved) mg/kg mg/l 400 2.7 3.0 Carbon, Organic (Total) mg/kg mg/l 400 2.7 3.0 — Chlorophyll a μg/l — n.d. — 18 Chlorophyll a μg/l — 1 — — Color, True S.U. (APHA) — 5 — 5 Cyanide mg/kg µg/l n.d. n.d. — n.d. Hardness, Dissolved mg/l — 223 — — 0.20 Nitrogen, Ammonia (Dissolved) mg/l — 0.6 — 0.9 Nitrogen, Sicladal (Dissolved) mg/l — 0.6 — 0.9 Nitrogen, Mirate/Nitrite (Dissolved) mg/l — n.d. — 0.0				- /		
Carbon, Organic (Total) mg/kg mg/l 400 2.7 3.0			362			
Chemical Oxygen Demand mg/kg mg/l 1.4						3.0
Color, True S.U. (APHA) 5					3.0	
Color, True S.U. (APHA) 5 5 5 Cyanide mg/kg μg/l n.d. n.d. n.d. n.d. mg/kg μg/l n.d. n.d. 0.20 mg/l 0.6 0.20 mg/l 0.6 0.20 mg/l 0.6 0.9 Mitrogen, Ammonia (Dissolved) mg/kg mg/l n.d. 0.03 0.30 0.5 mg/kg mg/l 0.6 0.9 Mitrogen, Kjeldahl (Dissolved) mg/kg mg/l 59.3 0.7 1.1 n.d. n.d. n.d. mg/kg mg/l 1.1 0.11 n.d. n.d. m.d. m.						18
Cyanide mg/kg μg/l n.d. m.d. m.d. m.d. m.d. Hardness, Dissolved mg/l n.d. 0.20						
Hardness, Dissolved mg/l 223 0.20						5
Nitrogen, Ammonia (Dissolved) mg/l n.d. 0.20			n.d.			n.d.
Nitrogen, Ammonia (Total) mg/kg mg/l m.d. 0.03 0.30 Nitrogen, Kjeldahl (Dissolved) mg/l 0.6 0.9 Nitrogen, Kjeldahl (Total) mg/kg mg/l 59.3 0.7 1.1 Nitrogen, Nitrate/Nitrite (Dissolved) mg/l m.d. m.d. Nitrogen, Nitrate/Nitrite (Total) mg/kg mg/l 1.1 0.11 n.d. Oxidation-Reduction Potential mV -84 -47 -75 PH S.U. 8.2 8.3 8.1 Phosphorus, Dissolved mg/l n.d. n.d. Phosphorus, Orthophosphate mg/l n.d. n.d. Phosphorus, Orthophosphate mg/l n.d. n.d. Phosphorus, Total mg/kg mg/l 131 0.04 0.26 Solids, Total Dissolved mg/l 334 534 Solids, Total Suspended mg/l 3 269 1 Wetals (Water - Dissolved)				223		
Nitrogen, Kjeldahl (Dissolved) mg/l	. ,					0.20
Nitrogen, Kjeldahl (Total) mg/kg mg/l 59.3 0.7 1.1 Nitrogen, Nitrate/Nitrite (Dissolved) mg/kg mg/l 1.1 0.11 n.d. n.d. n.d. n.d. n.d. n.d. 7.75 pH S.U. 8.2 8.3 8.1 Phosphorus, Dissolved mg/l n.d. n.d. n.			n.d.	0.03	0.30	
Nitrogen, Nitrate/Nitrite (Dissolved) mg/l n.d. Nitrogen, Nitrate/Nitrite (Total) mykg mg/l 1.1 0.11 n.d. Oxidation-Reduction Potential mV .84 447 75 pH S.U. 8.2 8.3 n.d. 5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34 1.34 1.4 2.75						0.9
Nitrogen, Nitrate/Nitrite (Total) mg/kg mg/l 1.1 0.11 n.d. ————————————————————————————————————	Nitrogen, Kjeldahl (Total)	mg/kg mg/l	59.3	0.7	1.1	
Oxidation-Reduction Potential						n.d.
DH	Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	1.1	0.11	n.d.	
Phosphorus, Dissolved mg/l	Oxidation-Reduction Potential	mV		-47		-75
Phosphorus, Orthophosphate mg/l n.d. n.d. Phosphorus, Total mg/kg mg/l 131 0.04 0.26 Solids, Total Dissolved mg/l 534 534 Solids, Total Suspended mg/l 4 275 Turbidity NTU 3 269 1 Metals (Water - Dissolved) Aluminum mg/kg µg/l 1,657 n.d. n.d. Aluminum mg/kg µg/l n.d. 0.9 0.5 Arsenic mg/kg µg/l n.d. 1 n.d. Beryllium mg/kg µg/l n.d. n.d. n.d. Cadmium mg/kg µg/l n.d. n.d. n.d. Calcium mg/kg µg/l 2,339 57 60 Chromium mg/kg µg/l 3,047 n.d.	pH	S.U.	8.2	8.3		8.1
Phosphorus, Total mg/kg mg/l 131 0.04 0.26				n.d.		n.d.
Solids, Total Dissolved mg/l 534 534 Solids, Total Suspended mg/l 4 275 Turbidity NTU 3 269 1	Phosphorus, Orthophosphate	mg/l		n.d.		n.d.
Solids, Total Suspended mg/l 4 275 Turbidity NTU 3 269 1 Metals (Water - Dissolved)		mg/kg mg/l	131	0.04	0.26	
Turbidity Metals (Water - Dissolved) M		mg/l		534		534
Metals (Water - Dissolved) mg/kg μg/l 1,657 n.d. n.d. Aluminum mg/kg μg/l n.d. 0.9 0.5 Arsenic mg/kg μg/l n.d. 1 n.d. Beryllium mg/kg μg/l n.d. n.d. n.d. Cadmium mg/kg μg/l n.d. n.d. n.d. Calcium mg/kg mg/l 2,339 57 60 Chromium mg/kg μg/l 5.1 n.d. n.d. Copper mg/kg μg/l 3,047 n.d. n.d. Iron mg/kg μg/l 3,047 n.d. n.d. Lead mg/kg μg/l 1,046 19.5 20.5 Manganesium mg/kg μg/l 1,046 19.5 20.5 Manganese mg/kg μg/l n.d. n.d. n.d. Nickel mg/kg μg/l n.d. <t< td=""><td>Solids, Total Suspended</td><td>mg/l</td><td></td><td>4</td><td>275</td><td></td></t<>	Solids, Total Suspended	mg/l		4	275	
Aluminum		NTU		3	269	1
Antimony mg/kg μg/l n.d. 0.9 0.5 Arsenic mg/kg μg/l n.d. 1 n.d. Beryllium mg/kg μg/l n.d. n.d. n.d. Cadmium mg/kg μg/l n.d. n.d. n.d. Calcium mg/kg mg/l 2,339 57 60 Chromium mg/kg μg/l 5.1 n.d. n.d. Copper mg/kg μg/l 3,047 n.d. n.d. Iron mg/kg μg/l 3,047 n.d. n.d. Lead mg/kg μg/l n.d. n.d. n.d. Magnesium mg/kg μg/l n.d. n.d. n.d. Mercury mg/kg μg/l n.d. n.d. n.d. Nickel mg/kg μg/l n.d. n.d. n.d. Selenium mg/kg μg/l n.d. n.d.	Metals (Water - Dissolved)					
Arsenic mg/kg μg/l n.d. 1 n.d. Beryllium mg/kg μg/l n.d. n.d. n.d. Cadmium mg/kg μg/l n.d. n.d. n.d. Calcium mg/kg μg/l 2,339 57 60 Chromium mg/kg μg/l 5.1 n.d. n.d. Copper mg/kg μg/l 2.75 n.d. n.d. Iron mg/kg μg/l 3,047 n.d. n.d. Lead mg/kg μg/l n.d. n.d. n.d. Magnesium mg/kg μg/l n.d. 1,046 19.5 20.5 Manganese mg/kg μg/l n.d. n.d. n.d. Mercury mg/kg μg/l n.d. n.d. n.d. Nickel mg/kg μg/l n.d. n.d. n.d. Selenium mg/kg μg/l n.d. n.d.	Aluminum	mg/kg μg/l	1,657	n.d.		n.d.
Arsenic mg/kg μg/l n.d. 1 n.d. Beryllium mg/kg μg/l n.d. n.d. n.d. Cadmium mg/kg μg/l n.d. n.d. n.d. Calcium mg/kg μg/l 2,339 57 60 Chromium mg/kg μg/l 5.1 n.d. n.d. Copper mg/kg μg/l 3,047 n.d. n.d. Iron mg/kg μg/l 3,047 n.d. n.d. Lead mg/kg μg/l n.d. n.d. n.d. Magnesium mg/kg μg/l n.d. n.d. n.d. Mercury mg/kg μg/l n.d. n.d. n.d. Nickel mg/kg μg/l n.d. n.d. n.d. Selenium mg/kg μg/l n.d. n.d. n.d. Thallium mg/kg μg/l n.d. n.d. n.d.	Antimony	mg/kg μg/l	n.d.	0.9		0.5
Beryllium mg/kg μg/l n.d. n.d. n.d. Cadmium mg/kg μg/l n.d. n.d. n.d. Calcium mg/kg mg/l 2,339 57 60 Chromium mg/kg μg/l 5.1 n.d. n.d. Copper mg/kg μg/l 2.75 n.d. n.d. Iron mg/kg μg/l 3,047 n.d. n.d. Lead mg/kg μg/l n.d. n.d. n.d. Magnesium mg/kg mg/l 1,046 19.5 20.5 Manganese mg/kg mg/kg μg/l n.d. n.d. n.d. Mercury mg/kg μg/l n.d. n.d. n.d. Nickel mg/kg μg/l n.d. 3 n.d. Selenium mg/kg μg/l n.d. n.d. n.d. Thallium mg/kg μg/l n.d. n.d.	Arsenic		n.d.	1		n.d.
Cadmium mg/kg μg/l n.d. n.d. n.d. Calcium mg/kg mg/l 2,339 57 60 Chromium mg/kg μg/l 5.1 n.d. n.d. Copper mg/kg μg/l 2.75 n.d. n.d. Iron mg/kg μg/l n.d. n.d. n.d. Lead mg/kg μg/l n.d. n.d. n.d. Magnesium mg/kg mg/l 1,046 19.5 20.5 Manganese mg/kg μg/l n.d. n.d. n.d. Mercury mg/kg μg/l n.d. n.d. n.d. Nickel mg/kg μg/l n.d. n.d. n.d. Selenium mg/kg μg/l n.d. n.d. n.d. Silver mg/kg μg/l n.d. n.d. n.d. Thallium mg/kg μg/l n.d. n.d. <td>Beryllium</td> <td></td> <td>n.d.</td> <td>n.d.</td> <td></td> <td>n.d.</td>	Beryllium		n.d.	n.d.		n.d.
Calcium mg/kg mg/l 2,339 57 60 Chromium mg/kg μg/l 5.1 n.d. n.d. Copper mg/kg μg/l 2.75 n.d. n.d. Iron mg/kg μg/l 3,047 n.d. n.d. Lead mg/kg μg/l n.d. n.d. n.d. Magnesium mg/kg mg/l 1,046 19.5 20.5 Manganese mg/kg μg/l n.d. n.d. n.d. Mercury mg/kg μg/l n.d. n.d. n.d. Nickel mg/kg μg/l n.d. 3 n.d. Selenium mg/kg μg/l n.d. 3 3 Silver mg/kg μg/l n.d. n.d. n.d. Thallium mg/kg μg/l n.d. n.d. 90 Pesticides, Organochlorine**** μg/kg μg/l n.d. n.d. <			n.d.			n.d.
Chromium mg/kg μg/l 5.1 n.d. n.d. Copper mg/kg μg/l 2.75 n.d. n.d. Iron mg/kg μg/l 3,047 n.d. n.d. Lead mg/kg μg/l n.d. n.d. n.d. Magnesium mg/kg mg/l 1,046 19.5 20.5 Manganese mg/kg μg/l 106 n.d. n.d. Mercury mg/kg μg/l n.d. n.d. n.d. Nickel mg/kg μg/l n.d. 3 n.d. Selenium mg/kg μg/l n.d. 3 n.d. Silver mg/kg μg/l n.d. n.d. n.d. Thallium mg/kg μg/l n.d. n.d. 90 Pesticides, Organochlorine**** μg/kg μg/l n.d. n.d. 90 Pesticides, Organochlorine**** μg/kg μg/l n.d.						
Copper mg/kg μg/l 2.75 n.d. n.d. Iron mg/kg μg/l 3,047 n.d. n.d. Lead mg/kg μg/l n.d. n.d. n.d. Magnesium mg/kg μg/l n.d. 1,046 19.5 20.5 Manganese mg/kg μg/l 106 n.d. n.d. Mercury mg/kg μg/l n.d. n.d. n.d. Nickel mg/kg μg/l n.d. 3 n.d. Selenium mg/kg μg/l n.d. 3 3 Silver mg/kg μg/l n.d. n.d. n.d. Thallium mg/kg μg/l n.d. n.d. n.d. Zinc mg/kg μg/l n.d. n.d. 90 Pesticides, Organochlorine**** μg/kg μg/l n.d. n.d. n.d. THM Formation Potential μg/l <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Iron						
Lead mg/kg μg/l n.d. n.d. n.d. Magnesium mg/kg mg/l 1,046 19.5 20.5 Manganese mg/kg μg/l 106 n.d. n.d. Mercury mg/kg μg/l n.d. n.d. n.d. Nickel mg/kg μg/l n.d. 3 n.d. Selenium mg/kg μg/l n.d. 3 n.d. Silver mg/kg μg/l n.d. n.d. n.d. Thallium mg/kg μg/l n.d. n.d. n.d. Zinc mg/kg μg/l n.d. n.d. 90 Pesticides, Organochlorine**** μg/kg μg/l n.d. n.d. n.d. Polychlorinated Biphenyls (PCBs)**** μg/kg μg/l n.d. n.d. n.d. THM Formation Potential μg/l 168 196 261 THMFP-Bromodichloromethane μg/l						
Magnesium mg/kg mg/l 1,046 19.5 20.5 Manganese mg/kg μg/l 106 n.d. n.d. Mercury mg/kg μg/l n.d. n.d. n.d. Nickel mg/kg μg/l 7.7 n.d. n.d. Selenium mg/kg μg/l n.d. 3 3 Silver mg/kg μg/l n.d. n.d. n.d. Thallium mg/kg μg/l n.d. n.d. 90 Pesticides, Organochlorine**** μg/kg μg/l n.d. n.d. 90 Pesticides, Organochlorine**** μg/kg μg/l n.d. n.d. 90 Pesticides, Organochlorine**** μg/kg μg/l n.d. n.d. n.d. THM Formation Potential μg/l 168 196 261 THMFP-Bromodichloromethane μg/l n.d. n.d. n.d. THMFP-Chlorodibromomet						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Mercury mg/kg μg/l n.d. n.d. n.d. Nickel mg/kg μg/l 7.7 n.d. n.d. Selenium mg/kg μg/l n.d. 3 3 Silver mg/kg μg/l n.d. n.d. n.d. Thallium mg/kg μg/l n.d. n.d. n.d. Zinc mg/kg μg/l 18.4 70 90 Pesticides, Organochlorine**** μg/kg μg/l n.d. n.d. n.d. Polychlorinated Biphenyls (PCBs)**** μg/kg μg/l n.d. n.d. n.d. THM Formation Potential μg/l 168 196 261 THMFP-Bromodichloromethane μg/l n.d. n.d. n.d. THMFP-Chlorodibromomethane μg/l n.d. n.d. n.d.		9				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Silver mg/kg $\mu g/l$ n.d. n.d. n.d. Thallium mg/kg $\mu g/l$ n.d. n.d. n.d. Zinc mg/kg $\mu g/l$ 18.4 70 90 Pesticides, Organochlorine**** $\mu g/kg$ $\mu g/l$ n.d. n.d. n.d. Polychlorinated Biphenyls (PCBs)**** $\mu g/kg$ $\mu g/l$ n.d. n.d. n.d. THM Formation Potential $\mu g/l$ 168 196 261 THMFP-Bromodichloromethane $\mu g/l$ n.d. n.d. n.d. THMFP-Chlorodibromomethane $\mu g/l$ n.d. n.d. n.d.						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Zinc mg/kg $\mu g/l$ 18.4 70 90 Pesticides, Organochlorine**** $\mu g/kg \mu g/l$ n.d. n.d. n.d. Polychlorinated Biphenyls (PCBs)**** $\mu g/kg \mu g/l$ n.d. n.d. n.d. THM Formation Potential $\mu g/l$ 168 196 261 THMFP-Bromodichloromethane $\mu g/l$ 26 29 28 THMFP-Bromoform $\mu g/l$ n.d. n.d. n.d. THMFP-Chlorodibromomethane $\mu g/l$ n.d. n.d. n.d.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		mg/kg μg/l	18.4	70		90
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			n.d.	n.d.		n.d.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		μg/kg μg/l	n.d.	n.d.		n.d.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	THM Formation Potential			168	196	261
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	THMFP-Bromodichloromethane	"1		26	29	28
THMFP-Chlorodibromomethane µg/l n.d. n.d. n.d.	THMFP-Bromoform			n.d.		n.d.
10						
	THMFP-Chloroform	μg/l		137	162	261

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

Table 20. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM842SSC.

			Receiving		Standard
			Water	Pre-Elutriate	Elutriate
Parameter	Units*	Sediment	(RM842)	Water**	Water***
Alkalinity	mg/kg mg/l	2,318	154		157
Carbon, Organic (Dissolved)	mg/l		2.6		3.0
Carbon, Organic (Total)	mg/kg mg/l	5,700	2.7	3.0	
Chemical Oxygen Demand	mg/kg mg/l		n.d.		17
Chlorophyll a	μg/l		1		
Color, True	S.U. (APHA)		5		8
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		223		
Nitrogen, Ammonia (Dissolved)	mg/l		n.d.		0.57
Nitrogen, Ammonia (Total)	mg/kg mg/l	n.d.	0.03	0.57	
Nitrogen, Kjeldahl (Dissolved)	mg/l		0.6		1.4
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	323	0.7	1.4	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	1.1	0.11	n.d.	
Oxidation-Reduction Potential	mV	-56	-47		-41
pH	S.U.	7.7	8.3		7.8
Phosphorus, Dissolved	mg/l		n.d.		n.d.
Phosphorus, Orthophosphate	mg/l		n.d.		n.d.
Phosphorus, Total	mg/kg mg/l	379	0.04	0.23	
Solids, Total Dissolved	mg/l		534		808
Solids, Total Suspended	mg/l		4	240	
Turbidity	NTU		3	325	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	4,484	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	0.9		n.d.
Arsenic	mg/kg μg/l	n.d.	1		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	14,558	57		61
Chromium	mg/kg μg/l	8.3	n.d.		n.d.
Copper	mg/kg µg/l	6.86	n.d.		n.d.
Iron	mg/kg μg/l	11,405	n.d.		n.d.
Lead	mg/kg μg/l	7.6	n.d.		n.d.
Magnesium	mg/kg mg/l	5,515	19.5		19.5
Manganese	mg/kg mg/l	368	n.d.		n.d.
Mercury		n.d.	n.d.		n.d.
Nickel	mg/kg μg/l				
	mg/kg μg/l	15	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	3		3
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	34.3	70		120
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		168	196	215
THMFP-Bromodichloromethane	μg/l		26	29	26
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		n.d.	n.d.	n.d.
THMFP-Chloroform	μg/l		137	162	186

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

 Table 21.
 Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate
 water analyses for site location RM842BWD.

			Receiving		Standard
_			Water	Pre-Elutriate	Elutriate
Parameter	Units*	Sediment	(RM842)	Water**	Water***
Alkalinity	mg/kg mg/l	3,446	154		157
Carbon, Organic (Dissolved)	mg/l		2.6		n.d.
Carbon, Organic (Total)	mg/kg mg/l	7,000	2.7	2.8	
Chemical Oxygen Demand	mg/kg mg/l		n.d.		13
Chlorophyll a	μg/l		1		
Color, True	S.U. (APHA)		5		n.d.
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		223		
Nitrogen, Ammonia (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Ammonia (Total)	mg/kg mg/l	n.d.	0.03	0.12	
Nitrogen, Kjeldahl (Dissolved)	mg/l		0.6		0.9.
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	281	0.7	0.9	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	1.2	0.11	n.d.	
Oxidation-Reduction Potential	mV	-100	-47		-31
рН	S.U.	7.5	8.3		7.3
Phosphorus, Dissolved	mg/l		n.d.		n.d.
Phosphorus, Orthophosphate	mg/l		n.d.		n.d.
Phosphorus, Total	mg/kg mg/l	436	0.04	0.13	n.d.
Solids, Total Dissolved	mg/l		534		532
Solids, Total Suspended	mg/l		4	173	
Turbidity	NTU		3	167	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	4,697	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	0.9		n.d.
Arsenic	mg/kg μg/l	n.d.	1		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	17,145	57		64
Chromium	mg/kg μg/l	8.6	n.d.		n.d.
Copper	mg/kg μg/l	8.22	n.d.		n.d.
Iron	mg/kg µg/l	12,071	n.d.		n.d.
Lead		7.0	n.d.		n.d.
Magnesium	mg/kg μg/l	5.453	19.5		16.8
	mg/kg mg/l	3,433	n.d.		
Manganese	mg/kg μg/l				n.d.
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	16	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	3		2
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	37.7	70		120
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		168	62	234
THMFP-Bromodichloromethane	μg/l		26	13	28
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		n.d.	2.7	n.d.
THMFP-Chloroform			137	46	202
THMIT-CHOIOIOIII	μg/l		157	40	202

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

 Table 22.
 Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate
 water analyses for site location RM827SSM.

		Receiving			Standard
			Water	Pre-Elutriate	Elutriate
Parameter	Units*	Sediment	(RM827)	Water**	Water***
Alkalinity	mg/kg mg/l	3,522	149		199
Carbon, Organic (Dissolved)	mg/l		3.8		2.2
Carbon, Organic (Total)	mg/kg mg/l	7,200	4.0	3.1	
Chemical Oxygen Demand	mg/kg mg/l		14		16
Chlorophyll a	μg/l		6		
Color, True	S.U. (APHA)		9		5
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		208		
Nitrogen, Ammonia (Dissolved)	mg/l		0.03		3.3
Nitrogen, Ammonia (Total)	mg/kg mg/l	34.2	0.03	3.6	
Nitrogen, Kjeldahl (Dissolved)	mg/l		n.d.		3.6
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	406	0.3	4.2	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	1.2	0.03	n.d.	
Oxidation-Reduction Potential	mV		-43		-82
pН	S.U.	7.5	8.1		7.3
Phosphorus, Dissolved	mg/l		n.d.		n.d.
Phosphorus, Orthophosphate	mg/l		n.d.		n.d.
Phosphorus, Total	mg/kg mg/l	360	n.d.	0.25	
Solids, Total Dissolved	mg/l		464		462
Solids, Total Suspended	mg/l		21	242	
Turbidity	NTU		22	287	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	6,498	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	n.d.		n.d.
Arsenic	mg/kg μg/l	n.d.	2		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	18,660	54		57
Chromium	mg/kg μg/l	10	n.d.		n.d.
Copper	mg/kg μg/l	10.4	n.d.		n.d.
Iron	mg/kg µg/l	11,914	n.d.		n.d.
Lead		7.0	n.d.		n.d.
	mg/kg μg/l				
Magnesium	mg/kg mg/l	6,463	17.7		18.7
Manganese	mg/kg μg/l	556	n.d.		n.d.
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	14	n.d.		n.d.
Selenium	mg/kg µg/l	n.d.	3		2
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	41.0	100		120
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		155	124	159
THMFP-Bromodichloromethane	μg/l		22	22	22
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		n.d.	4	n.d.
THMFP-Chloroform			133	98	134
THMIT-CHOIOIOIII	μg/l		133	90	134

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

 Table 23.
 Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate
 water analyses for site location RM827SSC.

		Receiving			Standard
			Water	Pre-Elutriate	Elutriate
Parameter	Units*	Sediment	(RM827)	Water**	Water***
Alkalinity	mg/kg mg/l	3,237	149		184
Carbon, Organic (Dissolved)	mg/l		3.8		4.1
Carbon, Organic (Total)	mg/kg mg/l	5,600	4.0	4.0	
Chemical Oxygen Demand	mg/kg mg/l		14		13
Chlorophyll a	μg/l		6		
Color, True	S.U. (APHA)		9		5
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		208		
Nitrogen, Ammonia (Dissolved)	mg/l		0.03		n.d.
Nitrogen, Ammonia (Total)	mg/kg mg/l	18.5	0.03	n.d.	
Nitrogen, Kjeldahl (Dissolved)	mg/l		n.d.		1.0
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	396	0.3	1.7	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	1.7	0.03	n.d.	
Oxidation-Reduction Potential	mV	-190	-43		-80
pH	S.U.	7.6	8.1		7.5
Phosphorus, Dissolved	mg/l		n.d.		n.d.
Phosphorus, Orthophosphate	mg/l		n.d.		n.d.
Phosphorus, Total	mg/kg mg/l	310	n.d.	0.20	
Solids, Total Dissolved	mg/l		464		512
Solids, Total Suspended	mg/l		21	247	
Turbidity	NTU		22	226	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	4,900	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	n.d.		n.d.
Arsenic	mg/kg μg/l	n.d.	2		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	11,369	54		61
Chromium	mg/kg μg/l	7	n.d.		n.d.
Copper	mg/kg μg/l	6.12	n.d.		n.d.
Iron		9,363	n.d.		n.d.
Lead	mg/kg μg/l	n.d.	n.d.		n.d.
	mg/kg μg/l				
Magnesium	mg/kg mg/l	4,055	17.7		19.7
Manganese	mg/kg μg/l	374	n.d.		n.d.
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	11	n.d.		n.d.
Selenium	mg/kg µg/l	n.d.	3		2
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	29.2	100		120
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		155	122	154
THMFP-Bromodichloromethane	μg/l		22	22	20
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		n.d.	n.d.	n.d.
THMFP-Chloroform			133	96	131
THVIIT-CIIIOIOIOIIII	μg/l		133	90	131

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

Table 24. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM827BWD.

			Receiving		Standard
			Water	Pre-Elutriate	Elutriate
Parameter	Units*	Sediment	(RM827)	Water**	Water***
Alkalinity	mg/kg mg/l	1,044	149		167
Carbon, Organic (Dissolved)	mg/l		3.8		4.9
Carbon, Organic (Total)	mg/kg mg/l	4,400	4.0	4.4	
Chemical Oxygen Demand	mg/kg mg/l		14		23
Chlorophyll a	μg/l		6		
Color, True	S.U. (APHA)		9		9
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		208		
Nitrogen, Ammonia (Dissolved)	mg/l		0.03		0.10
Nitrogen, Ammonia (Total)	mg/kg mg/l	n.d.	0.03	n.d.	
Nitrogen, Kjeldahl (Dissolved)	mg/l		n.d.		1.0
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	204	0.3	1.0	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		n.d.		n.d.
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	1.2	0.03	n.d.	
Oxidation-Reduction Potential	mV	-51	-43		-78
pH	S.U.	7.7	8.1		7.6
Phosphorus, Dissolved	mg/l		n.d.		n.d.
Phosphorus, Orthophosphate	mg/l		n.d.		n.d.
Phosphorus, Total	mg/kg mg/l	238	n.d.	0.28	
Solids, Total Dissolved	mg/l		464		460
Solids, Total Suspended	mg/l		21	330	
Turbidity	NTU		22	273	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	2,624	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	n.d.		0.7
Arsenic	mg/kg μg/l	n.d.	2		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	6,654	54		70
Chromium	mg/kg μg/l	5.3	n.d.		n.d.
Copper	mg/kg μg/l	2.79	n.d.		n.d.
Iron	mg/kg µg/l	7,099	n.d.		n.d.
Lead		n.d.	n.d.		n.d.
Magnesium	mg/kg μg/l	2,677	17.7		16.8
	mg/kg mg/l	193	n.d.		340
Manganese	mg/kg μg/l				
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	736	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	3		2
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	18.8	100		110
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		155	209	161
THMFP-Bromodichloromethane	μg/l		22	21	23
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		n.d.	n.d.	n.d.
THMFP-Chloroform			133	186	135
THAILT -CHIOLOIOIIII	μg/l		155	100	133

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

3.3 MISSOURI RIVER BIOP SEGMENT 10 – GAVINS POINT DAM TO PONCA, NEBRASKA

3.3.1 Sediment Sampling Site Locations

Sediment samples were collected on 23-November-2009 at sites RM800, RM779, and RM756. Sampling was delayed at these sites until the end of the navigation season to allow identified sediment locations to be accessible to sampling at lower flows. Field determined latitude and longitude of the sediment sampling locations (i.e., SSM, SSC, and BWD) at sites RM800, RM779, and RM756 are given in Table 25. Plate 20, Plate 21, and Plate 22, respectively, are photographs taken at site locations RM800SSM, RM800SSC, and RM8002BWD at the time sediment samples were collected. Plate 23, Plate 24, and Plate 25, respectively, are photographs taken of site locations RM779SSM, RM779SSC, and RM779BWD at the time of sediment sampling. Plate 26, Plate 27, and Plate 28, respectively, are photographs taken of site locations RM756SSM, RM756SSC, and RM756BWD at the time of sediment sampling.

Table 25. Field determined latitude and longitude for sediment sampling site locations on segment 9.

Site	Location	Latitude*	Longitude*
RM800	SSM – Main Channel	42° 51' 45.3" N	97° 17' 41.5" W
RM800	SSC – Side Channel	42° 51' 49.7" N	97° 17' 49.3" W
RM800	BWD – Backwater/Detritus	42° 51' 55.1" N	97° 17' 49.8" W
RM779	SSM – Main Channel	42° 45' 10.9" N	96° 57' 36.3" W
RM779	SSC – Side Channel	42° 45' 25.3" N	96° 57' 56.9" W
RM779	BWD – Backwater/Detritus	42° 45' 24.6" N	96° 57' 56.3" W
RM756	SSM – Main Channel	42° 37' 56.9" N	96° 41' 47.7" W
RM756	SSC – Side Channel	42° 37' 56.0" N	96° 41' 39.3" W
RM756	BWD – Backwater/Detritus	42° 37' 59.5" N	96° 41' 38.6" W

^{*} NAD27 CONUS

3.3.2 Field Measured Water Quality Conditions

Field measured water quality conditions of the main-channel Missouri River at the time of sediment and receiving water sample collection at sites RM800, RM779, and RM756 are given in Table 26.

Table 26. Field measured water quality conditions of the main-channel Missouri River at sites RM800, RM779, and RM756.

Parameter	RM800	RM779	RM756
Date Sampled	23-Nov-09	23-Nov-09	23-Nov-09
Water Temperature (°C)	7.6	8.1	7.5
Dissolved Oxygen (mg/l)	11.9	*	9.8
Dissolved Oxygen (% Sat.)	102.2	*	84.5
pH (S.U.)	8.0	7.9	7.9
Specific Conductance (µmhos/cm)	672	723	799
Oxidation-Reduction Potential (mV)	318	318	311
Turbidity (NTU)	8	16	20

^{*} Equipment malfunction

3.3.3 Laboratory Results

3.3.3.1 Composition of Collected Sediment Samples

Table 27summarizes the composition of the collected sediment samples at site locations RM800SSM, RM800SSC, RM800BWD, RM779SSM, RM779SSC, RM779BWD, RM756SSM, RM756SSC, RM756BWD. Appendix A includes the "Particle Size Distribution Reports" received from Midwest laboratories, Inc. for the collected sediment samples.

Table 27. Comp	Table 27. Composition of sediment samples collected at sites RM842 and RM827.						
Site	Percent Gravel	Percent Sand					

Site	Percent Gravel		Percent Sand			Percen	t Fines
Location	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
RM800SSM	0.0	0.0	0.2	4.1	94.1	1.3	0.3
RM800SSC	0.0	0.4	1.0	19.5	77.0	1.8	0.3
RM800BWD	0.0	5.3	1.6	32.9	34.9	13.3	12.0
RM779SSM	0.0	0.0	0.0	6.5	92.6	0.6	0.3
RM779SSC	0.0	0.0	0.0	14.4	84.2	1.1	0.3
RM779BWD	0.0	0.0	0.5	16.8	69.4	11.6	1.7
RM756SSM	0.0	0.0	0.0	5.9	91.8	2.0	0.3
RM756SSC	0.0	0.0	0.2	5.5	89.4	4.6	0.3
RM756BWD	0.0	0.0	0.0	3.7	87.9	7.8	0.6

3.3.3.2 Sediment and Elutriate Test Results

Table 29, and Table 30, respectively, provide laboratory results of the physicochemical analyses of the collected sediment samples at site locations RM800SSM, RM800SSC, and RM800BWD. Pre-elutriate and standard-elutriate test results of the collected sediment samples at the three locations sampled at site RM800, and the quality of the receiving water used in the elutriate testing, are also provided in the Tables. Table 31, Table 32, and Table 33, respectively, provide laboratory results of the physicochemical analyses of the collected sediment samples at site locations RM779SSM, RM779SSC, and RM779BWD. Pre-elutriate and standard-elutriate test results of the collected sediment samples at the three locations sampled at site RM779, and the quality of the receiving water used in the elutriate testing, are also provided in the Tables. Table 34, Table 35, and Table 36, respectively, provide laboratory results of the physicochemical analyses of the collected sediment samples at site locations RM756SSM, RM756SSC, and RM756BWD. Pre-elutriate and standard-elutriate test results of the collected sediment samples at the three locations sampled at site RM756, and the quality of the receiving water used in the elutriate testing, are also provided in the Tables. Appendix B includes the "Analytical Reports" received from Midwest laboratories, Inc. that give the analytical results for the collected soil (i.e., sediment) and receiving water samples, and the prepared pre-elutriate and elutriate samples.

Table 28. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM800SSM.

			Receiving Water	Pre-Elutriate	Standard Elutriate
Parameter	Units*	Sediment	(RM800)	Water**	Water***
Alkalinity	mg/kg mg/l	363	152		175
Carbon, Organic (Dissolved)	mg/l		2.9		3.1
Carbon, Organic (Total)	mg/kg mg/l	2,300	3.2	5.0	
Chemical Oxygen Demand	mg/kg mg/l		12		4
Chlorophyll a	μg/l		5		
Color, True	S.U. (APHA)		6		7
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		223		
Nitrogen, Ammonia (Dissolved)	mg/l		0.07		0.24
Nitrogen, Ammonia (Total)	mg/kg mg/l	2.9	0.07	0.22	
Nitrogen, Kjeldahl (Dissolved)	mg/l		0.3		0.5
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	90	0.3	0.8	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		0.15		0.03
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	1.1	0.15	0.15	
Oxidation-Reduction Potential	mV	283			
pН	S.U.	8.3	8.3		8.3
Phosphorus, Dissolved	mg/l		n.d.		0.02
Phosphorus, Orthophosphate	mg/l		n.d.		0.02
Phosphorus, Total	mg/kg mg/l	264	n.d.	0.20	
Solids, Total Dissolved	mg/l		480		504
Solids, Total Suspended	mg/l		4	168	
Turbidity	NTU		7	192	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	2,015	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	0.5		n.d.
Arsenic	mg/kg μg/l	n.d.	2		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	7,265	57		58
Chromium	mg/kg μg/l	4.7	n.d.		n.d.
Copper	mg/kg μg/l	2.6	n.d.		n.d.
Iron	mg/kg μg/l	8,813	n.d.		n.d.
Lead	mg/kg μg/l	n.d.	n.d.		n.d.
Magnesium	mg/kg mg/l	2,011	19.6		23.2
Manganese	mg/kg μg/l	287	n.d.		30
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	10.9	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	2		2
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	23.1	10		n.d.
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/kg μg/1 μg/l		183	279	245
THMFP-Bromodichloromethane			27	29	28
THMFP-Bromoform	μg/l	•	n.d.	3	n.d.
	μg/l				
THMFP-Chlorodibromomethane	μg/l		n.d.	n.d.	4
THMFP-Chloroform	μg/l		152	247	196

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

Table 29. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM800SSC.

			Receiving Water	Pre-Elutriate	Standard Elutriate
Parameter	Units*	Sediment	(RM800)	Water**	Water***
Alkalinity	mg/kg mg/l	307	152		172
Carbon, Organic (Dissolved)	mg/l		2.9		3.4
Carbon, Organic (Total)	mg/kg mg/l	1,500	3.2	7.9	
Chemical Oxygen Demand	mg/kg mg/l		12		28
Chlorophyll a	μg/l		5		
Color, True	S.U. (APHA)		6		8
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		223		
Nitrogen, Ammonia (Dissolved)	mg/l		0.07		0.36
Nitrogen, Ammonia (Total)	mg/kg mg/l	n.d.	0.07	0.41	
Nitrogen, Kjeldahl (Dissolved)	mg/l		n.d.		0.7
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	92.1	0.3	1.1	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		0.15		0.14
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	1.2	0.15	0.14	
Oxidation-Reduction Potential	mV	194			
pH	S.U.	8.3	8.3		8.3
Phosphorus, Dissolved	mg/l		n.d.		0.04
Phosphorus, Orthophosphate	mg/l		n.d.		0.02
Phosphorus, Total	mg/kg mg/l	243	n.d.	0.32	
Solids, Total Dissolved	mg/l		480		512
Solids, Total Suspended	mg/l		4	287	
Turbidity	NTU		7	291	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	1,391	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	0.5		0.6
Arsenic	mg/kg μg/l	n.d.	2		2
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	5,816	57		62
Chromium	mg/kg μg/l	3.4	n.d.		n.d.
Copper	mg/kg μg/l	2.2	n.d.		n.d.
Iron	mg/kg μg/l	8,404	n.d.		n.d.
Lead	mg/kg μg/l	n.d.	n.d.		n.d.
Magnesium	mg/kg mg/l	1,365	19.6		22.1
Manganese	mg/kg μg/l	224	n.d.		40
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	9.4	n.d.		n.d.
Selenium		n.d.	2		1
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
	mg/kg μg/l				
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	19.4	10		n.d.
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		183	329	222
THMFP-Bromodichloromethane	μg/l		27	26	27
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		n.d.	2	4
THMFP-Chloroform	μg/l		152	300	191

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

Table 30. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM800BWD.

			Receiving Water	Pre-Elutriate	Standard Elutriate
Parameter	Units*	Sediment	(RM800)	Water**	Water***
Alkalinity	mg/kg mg/l	5,301	152		187
Carbon, Organic (Dissolved)	mg/l		2.9		3.7
Carbon, Organic (Total)	mg/kg mg/l	10,900	3.2	7.1	
Chemical Oxygen Demand	mg/kg mg/l		12		10
Chlorophyll a	μg/l		5		
Color, True	S.U. (APHA)		6		11
Cyanide	mg/kg μg/l	4.6	n.d.		n.d.
Hardness, Dissolved	mg/l		223		
Nitrogen, Ammonia (Dissolved)	mg/l		0.07		0.74
Nitrogen, Ammonia (Total)	mg/kg mg/l	20.9	0.07	0.71	
Nitrogen, Kjeldahl (Dissolved)	mg/l		n.d.		1.0
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	827	0.3	1.2	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		0.15		0.13
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	0.73	0.15	0.13	
Oxidation-Reduction Potential	mV	147			
рН	S.U.	8.3	8.3		8.2
Phosphorus, Dissolved	mg/l		n.d.		0.04
Phosphorus, Orthophosphate	mg/l		n.d.		0.03
Phosphorus, Total	mg/kg mg/l	332	n.d.	0.22	
Solids, Total Dissolved	mg/l		480		660
Solids, Total Suspended	mg/l		4	198	
Turbidity	NTU		7	195	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	3,122	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	0.5		0.8
Arsenic	mg/kg μg/l	n.d.	2		2
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	12,665	57		62
Chromium	mg/kg μg/l	5.4	n.d.		n.d.
Copper	mg/kg μg/l	4.6	n.d.		n.d.
Iron	mg/kg μg/l	9,907	n.d.		n.d.
Lead	mg/kg μg/l	n.d.	n.d.		n.d.
Magnesium	mg/kg mg/l	3,178	19.6		26.4
Manganese	mg/kg μg/l	557	n.d.		n.d.
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	10	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	2		2
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	26.3	10		n.d.
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/kg μg/1 μg/l	11.u.	183	343	246
THMFP-Bromodichloromethane			27	27	29
	μg/l				
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		n.d.	n.d.	3
THMFP-Chloroform	μg/l		152	314	214

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

 Table 31.
 Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate
 water analyses for site location RM779SSM.

			Receiving Water	Pre-Elutriate	Standard Elutriate
Parameter	Units*	Sediment	(RM779)	Water**	Water***
Alkalinity	mg/kg mg/l	200	160		166
Carbon, Organic (Dissolved)	mg/l		3.3		3.7
Carbon, Organic (Total)	mg/kg mg/l	1,500	4.1	4.8	
Chemical Oxygen Demand	mg/kg mg/l		13		16
Chlorophyll a	μg/l		7		
Color, True	S.U. (APHA)		6		8
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		241		
Nitrogen, Ammonia (Dissolved)	mg/l		0.06		n.d.
Nitrogen, Ammonia (Total)	mg/kg mg/l	n.d.	0.07	n.d.	
Nitrogen, Kjeldahl (Dissolved)	mg/l		0.3		0.3
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	87.9	0.4	0.6	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		0.17		0.19
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	0.74	0.17	0.19	
Oxidation-Reduction Potential	mV	275			
pH	S.U.	8.3	8.3		8.4
Phosphorus, Dissolved	mg/l		0.06		0.03
Phosphorus, Orthophosphate	mg/l		n.d.		0.03
Phosphorus, Total	mg/kg mg/l	316	0.06	0.16	
Solids, Total Dissolved	mg/l		518		520
Solids, Total Suspended	mg/l		12	103	
Turbidity	NTU		21	101	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	1,923	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	0.5		0.6
Arsenic	mg/kg μg/l	n.d.	2		2
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	5,709	60		69
Chromium	mg/kg μg/l	4.4	n.d.		n.d.
Copper	mg/kg μg/l	2.1	n.d.		n.d.
Iron	mg/kg μg/l	8,560	n.d.		n.d.
Lead	mg/kg μg/l	n.d.	n.d.		n.d.
Magnesium	mg/kg mg/l	1,913	22.2		26.3
Manganese	mg/kg μg/l	222	n.d.		n.d.
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel					
	mg/kg μg/l	10.3	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	1		1
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	23.9	n.d.		n.d.
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		200	254	210
THMFP-Bromodichloromethane	μg/l		29	31	31
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		n.d.	n.d.	n.d.
THMFP-Chloroform	μg/l		166	219	174

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

Table 32. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM779SSC.

			Receiving Water	Pre-Elutriate	Standard Elutriate
Parameter	Units*	Sediment	(RM779)	Water**	Water***
Alkalinity	mg/kg mg/l	244	160		168
Carbon, Organic (Dissolved)	mg/l		3.3		2.9
Carbon, Organic (Total)	mg/kg mg/l	1,900	4.1	4.8	
Chemical Oxygen Demand	mg/kg mg/l		13		18
Chlorophyll a	μg/l		7		
Color, True	S.U. (APHA)		6		7
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		241		
Nitrogen, Ammonia (Dissolved)	mg/l		0.06		0.08
Nitrogen, Ammonia (Total)	mg/kg mg/l	n.d.	0.07	n.d.	
Nitrogen, Kjeldahl (Dissolved)	mg/l		0.3		0.2
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	72.9	0.4	0.9	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		0.17		0.19
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	1.2	0.17	0.19	
Oxidation-Reduction Potential	mV	258			
pH	S.U.	8.4	8.3		8.4
Phosphorus, Dissolved	mg/l		0.06		0.02
Phosphorus, Orthophosphate	mg/l		n.d.		0.03
Phosphorus, Total	mg/kg mg/l	248	0.06	0.16	
Solids, Total Dissolved	mg/l		518	102	520
Solids, Total Suspended	mg/l		12	103	
Turbidity Matala (Water Discalus d)	NTU		21	195	n.d.
Metals (Water - Dissolved) Aluminum	д д	1,621		·	
	mg/kg μg/l		n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	0.58		0.7
Arsenic	mg/kg μg/l	n.d.	2		2
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	5,879	60		64
Chromium	mg/kg μg/l	3.6	n.d.		n.d.
Copper	mg/kg μg/l	1.9	n.d.		n.d.
Iron	mg/kg μg/l	7,498	n.d.		n.d.
Lead	mg/kg μg/l	n.d.	n.d.		n.d.
Magnesium	mg/kg mg/l	1,687	22.2		24.1
Manganese	mg/kg μg/l	217	n.d.		n.d.
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	9.5	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	1		3
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	20.0	n.d.		n.d.
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		200	230	197
THMFP-Bromodichloromethane	μg/l		29	28	29
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		n.d.	n.d.	n.d.
THMFP-Chloroform	μg/l μg/l		166	198	164

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

Table 33. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM779BWD.

			Receiving Water	Pre-Elutriate	Standard Elutriate
Parameter	Units*	Sediment	(RM779)	Water**	Water***
Alkalinity	mg/kg mg/l	3,245	160		175
Carbon, Organic (Dissolved)	mg/l		3.3		3.4
Carbon, Organic (Total)	mg/kg mg/l	3,900	4.1	6.8	
Chemical Oxygen Demand	mg/kg mg/l		13		18
Chlorophyll a	μg/l		7		
Color, True	S.U. (APHA)		6		8
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		241		
Nitrogen, Ammonia (Dissolved)	mg/l		0.06		0.79
Nitrogen, Ammonia (Total)	mg/kg mg/l	5.9	0.07	0.76	
Nitrogen, Kjeldahl (Dissolved)	mg/l		0.3		0.2
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	194	0.4	1.5	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		0.17		0.14
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	0.79	0.17	0.14	
Oxidation-Reduction Potential	mV	162			
pH	S.U.	8.1	8.3		8.2
Phosphorus, Dissolved	mg/l		0.06		0.02
Phosphorus, Orthophosphate	mg/l		n.d.		0.03
Phosphorus, Total	mg/kg mg/l	303	0.06	0.21	
Solids, Total Dissolved	mg/l		518		534
Solids, Total Suspended	mg/l		12	205	
Turbidity	NTU		21	232	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	2,876	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	0.5		0.2
Arsenic	mg/kg µg/l	n.d.	2		1
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	10,655	60		58
Chromium	mg/kg μg/l	5.6	n.d.		n.d.
Copper	mg/kg μg/l	3.9	n.d.		n.d.
Iron	mg/kg μg/l	9,635	n.d.		n.d.
Lead	mg/kg μg/l	n.d.	n.d.		n.d.
Magnesium	mg/kg mg/l	3,031	22.2		24.5
Manganese		324	n.d.		n.d.
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	12	n.d.		
	mg/kg μg/l				n.d.
Selenium	mg/kg μg/l	n.d.	1		1
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	28.3	n.d.		n.d.
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		200	268	211
THMFP-Bromodichloromethane	μg/l		29	28	29
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		n.d.	3	4
THMFP-Chloroform	μg/l		166	237	177

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

Table 34. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM756SSM.

			Receiving Water	Pre-Elutriate	Standard Elutriate
Parameter	Units*	Sediment	(RM756)	Water**	Water***
Alkalinity	mg/kg mg/l	291	174		189
Carbon, Organic (Dissolved)	mg/l		4.6		3.9
Carbon, Organic (Total)	mg/kg mg/l	2,000	4.9	6.4	
Chemical Oxygen Demand	mg/kg mg/l		14		23
Chlorophyll a	μg/l		9		
Color, True	S.U. (APHA)		8		8
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		274		
Nitrogen, Ammonia (Dissolved)	mg/l		0.07		n.d.
Nitrogen, Ammonia (Total)	mg/kg mg/l	2.9	0.10	n.d.	
Nitrogen, Kjeldahl (Dissolved)	mg/l		0.4		0.3
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	119	0.4	0.8	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		0.12		0.18
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	2.9	0.12	0.17	
Oxidation-Reduction Potential	mV	277			
рН	S.U.	8.3	8.2		8.3
Phosphorus, Dissolved	mg/l		n.d.		0.05
Phosphorus, Orthophosphate	mg/l		0.03		0.03
Phosphorus, Total	mg/kg mg/l	244	n.d.	0.30	
Solids, Total Dissolved	mg/l		586		556
Solids, Total Suspended	mg/l		17	261	
Turbidity	NTU		17	286	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	1,992	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	n.d.		n.d.
Arsenic	mg/kg μg/l	n.d.	2		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	6,643	65		71
Chromium	mg/kg μg/l	4.7	n.d.		n.d.
Copper	mg/kg μg/l	2.1	n.d.		n.d.
Iron	mg/kg μg/l	8,329	n.d.		n.d.
Lead	mg/kg μg/l	n.d.	n.d.		n.d.
Magnesium	mg/kg mg/l	2,251	26.2		27.2
Manganese	mg/kg μg/l	202	n.d.		n.d.
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	10.3	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	2		2
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg μg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	18.3	10		n.d.
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential			231	231	257
THMFP-Bromodichloromethane	μg/l			32	40
	μg/l		36		
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		6	n.d.	7
THMFP-Chloroform	μg/l		189	196	211

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

Table 35. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM756SSC.

			Receiving		Standard
			Water	Pre-Elutriate	Elutriate
Parameter	Units*	Sediment	(RM756)	Water**	Water***
Alkalinity	mg/kg mg/l	691	174		182
Carbon, Organic (Dissolved)	mg/l		4.6		4.0
Carbon, Organic (Total)	mg/kg mg/l	2,400	4.9	5.6	
Chemical Oxygen Demand	mg/kg mg/l		14		10
Chlorophyll a	μg/l		9		
Color, True	S.U. (APHA)		8		8
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		274		
Nitrogen, Ammonia (Dissolved)	mg/l		0.07		0.27
Nitrogen, Ammonia (Total)	mg/kg mg/l	0.88	0.10	0.25	
Nitrogen, Kjeldahl (Dissolved)	mg/l		0.4		0.6
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	89	0.4	0.9	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		0.12		0.15
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	1.2	0.12	0.16	
Oxidation-Reduction Potential	mV	279			
pH	S.U.	8.2	8.2		8.2
Phosphorus, Dissolved	mg/l		n.d.		0.03
Phosphorus, Orthophosphate	mg/l		0.03		0.03
Phosphorus, Total	mg/kg mg/l	310	n.d.	0.20	
Solids, Total Dissolved	mg/l		586		602
Solids, Total Suspended	mg/l		17	161	
Turbidity	NTU		17	204	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	2,400	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	n.d.		n.d.
Arsenic	mg/kg μg/l	n.d.	2		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	7,910	65		70
Chromium	mg/kg μg/l	5.8	n.d.		n.d.
Copper	mg/kg μg/l	2.5	n.d.		n.d.
Iron	mg/kg μg/l	7,275	n.d.		n.d.
Lead	mg/kg μg/l	n.d.	n.d.		n.d.
Magnesium	mg/kg mg/l	2,717	26.2		27.2
Manganese		236	n.d.		n.d.
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
	mg/kg μg/l				
Nickel	mg/kg μg/l	10.8	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	2		1
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium	mg/kg µg/l	n.d.	n.d.		n.d.
Zinc	mg/kg μg/l	24.0	10		n.d.
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.		n.d.
THM Formation Potential	μg/l		231	175	200
THMFP-Bromodichloromethane	μg/l		36	29	34
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		6	n.d.	6
THMFP-Chloroform	μg/l		189	142	161

^{*} Where two numbers present, first is the units for sediment and the second is the units for water.

** All reported values for parameters are total.

** All reported values for parameters are dissolved.

^{****} See Table 6.

Table 36. Laboratory results for sediment, receiving water, pre-elutriate water, and standard elutriate water analyses for site location RM756BWD.

			Receiving Water	Pre-Elutriate	Standard Elutriate
Parameter	Units*	Sediment	(RM756)	Water**	Water***
Alkalinity	mg/kg mg/l	2,516	174		183
Carbon, Organic (Dissolved)	mg/l		4.6		3.9
Carbon, Organic (Total)	mg/kg mg/l	3,600	4.9	5.7	
Chemical Oxygen Demand	mg/kg mg/l		14		4
Chlorophyll a	μg/l		9		
Color, True	S.U. (APHA)		8		8
Cyanide	mg/kg μg/l	n.d.	n.d.		n.d.
Hardness, Dissolved	mg/l		274		
Nitrogen, Ammonia (Dissolved)	mg/l		0.07		n.d.
Nitrogen, Ammonia (Total)	mg/kg mg/l	2.6	0.10	0.25	
Nitrogen, Kjeldahl (Dissolved)	mg/l		0.4		0.2
Nitrogen, Kjeldahl (Total)	mg/kg mg/l	183	0.4	0.8	
Nitrogen, Nitrate/Nitrite (Dissolved)	mg/l		0.12		0.13
Nitrogen, Nitrate/Nitrite (Total)	mg/kg mg/l	2.8	0.12	0.12	
Oxidation-Reduction Potential	mV	280			
pH	S.U.	8.0	8.2		8.1
Phosphorus, Dissolved	mg/l		n.d.		n.d.
Phosphorus, Orthophosphate	mg/l		0.03		n.d.
Phosphorus, Total	mg/kg mg/l	306	n.d.	0.16	
Solids, Total Dissolved	mg/l		586		594
Solids, Total Suspended	mg/l		17	136	
Turbidity	NTU		17	204	n.d.
Metals (Water - Dissolved)					
Aluminum	mg/kg μg/l	3,003	n.d.		n.d.
Antimony	mg/kg μg/l	n.d.	n.d.		0.7
Arsenic	mg/kg μg/l	n.d.	2		n.d.
Beryllium	mg/kg μg/l	n.d.	n.d.		n.d.
Cadmium	mg/kg μg/l	n.d.	n.d.		n.d.
Calcium	mg/kg mg/l	9,942	65		70
Chromium	mg/kg μg/l	6.5	n.d.		n.d.
Copper	mg/kg μg/l	3.2	n.d.		n.d.
Iron	mg/kg μg/l	9,557	n.d.		n.d.
Lead	mg/kg μg/l	6.4	n.d.		n.d.
Magnesium	mg/kg mg/l	3,217	26.2		28.7
Manganese	mg/kg μg/l	265	n.d.		20
Mercury	mg/kg μg/l	n.d.	n.d.		n.d.
Nickel	mg/kg μg/l	11.6	n.d.		n.d.
Selenium	mg/kg μg/l	n.d.	2		2
Silver	mg/kg μg/l	n.d.	n.d.		n.d.
Thallium		n.d.	n.d.		n.d.
Zinc	mg/kg μg/l		10		
	mg/kg μg/l	26.9			n.d.
Pesticides, Organochlorine****	μg/kg μg/l	n.d.	n.d.		n.d.
Polychlorinated Biphenyls (PCBs)****	μg/kg μg/l	n.d.	n.d.	105	n.d.
THM Formation Potential	μg/l		231	185	192
THMFP-Bromodichloromethane	μg/l		36	29	32
THMFP-Bromoform	μg/l		n.d.	n.d.	n.d.
THMFP-Chlorodibromomethane	μg/l		6	n.d.	5
THMFP-Chloroform	μg/l		189	151	155

Where two numbers present, first is the units for sediment and the second is the units for water.

^{**} All reported values for parameters are total.

*** All reported values for parameters are dissolved.

^{****} See Table 6.

4 DISCUSSION AND CONCLUSIONS

4.1 GENERAL SEDIMENT CHEMICAL CONDITIONS

Table 37 compares the general chemical conditions of the alluvial sediments collected at the different site locations. Measured alkalinity, total organic carbon, total Kjeldahl nitrogen, and total ammonia nitrogen in the collected alluvial sediment samples exhibited significant variation, while measured nitrate-nitrite nitrogen and total phosphorus levels were less variable (Table 37).

Table 37. General conditions of the collected alluv	ial sediment samples.
--	-----------------------

Site Location	Alkalinity (mg/kg)	Total Organic Carbon (mg/kg)	Total Kjeldahl Nitrogen (mg/kg)	Total Ammonia Nitrogen (mg/kg)	Nitrate-Nitrite Nitrogen (mg/kg)	Total Phosphorus (mg/kg)
RM867SSM	n.d.	300	74	n.d.	n.d.	365
RM867SSC	n.d.	200	76	n.d.	n.d.	322
RM867BWD	1,630	290	16	n.d.	n.d.	406
RM853SSM	281	110	129	n.d.	n.d.	295
RM853SSC	1,131	260	119	n.d.	n.d.	355
RM853BWD	795	300	128	n.d.	n.d.	365
RM842SSM	362	400	59	n.d.	1.1	131
RM842SSC	2,318	5,700	323	n.d.	1.1	379
RM842BWD	3,446	7,000	281	n.d.	1.2	436
RM827SSM	3,522	7,200	406	34.2	1.2	360
RM827SSC	3,237	5,600	396	18.5	1.7	310
RM827BWD	1,044	4,400	204	n.d.	1.2	238
RM800SSM	363	2,300	90	2.9	1.1	264
RM800SSC	307	1,500	92	n.d.	1.2	243
RM800BWD	5,301	10,900	827	20.9	0.7	332
RM779SSM	200	1,500	88	n.d.	0.7	316
RM779SSC	244	1,900	73	n.d.	1.2	248
RM779BWD	3,245	3,900	194	5.9	0.8	303
RM756SSM	291	2,000	119	2.9	2.9	244
RM756SSC	691	2,400	89	0.9	1.2	310
RM756BWD	2,516	3,600	183	2.6	2.8	306

4.2 COMPARISON OF ELUTRIATE SAMPLES TO NEBRASKA'S SURFACE WATER QUALITY STANDARDS CRITERIA FOR THE PROTECTION OF AQUATIC LIFE

4.2.1 General Criteria for Aquatic Life

4.2.1.1 pH

Nebraska water quality standards state that pH levels are to be greater than or equal to 6.5 S.U. and less than or equal to 9.0 S.U. for the protection of aquatic life. Measured pH levels in all the collected receiving water samples and the prepared pre-elutriate and elutriate samples met these criteria (see Tables 10 - 15, 19 - 24, and 28 - 36).

4.2.1.2 Toxic Substances

4.2.1.2.1 <u>Pesticides, PCBs, and Related Compounds</u>

Table 38 lists the numeric acute and chronic criteria defined by Nebraska's water quality standards for the organochlorine pesticides and PCBs that were analyzed in the collected samples. The

defined numerical criteria are for the protection of aquatic life and their uses (e.g., fish consumption). Table 38 also lists the detection limits for the ogranochlorine pesticide and PCB scans that were used to analyze the elutriate samples. No organochlorine pesticide or PCB congener were detected in any of the collected sediment and receiving water samples or prepared pre-elutriate and elutriate samples (Tables 10 - 15, 19 - 24, and 28 - 36). The detection limits of the applied organochlorine pesticide and PCBs scan are well below the acute criteria defined by Nebraska, but slightly above the chronic criteria for some parameters (Table 38). It is noted that most of the chronic criteria below the scan detection limits are for the protection of human health based on the consumption of fish and other aquatic organisms. Nebraska has not issued a fish consumption advisory for any of the analyzed organochlorine pesticides or PCBs along the Missouri River from Fort Randall Dam to Ponca State Park (i.e., BiOp segments 8, 9, and 10) nor listed this reach of the Missouri River as impaired due to these parameters. The non-detection of all the organochlorine pesticide and PCB parameters at the detection limits of the applied scans are believed to indicate the sampled sediments are "clean" for these parameters. Thus, mobilization of these sediments by dredging should not result in concentrations of organochlorine pesticides or PCBs that would result in the water quality of the Missouri River to: 1) exceed water quality standards criteria, 2) degrade existing uses, or 3) result in any "long-term" degradation of the existing high water quality.

Table 38. Numeric criteria defined by Nebraska water quality standards for analyzed pesticides and PCBs and the detection limits of the organochlorine pesticide and PCB scan applicable to the elutriate samples.

Parameter	wqs	oraska Criteria ug/l)	Water Detection Limit (µg/l)	n Limit Parameter (119/1)		Water Detection Limit (µg/l)	
	Acute	Chronic	(µg/1)		Acute	Chronic	(µg/1)
DDE	1050	$0.0059^{\rm f}$	0.005	Gamma-Chlordane	2.4	0.0043	0.006
DDD	0.6	$0.0084^{\rm f}$	0.005	Alpha-BHC (alpha-Lindane)			0.009
DDT	1.1	0.001	0.004	Beta-BHC (beta-Lindane)			0.009
Methoxychlor		0.03	0.005	Delta-BHC (delta-Lindane)			0.014
Aldrin	3.0	$0.00136^{\rm f}$	0.008	Gamma-BHC (gamma-Lindane)	0.95	0.16	0.035
Dieldrin	0.24	$0.00144^{\rm f}$	0.004	PCB - Aroclor1016			
Endosulfan 1	0.22	0.056	0.006	PCB - Aroclor1221	2.0	$0.0017^{\rm f}$	0.110
Endosulfan 2	0.22	0.056	0.003	PCB - Aroclor1232	2.0	$0.0017^{\rm f}$	0.194
Endosulfan Sulfate		240 ^f	0.010	PCB - Aroclor1242	2.0	$0.0017^{\rm f}$	0.171
Endrin	0.086	0.036	0.003	PCB - Aroclor1248	2.0	$0.0017^{\rm f}$	0.107
Endrin Aldehyde		$0.81^{\rm f}$	0.011	PCB - Aroclor1254	2.0	$0.0017^{\rm f}$	0.218
Endrin Ketone			0.006	PCB - Aroclor1260	2.0	$0.0017^{\rm f}$	0.155
Heptachlor	0.52	$0.00214^{\rm f}$	0.009	PCB - Aroclor1262	2.0	$0.0017^{\rm f}$	0.129
Heptachlor Epoxide	0.52	$0.0011^{\rm f}$	0.007	PCB - Aroclor1268	2.0	$0.0017^{\rm f}$	0.157
Alpha-Chlordane	2.4	0.0043	0.011		2.0	$0.0017^{\rm f}$	0.236

f Criteria for the chronic protection of aquatic life and human health criteria at the 10⁻⁵ risk for carcinogens based on the consumption of fish and other aquatic organisms.

4.2.1.2.2 Metals and Inorganics

Table 39 lists the numeric acute and chronic criteria defined by Nebraska water quality standards for the metals and inorganics that were analyzed. The defined numerical criteria are for the protection of aquatic life and their uses (e.g., fish consumption). Nebraska's water quality criteria for several metals (i.e., Cadmium, Chromium, Copper, Lead, Nickel, Silver, and Zinc) are hardness based. To calculate these criteria, a median hardness value of 234 mg/l, calculated from the hardness values determined for the seven receiving water samples, was used. Table 39 also lists the detection limits that were applicable to the metal and inorganic analyses of the water samples.

Table 39. Numeric criteria defined by Nebraska water quality standards for analyzed metals and inorganics and the laboratory detection limits applicable to the elutriate samples. (Criteria apply to dissolved concentrations unless otherwise noted.)

Metal	WQS C	Nebraska WQS Criteria (µg/l)		Metal	Nebr WQS ((µg	Criteria	Water Detection Limit (µg/l)
	Acute	Chronic			Acute	Chronic	
Aluminum	750	87	25	Lead	161	6.3	0.5
Antimony	88	30	0.5	Manganese		1,000	2
Arsenic	340	16.7	1	Mercury	1.4	0.77^{T}	0.02
Beryllium	130	5.3	2	Nickel	961	107	10
Cadmium	13	0.4	0.2	Selenium	20 ^T	5.0^{T}	1
Chromium	1,188	154	1	Silver	15		1
Copper	30	19	1	Thallium	1,400	6.3	0.5
Cyanide	22	5.2	8	Zinc	241	241	10
Iron		1,000	7				

^T Criteria apply to total recoverable concentrations.

The concentrations of the dissolved metals and inorganics measured in the prepared elutriate samples are compiled in Table 40. No measured values of metals or inorganics exceeded Nebraska acute or chronic water quality standards criteria. Concentrations of dissolved zinc measured in the prepared elutriate and collected receiving water samples indicated an observable difference in zinc levels above and below Lewis and Clark Lake (Table 40).

Table 40. Concentrations ($\mu g/l$) of dissolved metals and inorganics measured in the prepared elutriate samples.

Site Location	Aluminum	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Cyanide	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
RM867SSM	n.d.	0.6	n.d.	n.d.	n.d.	n.d.	20	n.d.	130	n.d.	30	n.d.	n.d.	4	n.d.	n.d.	110
RM867SSC	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	50	n.d.	10	n.d.	n.d.	4	n.d.	n.d.	100
RM867BWD	n.d.	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	3	n.d.	n.d.	80
RM853SSM	n.d.	n.d.	1	n.d.	n.d.	n.d.	n.d.	n.d.	20	n.d.	n.d.	n.d.	n.d.	2	n.d.	n.d.	80
RM853SSC	n.d.	n.d.	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	3	n.d.	n.d.	190
RM853BWD	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2	n.d.	n.d.	80
RM842SSM	n.d.	0.5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	3	n.d.	n.d.	90
RM842SSC	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	3	n.d.	n.d.	120
RM842BWD	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2	n.d.	n.d.	120
RM827SSM	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2	n.d.	n.d.	120
RM827SSC	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2	n.d.	n.d.	120
RM827BWD	n.d.	0.7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	340	n.d.	n.d.	2	n.d.	n.d.	110
RM800SSM	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	30	n.d.	n.d.	2	n.d.	n.d.	n.d.
RM800SSC	n.d.	0.6	2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	40	n.d.	n.d.	1	n.d.	n.d.	n.d.
RM800BWD	n.d.	0.8	2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2	n.d.	n.d.	n.d.
RM779SSM	n.d.	0.6	2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	n.d.	n.d.	n.d.
RM779SSC	n.d.	0.7	2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	3	n.d.	n.d.	n.d.
RM779BWD	n.d.	0.2	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	n.d.	n.d.	n.d.
RM756SSM	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2	n.d.	n.d.	n.d.
RM756SSC	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	n.d.	n.d.	n.d.
RM756BWD	n.d.	0.7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	20	n.d.	n.d.	2	n.d.	n.d.	n.d.

Table 41 compiles the zinc concentrations measured in the sampled media (i.e., sediment, receiving water, and elutriate water) at the various sampled locations. Dissolved zinc concentrations in elutriate samples prepared from alluvial sediment samples collected along the Missouri River upstream of Lewis and Clark Lake (i.e., RM867, RM853, RM842, and RM827) ranged from 80 to 190 μ g/l, and were generally above 100 μ g/l. Dissolved zinc concentrations measured in elutriate samples prepared from sediment samples collected downstream of Lewis and Clark Lake (i.e., RM800, RM779, and RM756) were all below the 10 μ g/l detection limit for zinc (Table 41). Collected sediment and receiving water samples showed a similar, but less pronounced, trend for measured zinc levels. Total zinc concentrations in sediment samples collected upstream of Lewis and Clark Lake ranged from 18.4 to 41.0 mg/kg, and ranged from 18.3 to 26.9 mg/kg downstream of Lewis and Clark Lake (Table 41). Dissolved zinc concentrations measured in the Missouri River (i.e., receiving water) ranged from 40 to 100 μ g/l upstream of Lewis and Clark Lake, and were at or below the 10 μ g/l detection limit for zinc downstream of Lewis and Clark Lake (Table 41).

Table 41. Zinc concentrations measured in sampled media along the Missouri River from Fort Randall Dam, SD to Ponca State Park, NE.

Sampled Medium	RM867SSM	RM867SSC	RM867BWD	RM853SSM	RM853SSC	RM853BWD	RM842SSM	RM842SSC	RM842BWD	RM827SSM	RM827SSC	RM827BWD	RM800SSM	RM800SSC	RM800BWD	RM779SSM	RM779SSC	RM779BWD	RM756SSM	RM756SSC	RM756BWD
Sediment Zinc, Total (mg/kg)	29.9	31.6	34.0	33.3	29.8	29.9	18.4	34.3	37.7	41.0	29.2	18.8	23.1	19.4	26.3	23.9	20.0	28.3	18.3	24.0	26.9
Receiving Water Zinc, Dissolved (μg/l)	40	40	40	60	60	60	70	70	70	100	100	100	10	10	10	n.d.	n.d.	n.d.	10	10	10
Elutriate Water Zinc, Dissolved (μg/l)	110	100	80	80	190	80	90	120	120	120	120	110	n.d.								

4.2.2 Total Ammonia Criteria for the Protection of Class A – Warmwater

Table 42 shows the levels of ammonia measured in the various media analyzed, including sediment, receiving water, pre-elutriate samples, and elutriate samples. Total ammonia measured in alluvial sediments ranged from non-detectable to 34.2 mg/kg. Total ammonia measured in the Missouri River (i.e., receiving water) ranged from 0.03 to 0.10 mg/l. Dissolved ammonia measured in the prepared elutriate samples ranged from non-detectable to 3.3 mg/l. Measured ammonia levels seemingly were lower at the three upstream sites (RM867, RM853, and RM842) compared to the four downstream sites (RM827, RM800, RM779, and RM756) (Table 42).

Table 42 also gives the acute and chronic ammonia criteria applicable to the Missouri River when the sediment samples were collected. Nebraska's ammonia criteria are dependent upon pH and water temperature. The criteria given in Table 42 are based on the pH and water temperature of the Missouri River (i.e., receiving water) at the time the sediment samples were collected. No elutriate samples exceeded the calculated acute ammonia criteria, and only one elutriate sample exceeded the calculated chronic ammonia criteria. The elutriate sample prepared from the sediment sample collected at site location RM827SSM had a dissolved ammonia concentration of 3.3 mg/l. The acute and chronic ammonia criteria calculated for site RM827 were, respectively, 12.1 and 1.8 mg/l. Site RM827 was in the depositional headwaters of Lewis and Clark Lake (see Plates 4, 17, 18, and 19). This area is densely vegetated and decaying vegetation is abundant. The elutriate tests of the collected sediments do not indicate a widespread ammonia water quality concern if the alluvial sediments were mobilized by dredging. Alluvial sediment with higher organic matter and ammonia levels seemingly exist in localized areas.

Table 42. Ammonia concentrations measured in sampled media. Water temperature and pH levels for receiving water are measured field conditions and were used to calculate the listed Nebraska water quality standards criteria for ammonia.

			Receivi	ng Water				Nebi	aska
	Sediment					Pre-Elutriate	Elutriate	WQ Sta	andards
	Total	Water		Total	Dissolved	Total	Dissolved	Ammonia	a Criteria
Site	Ammonia	Temperature	pН	Ammonia	Ammonia	Ammonia	Ammonia	Acute	Chronic
Location	(mg/kg)	(°C)	(S.U.)	(mg/l)	(mg/)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
RM867SSM	n.d.	20.3	7.9	0.03	n.d.	n.d.	n.d.	10.13	1.93
RM867SSC	n.d.	20.3	7.9	0.03	n.d.	n.d.	n.d.	10.13	1.93
RM867BWD	n.d.	20.3	7.9	0.03	n.d.	0.05	n.d.	10.13	1.93
RM853SSM	n.d.	23.6	8.4	0.10	0.08	n.d.	n.d.	3.88	0.72
RM853SSC	n.d.	23.6	8.4	0.10	0.08	0.10	0.11	3.88	0.72
RM853BWD	n.d.	23.6	8.4	0.10	0.08	n.d.	n.d.	3.88	0.72
RM842SSM	n.d.	21.5	8.1	0.03	n.d.	0.30	0.20	6.94	1.34
RM842SSC	n.d.	21.5	8.1	0.03	n.d.	0.57	0.57	6.94	1.34
RM842BWD	n.d.	21.5	8.1	0.03	n.d.	0.12	n.d.	6.94	1.34
RM827SSM	34.2	23.4	7.8	0.03	0.03	3.6	3.3	12.13	1.79
RM827SSC	18.5	23.4	7.8	0.03	0.03	1.7	1.0	12.13	1.79
RM827BWD	n.d.	23.4	7.8	0.03	0.03	n.d.	0.10	12.13	1.79
RM800SSM	2.9	7.6	8.0	0.07	0.07	0.22	0.24	8.40	2.43
RM800SSC	n.d.	7.6	8.0	0.07	0.07	0.41	0.36	8.40	2.43
RM800BWD	20.9	7.6	8.0	0.07	0.07	0.71	0.74	8.40	2.43
RM779SSM	n.d.	8.1	7.9	0.07	0.06	n.d.	n.d.	10.13	2.80
RM779SSC	n.d.	8.1	7.9	0.07	0.06	n.d.	0.08	10.13	2.80
RM779BWD	5.9	8.1	7.9	0.07	0.06	0.76	0.79	10.13	2.80
RM756SSM	2.9	7.5	7.9	0.10	0.07	n.d.	n.d.	10.13	2.80
RM756SSC	0.9	7.5	7.9	0.10	0.07	0.25	0.27	10.13	2.80
RM756BWD	2.6	7.5	7.9	0.10	0.07	0.25	n.d.	10.13	2.80

4.3 THM FORMATION POTENTIAL

Concerns have been expressed that dredging sediments for the construction of emergent sandbar habitat mobilizes organic matter that could serve as THM precursors. When subject to chlorination during water treatment, THM precursors form trihalomethanes which are known carcinogens. Major precursors affecting THM formation in chlorinated drinking water are believed to be humic and fulvic substances and simple low-molecular-weight organic compounds. To evaluate this concern, THM Formation Potential (THM-FP) and true color were measured in appropriate samples. THM-FP measures the amount of THMs that are formed in a sample that is chlorinated for an extended period. Color in water may result from the presence of natural metallic ions (iron and manganese), humus and peat materials, plankton, weeds, and industrial wastes. "True color" is the color of water from which turbidity has been removed. True color can be indicative of the amount of dissolved humic substances present in water, and dissolved humic substances can be THM precursors. Dissolved low-molecular weight organic matter is believed to form THMs more readily than "residual" organic matter. Table 43 compiles the THM-FP, organic carbon, and true color levels measured in the collected receiving water and prepared pre-elutriate and elutriate samples. Measured THM-FP levels in the prepared pre-elutriate and elutriate samples were both higher and lower than the Missouri River receiving water. In a few cases, THM-FP levels in the prepared elutriate samples were appreciably higher than the receiving water (i.e., sites RM800 and RM779). The elutriate samples at sites RM800 and RM779 had high organic carbon levels. Overall, the prepared elutriate samples did not seem to have significantly elevated THM-FP levels when compared to the applicable Missouri River receiving water.

Table 43. THM formation potential, organic carbon, and true color levels measured in Missouri River receiving water and prepared elutriate samples.

	THM For	mation Poten	tial (mg/l)	TOC	(mg/l)	DOC (mg/l)	True Color (S.U. APHA)			
Site Location	Receiving Water	Pre- Elutriate Water	Elutriate Water	Receiving Water	Pre- Elutriate Water	Elutriate Water	Receiving Water	Elutriate Water		
RM867SSM	191	170	184	2.8	4.6	n.d.	5	6		
RM867SSC	191	166	182	2.8	5.6	n.d.	5	6		
RM867BWD	191	141	192	2.8	2.1	1.1	5	7		
RM853SSM	165	302	182	3.0	3.2	2.8	6	6		
RM853SSC	165	262	122	3.0	2.3	2.5	6	8		
RM853BWD	165	229	113	3.0	2.1	2.0	6	9		
RM842SSM	168	196	261	2.7	3.0	3.0	5	5		
RM842SSC	168	196	215	2.7	3.0	3.0	5	8		
RM842BWD	168	62	234	2.7	2.8	n.d.	5	n.d.		
RM827SSM	155	124	159	4.0	3.1	2.2	9	5		
RM827SSC	155	122	154	4.0	4.0	4.1	9	5		
RM827BWD	155	209	161	4.0	4.4	4.9	9	9		
RM800SSM	183	279	245	3.2	5.0	3.1	6	7		
RM800SSC	183	329	222	3.2	7.9	3.4	6	8		
RM800BWD	183	343	246	3.2	7.1	3.7	6	11		
RM779SSM	200	254	210	4.1	4.8	3.7	6	8		
RM779SSC	200	230	197	4.1	4.8	2.9	6	7		
RM779BWD	200	268	211	4.1	6.8	3.4	6	8		
RM756SSM	231	231	257	4.9	6.4	3.9	8	8		
RM756SSC	231	175	200	4.9	5.6	4.0	8	8		
RM756BWD	231	185	192	4.9	5.7	3.9	8	8		

4.4 **NUTRIENTS**

Nutrient levels measured in the collected alluvial sediments were previously shown in Table 37. The potential for dredging of alluvial sediments for construction of ESH to increase nutrient levels in the Missouri River is indicated by the nutrient levels measured in the prepared elutriate samples. Table 44 gives the total Kjeldahl nitrogen (TKN), nitrate-nitrite nitrogen, and total phosphorus levels measured in the prepared pre-elutriate and elutriate samples and collected Missouri River receiving water. In general, TKN levels in the pre-elutriate water were about double the levels in the Missouri River receiving water (Table 44). Dissolved TKN levels in the elutriate samples were less than the total TKN levels in the preelutriate water, and generally a little higher than the dissolved TKN levels in the Missouri River receiving water (Table 44). One sediment sample (i.e., RM827SSM) resulted in significantly higher TKN levels in the pre-elutriate and elutriate samples than in the Missouri River receiving water. The levels of nitratenitrite nitrogen in both pre-elutriate and elutriate samples exhibited no increase over Missouri River Receiving water conditions (Table 44). Total phosphorus levels were significantly higher in the preelutriate samples compare to the total phosphorus levels measured in the Missouri River receiving water (Table 44). This is expected given the adsorption of phosphorus to suspended sediment and the increased suspended solids levels in the pre-elutriate samples. Dissolved phosphorus levels in the elutriate samples were comparable to dissolved phosphorus levels in the Missouri River receiving water (Table 44).

Table 44. Total Kjeldahl nitrogen, nitrate-nitrite nitrogen, and total phosphorus levels measured in Missouri River receiving water and prepared elutriate samples.

	Total Kjeldahl Nitrogen (mg/l)					trate-N	itrite Nitrog	en (mg/l)	Total Phosphorus (mg/l)					
			Pre-				Pre-				Pre-			
	Receiving		Elutriate	Elutriate	Receiving		Elutriate	Elutriate		iving	Elutriate	Elutriate		
Site	Water		Water	Water	Water		Water	Water	Water		Water	Water		
Location	Tot.	Dis.	(Total)	(Dissolved)	Tot.	Dis.	(Total)	(Dissolved)	Tot.	Dis.	(Total)	(Dissolved)		
RM867SSM	0.5	0.5	1.4	n.d.	0.05	n.d.	n.d.	n.d.	0.02	n.d.	0.18	n.d.		
RM867SSC	0.5	0.5	1.0	n.d.	0.05	n.d.	n.d.	n.d.	0.02	n.d.	0.15	n.d.		
RM867BWD	0.5	0.5	1.2	n.d.	0.05	n.d.	n.d.	n.d.	0.02	n.d.	0.23	n.d.		
RM853SSM	0.2	n.d.	0.5	0.2	0.03	n.d.	n.d.	n.d.	0.02	n.d.	0.12	n.d.		
RM853SSC	0.2	n.d.	1.1	0.6	0.03	n.d.	n.d.	n.d.	0.02	n.d.	0.14	n.d.		
RM853BWD	0.2	n.d.	0.9	0.6	0.03	n.d.	n.d.	n.d.	0.02	n.d.	0.18	n.d.		
RM842SSM	0.7	0.6	1.1	0.9	0.11	n.d.	n.d.	n.d.	0.04	n.d.	0.26	n.d.		
RM842SSC	0.7	0.6	1.4	1.4	0.11	n.d.	n.d.	n.d.	0.04	n.d.	0.23	n.d.		
RM842BWD	0.7	0.6	0.9	0.9	0.11	n.d.	n.d.	n.d.	0.04	n.d.	0.13	n.d.		
RM827SSM	0.3	n.d.	4.2	3.6	0.03	n.d.	n.d.	n.d.	n.d.	n.d.	0.25	n.d.		
RM827SSC	0.3	n.d.	1.7	1.0	0.03	n.d.	n.d.	n.d.	n.d.	n.d.	0.20	n.d.		
RM827BWD	0.3	n.d.	1.0	1.0	0.03	n.d.	n.d.	n.d.	n.d.	n.d.	0.28	n.d.		
RM800SSM	0.3	0.3	0.8	0.5	0.15	0.15	0.15	0.03	n.d.	n.d.	0.20	0.02		
RM800SSC	0.3	n.d.	1.1	0.7	0.15	0.15	0.14	0.14	n.d.	n.d.	0.32	0.02		
RM800BWD	0.3	n.d.	1.2	1.0	0.15	0.15	0.13	0.13	n.d.	n.d.	0.22	0.03		
RM779SSM	0.4	0.3	0.6	0.3	0.17	0.17	0.19	0.19	0.06	0.06	0.16	0.03		
RM779SSC	0.4	0.3	0.9	0.2	0.17	0.17	0.19	0.19	0.06	0.06	0.16	0.03		
RM779BWD	0.4	0.3	1.5	0.2	0.17	0.17	0.14	0.14	0.06	0.06	0.21	0.03		
RM756SSM	0.4	0.4	0.8	0.3	0.12	0.12	0.17	0.18	n.d.	n.d.	0.30	0.03		
RM756SSC	0.4	0.4	0.9	0.6	0.12	0.12	0.16	0.15	n.d.	n.d.	0.20	0.03		
RM756BWD	0.4	0.4	0.8	0.2	0.12	0.12	0.12	0.13	n.d.	n.d.	0.16	n.d.		

^{*} Standard elutriate preparation includes a final filtration of the sample. Elutriate concentrations are for the dissolved constituent.

5 REFERENCES

- **U.S. Army Corps of Engineers. 2008.** Using a Hydrolab DS4a and DS5 to directly measure water quality. SOP Number: WQ-21201, Revised October, 2008. Water Quality Unit, Water Control and Water Quality Section, Hydrologic Engineering Branch, Engineering Division, Omaha District, U.S. Army Corps of Engineers.
- USEPA and USACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. Test Manual: Inland Testing Manual. EPA-823-B-98-004, February 1998. U.S. Environmental Protection Agency, Office of Water. Department of Army, U.S. Army Corps of Engineers. Washington, D.C
- U.S. Fish and Wildlife Service. 2000. Biological opinion on the operation of the Missouri River Main Stem Reservoir System, operation and maintenance of the Missouri River Bank Stabilization and Navigation Project, and operation of the Kansas River Reservoir System. November 30, 2000. U.S. Fish and Wildlife Service, Region 6, Denver, Colorado, and Region 3, Fort Snelling, Minnesota.
- ______. 2003. U.S. Fish and Wildlife Service 2003 amendment to the 2000 biological opinion on the operation of the Missouri River Main Stem Reservoir System, operation and maintenance of the Missouri River Bank Stabilization and Navigation Project, and operation of the Kansas River Reservoir System. December 16, 2003. U.S. Fish and Wildlife Service.

Plate 1. General sediment sampling location at site RM756 as shown on 2006 aerial photo.

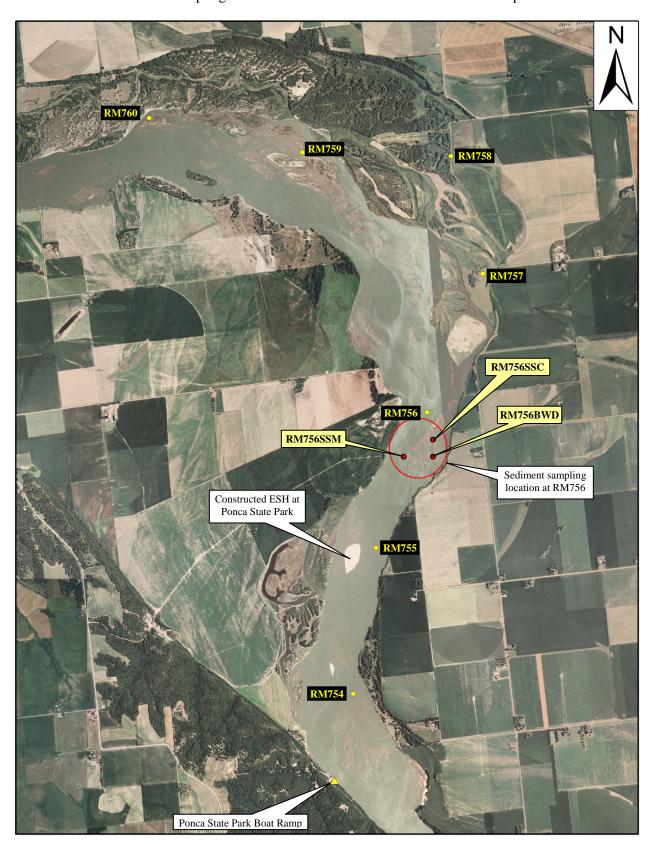


Plate 2. General sediment sampling location at site RM779 as shown on 2006 aerial photo.

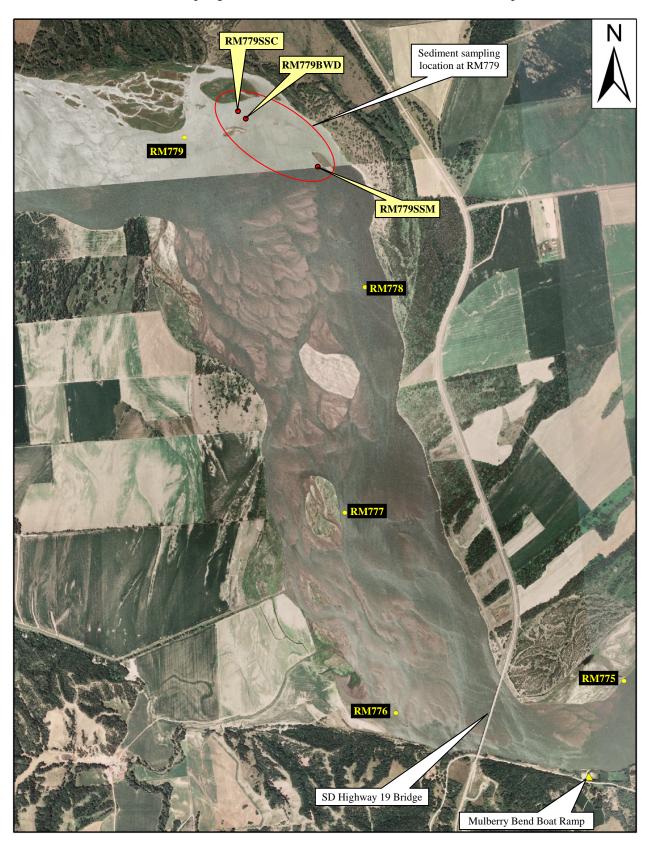


Plate 3. Sediment sampling locations at site RM800 as shown on 2006 aerial photo.

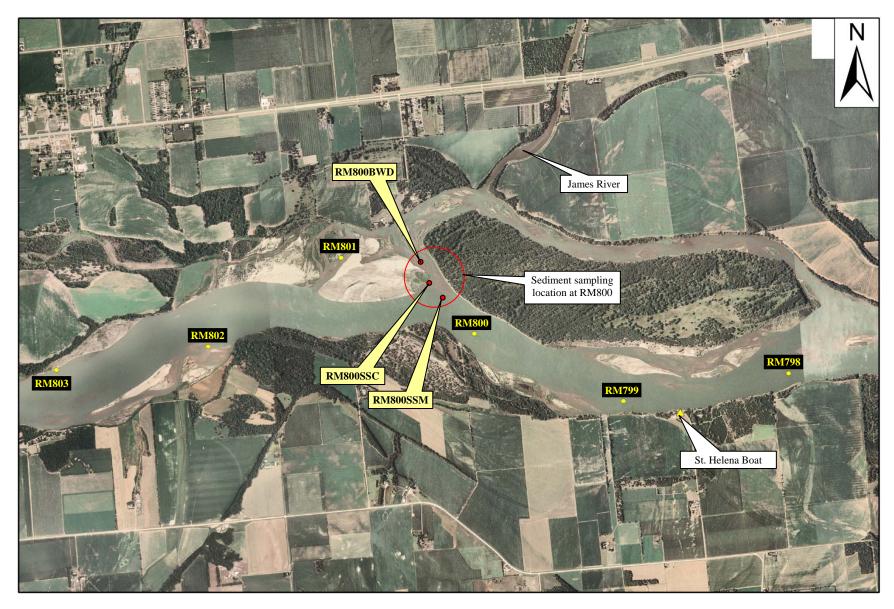


Plate 4. Sediment sampling locations at site RM827 as shown on 2006 aerial photo.

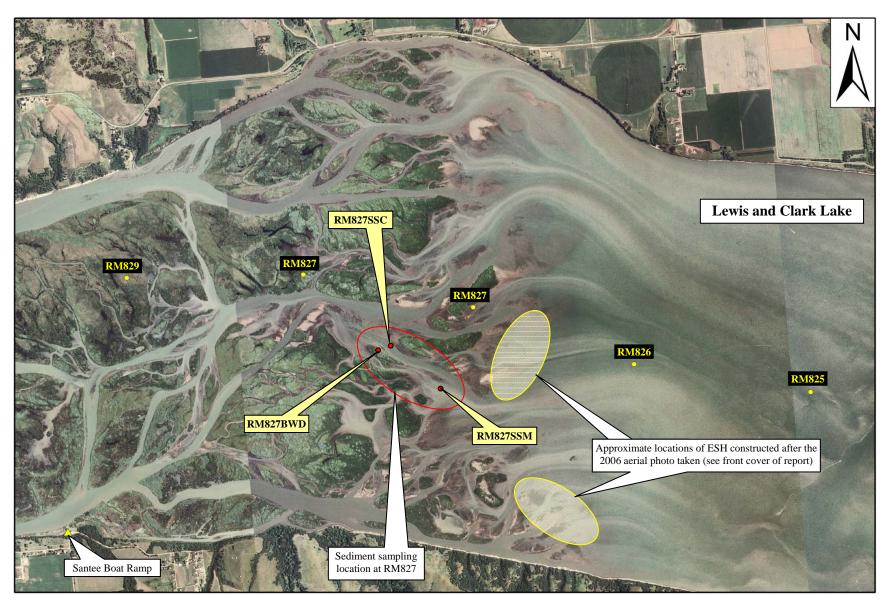


Plate 5. Sediment sampling locations at site RM842 as shown on 2006 aerial photo.

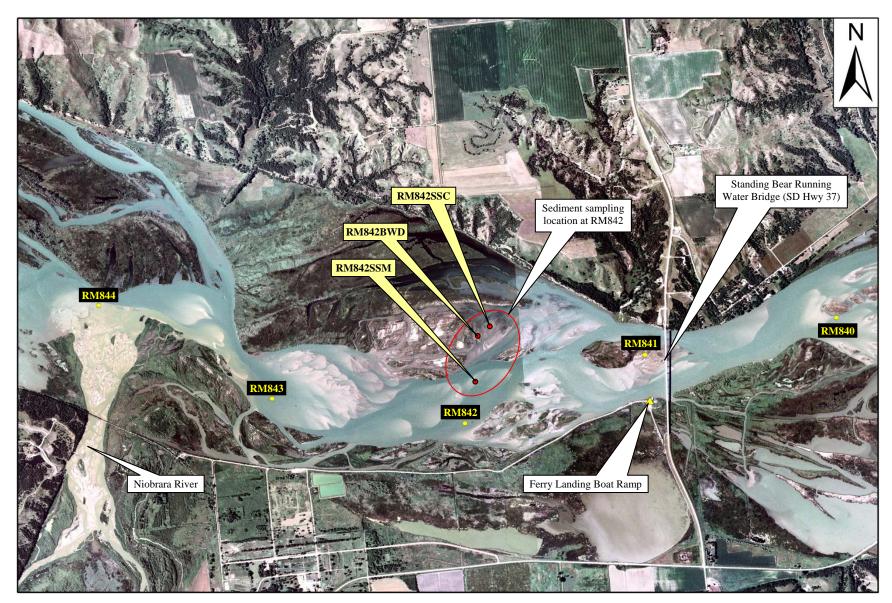


Plate 6. Sediment sampling locations at site RM853 as shown on 2006 aerial photo.

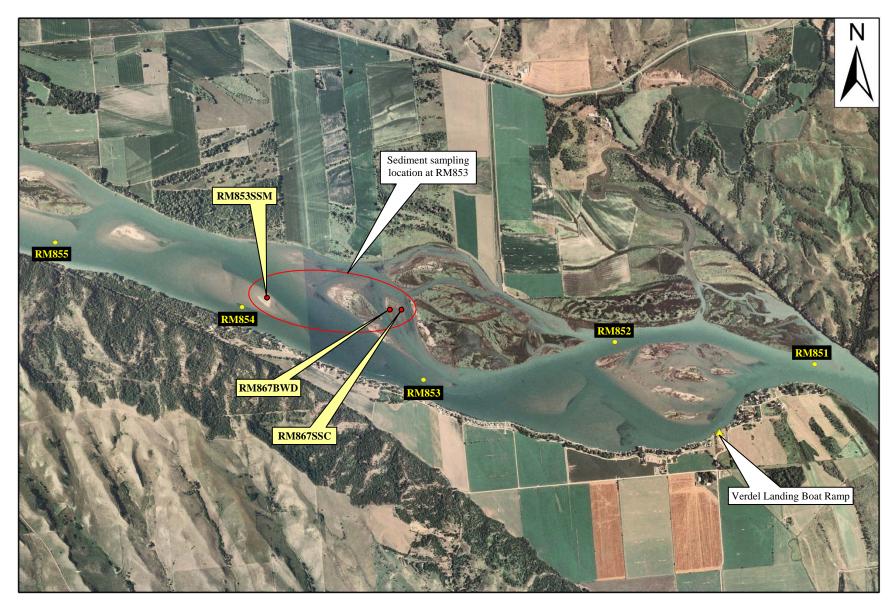


Plate 7. Sediment sampling locations at site RM867 as shown on 2006 aerial photo.

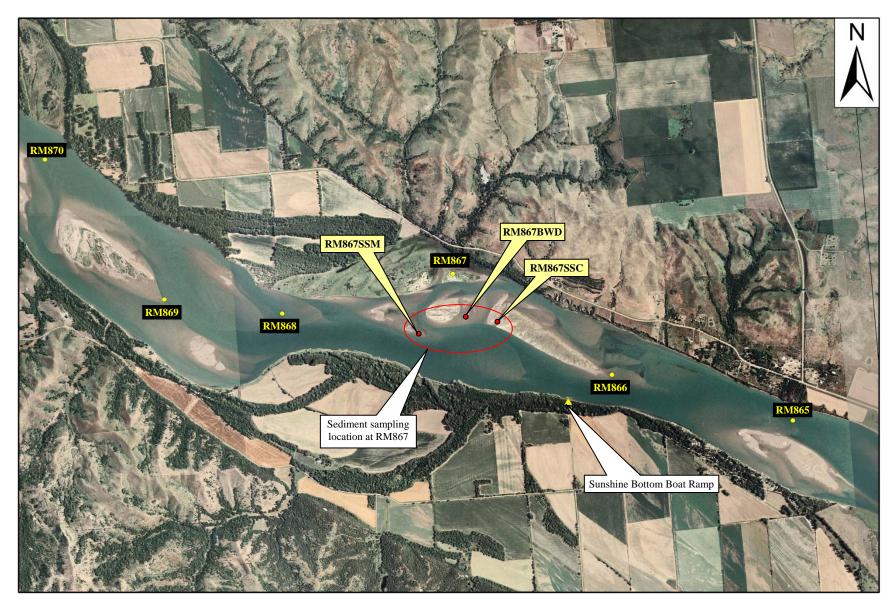


Plate 8. Photograph of site location RM867SSM taken at the time sediment sample collected.

Plate 9. Photograph of site location RM867SSC taken at the time sediment sample collected. (Note: Posted tern/plover sandbar area to the right.)

Plate 10. Photograph of site location RM867BWD taken at the time sediment sample collected.

Plate 11. Photograph of site location RM853SSM taken at the time sediment sample collected.

Plate 12. Photograph of site location RM853SSC taken at the time sediment sample collected.

Plate 13. Photograph of site location RM853BWD taken at the time sediment sample collected.

Plate 14. Photograph of site location RM842SSM taken at the time sediment sample collected. (Note: Standing Bear/Running Water Bridge visible in background.)

Plate 15. Photograph of site location RM842SSC taken at the time sediment sample collected.

Plate 16. Photograph of site location RM842BWD taken at the time sediment sample collected.

Plate 17. Photograph of site location RM827SSM taken at the time sediment sample collected. (Note: Constructed ESH visible in background.)

Plate 18. Photograph of site location RM827SSC taken at the time sediment sample collected.

Plate 19. Photograph of site location RM827BWD taken at the time sediment sample collected.

Plate 20. Photograph of site location RM800SSM taken at the time sediment sample collected.

Plate 21. Photograph of site location RM800SSC taken at the time sediment sample collected.

Plate 22. Photograph of site location RM800BWD taken at the time sediment sample collected.

Plate 23. Photograph of site location RM779SSM taken at the time sediment sample collected.

Plate 24. Photograph of site location RM779SSC taken at the time sediment sample collected.

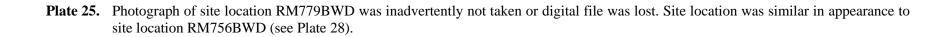


Plate 27. Photograph of site location RM756SSC taken at the time sediment sample collected.

Plate 28. Photograph of site location RM756BWD taken at the time sediment sample collected.

APPENDIX A.

Particle Size Distribution Reports Prepared by Midwest Laboratories, Inc. for Collected Sediment Samples

APPENDIX B.

Laboratory Reports Prepared by Midwest Laboratories, Inc. for Analyses of Sediment, Receiving Water, and Elutriate Testing

(Note: Some Sample ID Numbers listed on the Laboratory Reports differ slightly from the Site Numbers given in the report. Sample labels were prepared prior to going in the field to collect sediment samples. Some of the targeted sites locations (i.e. RM) were adjusted to allow targeted habitat types to be sampled. The prepared sample labels taken to the field and used to label the bottles taken to the laboratory did not reflect these adjustments.)

APPENDIX C. Data Quality Assessment Report

APPENDIX D.

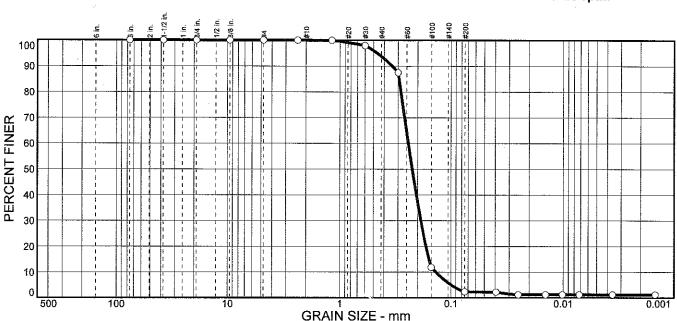
Sampling and Analysis Plan

APPENDIX A.

Particle Size Distribution Reports Prepared by Midwest Laboratories, Inc. for Collected Sediment Samples

Particle Size Distribution Report

Project: SPS-ESHSED-001 TRIP EDXDEJ072909


Report No.: 09-224-2214

Client: US ARMY CORPS OF ENGINEERS

Sample No: 1605410 Location: RM867SSM Source of Sample:

Date: 07/29/2009

Elev./Depth:

% COBBLES	% GRAVEL		% SAND		% FINES		
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.0	6.2	91.5	1.1	1.2

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. .375 in. #44 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 99.9 97.9 87.5 11.8 2.3		

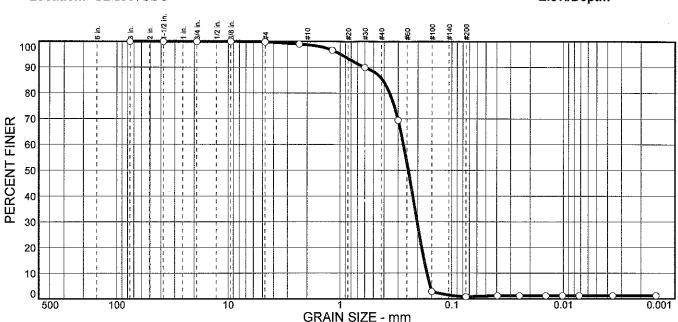
	Soil Description	
PL=	Atterberg Limits LL=	PI=
D ₈₅ = 0.294 D ₃₀ = 0.187 C _U = 1.77	<u>Coefficients</u> D ₆₀ = 0.243 D ₁₅ = 0.157 C _c = 1.05	D ₅₀ = 0.224 D ₁₀ = 0.137
USCS=	Classification AASHTO)=
	<u>Remarks</u>	

⁽no specification provided)

Particle Size Distribution Report

Project: SPS-ESHSED-001 TRIP EDXDEJ072909

Report No.: 09-224-2216


Client: US ARMY CORPS OF ENGINEERS

Sample No: 1605411 Location: RM867SSC

O5411 Source of Sample:

Date: 07/29/2009

Elev./Depth:

% COBBLES % GRAVEL		% SAND		% FINES			
% CUBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.2	1.0	13.1	84.9		1.2

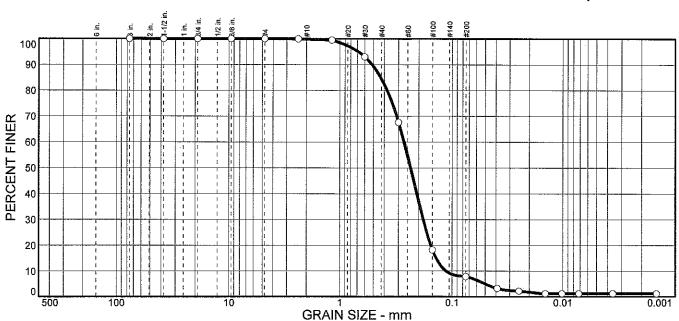
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 99.8 99.0 96.6 89.9 69.4 2.8 0.8		

	Soil Description	
		•
PL=	Atterberg Limits LL=	PI=
D ₈₅ = 0.413 D ₃₀ = 0.204 C _u = 1.62	Coefficients D ₆₀ = 0.270 D ₁₅ = 0.176 C _c = 0.93	D ₅₀ = 0.244 D ₁₀ = 0.166
USCS=	Classification AASHTO)=
	<u>Remarks</u>	

⁽no specification provided)

Particle Size Distribution Report

Source of Sample:


Project: SPS-ESHSED-001 TRIP EDXDEJ072909

Report No.: 09-224-2217

Client: US ARMY CORPS OF ENGINEERS

Sample No: 1605412 Location: RN867BWD Date: 07/29/2009

Elev./Depth:

% COBBLES	% GRAVEL % SAND		% SAND		% FINES		
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.2	15.3	76.7	6.6	1.2

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
The second secon	3 in. 1.5 in. .75 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 99.9 99.5 93.0 67.6 18.2 7.8		

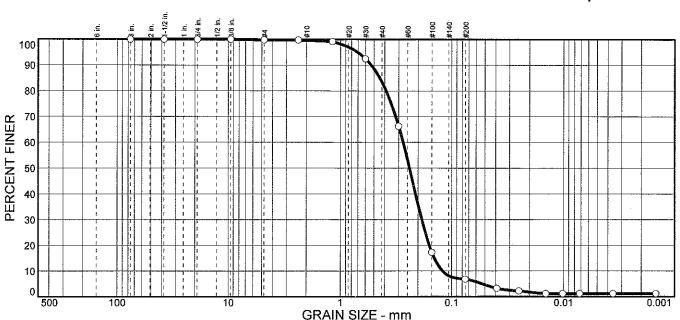
	Soil Description	
PL=	Atterberg Limits	PI=
D ₈₅ = 0.431 D ₃₀ = 0.182 C _u = 2.37	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{60} = 0.269 \\ \text{D}_{15} = 0.139 \\ \text{C}_{\text{C}} = 1.09 \end{array}$	D ₅₀ = 0.236 D ₁₀ = 0.114
USCS=	Classification AASHTO)=
	<u>Remarks</u>	

⁽no specification provided)

Particle Size Distribution Report

Project: SPS-ESHSED-001 TRIP EDXDEJ072909

Report No.: 09-224-2217


Client: US ARMY CORPS OF ENGINEERS

Sample No: 1605412 DUP Location: RN867BWD DUP

Source of Sample:

Date: 07/29/2009

Elev./Depth:

T							
% COBBLES	% GRAVEL			% SAND		% FINES	
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.2	0.2	16.1	76.7	5.6	1.2

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. .375 in. #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 99.8 99.7 99.2 92.5 66.2 17.2 6.8		

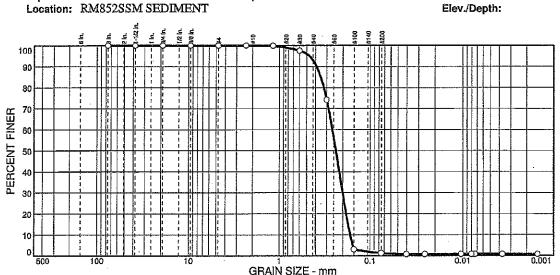
	Soil Description	
PL=	Atterberg Limits LL=	PI=
D ₈₅ = 0.444 D ₃₀ = 0.185 C _u = 2.28	Coefficients D60= 0.274 D15= 0.143 C _C = 1.04	D ₅₀ = 0.240 D ₁₀ = 0.120
USCS=	Classification AASHTO)=
	Remarks	

⁽no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 EDXDEJ082709

Report No.: 09-254-2055


Client: US ARMY CORPS OF ENGINEERS

Sample No: 1618073

Source of Sample:

Date: 08/27/2009

Elev./Depth:

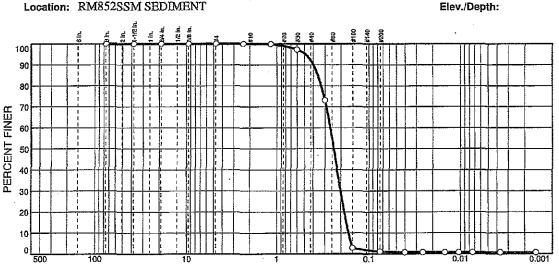
	Of the transfer of the transfe							
		% GRAVEL		% SAND		% FINES		
	% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
	0.0	0.0	0.0	0.0	7.2	91.5	0.5	0.8

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. .44 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 99.9 97.5 74.2 3.1 1.3		

	Soil Description	
	Bata of a constant	
PL=	Atterberg Limits	Pl=
D ₈₅ = 0.350 D ₃₀ = 0.201 C _U = 1.58	Coefficients D ₆₀ = 0.260 D ₁₅ = 0.174 C _C = 0.94	D ₅₀ = 0.238 D ₁₀ = 0.165
USCS=	Classification AASHT	O=
	Remarks	

⁽no specification provided)

Particle Size Distribution Report


Project: ESH CREATION SPS-ESHSED-001 EDXDEJ082709

Report No.: 09-254-2055

Client: US ARMY CORPS OF ENGINEERS

Sample No: 1618073 DUP Source of Sample: Date: 08/27/2009

Elev./Depth:

	GRAIN SIZE - BIIII								
° CORRI ES		% GR	AVEL			% FINES			
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY		
	0.0	0.0	0.0	0.0	8.1	90.7	0.4	0.8	

5	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X≔NO)
.3	3 in. 5 in. 75 in. 75 #48 #160 #30 #500 #200	100.0 100.0 100.0 100.0 100.0 100.0 99.9 97.2 73.0 2.8 1.2		

	Soil Description	
PL≃	Atterberg Limits	Pl≕
D ₈₅ = 0.358 D ₃₀ = 0.202 C _U = 1.58	Coefficients D60= 0.263 D15= 0.175 Cc= 0.94	D ₅₀ = 0.240 D ₁₀ = 0.166
USCS=	Classification AASHTO) -
	Remarks	

(no specification provided)

13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 • www.midwestlabs.com Report Number 09-254-2056

Source of Sample:

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 EDXDEJ082709

Report No.: 09-254-2056

Client: US ARMY CORPS OF ENGINEERS

Sample No: 1618074

Date: 08/27/2009

Location: RM852SSC SEDIMENT

Elev./Depth:

GHAIN SIZE - TIIII								
% CORRLES	% GR	AVEL	EL % SAND		% FINES			
% CORRLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY	
0.0	0.0	0.0	0.0	13	94.4	3.5	0.8	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7 97.1 13.2 4.3		

	Soil Description	1
PL=	Atterberg Limits	<u>s</u> Pl=
D ₈₅ = 0.276 D ₃₀ = 0.182 C _U = 1.87	Coefficients D ₆₀ = 0.232 D ₁₅ = 0.154 C _C = 1.15	D ₅₀ = 0.216 D ₁₀ = 0.124
USCS=	Classification AASH	TO=
	<u>Remarks</u>	

⁽no specification provided)

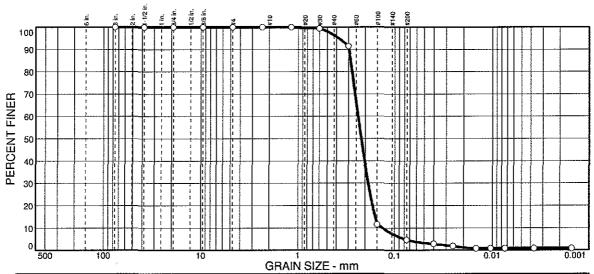
13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 • www.midwestlabs.com Report Number 09-254-2057

Source of Sample:

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 EDXDEJ082709

Report No.: 09-254-2057


Client: US ARMY CORPS OF ENGINEERS

Sample No: 1618075

Date: 08/27/2009

Location: RM852BWD SEDIMENT

Elev./Depth:

% COBBLES		% GRAVEL		% SAND			% FINES	
		CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
	0.0	0.0	0.0	0.0	3.6	91.8	3.8	0.8

-				
	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	3 in.	100.0 100.0		
	1.5 in. .75 in.	100.0		
	.375 in. #4	100.0		
	#8	100.0		
	#16 #30	99.9 99.4		
	#50	91.4		
	#100 #200	11.5 4.6		

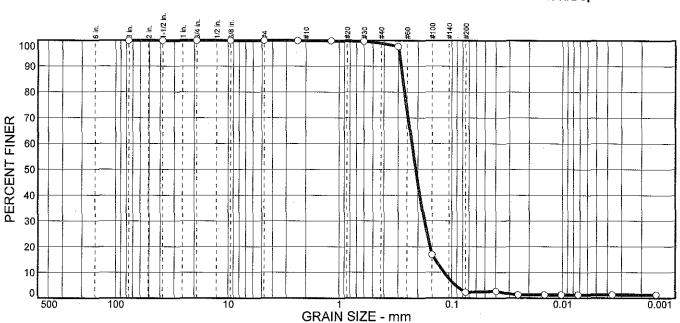
	Soil Description	
PL=	Atterberg Limits LL=	Pl=
D ₈₅ = 0.287 D ₃₀ = 0.187 C _u = 1.79	Coefficients D ₆₀ = 0.239 D ₁₅ = 0.158 C _C = 1.09	D ₅₀ = 0.222 D ₁₀ = 0.134
USCS=	Classification AASHTO)=
	<u>Remarks</u>	

(no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ071509

Report No.: 09-212-2201


Client: US ARMY CORPS OF ENGINEERS

Sample No: 1600988 Location: RM842SSM

Source of Sample:

Date: 07/16/2009

Elev./Depth:

P/ CODDI FS	% GR		% SAND		% FINES		
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.0	1.1	96.6	1.0	1.3

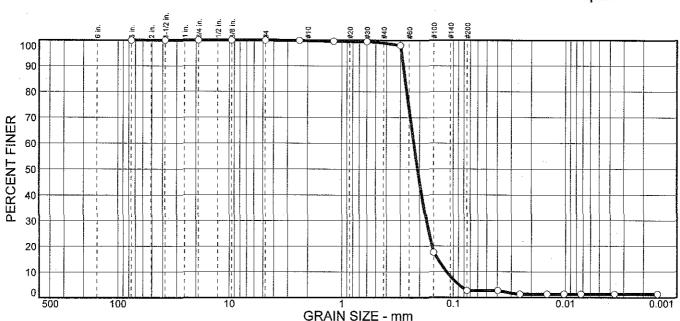
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.7 97.7 16.9 2.3		

		Soil Description	<u>on</u>
PL	<u>=</u>	Atterberg Limi LL=	<u>ts</u> Pl=
D ₈ D ₃ C _u	5= 0.274 0= 0.175 = 1.93	Coefficients D60= 0.228 D15= 0.141 C _C = 1.15	D ₅₀ = 0.210 D ₁₀ = 0.118
US	CS=	<u>Classificatior</u> AASH	
		Remarks	

⁽no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ071509


Report No.: 09-212-2204

Client: US ARMY CORPS OF ENGINEERS

Sample No: 1600991 Location: RM842SPLIT Source of Sample:

Date: 07/16/2009

Elev./Depth:

_								
	% GF	RAVEL	% SAND		% FINES			
l	% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
Γ	0.0	0.0	0.0	0.2	0.9	96.2	1.4	1.3

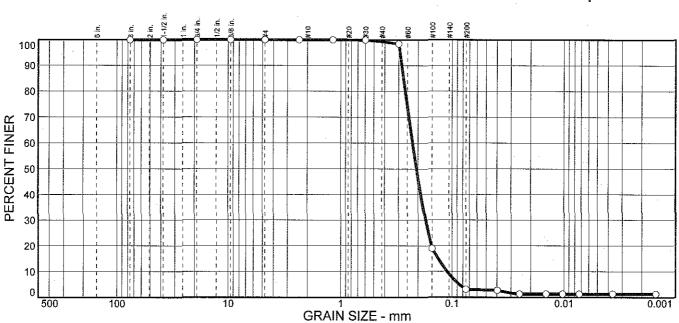
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. .44 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 99.9 99.6 99.5 98.0 17.5 2.7		

	Soil Description	
		·
PL=	Atterberg Limits LL=	PI=
D ₈₅ = 0.273 D ₃₀ = 0.174 C _u = 1.97	Coefficients D ₆₀ = 0.227 D ₁₅ = 0.138 C _C = 1.17	D ₅₀ = 0.209 D ₁₀ = 0.115
USCS=	Classification AASHT	O=
·	<u>Remarks</u>	

⁽no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ071509


Report No.: 09-212-2204

Client: US ARMY CORPS OF ENGINEERS

Location: RM842SPILT DUP

1600991 DUP Sample No: Source of Sample: Date: 07/16/2009

Elev./Depth:

	% GRAVEL			% SAND		% FINES	
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.0	0.7	96.2	1.8	1.3

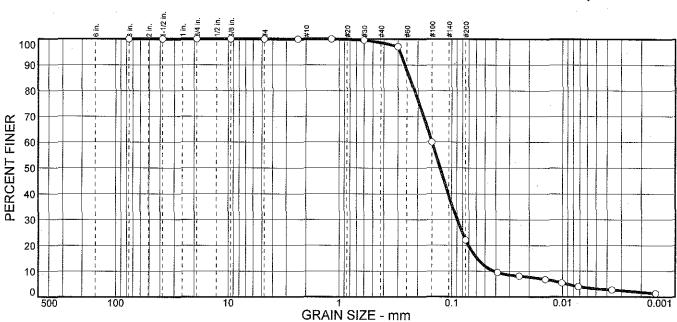
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 98.4 18.9 3.1		

	Soil Description	
•		
	Atterberg Limits	·
PL=	LL=	PI=
D ₈₅ = 0.272 D ₃₀ = 0.172 C _u = 2.03	Coefficients D ₆₀ = 0.225 D ₁₅ = 0.133 C _C = 1.19	D ₅₀ = 0.207 D ₁₀ = 0.111
USCS=	Classification AASHTC)=
	<u>Remarks</u>	
•		
_		

⁽no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ071509


Report No.: 09-212-2202

Client: US ARMY CORPS OF ENGINEERS

Sample No: 1600989 Location: RM842SSC Source of Sample:

Date: 07/16/2009

Elev./Depth:

% GRAVEL % SAND % FINES % COBBLES FINE CRS. MEDIUM FINE CLAY CRS. SILT 0.0 0.0 0.0 0.0 1.4 76.5 19.0 3.1

	SIEVE	PERCENT	SPEC.*	PASS?
į	SIZE	FINER	PERCENT	(X=NO)
	3 in. 1.5 in. .75 in. .375 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 99.6 97.1 60.0 22.1		

	0-75	
	Soil Description	
		,
	Atterberg Limits	
PL=	LL=	PI=
•	0	
D = 0.000	Coefficients	D = 0.107
D ₈₅ = 0.236	$D_{60} = 0.150$	$D_{50} = 0.127$
$D_{30}^{2} = 0.0894$ $C_{11}^{2} = 3.61$	$D_{15} = 0.0593$ $C_{c} = 1.28$	D ₁₀ = 0.0416
℃u- 3.01	C _C - 1.28	
	Classification	i
USCS=	AASHTO	=
		Ì
	<u>Remarks</u>	
_		

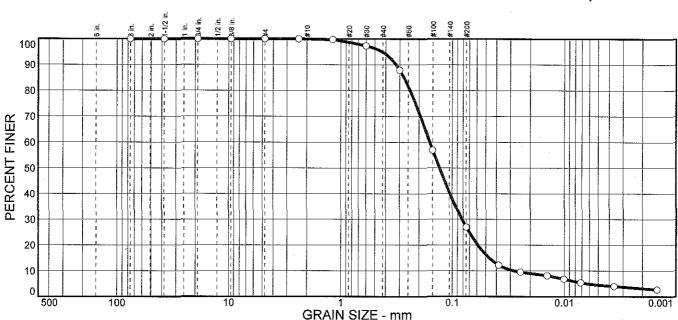
⁽no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ071509

Report No.: 09-212-2203

Client: US ARMY CORPS OF ENGINEERS


Sample No: Location: RM842BWD

1600990

Source of Sample:

Date: 07/16/2009

Elev./Depth:

				DIO SIT OILL			
% COPPLES		AVEL		% SANI		% FINES	
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.0	5.1	68.0	22.4	4.5

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 99.7 97.3 87.9 56.9 26.9		

	Soil Description	·
	į.	-
	Atterberg Limits	
PL=	LL=	PI=
D ₈₅ = 0.275 D ₃₀ = 0.0819 C _U = 5.68	Coefficients D60= 0.160 D15= 0.0467 C _C = 1.50	D ₅₀ = 0.130 D ₁₀ = 0.0281
USCS=	Classification AASHT	O=
	<u>Remarks</u>	
· <u>.</u>		

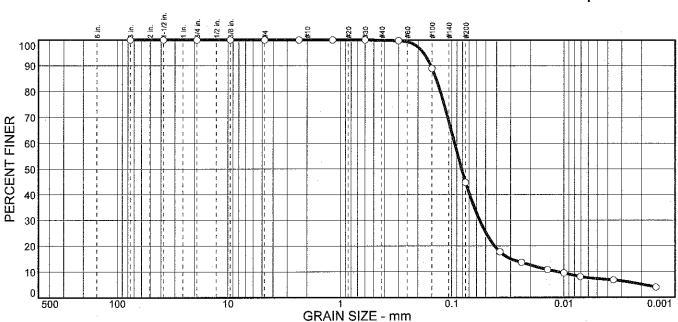
⁽no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ071509

Report No.: 09-212-2197

Client: US ARMY CORPS OF ENGINEERS


Sample No: Location: RM828SSM

1600977

Source of Sample:

Date: 07/16/2009

Elev./Depth:

OTO WIT OILL AMIL							
% COBBLES	% GRAVEL % SAND 9				% FINES		
	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.0	0.1	55.2	37.4	7.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7 88.9 44.7		

	Soil Description	
	1.50	
		·
PL=	Atterberg Limits LL=	PI=
D ₈₅ = 0.138 D ₃₀ = 0.0565 C _u = 8.28	Coefficients D ₆₀ = 0.0942 D ₁₅ = 0.0300 C _C = 2.98	D ₅₀ = 0.0815 D ₁₀ = 0.0114
USCS=	Classification AASHT	O=
	Remarks	
<u> </u>		·

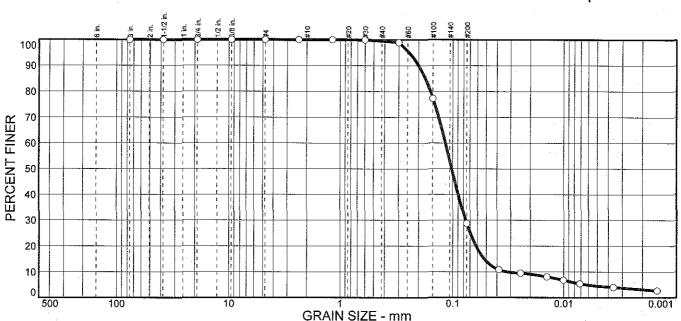
⁽no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ071509

Report No.: 09-212-2199

Client: US ARMY CORPS OF ENGINEERS


Sample No: Location: RM828SSC

1600978

Source of Sample:

Date: 07/16/2009

Elev./Depth:

W CORRIES			% SAND		% FINES		
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.0	0.5	70.8	24.2	4.5

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X≃NO)
. ,	3 in. 1.5 in. .75 in. .375 in. .44 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 99.9 98.9 77.3 28.7		

	Soil Description	
PL=	Atterberg Limits	PI=
	Coefficiente	
D ₈₅ = 0.175 D ₃₀ = 0.0767 C _u = 3.57	Coefficients D ₆₀ = 0.116 D ₁₅ = 0.0522 C _c = 1.55	D ₅₀ = 0.102 D ₁₀ = 0.0326
USCS=	Classification AASHTO)=
	Remarks	

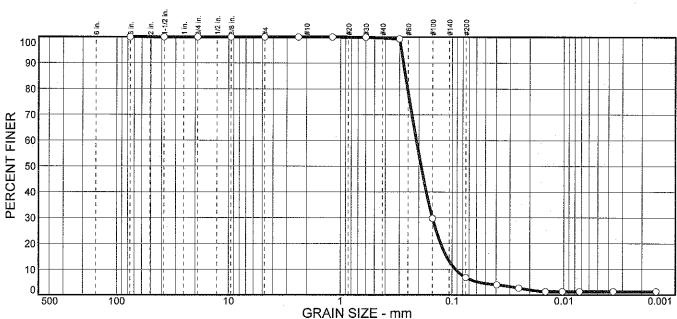
⁽no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ071509

Report No.: 09-212-2200

Client: US ARMY CORPS OF ENGINEERS


Sample No: Location: RM828BWD

1600979

Source of Sample:

Date: 07/16/2009

Elev./Depth:

0/ 00PDLE0	% GRAVEL % SAND		% SAND		% FINES			
% COBBLES		CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
	0,0	0.0	0.0	0.0	0.3	92.9	5.5	1.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. .44 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.3 29.7 6.8		

	Soil Description	
		· Overlands
PL=	Atterberg Limits LL=	PI=
D ₈₅ = 0.265 D ₃₀ = 0.151 C _u = 2.27	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{60} = \ 0.211 \\ \text{D}_{15} = \ 0.112 \\ \text{C}_{\text{C}} = \ 1.15 \end{array}$	D ₅₀ = 0.191 D ₁₀ = 0.0933
USCS=	Classification AASHTC)=
	Remarks	
4		·

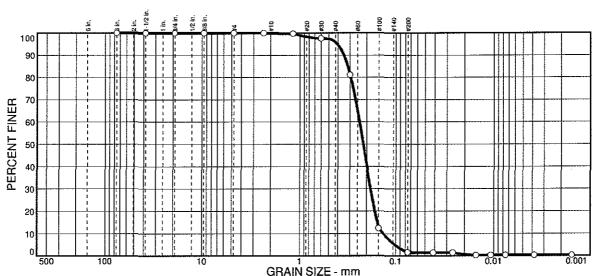
⁽no specification provided)

13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 • www.midwestlabs.com Report Number 09-342-2219

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ112309

Report No.: 09-342-2219


Client: US ARMY CORPS OF ENGINEERS

Sample No: 1653229

Date: 11/23/2009

Location: RM801SSM Elev./Depth:

Source of Sample:

e/ CORRIES	% GF	RAVEL		% SAN	D	% FINES	
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.2	4.1	94.1	1.3	0.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. .844 #8 #16 #30 #100 #200	100.0 100.0 100.0 100.0 100.0 99.9 99.6 97.5 81.1 12.4 1.6		(Kanto)

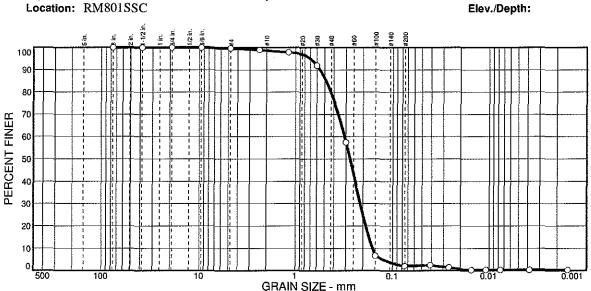
	Soil Description	
PL=	Atterberg Limits	Pl=
D ₈₅ = 0.318 D ₃₀ = 0.183 C _U = 1.78	Coefficients D ₆₀ = 0.240 D ₁₅ = 0.155 C _C = 1.03	D ₅₀ = 0.219 D ₁₀ = 0.135
USCS=	Classification AASHTO)=
	<u>Remarks</u>	

(no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ112309

Report No.: 09-342-2220


Client: US ARMY CORPS OF ENGINEERS

Sample No: 1653230

Source of Sample:

Date: 11/23/2009

Elev./Depth:

	% COBBLES	% GR	6 GRAVEL % SAND % F				% FINE	
	% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
	0.0	0.0	0.4	1.0	19.5	77.0	1.8	0.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1,5 in. .75 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 99.6 98.9 97.8 91.9 57.4 6.6 2.1		

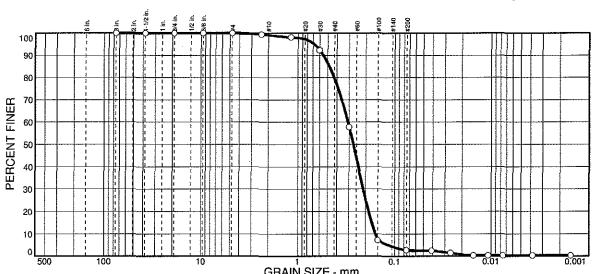
	Soil Description	
	Atterberg Limits	
PL=	LL=	Pl≖
D ₈₅ = 0.484 D ₃₀ = 0.214 C _U = 1.93	Coefficients D60= 0.311 D15= 0.175 Cc= 0.92	D ₅₀ = 0.273 D ₁₀ = 0.161
USCS=	Classification AASHT	'O=
	<u>Remarks</u>	
		Ī

(no specification provided)

13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 • www.midwestlabs.com Report Number 09-342-2220

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ112309


Report No.: 09-342-2220

Client: US ARMY CORPS OF ENGINEERS

Sample No: 1653230 DUP Source of Sample: Location: RM801SSC DUP

Date: 11/23/2009

Elev./Depth:

GITAIN SIZE - IIIII							
% COBBLES	% GRAVEL			% SAND		% FINES	
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.9	10.5	76.9	24	0.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 99.4 98.1 92.3 57.8 7.1 2.7	:	

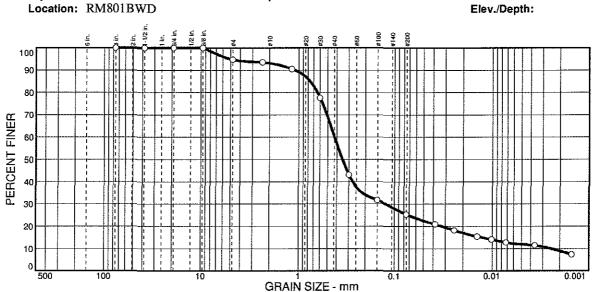
	Soil Description	
PI =	Atterberg Limits	PI=
, 	2	
D ₈₅ = 0.479 D ₃₀ = 0.213 C _U = 1.94	Coefficients D ₆₀ = 0.309 D ₁₅ = 0.174 C _c = 0.92	D ₅₀ = 0.272 D ₁₀ = 0.160
USCS=	Classification AASHT	O=
	Remarks	
	· ———	

(no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ112309

Report No.: 09-342-2221


Client: US ARMY CORPS OF ENGINEERS

Sample No: 1653231

Source of Sample:

Date: 11/23/2009

Elev./Depth:

e/ CORRIEC	% GRAVEL			% SAND		% FINES	
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	5.3	1.6	32.9	34.9	13.3	12.0

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. #4 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 94.7 93.5 90.5 77.6 43.1 31.7 25.3		

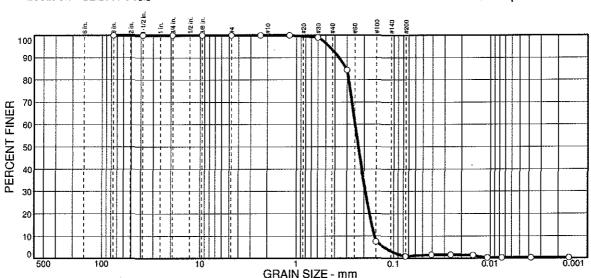
	Soil Description	
PL=	Atterberg Limits LL=	Pl=
D ₈₅ = 0.764 D ₃₀ = 0.123 C _u = 170.83	Coefficients D60= 0.423 D15= 0.0129 Cc= 14.48	D ₅₀ = 0.351 D ₁₀ = 0.0025
USCS=	Classification AASHT)=
	<u>Remarks</u>	

(no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ112309

Report No.: 09-342-2216


Client: US ARMY CORPS OF ENGINEERS

Sample No: 1653226 Location: RM779SSM

Source of Sample:

Date: 11/23/2009

Elev./Depth:

	CHAIN OIZE TIME							
	% COBBLES		% GRAVEL % SAND % FINES					
ı		CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
	0.0	0.0	0.0	0.0	6.5	92.6	0.6	0.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.0 84.4 7.4 0.9		

	Soil Description	
PL=	Atterberg Limits	PI=
D ₈₅ = 0.306 D ₃₀ = 0.195 C _u = 1.60	Coefficients D60= 0.249 D15= 0.167 C _C = 0.98	D ₅₀ = 0.231 D ₁₀ = 0.156
USCS=	Classification AASHT	O=
	Remarks	

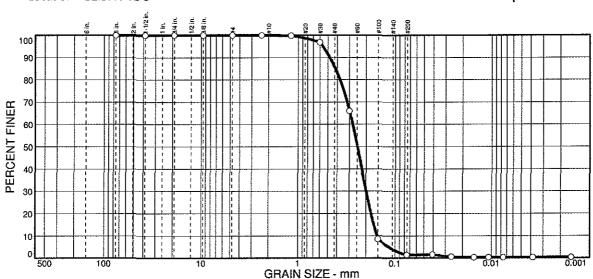
(no specification provided)

13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 • www.midwestlabs.com Report Number 09-342-2217

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ112309

Report No.: 09-342-2217


Client: US ARMY CORPS OF ENGINEERS

Sample No: 1653227 Location: RM779SSC

Source of Sample:

Date: 11/23/2009

Elev./Depth:

	% GRAVEL % SAND				% FINES		
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.0	14.4	84.2	1.1	0.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 99.8 96.8 66.0 8.5 1.4		

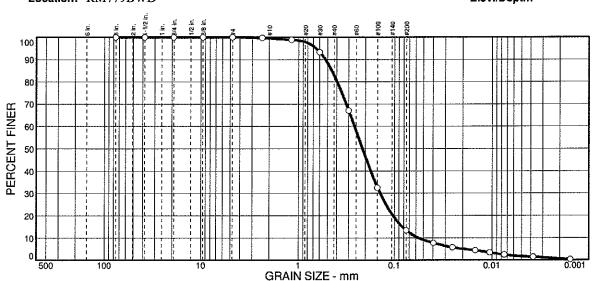
	Soil Description	
PL=	Atterberg Limits LL=	Pl=
D ₈₅ = 0.419 D ₃₀ = 0.200 C _u = 1.81	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{60} = 0.278 \\ \text{D}_{15} = 0.167 \\ \text{C}_{\text{C}} = 0.93 \end{array}$	D ₅₀ = 0.249 D ₁₀ = 0.154
USCS=	Classification AASHTC)=
	<u>Remarks</u>	

(no specification provided)

13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 • www.midwestlabs.com Report Number 09-342-2218

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ112309


Report No.: 09-342-2218

Client: US ARMY CORPS OF ENGINEERS

Sample No: 1653228 Location: RM779BWD Source of Sample:

Date: 11/23/2009

Elev./Depth:

% CORRIES	76 UI	% GRAVEL % SAND % FINES		% SAND			
% CUBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.5	16.8	69.4	11.6	1.7

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in75 in375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 99.7 98.8 93.3 67.1 32.5 13.3		

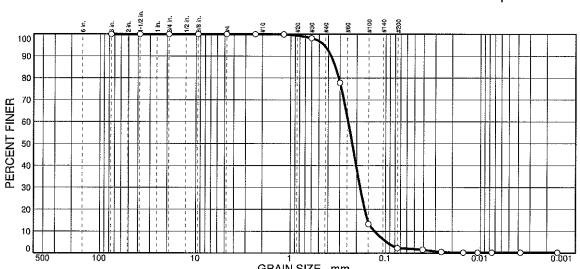
	Soil Description	
PL=	Atterberg Limits LL=	Pl=
D ₈₅ = 0.451 D ₃₀ = 0.141 C _u = 4.62	Coefficients D ₆₀ = 0.261 D ₁₅ = 0.0829 C _C = 1.35	D ₅₀ = 0.216 D ₁₀ = 0.0565
USCS=	Classification AASHTO) =
	<u>Remarks</u>	
THE STATE OF THE S		

(no specification provided)

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ112309

Report No.: 09-342-2213


Client: US ARMY CORPS OF ENGINEERS

Sample No: 1653223 Location: RM757SSM

Source of Sample:

Date: 11/23/2009

Elev./Depth:

GRAIN SIZE - IIIII							
% COBBLES	% GF	RAVEL	% SAND				
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.0	5.9	91.8	2.0	0.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 99.9 98.2 77.8 13.3 2.3		Ç

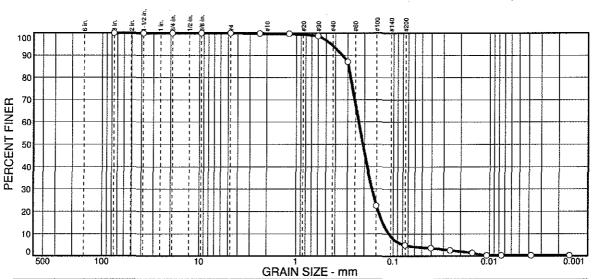
	Soil Description	
PL≕	Atterberg Limits LL=	PI=
D ₈₅ = 0.335 D ₃₀ = 0.184 C _u = 1.91	Coefficients D60= 0.246 D15= 0.154 Cc= 1.06	D ₅₀ = 0.223 D ₁₀ = 0.129
USCS=	Classification AASHT	·O=
	Remarks	

(no specification provided)

13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 • www.midwestlabs.com Report Number 09-342-2214

Particle Size Distribution Report

Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ112309


Report No.: 09-342-2214

Client: US ARMY CORPS OF ENGINEERS

Sample No: 1653224 Location: RM757SSC Source of Sample:

Date: 11/23/2009

Elev./Depth:

GIANI SIZE - TIM											
% COBBLES	% GR	AVEL	% SAND			% FINES					
	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY				
0.0	0.0	0.0	0.2	55	89.4	4.6	0.3				

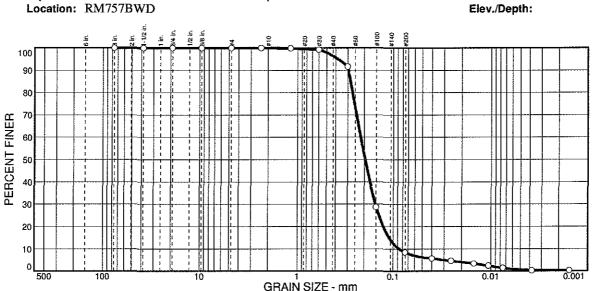
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. #4 #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 99.8 99.6 98.7 87.0 22.6 4.9		

	Soil Description	•
PL=	Atterberg Limits	Pl=
D ₈₅ = 0.294 D ₃₀ = 0.167 C _U = 2.08	Coefficients D60= 0.232 D15= 0.129 Cc= 1.08	D ₅₀ = 0.210 D ₁₀ = 0.111
USCS=	Classification AASHT	·O=
	<u>Remarks</u>	

(no specification provided)

Figure

Particle Size Distribution Report


Project: ESH CREATION SPS-ESHSED-001 TRIP EDXDEJ112309

Report No.: 09-342-2215

Client: US ARMY CORPS OF ENGINEERS

Sample No: 1653225 Source of Sample: Date: 11/23/2009

Elev./Depth:

					,,,,,,		
% COBBLES	% GR	GRAVEL		% SAND % FINE			
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.0	3.7	87.9	7.8	0.6

OUEL/E	DEBOENT	+	24.000
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 1.5 in. .75 in. .375 in. #8 #16 #30 #50 #100 #200	100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.2 91.6 28.7 8.4	PERCENT	(X=NO)

	Soil Description	
PL=	Atterberg Limits	Pl=
D ₈₅ = 0.281 D ₃₀ = 0.153 C _U = 2.53	Coefficients D60= 0.220 D15= 0.110 Cc= 1.23	D ₅₀ = 0.197 D ₁₀ = 0.0867
USCS=	<u>Classification</u> AASHTO	O=
	<u>Remarks</u>	

(no specification provided)

Figure

APPENDIX B.

Laboratory Reports Prepared by Midwest Laboratories, Inc. for Analyses of Sediment, Receiving Water, and Elutriate Testing

(Note: Some Sample ID Numbers listed on the Laboratory Reports differ slightly from the Site Numbers given in the report. Sample labels were prepared prior to going in the field to collect sediment samples. Some of the targeted sites locations (i.e. RM) were adjusted to allow targeted habitat types to be sampled. The prepared sample labels taken to the field and used to label the bottles taken to the laboratory did not reflect these adjustments.)

Page 1 of 4

Report #:

USACE

DAVE IENGEN

09-224-2224

09-224-2222

09-244-2114

09-223-2104

Project Name:

Project #: Trip Number: ESH CREATION

Tr

DATE OF 140	LN
106 SOUTH	15TH STREET
OMAHA NE	68102

SPS-ESHSED-00 EDXDEJ072909

Lab Number:				1		1	1605407	1605406	1605413/1605800	1605/13/1605801
Sample ID:							RM867SSM	RM867NS	RM867SSM	Elutriate
Parameter	Method	Met Dete	ction	Rep	oratory orting imit	Units	Soil	Receiving Water	Pre-Elutriate Water	Elutriate Water
Alkalinity	SM 2320 B	-	4	-	10	mg/kg mg/L	n.d.	152		169
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	2,523	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		n.d.		n.d.
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	0.03J	n.d.	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	n.d.		0.6 J
Arsenic Total	EPA 200.8	1	1	5	3	mg/kg µg/L	8.49	n.d.		n.d.
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.đ.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	0.15	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	9,338	60		60
Chemical Oxygen Demand-COD	ASTM 1252	-	3	-	10	mg/L		9		13
Chlorophyll	SM 10200	-	-	1	3	μg/L		1 J		
Chromium	EPA 200.7	0.2	1		10	mg/kg µg/L	0.15	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	4.7	n.d.		20
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg µg/L	n.d.	n.d.		n.d.
Iron	EPA 200.7	4	7	10	20	mg/kg µg/L	11,993	n.d.		130
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		0.49 J		n.đ.
Kjeldahi Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	74.7	0.54	1.40	
Lead	EPA 200.7	1	0.5	5	2	mg/kg µg/L	7.97	n.d.	_	n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L.	3,021	20.5	_	20.7
Manganese	EPA 200.7	1	2	5	10	mg/kg µg/L	439	n.d.	_	30
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	n.d.	n.d.	_	n.d.
Nickel	EPA 200.7	0.2	10	2	30.	mg/kg µg/L	15.3	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	n.d.	0.05J	n.d.	
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	mg/kg µg/L	_	n.d.		n.d.
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV	-160.1	-187.9	_	-134.7
Particle Size	Sieve		_				See Attached			
pΗ	SM 4500-H	0.	1	C).2		7.9	8.28		8.14
Selenium	EPA 200.8	1	1	4	3	mg/kg µg/L	n.d.	4		4
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L	n.đ.	n.d.	~***	ก.d.
Thallium	EPA 200.7	1	0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	20	mg/L		626		673
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		2.6		n.d.
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	300	2.8	4.6	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		n.d.	***	n.đ.
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	365	0.02J	0.18	
Total Suspended Solids	SM 2540D	-	4	-	10	mg/L		13	134	
Bromodichloromethane	EPA 524.2			0.15	1	µg/L		28	26	29
Bromoform	EPA 524.2			0.25	1	µg/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	1	μg/L		5.6	5.0	5.9
Chloroform	EPA 524.2			0.1	1	μg/L		157	138	149
Total trihalomethanes	EPA 524.2				1	µg/L		191	170	184
True Color	ASTM D1209-05	1	5	1	5	APHA		5		6
Turbidity	EPA 180.1	-	1	-	3	NTU		<1	205	<1
Zinc	EPA 200.7	1	10	5	30	mg/kg µg/L	29.9	40	~~~	110

n.d. = Not Detected

--- Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

REPORT OF ANALYSIS

Report Number:

09-224-2224

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

(402) 995-2310

Date Received:

11/17/09 07/29/09

Date Sampled:

07/29/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEK082709

Lab number:

1605407

Sample ID:

RM867SSM

Method: FPA 8081/8082

Unite: Hg/Ka

Analyst:

awr

Date of Analysis: 8/11/2009

Wethou: EPA 000 1/0002	Units	: pg/kg	Analyst. aw	Date of Allarysis. 0/11/20	009				
Analysis	Level Found	Method Detection Limit	Reporting Limit (μg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)		
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1		
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9		
4,4'-DDT	nid.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9		
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9		
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9		
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9		
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1		
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1		
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1		
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1		
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1		
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1		
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1		
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1		
Dieldrin	n.d.	0.691	9.9						

REPORT OF ANALYSIS

Report Number:

09-224-2222

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

(402) 995-2310

Date Received:

11/17/09 07/29/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ072909

Lab number:

1605406 **Sample ID**:

Analyst:

RM867NS-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Units: µg/L

Date of Analysis: 8/11/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan l	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d:	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	- ,	•		

REPORT OF ANALYSIS

Report Number:

09-244-2114

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

(402) 995-2310

Date Received:

11/18/09 07/29/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ072909

Lab number:

1605413 **Sample ID:**

RM867SSM ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 8/11/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n <i>.</i> d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n,d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01				

Report #:

USACE

09-224-2225

09-224-2222

09-273-2298

09-223-2100

Project Name: Project #:

DAVE JENSEN 106 SOUTH 15TH STREET Trìp Number: **OMAHA NE 68102**

Page 1 of 4

ESH CREATION

SPS-ESHSED-001 EDXDEJ072909

Lab Number:	1 1					I	1605408	1605406	1605414/1605801	1605414/160580
Sample ID:				\vdash		<u> </u>	RM867SSC	RM867NS	RM867SSC	Elutriate
Parameter	Method	Met Dete Lir	ction	Rep	oratory orting imit	Units	Soil	Receiving Water	Pre-Elutriate Water	Elutriate Water
Alkalinity	SM 2320 B	•	4	<u>-</u>	10	mg/kg mg/L	n.d.	152		164
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	1,990	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		n.d.		n.d.
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	0.03J	n.d.	_
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	n.d.		n.d.
Arsenic Total	EPA 200.8	1	1	_5	3	mg/kg μg/L	10.4	n.d.		n.d.
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.d.	n.d.	_	n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	0.17	n.d.	_	n.d.
Calcium	EPA 200.7	- 5	1	25	3	mg/kg mg/L	8,500	60		60
Chemical Oxygen Demand-COD	ASTM 1252	-	3		10	mg/L		9		11
Chlorophyll	SM 10200	-	-	1	3	μg/L		1 J		***
Chromium	EPA 200.7	0.2	1		10	mg/kg µg/L	4.3	n.đ.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	4.3	n.d,		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg µg/L	n.d.	n.d.		n.d.
Iron	EPA 200.7	4	7	10	20	mg/kg µg/L	13,102	n.d.		50
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	_	0.49 J		n.d.
Kjeldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	76.2	0.54	0.99	
Lead	EPA 200.7	1	0.5	5	2	mg/kg µg/L	6.73	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	1,902	20.5		20.7
Manganese	EPA 200.7	1	2	5	10	mg/kg µg/L	833	n.d.		10
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	16.5	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		n.d.	_	n.d.
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	n.d.	0.05J	n.d.	
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	mg/kg µg/L		n.d.		n.d.
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2			n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV	-179	-187.9		-140.6
Particle Size	Sieve						See Attached		_	
pH	SM 4500-H	0.	1).2		7.5	8.28		8.19
Selenium	EPA 200.8	1	1	4	3	mg/kg µg/L	0.64	4	_	4
Silver	EPA 200.7	1	3	5	10	mg/kg μg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	1	0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	20	mg/L		626		626
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		2.6	_	n.d.
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	200	2.8	5.6	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	₁	0.05	mg/kg mg/L		n.d.		n.d.
Total Phosphorus	SM 4500 P-F	0.2	0.02	₁	0.05	mg/kg mg/L	322	0.02J	0.15	
Total Suspended Solids	SM 2540D	-	4		10	mg/L		13	97	
Bromodichloromethane	EPA 524.2			0.15	1	μg/L	**	28	26	28
Bromoform	EPA 524.2			0.25	.1	μg/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	1	µg/L	1	5.6	n.d.	6.2
Chloroform	EPA 524.2			0.1	1	μg/L		157	135	148
Total trihalomethanes	EPA 524.2				1	μg/L		191	166	182
True Color	ASTM D1209-05	1	5	1	5	APHA		5		6
Turbidity	EPA 180.1	-	1		3	NTU		<1	130	<1
Zinc	EPA 200.7	1	10	5	30	mg/kg μg/L	31.6	40		100

n.d. = Not Detected

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

⁻⁻⁻ Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

^{*} See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

REPORT OF ANALYSIS

Report Number:

09-224-2222

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

11/17/09 07/29/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ072909

Lab number:

1605406 Sample ID: RM867NS-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 8/11/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00				

REPORT OF ANALYSIS

Report Number:

09-224-2225

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported: (402) 995-2310

Date Received:

08/12/09 07/29/09

Date Sampled:

07/29/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEJ072909

Lab number:

1605408

Sample ID:

RM867SSC

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 8/11/2009

			•	•			
Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d <i>.</i>	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n،d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9				

REPORT OF ANALYSIS

Report Number:

09-273-2298

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE **Date Reported:**

(402) 995-2310

Reported: 11/18/09

Date Received:

07/29/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ072909

Lab number:

1605414 **Sample ID**:

RM867SSC ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

wr D

Date of Analysis: 8/14/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01	- ,			

Page 1 of 4

Report #:

USACE

DAVE JENSEN

09-224-2226

09-224-2222

09-244-2115

09-223-2101

Project Name:

Project #:

ESH CREATION

Trip Number:

106 SOUTH 15TH STREET **OMAHA NE 68102**

SPS-ESHSED-001 EDXDEJ072909

Lab Number:							1605409	1605406	1605415/1605802	1605415/1605805
Sample ID:							RN867BWD	RM867NS	RN867BWD	Elutriate
Parameter	Method	Met Dete	ction	Rep	oratory orting imit	Units	Soil	Receiving Water	D Elizabeta Medan	Elutriate
Alkalinity	SM 2320 B	Lit	4	<u> </u>	10	mg/kg mg/L	1,630	152	Pre-Elutriate Water	Water 178
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	2,250	n.d.		
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	10	0.1	mg/kg mg/L	2,230			n.d.
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	n.d. 0.03J	0.05J	n.đ.
Antimony	EPA 330.2 EPA 200.8	1	0.02	5	2	mg/kg mg/L	n.d.	n.d.	0.050	1 J
Arsenic Total	EPA 200.8	1	1	5	2	mg/kg µg/L	11	· · · · · · · · · · · · · · · · · · ·		
Bervlium	EPA 200.6	0.1	2	0.5	<u>3</u>	mg/kg µg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.7 EPA 200.8	0.1	0.2		~~~~		0.22	n.d.		n.d.
	EPA 200.8 EPA 200.7			2	1	mg/kg µg/L	9,883	n.d.		n.d.
Calcium		5	3	25	3 10	mg/kg mg/L		60 9	 .	60
Chemical Oxygen Demand-COD	ASTM 1252	-		1		mg/L			_	16
Chlorophyll	SM 10200	0.2			3	µg/L		1 J	_	
Chromium	EPA 200.7		1	4.0	10	mg/kg µg/L	5 4.7	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg μg/L		n.d.		n.d:
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg µg/L	n.d.	n.d.	ļ <u>. —</u>	n.d.
iron	EPA 200.7	4	7	10	20	mg/kg µg/L	13,230	n.d.		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		0.49 J		n.d.
Kjeldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	15.8	0.54	1.20	
Lead	EPA 200.7	1	0.5	5	2	mg/kg µg/L	6.64	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	2,716	20.5	-	17.7
Manganese	EPA 200.7	11	2	5	10	mg/kg µg/L	511	n.d.	_	n.d.
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	n.đ.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg μg/L	15	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	n.d.	0.05J	n.d.	
Orthophosphate phosphorus	SM 4500 P		0.02	*	0.05	mg/kg µg/L		n.đ.		n.d.
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2			n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082						n.d.* Page 2			n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV-	-140.0	-187.9		-135.2
Particle Size	Sieve						See Attached			
pH	SM 4500-H	0.			1,2		7.7	8.28		7.96
Selenium	EPA 200.8	1	1	4	3	mg/kg µg/L	1.23	4		3
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	1	0.5	5.0	2	mg/kg μg/L	n.đ.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	20	mg/L		626		786
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		2.6	***	1.1
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	290	2.8	2.1	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		n.ď.		n.d.
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	406	0.02J	0.23	
Total Suspended Solids	SM 2540D		4	-	10	mg/L		13	237	
Bromodichloromethane	EPA 524.2			0.15	1	μg/L		28	23	29
Bromoform	EPA 524.2			0.25	1	µg/Ł		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	1	μg/L		5.6	n.d.	n.d.
Chloroform	EPA 524.2			0.1	1	μg/L		157	114	159
Total trihalomethanes	EPA 524.2				1	μg/L		191	141	192
True Color	ASTM D1209-05	1	5	1	5	APHA		5		7
Turbidity	EPA 180.1	-	1	-	3	NTU		<1	298	<1
Zinc	EPA 200.7	: 1	10	5	30	mg/kg μg/L	34.0	40		80

n.d. = Not Detected

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

⁻⁻⁻ Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

^{*} See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

REPORT OF ANALYSIS

Report Number:

09-224-2226

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

Date Received:

08/12/09 07/29/09

(402) 995-2310

Date Sampled:

07/29/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEJ072909

Lab number:

1605409

Sample ID:

RN867BWD

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 8/11/2009

			•	_			
Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d <i>.</i>	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9	. ,			

REPORT OF ANALYSIS

Report Number:

09-224-2222

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

11/17/09 07/29/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ072909

Lab number:

Sample ID: 1605406

RM867NS-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 8/11/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d <i>.</i>	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	- , ,			

REPORT OF ANALYSIS

Report Number:

09-244-2115

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

11/18/09 07/29/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ072909

Lab number:

1605415 **Sample ID**:

RN867BWD ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 8/11/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01	,			

Page 1 of 4

Report #:

USACE

09-257-2176

09-257-2183

09-257-2184

09-273-2295 Project Name:

Project #:

ESH CREATION SPS-ESHSED-001

DAVE JENSEN

106 SOUTH 15TH STREET Trip Number: EDXDEK082709 **OMAHA NE 68102** Lab Number:

Lab Number:							1618070	1618069	1618076/1618079	1618079
Sample ID:							RM852SSM	RM852	RM852SSM	Elutriate
Parameter	Method	Meti Detec Lin	tion	Rep	oratory orting imit	Units	Soil	Receiving Water	Pre-Elutriate Water	Elutriate Water
Alkalinity	SM 2320 B	-	4	-	10	mg/kg mg/L	281	156		169
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	1,879	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		0.08 J		n.d.
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	0.1	n.d.	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg μg/L	n.d.	n.d.		n.d.
Arsenic Total	EPA 200.8	1	1	5	3	mg/kg µg/L	8.94	2		1 J
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.d.	n.d.		ກ.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	0.15	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	7,591	61		58
Chemical Oxygen Demand-COD	ASTM 1252	-	3	-	10	mg/L		9		15
Chlorophyll	SM 10200	-	-	1	3	μg/L		<1		
Chromium	EPA 200.7	0.2	1		10	mg/kg µg/L	4.3	n.d.		n.d.
Соррег	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	4.22	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg μg/L	n.d.	n.d.		n.d.
Iron, Total	EPA 200.7	4	7	10	20	mg/kg µg/L	12,905	40		20
Kjeldahi Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		n.d.		0.23 J
Kjeldahi Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	129	0.2J	0.52	
Lead	EPA 200.7	1	0.5	5	2	mg/kg µg/L	4.57	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	1,756	21.4		20.4
Manganese	EPA 200.7	1	2	5	10	mg/kg μg/L	492	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	ກ.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg μg/L	15	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1-1	0.05	mg/kg mg/L		n.d.		n.ď.
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	ກ.d.	0.03J	n.d.	
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	mg/kg μg/L		n.d.	n.d.	n.d.
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page
Oxidation reduction potential	SM 2580B					mV	-160.2	-170.4		-109.5
Particle Size	Sieve						See Attached			
Hq	SM 4500-H	0,2	ı).2		8.6	8.07		8.35
Selenium	EPA 200.8	1	1	4	3	mg/kg μg/L	n.d.	2		2 J
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	1	0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	20	mg/L		570		630
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		2.8		2.8
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	110	3.02	3.2	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	***	n.d.		n.d.
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	295	0.02J	0.12	
Total Suspended Solids	SM 2540D	-	4		10	mg/L		n.d.	33	
Bromodichloromethane	EPA 524.2			0.15	1	μg/L		25	34	27
Bromoform	EPA 524.2			0.25	1	µg/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	1	µg/L		6.0	6	6
Chloroform	EPA 524.2			0.1	- i	µg/L		134	262	149
Total trihalomethanes	EPA 524.2				i	µg/L		165	302	182
True Color	ASTM D1209-05	1	5	1	5	APHA		6		6
Turbidity	EPA 180.1	 -	1		3	UTN		<1	159	<1
Zinc	EPA 200.7	1	10	5	30.	mg/kg µg/L	33.3	60		80
-IIIV	/1 Z00./				00.	1 1 9 1 9 1 5 1 L	00.0	0.0		

n.d. = Not Detected

--- Test not requested/Applicable

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

J = Estimated concentration below laboratory reporting limit.

REPORT OF ANALYSIS

Report Number:

09-257-2176

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

 Date Reported:
 08/27/09

 Date Received:
 08/28/09

(402) 995-2310

Date Sampled:

08/27/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEK082709

Lab number:

1618070

Sample ID:

RM852SSM

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

Date of Analysis: 9/8/2009

	. 5 6					
Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
n.d.	1.173	51	Endrin	n.d.		9.9
n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
n.d <i>.</i>	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
n.d.	0.691	9.9	- , ,			
	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	FoundDetection Limitn.d.0.789n.d.0.611n.d.0.952n.d.1.173n.d.0.645n.d.15.402n.d.14.013n.d.9.776n.d.9.943n.d.11.144n.d.15.475n.d.14.811n.d.8.240n.d.9.896	Found Detection Limit Limit (µg/L) n.d. 0.789 9.9 n.d. 0.611 9.9 n.d. 0.952 9.9 n.d. 1.173 51 n.d. 0.645 5.1 n.d. 15.402 50 n.d. 14.013 50 n.d. 9.776 50 n.d. 9.943 50 n.d. 9.943 50 n.d. 11.144 50 n.d. 15.475 50 n.d. 14.811 50 n.d. 8.240 50 n.d. 9.896 50	Found Detection Limit Limit (μg/L) Analysis n.d. 0.789 9.9 Endosulfan I n.d. 0.611 9.9 Endosulfan II n.d. 0.952 9.9 Endosulfan sulfate n.d. 1.173 51 Endrin n.d. 0.645 5.1 Endrin aldehyde n.d. 15.402 50 Endrin ketone n.d. 14.013 50 Heptachlor n.d. 9.776 50 Heptachlor epoxide n.d. 9.943 50 alpha-Chlordane n.d. 11.144 50 alpha-BHC n.d. 15.475 50 beta- BHC n.d. 14.811 50 delta-BHC n.d. 8.240 50 gama-BHC (Lindane) n.d. 9.896 50 gama-(Chlordane)	Found Detection Limit Limit (μg/L) Analysis Found n.d. 0.789 9.9 Endosulfan I n.d. n.d. 0.611 9.9 Endosulfan II n.d. n.d. 0.952 9.9 Endosulfan sulfate n.d. n.d. 1.173 51 Endrin n.d. n.d. 0.645 5.1 Endrin aldehyde n.d. n.d. 15.402 50 Endrin ketone n.d. n.d. 14.013 50 Heptachlor n.d. n.d. 9.776 50 Heptachlor epoxide n.d. n.d. 9.943 50 alpha-Chlordane n.d. n.d. 11.144 50 alpha-BHC n.d. n.d. 15.475 50 beta-BHC n.d. n.d. 14.811 50 delta-BHC n.d. n.d. 8.240 50 gama-BHC (Lindane) n.d. n.d. 9.896 50 gama-(Chlordane) </td <td>Found Detection Limit Limit (μg/L) Analysis Found Detection Limit n.d. 0.789 9.9 Endosulfan I n.d. 0.615 n.d. 0.611 9.9 Endosulfan II n.d. 0.733 n.d. 0.952 9.9 Endosulfan sulfate n.d. 0.945 n.d. 1.173 51 Endrin n.d. 0.964 n.d. 0.645 5.1 Endrin aldehyde n.d. 0.985 n.d. 15.402 50 Endrin ketone n.d. 0.795 n.d. 14.013 50 Heptachlor n.d. 0.508 n.d. 9.776 50 Heptachlor epoxide n.d. 0.745 n.d. 9.943 50 alpha-Chlordane n.d. 0.730 n.d. 11.144 50 alpha-BHC n.d. 0.323 n.d. 15.475 50 beta- BHC n.d. 1.733 n.d. 8.240 50 gama-BH</td>	Found Detection Limit Limit (μg/L) Analysis Found Detection Limit n.d. 0.789 9.9 Endosulfan I n.d. 0.615 n.d. 0.611 9.9 Endosulfan II n.d. 0.733 n.d. 0.952 9.9 Endosulfan sulfate n.d. 0.945 n.d. 1.173 51 Endrin n.d. 0.964 n.d. 0.645 5.1 Endrin aldehyde n.d. 0.985 n.d. 15.402 50 Endrin ketone n.d. 0.795 n.d. 14.013 50 Heptachlor n.d. 0.508 n.d. 9.776 50 Heptachlor epoxide n.d. 0.745 n.d. 9.943 50 alpha-Chlordane n.d. 0.730 n.d. 11.144 50 alpha-BHC n.d. 0.323 n.d. 15.475 50 beta- BHC n.d. 1.733 n.d. 8.240 50 gama-BH

awr

REPORT OF ANALYSIS

Report Number:

09-257-2183

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

11/18/09 08/28/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEK082709

Lab number:

1618069 **Sample ID**:

RM852-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 9/8/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d <i>.</i>	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	,			

REPORT OF ANALYSIS

Report Number:

09-273-2295

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

11/17/09 08/28/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEK082709

Lab number:

1618079 **Sample ID**:

RM852SSM ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

awr

Date of Analysis: 9/8/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01				

Page 1 of 4

Report #:

USACE

09-257-2177

09-257-2183

09-257-2185

09-273-2296

Project Name:

Project #: Trip Number:

ESH CREATION

SPS-ESHSED-001 EDXDEK082709

106 SOUTH	15TH STREET
OMAHA NE	68102

DAVE JENSEN

I als Manager

Lab Number:				L			1618071	1618069	1618077/1618080	1618080
Sample ID:							RM852SSC	RM852	RM852SSC	Elutriate
		Met	hod	Labo	oratory		<u> </u>			
			ction		orting	1		Receiving		Elutriate
Parameter	Method		nit		imit	Units	Soil	Water	Pre-Elutriate Water	Water
Alkalinity	SM 2320 B	-	4		10	mg/kg mg/L	1,131	156		167
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	2,881	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		0.08 J		0.11
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	0.1	0.10	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	n.d.		n.d.
Arsenic Total	EPA 200.8	1	1	5	3	mg/kg µg/L	7.18	2		1
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	0.22	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	7,944	61		61
Chemical Oxygen Demand-COD	ASTM 1252	-	3	-	10	mg/L		9		12
Chlorophyll	SM 10200	-	T	1	3	μg/L		<1	***	
Chromium	EPA 200.7	0.2	1		10	mg/kg µg/L	6.3	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg μg/L	4.08	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg μg/L	n.d.	n.d.		n.d.
Iron	EPA 200.7	4	7	10	20	mg/kg µg/L	10,071	40		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		n.d.		0.60
Kjeldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	119	0.2J	1.13	
Lead	EPA 200.7	1	0.5	5	2	mg/kg μg/L	5.60	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	3,165	21.4		18
Manganese	EPA 200.7	. 1	2	- 5	10	mg/kg µg/L	325	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	14	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L_	н	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L_	n.d.	0.03J	n.d.	
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	mg/kg µg/L		n.đ.	n.d.	n.d.
Organochlorine Pesticides	EPA 8081			*	*	444	n.d.* Page 2			n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2			n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV	-179.8	-170.4		-117.0
Particle Size	Sieve						See Attached			
pH	SM 4500-H	0.).2	~	8.2	8.07		8.18
Selenium	EPA 200.8	1	1	4	3	mg/kg µg/L	n.d.	2	***	3
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L_	n.d.	n.d.		n.d.
Thallium	EPA 200.7	1	0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	20	mg/L		570		694
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	11	mg/kg mg/L_		2.8		2.5
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L_	260	3.02	2.3	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	355	0.023	0.14	
Total Suspended Solids	SM 2540D	-	4	-	10	mg/L	4	n.d.	104	
Bromodichloromethane	EPA 524.2			0.15	1	μg/L		25	34	22
Bromoform	EPA 524.2			0.25	1	µg/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	1	µg/L		6.0	6.0	5.0
Chloroform	EPA 524.2			0.1	1	µg/L		134	222	95
Total trihalomethanes	EPA 524.2				1	µg/L		165	262	122
True Color	ASTM D1209-05	1	5	1	5	APHA		6		8
Turbidity	EPA 180.1	-	1	<u>-</u> 5	3	NTU		<1 60	232	<1 190
Zinc	EPA 200.7	1	10	_ 5	30	mg/kg µg/L	29.8	bυ		190

n.d. = Not Detected

--- Test not requested/Applicable

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

J = Estimated concentration below laboratory reporting limit.

REPORT OF ANALYSIS

Report Number:

09-257-2177

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported: (402) 995-2310

Date Received:

08/27/09 08/28/09

Date Sampled:

08/27/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEK082709

Lab number:

1618071

Sample ID:

RM852SSC

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 9/8/2009

		. 10 0		Duto 017411a1, 0101 0, 0, 2000			
Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9				

REPORT OF ANALYSIS

Report Number:

09-257-2183

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

11/18/09 08/28/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEK082709

Lab number:

1618069

Sample ID:

RM852-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 9/8/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00				

REPORT OF ANALYSIS

Report Number:

09-273-2296

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

09/30/09 08/28/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEK082709

Lab number:

1618080 **Sample ID**:

RM852SSC ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

awr

Date of Analysis: 9/8/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01				

Page 1 of 4

Report #:

USACE

09-257-2178

09-257-2183

09-273-2297

09-273-2296

Project Name:

Project #:

Trip Number:

ESH CREATION

SPS-ESHSED-001

DAVE JENSEN

OMAHA NE 68102

106 SOUTH 15TH STREET

EDXDEK082709

Sample ID: Parameter Alkalinity Aluminum Ammonia as N - Dissolved	Method SM 2320 B	Meti Detec	nod	Laho			1618072 RM852 SW D	1618069 RM852	1618081/1618078 RM852BWD	1618081 Elutriate
Alkalinity Aluminum			nod	Laho		1	1			
Alkalinity Aluminum		1.5-		Laboratory Reporting Limit		i Inite	Call	Receiving		Elutriate
Aluminum		Lin				Units	Soil	Water	Pre-Elutriate Water	Water
	EPA 200.7		25	10	10 75	mg/kg mg/L	795 2,848	156		169
	EPA 350.2	0.2	0.02	1 10	0.1	mg/kg µg/L	2,646	n.d.		n.d.
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	,	0.08 J 0.1		n.d
Antimony	EPA 200.8	1	0.02	5	2	mg/kg mg/L	n.d.		n.d.	n.d.
Arsenic Total	EPA 200.8	1	1	5	3	mg/kg μg/L	8.06	n.d. 2		
Beryllium	EPA 200.8	<u>'</u>		0.5	5	mg/kg μg/L mg/kg μg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.7	0.1	0.2	2	1	ma/ka µa/L	0.18			n.d.
Calcium	EPA 200.7	<u>0.5</u>	1	25	3	mg/kg mg/L	8,160	n.d. 61		n.d. 64
Chemical Oxygen Demand-COD	ASTM 1252		3	- 25	10	mg/L		9		13
Chlorophyll	SM 10200	-		1	3	µg/L		<1		
Chromium	EPA 200.7	0.2	1	-	10	mg/kg µg/L	6.3	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	4.04	n.d.		n.d.
	SM 4500 CN-E	0.5	8	3	20	mg/kg µg/L	n.d.	n.d.		n.d.
Iron	EPA 200.7	4	7	10	20	mg/kg µg/L	10,444	40		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3		0.2	10	0.5	mg/kg mg/L		n.d.		0.60
Kjeldahl Nitrogen - Total	EPA 351.3		0.2	10	0.5	mg/kg mg/L	128	0.2J	0.85	
Lead	EPA 200.7	- 1	0.5	5	2	mg/kg mg/L	5.27	n.d.	0.00	n.d.
Magnesium	EPA 200.7		1	10	3	mg/kg mg/L	3,166	21.4		19.4
Manganese	EPA 200.7		2	5	10	mg/kg µg/L	354	n.d.		n.d.
Mercury	EPA 245.1	0.2	0,02	1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	14	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	ma/kg ma/L		n.d.		n.d.
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	n.d.	0.03J	n.d.	***
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	mg/kg µg/L		n.d.		n.d.
Organochiorine Pesticides	EPA 8081		0.02	*	*	mg/ng pg/L	n.d.* Page 2		·	n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*			n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B					m∨	-160.1	-170.4		-115.9
Particle Size	Sieve						See Attached			
pH	SM 4500-H	0.1	1),2		7.9	8.07		7.99
Selenium	EPA 200.8	<u>_</u>	1	4	3	mg/kg µg/L	n.d.	2		
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	1	0.5	5.0	2	mg/kg μg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D		~	5.0	20	mg/L		570		598
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		2.8		2
Total Organic Carbon - TOC	EPA 415.1	$\frac{-}{2}$	0.2	10.0	1	mg/kg mg/L	300	3.02	2.1	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	365	0.02J	0.18	
Total Suspended Solids	SM 2540D	-	4	-	10	mg/L		n.d.	207	
Bromodichloromethane	EPA 524.2			0.15	1	μg/L		25	32	20
Bromoform	EPA 524.2			0.25	1	μg/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	1	μg/L		6.0	5.0	n.d.
Chloroform	EPA 524.2			0.1	1	μg/L		134	192	89
Total trihalomethanes	EPA 524.2				1	μg/L		165	229	113
	ASTM D1209-05	1	5	1	5	APHA		6		9
Turbidity	EPA 180.1		1	-	3.	NTU		<1	248	<1
Zinc	EPA 200.7	1	10	5	30_	mg/kg μg/L	29.9	60		80

n.d. = Not Detected

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

⁻⁻⁻ Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

^{*} See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

(402) 995-2310

REPORT OF ANALYSIS

Report Number:

09-257-2178

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

Date Received:

11/17/09 08/28/09

Date Sampled:

08/27/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEK082709

Lab number:

1618072

Sample ID:

RM8528WD

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

Date of Analysis: 9/8/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4.4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.733	9.9
4,4'-Methoxychlor	n.d.	1.173	5.5 51	Endrin	n.d.	0.945	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.965	
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	9.9 5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	
Aroclor 1242	n.d.	9.943	50 50	alpha-Chlordane		-	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.730	5.1
Aroclor 1254	n.d.	15.475	50 50	•	n.d.	0.323	5.1
Aroclor 1260				beta- BHC	n.d.	0.905	5.1
Aroclor 1262	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9				

awr

REPORT OF ANALYSIS

Report Number:

09-257-2183

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

11/18/09

08/28/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEK082709

Lab number;

1618069 **Sample ID**:

RM852-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 9/8/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n <i>.</i> d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n <i>.</i> d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	,			

REPORT OF ANALYSIS

Report Number:

09-273-2296

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

09/30/09

08/28/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEK082709

Lab number:

1618081

Sample ID:

RM852BWD ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 9/8/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d <i>.</i>	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01	,			

Page 1 of 4

Report #:

USACE

09-216-2049

09-217-2214

09-217-2104

09-217-2216

Project Name:

ESH CREATION

106 SOUTH 15TH STREET **OMAHA NE 68102**

DAVE JENSEN Project #: SPS-ESHSED-001 Trip Number: EDXDEJ071509

Lab Number:	1			1		I	1600984	1600983	1600992/1601475	1600992
Sample ID:	 					·	RM842SSM	RM842	RM842	Elutriate
Parameter	Method	Meti Detec Lin	ction nit	Repo	ratory orting mit	Units	Soil	Receiving Water	Pre-Elutriate Water	Elutriate Water
Alkalinity	SM 2320 B		4	-	10	mg/kg mg/L	362	154		168
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	1,657	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		n.d.		0.2
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	0.03J	0.3	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	0.9 J		0.5J
Arsenic Total	EPA 200.8	1	1	5	3	mg/kg μg/L	n.d.	1 J		n.d.
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg μg/L	ก.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	n.d.	n.d.		n.đ.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	2,339	57		60
Chemical Oxygen Demand-COD	ASTM 1252	-	3	-	10	mg/L		n.d.		18
Chlorophyll	SM 10200	-	-	1	3	μg/L		1		
Chromium	EPA 200.7	0.2	1		10	mg/kg μg/L	5.1	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	2.75	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg µg/L	n.d.	n.d.		n.d.
Iron, Total	EPA 200.7	4	7	10	20	mg/kg µg/L	3,047	n.d.		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	<i> </i>	0.6		0.90
Kjeldahl Nitrogen - Total	EPA 351.3		0.2	10	0.5	mg/kg mg/L	59.3	0.73	1.13	
Lead	EPA 200.7	1	0.5	5	2	mg/kg µg/L	n.d.	n.d.	222	n.d.
Magnesium	EPA 200.7	<u>-</u>	1	10	3	mg/kg mg/L	1,046	19.5		20.5
Manganese	EPA 200.7		2	5	10	ma/ka µa/L	106	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1 1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	7.7	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1 1	0.05	mg/kg mg/L	1,1	0.11	n.d.	
Orthophosphate phosphorus	SM 4500 P	0.2	0.02		0.05	mg/kg ug/L		n.d.	n.d.	n.đ.
Organochlorine Pesticides	EPA 8081		0.02	*	*		n.d.* Page 2			n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082				*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV	-83.6	-46.7		-74.9
Particle Size	Sieve					121V	See Attached	-40.7		-74.5
pH	SM 4500-H	0.			.2		8.2	8,25		8.09
	EPA 200.8	4 0.	1 1	4	3	mg/kg µg/L	n.d.	3		3
Selenium		1	3	5	10		n.d.	n.d.		n.d.
Silver	EPA 200.7		0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	1	0.0	5.0	20	mg/kg µg/L	11.u.	534		534
Total Dissolved Solids	SM 2540D		0.0			mg/L		2.6		3
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	400	2.71	3	<u></u>
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1 0.05	mg/kg mg/L	400		3	n.d.
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		
Total Phosphorus	SM 4500 P-F	0.2	0.02	11	0.05	mg/kg mg/L	131	0.04J	0.26 275	
Total Suspended Solids	SM 2540D	-	4	- 0.45	10	mg/L		4 J		28
Bromodichloromethane	EPA 524.2			0.15	1	μg/L		26	29	
Bromoform	EPA 524.2			0.25	1	ug/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	1	µg/L	n.d.	n.d.	n.d.	n.d.
Chloroform	EPA 524.2			0.1	1	µg/L		137	162	229
Total trihalomethanes	EPA 524.2				1	µg/L		168	196	261
True Color	ASTM D1209-05	1	5	1	5	APHA		5		5
Turbidity	EPA 180.1		1	-	. 3	NTU		3	269	1
Zinc	EPA 200.7	11	10	5	30	mg/kg μg/L	18.4	70		90

n.d. = Not Detected

--- Test not requested/Applicable

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

J = Estimated concentration below laboratory reporting limit.

REPORT OF ANALYSIS

Report Number:

09-216-2049

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

(402) 995-2310

 Date Reported:
 08/19/09

 Date Received:
 07/17/09

Date Sampled:

07/16/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600984

Sample ID:

RM828SSM

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 7/27/2009

	100					
Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
n.d.	1.173	51	Endrin	n.d.	0.964	9.9
n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
n.d.	0.691	9.9	- ,			
	round n.d. n.d. n.d. n.d. n.d. n.d. n.d.	FoundDetection Limitn.d.0.789n.d.0.611n.d.0.952n.d.1.173n.d.0.645n.d.15.402n.d.14.013n.d.9.776n.d.9.943n.d.11.144n.d.15.475n.d.14.811n.d.8.240n.d.9.896	Found Detection Limit Limit (μg/L) n.d. 0.789 9.9 n.d. 0.611 9.9 n.d. 0.952 9.9 n.d. 1.173 51 n.d. 0.645 5.1 n.d. 15.402 50 n.d. 14.013 50 n.d. 9.776 50 n.d. 9.943 50 n.d. 11.144 50 n.d. 15.475 50 n.d. 14.811 50 n.d. 8.240 50 n.d. 9.896 50	Found Detection Limit Limit (μg/L) Analysis n.d. 0.789 9.9 Endosulfan I n.d. 0.611 9.9 Endosulfan II n.d. 0.952 9.9 Endosulfan sulfate n.d. 1.173 51 Endrin n.d. 0.645 5.1 Endrin aldehyde n.d. 15.402 50 Endrin ketone n.d. 14.013 50 Heptachlor n.d. 9.776 50 Heptachlor epoxide n.d. 9.943 50 alpha-Chlordane n.d. 11.144 50 alpha-BHC n.d. 15.475 50 beta- BHC n.d. 14.811 50 delta-BHC n.d. 8.240 50 gama-BHC (Lindane) n.d. 9.896 50 gama-(Chlordane)	Found Detection Limit Limit (μg/L) Analysis Found n.d. 0.789 9.9 Endosulfan I n.d. n.d. 0.611 9.9 Endosulfan II n.d. n.d. 0.952 9.9 Endosulfan sulfate n.d. n.d. 1.173 51 Endrin n.d. n.d. 0.645 5.1 Endrin aldehyde n.d. n.d. 15.402 50 Endrin ketone n.d. n.d. 14.013 50 Heptachlor n.d. n.d. 9.776 50 Heptachlor epoxide n.d. n.d. 9.943 50 alpha-Chlordane n.d. n.d. 11.144 50 alpha-BHC n.d. n.d. 15.475 50 beta-BHC n.d. n.d. 14.811 50 delta-BHC n.d. n.d. 8.240 50 gama-BHC (Lindane) n.d. n.d. 9.896 50 gama-(Chlordane) </td <td>Found Detection Limit Limit (μg/L) Analysis Found Detection Limit n.d. 0.789 9.9 Endosulfan I n.d. 0.615 n.d. 0.611 9.9 Endosulfan II n.d. 0.733 n.d. 0.952 9.9 Endosulfan sulfate n.d. 0.945 n.d. 1.173 51 Endrin n.d. 0.964 n.d. 0.645 5.1 Endrin aldehyde n.d. 0.985 n.d. 15.402 50 Endrin ketone n.d. 0.795 n.d. 14.013 50 Heptachlor n.d. 0.508 n.d. 9.776 50 Heptachlor epoxide n.d. 0.745 n.d. 9.943 50 alpha-Chlordane n.d. 0.730 n.d. 15.475 50 beta- BHC n.d. 0.323 n.d. 15.475 50 beta- BHC n.d. 0.733 n.d. 8.240 50 gama-BH</td>	Found Detection Limit Limit (μg/L) Analysis Found Detection Limit n.d. 0.789 9.9 Endosulfan I n.d. 0.615 n.d. 0.611 9.9 Endosulfan II n.d. 0.733 n.d. 0.952 9.9 Endosulfan sulfate n.d. 0.945 n.d. 1.173 51 Endrin n.d. 0.964 n.d. 0.645 5.1 Endrin aldehyde n.d. 0.985 n.d. 15.402 50 Endrin ketone n.d. 0.795 n.d. 14.013 50 Heptachlor n.d. 0.508 n.d. 9.776 50 Heptachlor epoxide n.d. 0.745 n.d. 9.943 50 alpha-Chlordane n.d. 0.730 n.d. 15.475 50 beta- BHC n.d. 0.323 n.d. 15.475 50 beta- BHC n.d. 0.733 n.d. 8.240 50 gama-BH

REPORT OF ANALYSIS

Report Number:

09-217-2214

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

08/17/09 07/17/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600983 **Sample ID**:

RM842-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 7/24/2009

			-	•			
Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	J (3.333	0.00

REPORT OF ANALYSIS

Report Number:

09-217-2216

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

Date Received:

08/19/09 07/17/09

(402) 995-2310

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600992 **Sample ID**:

RM842SSM ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 7/24/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01	- ,			

Page 1 of 4

Report #:

USACE

09-212-2184 09-217-2219

09-217-2108 09-217-2214

ESH CREATION

DAVE JENSEN 106 SOUTH 15TH STREET **OMAHA NE 68102**

Ртојесt Name: Project #: Trip Number:

SPS-ESHSED-001 EDXDEJ071509

Lab Number:						,	1000007	1000000	T	
Sample ID:				├──		 	1600987	1600983	1600995/1601717	1600995
Gample ID:	 			 		 	RM842SPLIT	RM842	RM842SPLIT	Elutriate
İ		Met			ratory			ļ		
		Detec			orting			Receiving		Elutriate
Parameter	Method	Lin		L	mit	Units	Soil	Water	Pre-Elutriate Water	Water
Alkalinity	SM 2320 B		4		10	mg/kg mg/L	317	154		170
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	1,754	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		n.d.		n.d.
Ammonía as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	0.03J	n.d.	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	0.9 J		n.d.
Arsenic Total	EPA 200.8	1	1	5	3	mg/kg µg/L	n.d.	1 J		n.d.
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	n.d.	n.d.		n.d.
Calcium	EPA 200.7	5	11	25	3	mg/kg mg/L	2,478	57		63
Chemical Oxygen Demand-COD	ASTM 1252		3	-	10	mg/L		n.d.		22
Chlorophy!	SM 10200		1	-	3	µg/L_		1		
Chromium	EPA 200.7	0.2	1	1	10	mg/kg µg/L	2.7	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	1.43	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg μg/L	n.d.	n.d.		n.d.
Iron, Total	EPA 200.7	4	7	10	20	mg/kg µg/L	3,299	n.d.		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		0.6		0.9
Kjeldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	74.5	0.73	0.91	
Lead	EPA 200.7	11	0.5	5	2	mg/kg μg/L	n.d.	n.d.		n.d.
Magnesium	EPA 200.7	2	11	10	3	mg/kg mg/L	1,115	19.5		20.1
Manganese	EPA 200.7	11	2	5	10	mg/kg µg/∟	113	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg μg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg μg/L	3.5	n.đ.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	1.1	0.11	n.d.	
Orthophosphate phosphorus	SM 4500 P		0.02	L	0.05	mg/kg µg/L		n.d.	n.d.	n.d.
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2		-	n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV	-87.5	-46.7		-30.1
Particle Size	Sieve						See Attached			
PΗ	SM 4500-H	0.1		0	.2		8.2	8.25		8.05
Selenium	EPA 200.8	1	1	4	3	mg/kg µg/L	n.d.	3		3
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	1	0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.đ.
Total Dissolved Solids	SM 2540D			5.0	20	mg/L		534		594
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		2.6	·	3.3
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	400	2.71	3.3	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	126	0.04J	0.28	
Total Suspended Solids	SM 2540D	-	4	-	10	mg/L		4 J	196	
Bromodichloromethane	EPA 524.2			0.15	1	µg/L		26	33	30
Bromoform	EPA 524.2			0.25	1	μg/L		n.d.	n.d.	n.đ.
Chlorodibromomethane	EPA 524.2			0.16	11	μg/L		n.d.	n.d.	n.d.
Chloroform	EPA 524.2			0.1	1	μg/L		137	271	282
Total trihalomethanes	EPA 524.2				1	µg/L		168	309	315
True Color	ASTM D1209-05	1	5	1	5	APHA		5		6
Turbidity	EPA 180.1	-	1		3	NTU		3	301	<1
Zinc	EPA 200.7	1	10	5	30	mg/kg µg/L	10.3	70		90

n.d. = Not Detected

--- Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

REPORT OF ANALYSIS

Report Number:

09-212-2184

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

(402) 995-2310

Date Received:

08/19/09 07/17/09

Date Sampled:

07/16/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600987

Sample ID:

RM842SPLIT

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 7/27/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan i	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d <i>.</i>	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d <i>.</i>	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9	- ,			

REPORT OF ANALYSIS

Report Number:

09-217-2218

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

08/21/09

Date Received: 07/17/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600994

Sample ID:

RM8842BWD ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L Analyst:

awr

Date of Analysis: 7/24/2009

				•			
Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d <i>.</i>	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01				- · - -

REPORT OF ANALYSIS

Report Number:

09-217-2214

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

08/17/09 07/17/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600983 **Sample ID:**

RM842-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 7/24/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d <i>.</i>	0.004	1.00	_ ,			

Report #:

USACE

DAVE JENSEN

Lab Number:

09-212-2257

09-217-2214

09-217-2217

09-217-2105

Project Name:

Project #:

Trip Number:

Page 1 of 4

1600985 | 1600983 | 1600993/1601476 | 1600993

ESH CREATION SPS-ESHSED-001

EDXDEJ071509

106 SOUTH 15TH STREET

OMAHA NE 68102

Lab Number:						l .	1600985	1600983	1600993/1601476	1600993
Sample ID:							RM842SSC	RM842	RM842SSC	Elutriate
Parameter	Method	Dete	hod ction nit	Repo	ratory orting mit	Units	Soil	Receiving Water	Pre-Elutriate Water	Elutriate Water
Alkalinity	SM 2320 B	-	4		10	mg/kg mg/L	2,318	154		157
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	4,484	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1 1	0.1	mg/kg mg/L		n.d.		0.57
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	0.03J	0.57	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	0.9 J		n.d.
Arsenic Total	EPA 200.8	1	1	5	3	mg/kg μg/L	n.d.	1 J		n.d.
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg μg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg μg/L	n.d.	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	14,558	57	61	61
Chemical Oxygen Demand-COD	ASTM 1252	-		2	5	mg/L		n.d.		17
Chlorophyll	SM 10200	-	-	1	3	μg/L		1		
Chromium	EPA 200.7	0.2	1	1	10	mg/kg µg/L	8.3	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	6.86	n.d.		n.đ.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg µg/L	n.d.	n.d.		n.d.
Iron, Total	EPA 200.7	4	7	10	20	mg/kg µg/L	11,405	n.d.		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		0.6		1.4
Kjeldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	323	0.73	1.43	
Lead	EPA 200.7	1	0:5	5	2	mg/kg µg/L	7.6	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	5,515	19.5	***	19.5
Manganese	EPA 200,7	1	2	5	10	mg/kg µg/L	368	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	15	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	1.1	0.11	n.d.	
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	mg/kg µg/L		n.d.	n.d.	n.d.
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2			n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082		-	*	*		n.d.* Page 2			n.d.* Page 4
Oxidation reduction potential	SM 2580B		····			mV	-56	-46.7		-40.7
Particle Size	Sieve						See Attached			
Hal	SM 4500-H	0.		1 0	.2		7.7	8.25		7.81
Selenium	EPA 200.8	1	1	4	3	ma/ka µa/L	n.d.	3		3
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L	n.d.	n.d.	4	n.d.
Thatlium	EPA 200.7	1	0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D		0.0	5.0	20	mg/L		534		808
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		2.6		3.0
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	- i	mg/kg mg/L	5,700	2.71	3.0	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	379	0.04J	0.23	
Total Suspended Solids	SM 2540D		4	-	10	mg/L		4 J	240	
Bromodichloromethane	EPA 524.2			0.15	1	μα/L		26	29	26
Bromoform	EPA 524.2 EPA 524.2			0.15	-	ug/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2 EPA 524.2			0.25	1	μg/L μg/L		n.d.	n.d.	n.d.
Chloroform	EPA 524.2 EPA 524.2			0.16	1	μg/L μg/L		137	162	186
	EPA 524.2 EPA 524.2			U. I	1	μg/L		168	196	215
Total trihalomethanes	ASTM D1209-05	1	5	1	5	APHA		5	196	8
True Color			1	<u> </u> -	3	NTU		3	325	<1
Turbidity	EPA 180.1	<u>.</u>			30 30		34.3	70	323	120
Zinc	EPA 200.7	1	10	5	3 U	mg/kg µg/L	J 34.3	//		120

n.d. = Not Detected

--- Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

Tremw. Arne

REPORT OF ANALYSIS

Report Number:

09-212-2257

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported: (402) 995-2310 Date Received:

08/19/09 07/17/09

Date Sampled:

07/16/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600985

Sample ID:

RM842SSC

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

Date of Analysis: 7/27/2009

			•	•			
Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9	,			

awr

REPORT OF ANALYSIS

Report Number:

09-217-2214

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

08/17/09 07/17/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600983 **Sample ID:**

RM842-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 7/24/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II			
•					n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n <i>.</i> d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	,			

REPORT OF ANALYSIS

Report Number:

09-217-2217

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

(402) 995-2310

Date Received:

08/21/09 07/17/09

Page 4 of 4

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600993 **Sample ID**:

RM842SSC ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

awr

Date of Analysis: 7/24/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01	•			

Report #:

USACE

OMAHA NE 68102

09-212-2258 09-217-2214

09-217-2106

09-217-2218 Project Name:

DAVE JENSEN 106 SOUTH 15TH STREET

Project #: Trip Number: Page 1 of 4

ESH CREATION SPS-ESHSED-001 EDXDEJ071509

	·			<u>,</u>				1		
Lab Number:							1600986	1600983	1600994/1601477	1600994
Sample ID:				<u> </u>			RM842BWD	RM842	RM842BWD	Elutriate
	1	Met	hod	Labo	ratory	1				_
1		Dete	ction	Rep	orting			Receiving		Elutriate
Parameter	Method	Lir	nit	Li	mit	Units	Soil	Water	Pre-Elutriate Water	Water
Alkalinity	SM 2320 B	-	4	1 -	10	mg/kg mg/L	3,446	154		157
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	4,697	n.d.		n.ď.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	***	n.d.		n.ď.
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	0.03J	0.12	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	0.9 J		n.d.
Arsenic Total	EPA 200.8	1	1	5	3	mg/kg μg/L	n.d.	1 J		n.d.
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	n.d.	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	17,145	57		64
Chemical Oxygen Demand-COD	ASTM 1252	_	3	-	10	mg/L		n.d.		13
Chlorophyll	SM 10200		T -	1	3	µg/L		1 J		
Chromium	EPA 200.7	0.2	1	1	10	mg/kg µg/L	8.6	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	8.22	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg µg/L	n.d.	n.d.		n.d.
iron, Total	EPA 200.7	4	7	10	20	mg/kg µg/L	12,071	n.d.		n.d.
Kieldahl Nitrogen	EPA 351.3	2	0.2	10	0.5	ma/kg ma/L		0.6		0.91
Kieldahl Nitrogen	EPA 351.3	<u>-</u>	0.2	10	0.5	mg/kg mg/L	281	0.73	0.91	
Lead	EPA 200.7		0.5	5	2	mg/kg µg/L	7.0	n,d.		n.d.
Magnesium	EPA 200.7		1	10	3	mg/kg mg/L	5.453	19.5		16.8
Manganese	EPA 200.7	1	 2	5	10	mg/kg µg/L	445	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	16	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	ma/kg ma/L		n.d.		n.d.
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	1.2	0.11	n.d.	,,,,,
Orthophosphate phosphorus	SM 4500 P	0.2	0.02		0.05	mg/kg µg/L		n.d.	n.d.	n.d.
Organochlorine Pesticides	EPA 8081		0.02	*	*	mg/kg pg/L	n.d.* Page 2		11.0,	n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2			n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV	-99.8	-46.7		-30,5
Particle Size	Sieve						See Attached	-40.7		-50.5
pH	SM 4500-H	0.		<u>. </u>	2		7.5	8,25		7.31
Selenium	EPA 200.8	1	3	1	3	mg/kg ug/L	n.d.	3		2 J
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	1	0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D	 -	0.0	5.0	20	mg/kg µg/L		534		532
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		2.6		n.d.
Total Organic Carbon - TOC	EPA 415.1		0.2	10.0	- i	mg/kg mg/L	7,000	2.71	2.8	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	7,000	n.d.		n.d.
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	436	0.04J	0.13	
Total Suspended Solids	SM 2540D	0.2	4		10	mg/L	430	4 J	173	
Bromodichloromethane	EPA 524.2		4	0.15	10	µg/L		26	13	28
Bromoform	EPA 524.2			0.15		μg/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2		-	0.25	-	μg/L		n.d.	2.7	n.d.
Chloroform	EPA 524.2 EPA 524.2			0.16	1	ug/L		137	46	202
Total trihalomethanes	EPA 524.2 EPA 524.2			0.1		ug/L		168	62	234
True Color	ASTM D1209-05	1	5 .	1		APHA		5		n.d.
	EPA 180.1		1		3	NTU		3	167	<1
Turbidity		1	10	5	30		37.7	70	107	120
Zinc	EPA 200.7		ŧυ	<u> </u>	<u> </u>	mg/kg µg/L	31.1			120

n.d. = Not Detected

--- Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

REPORT OF ANALYSIS

Report Number:

09-212-2258

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported: (402) 995-2310 **Date Received:**

08/19/09 07/17/09

Date Sampled:

07/16/09

PO/Proj. 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600986

Sample ID:

RM842BWD

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 7/27/2009

			•	•			
Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9	,			

REPORT OF ANALYSIS

Report Number:

09-217-2214

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

Units: µg/L

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

08/17/09 07/17/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600983 **Sample ID**:

RM842-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Analyst:

Date of Analysis: 7/24/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00				

REPORT OF ANALYSIS

Report Number:

09-217-2218

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

08/21/09 07/17/09

PO/Proj. #: 91554383 ESH CREATION SPS-ESHSED-001

EDXDEJ071509

Lab number:

1600994 **Sample ID**:

RM8842BWD ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

awr

Date of Analysis: 7/24/2009

	11	5.6 a.k.la. a.al	D			** **	
Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d <i>.</i>	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01	,			

Page 1 of 4

Report #:

USACE

09-212-2181

09-212-2180

09-217-2101

09-217-2211

Project Name: Project #:

ESH CREATION

OMAHA NE 68102

DAVE JENSEN 106 SOUTH 15TH STREET Trip Number: SPS-ESHSED-001 EDXDEJ071509

Lab Number:							1600974	1600973	1600980/1601472	1600980
Sample ID:				 			RM828SSM	RM828	RM828	Elutriate
Parameter	Method	Dete	hod ction nit	Rep	ratory orting mit	Units	Soil	Receiving Water	Pre-Elutriate Water	Elutriate Water
		soil	water	soil	water		~~*			
Alkalinity	SM 2320 B	-	4	-	10	mg/kg mg/L	3,522	149		199
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	6,498	ก.d.		n.d.
Ammonia as N, - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		0.03 J		3.3
Ammonia as N, - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	34.2	0.03J	3.6	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	n.d.		n.d.
Arsenic Total	EPA 200.8	1	1	5	3	mg/kg µg/L	n.d.	2 J		n.d.
Beryllium	EPA 200.7	0.1	2	0.5	-5	mg/kg µg/L	n.đ.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	n.đ.	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	18,660	54	61	57
Chemical Oxygen Demand-COD	ASTM 1252	-	3	-	10	mg/L		14		16
Chlorophyll	SM 10200	-	1	-	3	μg/L		6		
Chromium	EPA 200.7	0.2	1	1	10	mg/kg µg/L	10	n.d.	***	n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg μg/L	10.4	n.d.		п.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg μg/L	n.d.	n.d.		n.đ.
Iron, Total	EPA 200.7	4	7	10	20	mg/kg µg/L	11,914	n.d.		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		n.d.		3.6
Kjeldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	406	0.27J	4.18	
Lead	EPA 200.7	1	0.5	5	2	mg/kg μg/L	7.0	n.d.		n.đ.
Magnesium	EPA 200.7	2	1 .	10	3	mg/kg mg/L	6,463	17.7	22.3	18.7
Manganese	EPA 200.7	1	2	5	10	mg/kg µg/L	556	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	14	n.đ.	-	n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	1.2	0.03J	n.d.	1
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	mg/kg µg/L		n.d.		n.đ.
Organochlorine Pesticides	EPA 8081			*	. *		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B	1				mV	n.d.	-42.5		-81.8
Particle Size	Sieve			***			See Attached	***		
pН	SM 4500-H	0.	1	0	.2		7.5	8.1		7.33
Selenium	EPA 200.8	1	1	4	3	mg/kg μg/L	n.d.	3		2 J
Silver	EPA 200.7	1	3	- 5	10	mg/kg_µg/L	n.d.	n.d.		n.ď.
Thallium	EPA 200.7	1	0.5	5.0	2	mg/kg μg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	20	mg/L		464		462
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		3.8		2.2
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	7,200	3.96	3.1	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	360	n.d.	0.25	
Total Suspended Solids	SM 2540D		4		10	mg/L		21	242	
THMFP - Bromodichloromethane	EPA 524.2	-	0.15		1	μg/L		22	22	22
THMFP - Bromoform	EPA 524.2	-	0.25	-	1	μg/L		n.d.	n.d.	n.d.
THMFP - Chlorodibromomethane	EPA 524.2	-	16		1	μg/L	n.d.	n.d.	n.d.	n.d.
THMFP - Chloroform	EPA 524.2	-	0.1		1	µg/L	. 444	133	98	134
Total THM Formation Potential	EPA 524.2	-	0.66	-	5	µg/L		155	124	159
True Color	ASTM D1209-05	1	5	1	5	APHA		9		5
Turbidity	EPA 180.1	-	1	-	3	NTU		22	287	<1
Zinc	EPA 200.7	1	10	-5	30	mg/kg µg/L	41.0	100		120

n.d. = Not Detected

--- Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

(402) 995-2310

REPORT OF ANALYSIS

Report Number:

09-212-2181

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

CENWO-ED-HA

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

Date Received:

08/19/09 07/17/09

Date Sampled:

07/16/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600974

Sample ID:

RM828SSM

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 7/27/2009

			-	-			
Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9	- ,			

REPORT OF ANALYSIS

Report Number:

09-212-2180

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

CENWO-ED-HA

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

Date Received:

08/17/09 07/17/09

91554383 ESH CREATION

(402) 995-2310

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600973 Sa

Sample ID:

RM828-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Units: µg/L

Analyst:

awr

Date of Analysis: 7/24/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00				

(402) 995-2310

REPORT OF ANALYSIS

Report Number:

09-217-2211

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

CENWO-ED-HA

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

Date Received:

08/17/09 07/17/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600980

Sample ID:

RM828SSM ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 7/24/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01	- ,			

Page 1 of 4

Report #:

USACE

09-212-2182

09-212-2102

09-218-2168

09-212-2180

Project Name:

Project #:

ESH CREATION SPS-ESHSED-001

EDXDEJ071509

106 SOUTH 15TH STREET

DAVE JENSEN

Trip Number:

OMAHA NE 68102

Lab Number: 1600975 1600973 1600981/1601473 1600981 Sample ID: RM828SSC RM828 RM828 Elutriate Method Laboratory Reporting Detection Receiving Elutriate Parameter Method Limit Units Pre-Elutriate Water Limit Sail Water Water water şoil soil water Alkalinity SM 2320 B 3,237 ma/ka ma/L 184 4 10 149 25 Aluminum EPA 200.7 10 75 mg/kg µg/L 4,900 n.d. n.d. Ammonía as N, - Dissolved EPA 350.2 0.2 0.02 1 0.1 mg/kg mg/L 0.03 J n.d. Ammonia as N. - Total EPA 350.2 0.2 0.02 0.1 18.5 0.031 mg/kg mg/L n.d. Antimony EPA 200.8 0.5 5 mg/kg µg/L n.d. n.d. n.đ. Arsenic EPA 200.8 5 n.d mg/kg µg/L n.d Beryllium EPA 200.7 0.1 2 0.5 mg/kg μg/L n.d. n.d n.d EPA 200.8 Cadmium 0.5 0.2 n.d. mg/kg µg/L n.d n.d 25 Calcium EPA 200.7 5 1 11,369 mg/kg mg/L 54 ก1 Chemical Oxygen Demand-COD ASTM 1252 3 10 14 mg/L 13 Chlorophyll SM 10200 1 3 μg/L 6 0.2 1 EPA 200.7 Chromium 1 10 mg/kg μg/L n.d. n.d. Copper EPA 200.7 0.2 1 1.0 mg/kg μg/L 6.12 n.đ n.d. Cyanide SM 4500 CN-E 0.5 8 3 20 mg/kg µg/L n.đ. n.d n.d. Iron EPA 200.7 4 10 20 mg/kg µg/L 9,363 n.đ n.d. Kjeldahl Nitrogen - Dissolved EPA 351.3 2 0.2 10 0.5 mg/kg mg/L n.d. 1.04 Kjeldahl Nitrogen - Total EPA 351.3 2 10 0.5 ma/ka ma/L 396 0.27J 1.7 EPA 200.7 Lead 0.5 5 n.d. n.d. mg/kg_ug/L n.d 4,055 374 Magnesium EPA 200.7 10 mg/kg mg/L 17.7 19.7 EPA 200.7 Manganese 1 2 10 5 mg/kg µg/L n.d. n.d. EPA 245.1 0.02 Mercury 0.2 1 0.05 mg/kg µg/L n.d. n.d. n.d. EPA 200.7 Nickel 0.2 10 30 mg/kg μg/L 11 n.d. n.d. Nitrate/Nitrite Nitrogen - Dissolved EPA 353.2 0.2 0.02 1 0.05 mg/kg mg/L n.d. n.đ. 1.7 Nitrate/Nitrite Nitrogen - Total EPA 353.2 0.2 0.02 0.05 0.03. n.d. mg/kg mg/L Orthophosphate phosphorus SM 4500 P 0.02 0.05 mg/kg µg/L n.d. n.d. Organochlorine Pesticides EPA 8081 n.d.* Page 2 | n.d.* Page 3 n.d.* Page 4 Polychlorinated Biphenyls (PCB's) EPA 8082 n.d.* Page 2 n.d.* Page 3 n.d.* Page 4 Oxidation reduction potential SM 2580B mV 42.5 -80.1 Particle Size Sieve See Attached SM 4500-H 0.1 7.45 8.1 pH Selenium 0.2 7.6 EPA 200.8 1 1 4 mg/kg_µg/L n.d. 3 2 J EPA 200.7 Silver 1 3 5 10 mg/kg_µg/L n.d. n.d. n.d. Thallium EPA 200.7 1 0.5 5.0 mg/kg μg/L n.d. n.đ. n.d. Total Dissolved Solids SM 2540D 5.0 20 464 512 mg/L EPA 415.1 0.2 Dissolved Organic Carbon - DOC 10.0 mg/kg mg/L 3.8 4.1 4.0 Total Organic Carbon - TOC EPA 415.1 0.2 10.0 mg/kg mg/L 5,600 3.96 Dissolved Phosphorus SM 4500 P-F 0.2 0.02 0.05 n.d. mg/kg mg/L n.ď Total Phosphorus SM 4500 P-F 1 310 0.2 0.2 0.02 0.05 mg/kg mg/L n.đ. SM 2540D Total Suspended Solids 247 4 10 ma/L 21 20 0.15 22 THMFP - Bromodichloromethane EPA 524.2 1 µg/L 22 THMFP - Bromoform EPA 524.2 0.25 1 µg/L n.d. n.d. n.d. THMFP - Chlorodibromomethane EPA 524.2 0.16 1 n.d. n.d n.d. µg/L n.d EPA 524.2 THMFP - Chloroform 0.1 µg/L 133 96 131 Total THM Formation Potential 0.66 5 155 122 154 EPA 524.2 μg/L APHA True Color ASTM D1209-05 5 1 5 9 5 22 <1 EPA 180.1 NTU 226 Turbidity 5 30 Zinc EPA 200.7 10 mg/kg µg/L 29.2 100 120

n.d. = Not Detected

--- Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiletered elutriate extract

tremw. Aras Prem N. Arora, Environmental Project Manager Midwest Laboratories, Inc.

REPORT OF ANALYSIS

Report Number:

09-212-2182

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

CENWO-ED-HA

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

(402) 995-2310

Date Received:

08/19/09 07/17/09

Date Sampled:

07/16/09

PO/Proj. #: ESH CREATION SPS-ESHSED-001

EDXDEJ071509

Lab number:

1600975

Sample ID:

RM828SSC

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 7/27/2009

			10.0		Date 01 Finaly 010: 1/2//20	00		
Analysis		Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE		n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD		n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT		n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxyo	hlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin		n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016		n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221		n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232		n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242		n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248		n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254		n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260		n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262		n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268		n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin		n.d.	0.691	9.9				

REPORT OF ANALYSIS

Report Number:

09-212-2180

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

CENWO-ED-HA

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEEI Date Reported: (402) 995-2310

Date Received:

08/17/09 07/17/09

91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600973

Sample ID:

RM828-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 7/24/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	,			

REPORT OF ANALYSIS

Report Number:

09-218-2168

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

CENWO-ED-HA

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEEI Date Reported:

(402) 995-2310

Date Received:

08/17/09

07/17/09

PO/Proj. #: ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600981 **Sample ID**:

RM828SSC ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

awr

Date of Analysis: 7/27/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n <i>.</i> d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	800.0	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.001	0.01	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.001	0.01	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.001	0.01	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.001	0.01	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.001	0.01	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.001	0.01	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.001	0.01	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.001	0.01	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.001	0.01	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.001	0.01	- · · · · · · · · · · · · · · · · · · ·			

Page 1 of 4

Report #:

USACE

DAVE JENSEN

09-212-2183

09-212-2103

09-217-2213

09-212-2180

Project Name: Project #: Trip Number:

ESH CREATION

106 SOUTH 15TH STREET **OMAHA NE 68102**

SPS-ESHSED-001 EDXDEJ071509

Lab Number:				_		1	1600976	1600973	1600982/1601474	1600982
Sample ID:	 			 -		 				
Parameter	Method	Met Deter Lir	ction nit	Rep L	oratory orting imit	Units	RM828BWD Soil	RM828 Receiving Water	RM828 Pre-Elutriate Water	
Alkalinity	514 0000 D	soil	water	soil	water					
	SM 2320 B		4	40	10	mg/kg mg/L	1,044	149		167
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	2,624	n.d.	0.20	n.d.
Ammonia as N, - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		0.03J		0.1
Ammonia as N, - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	0.03J	n.d.	
Antimony	EPA 200.8		0.5	5	2	mg/kg µg/L	n.d.	n.d.		0.7 J
Arsenic	EPA 200.8	1	1	5	3	mg/kg μg/L	n.d.	2 J		n.d.
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	11	mg/kg μg/L	n.d.	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	6,654	54		70
Chemical Oxygen Demand-COD	ASTM 1252	*	3		10	mg/L		14		23
Chlorophyll	SM 10200		1		3	μg/L		6		
Chromium	EPA 200.7	0.2	1	1	10	mg/kg μg/L	5.3	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg μg/L	2.79	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg μg/L	ก.d.	n.d.		n.d.
Iron	EPA 200.7	4	7	10	20	mg/kg µg/L	7,099	n.d		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		n.d.		1.0
Kjeldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	204	0.27J	1.0	
Lead	EPA 200.7	1	0.5	5	2	mg/kg µg/L	n.d.	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	2,677	17.7		16.8
Manganese	EPA 200.7	1	2	5	10	mg/kg μg/L	193	n.d.		340
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	7.6	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	1.2	0.03J	n.d.	
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	ma/ka µg/L		n.d.		n.d.
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV	-51	-42.5		-78.2
Particle Size	Sieve						See Attached			
На	SM 4500-H	0.	1	C	.2		7.7	8.1		7.62
Selenium	EPA 200.8	1	1		3	mg/kg µg/L	n.d.	3		2 J
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	 -	0.5	5.0	2	mg/kg μg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	20	mg/L		464		460
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	<u></u>	mg/kg mg/L		3.8		4.9
Total Organic Carbon - TOC	EPA 415.1		0.2	10.0	1	ma/ka ma/L	4,400	3.96	4.4	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	ma/kg mg/L	238	n.d.	0.28	
Total Suspended Solids	SM 2540D	- 0.2	4	 -	10	mg/L		21	330	
THMFP - Bromodichloromethane	EPA 524.2			0.15	1	ug/L		22	21	23
THMFP - Bromoform	EPA 524.2			0.15	'	ug/L.		n.d.	n.d.	n.d.
THMFP - Chlorodibromomethane	EPA 524.2			0.16	1	μg/L	n.d.	n.d.	n.d.	n.d.
THMFP - Chloroform	EPA 524.2			0.16		μg/L μg/L	13.U.	133	186	135
	EPA 524.2 EPA 524.2			0.1	1			155	209	161
Total THM Formation Potential			 -	1	_	µg/L		9	209	
True Color Turbidity	ASTM D1209-05	1	5		5	APHA NTU		22	273	9 <1
	EPA 180.1	-	1	-	3	I DID I	·]	44 }	213	~
Zinc	EPA 200.7	1	10	5	30	mg/kg µg/L	18.8	100		110

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

⁻⁻⁻ Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

^{*} See attached report

Note: Pre-Elutriate water analysis was performed on unfiletered elutriate extract

(402) 995-2310

REPORT OF ANALYSIS

Report Number:

09-212-2183

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

CENWO-ED-HA

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

Date Received:

08/19/09 07/17/09

Date Sampled:

07/16/09

PO/Pro ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600976

Sample ID:

RM828BWD

Method: EPA 8081/8082

202

Units: µg/Kg

Analyst:

214/F

Date of Analysis: 7/27/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d <i>.</i>	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d <i>.</i>	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9	,			

(402) 995-2310

REPORT OF ANALYSIS

Report Number:

09-212-2180

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

CENWO-ED-HA

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

Date Received:

08/17/09 07/17/09

91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600973 **Sample ID**:

RM828-MISSOURI RIVER RECEIVING WATER

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 7/24/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	•			

REPORT OF ANALYSIS

Report Number:

09-217-2213

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

CENWO-ED-HA

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

(402) 995-2310

Date Received:

08/21/09 07/17/09

Page 4 of 4

PO/Prc ESH CREATION

SPS-ESHSED-001 EDXDEJ071509

Lab number:

1600982 **Sample ID**:

RM828BWD ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 7/24/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.001	0.01	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.001	0.01	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.001	0.01	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.001	0.01	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.001	0.01	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.001	0.01	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.001	0.01	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.001	0.01	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.001	0.01	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.001	0.01	,			

Report #:

09-352-2147 09-348-2097 09-357-2211 Page 1 of 4

USACE DAVE JENSEN 106 SOUTH 15TH STREET OMAHA NE 68102 Project Name: Project #: Trip Number: ESH CREATION SPS-ESHSED-001 EDXDEJ112309

Lab Number:	 					1	4050000	4050040	4050000	105005
				<u> </u>			1653220	1653213	1653238	1653238
Sample ID:				<u> </u>			RM801SSM	RM801	RM801SSM	Elutriate
		Met	hod	Labo	ratory					
		Detec	ction	Repo	orting			Receiving		Elutriate
Parameter	Method	Lin	nit	Li	mit	Units	Soil	Water	Pre-Elutriate Water	Water
Alkalinity	SM 2320 B	-	4	-	10	mg/kg mg/L	363	152		175
Aluminum	EPA 200.7	2	25	10	- 75	mg/kg μg/L	2,015	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		0.07J		0.24
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	2.9	0.07J	0.22	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	0.5 J		n.d.
Arsenic	EPA 200.8	1	1	5	3	mg/kg µg/L	n.d.	2 J		n.d.
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	n.d.	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	7,265	57		58
Chemical Oxygen Demand-COD	ASTM 1252	-	3	-	10	mg/L		12	****	4 J
Chiorophyll	SM 10200	-	1	-	3	µg/L		5		
Chromium	EPA 200.7	0.2	1	1 1	10	mg/kg µg/L	4.7	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	2.6	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg µg/L	n.d.	n.d.		n.d.
Iron	EPA 200.7	4	7	10	20	mg/kg µg/L	8,813	n.d.		n.d.
Kieldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		0.26J		0.5
Kieldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	ma/kg ma/L	90	0.30J	0.83	
Lead	EPA 200.7	1	0.5	5	2	mg/kg µg/L	n.d.	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	2.011	19.6		23.2
Manganese	EPA 200.7	1	2	5	10	mg/kg µg/L	287	n.d.		30
Mercury	EPA 245.1	0,2	0.02	1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	10.9	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		0.15		0.03J
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	1,10	0.15	0.15	
Orthophosphate phosphorus	SM 4500 P	0.2	0.02		0.05	mg/kg mg/L	1.70	n.d.	0.10	0.02 J
Organochlorine Pesticides	EPA 8081		0.02	*	*		n.d.* Page 2			n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d. Page 4
Oxidation reduction potential	SM 2580B					mV	283	287		245
Particle Size	Sieve						See Attached	201		
pH	SM 4500-H	0.			.2		8.3	8.31		8.28
Selenium	EPA 200.8	1	1	4	3	mg/kg µg/L	n.d.	2		2 J
Silver	EPA 200.8	1	3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	-	0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D		0.0	5.0	20	mg/kg pg/L		480		504
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		2.9		3.1
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	2.300	3.2	5.0	<u> </u>
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	10.0	0.05	ma/ka ma/L	2,300	n.d.	5.0	0.02J
	SM 4500 P-F		0.02	1	0.05		264	n.d.	0.20	0.023
Total Phosphorus		0.2				mg/kg mg/L	204	=	168	
Total Suspended Solids	SM 2540D	-	4	- 0.45	10	mg/L		4 26.8	28,5	28.4
Bromodichloromethane	EPA 524.2			0.15	1	ug/L			28.5 3.1 J	
Bromoform	EPA 524.2			0.25	1	µg/L		n.d.	3.1 J n.d.	n.d. 4.4 J
Chlorodibromomethane	EPA 524.2			0.16	1	µg/L		n.d.		
Chloroform	EPA 524.2			0.1	1	µg/L		152	247	196
Total trihalomethanes	EPA 524.2				1	µg/L		183	279	245
True Color	ASTM D1209-05	1	5	1	5	APHA		6	400	7
Turbidity	EPA 180.1	-	1	<u>-</u>	3	NTU		7	192	<1
Zinc	EPA 200.7	1	10	5	30	mg/kg µg/L	23.1	10		n.d.

n.d. = Not Detected

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

⁻⁻⁻ Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

^{*} See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

REPORT OF ANALYSIS

Report Number:

09-352-2147

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

12/18/09

(402) 995-2310

Date Received: Date Sampled:

11/24/09 11/23/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653220

Sample ID:

RM801SSM

Method: EPA 8081/8082

Units: μg/Kg

Analyst:

awr

Date of Analysis: 12/2/2009

			•	•			
Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9	- ,			

REPORT OF ANALYSIS

Report Number:

09-348-2097

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

01/04/10 11/24/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653213 **Sample ID**:

RM801

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d,	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	•			

REPORT OF ANALYSIS

Report Number:

09-357-2211

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

12/23/09 11/24/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653238 **Sample ID:**

RM801SSM ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01				

Report #:

09-352-2148 09-348-2097 09-357-2212

Page 1 of 4

USACE DAVE JENSEN 106 SOUTH 15TH STREET OMAHA NE 68102 Project Name: Project #: Trip Number:

ESH CREATION SPS-ESHSED-001 EDXDEJ112309

Lab Number:				1		T	4050004	1050040	T . 4050000	4050000
Sample ID:	 			1		+	1653221	1653213	1653239	1653239
Sample ID;	·			-		+	RM801SSC	RM801	RM801SSC	Elutriate
		Meti			ratory		1			
	l	Detec			orting			Receiving		Elutriate
Parameter	Method	Lin		-	mit	Units	Soil	Water	Pre-Elutriate Water	Water
Alkalinity	SM 2320 B	-	4	<u> </u>	10	mg/kg mg/L	307	152		172
Aluminum	EPA 200.7	22	25	10	75	mg/kg µg/L	1,391	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		0.07		0.36
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	0.07	0.41	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d	0.5 J		0.6 J
Arsenic	EPA 200.8	1	1	5	3	mg/kg µg/L	n.d.	2		2 J
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg μg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg μg/L	n.d.	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	5,816	57		62
Chemical Oxygen Demand-COD	ASTM 1252	-	3		10	mg/L		12		28
Chlorophyli	SM 10200	-	1	-	3	μg/L		5		
Chromium	EPA 200.7	0.2	1	1	10	mg/kg µg/L	3.4	n.d.		n.đ.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	2.1	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg μg/L	n.d.	n.d.		n.d.
Iron	EPA 200.7	4	7	10	20	mg/kg μg/L	8,404	n.d.		10 J
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		n.d.		0.7
Kjeldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	92.1	0.30J	1.12	
Lead	EPA 200.7	1	0.5	5	2	mg/kg μg/L	n.d.	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	1,365	19.6		22.1
Manganese	EPA 200.7	1	2	5	10	mg/kg_µg/L	224	n.d.		40
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	9.4	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		0.15		0.14
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	1.15	0.15	0.14	
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	ma/ka ua/L		n.d.		0.02
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV	194	287		239
Particle Size	Sieve		y, m. m.				See Attached			
Hal	SM 4500-H	0.1	1	0	.2		8.3	8.31		8.33
Selenium	EPA 200.8	1	1	4	3	mg/kg μg/L	n.d.	2		1 J
Silver	EPA 200.7		3	5	10	mg/kg µg/L	n.d.	n.d.		n.d
Thallium	EPA 200.7	i	0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	20	mq/L		480		512
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		2.9		3.4
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	1,500	3.2	7.9	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		0.04J
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	243	n.d.	0.32	
Total Suspended Solids	SM 2540D	-	4		10	mg/L	240	4	287	n=*
Bromodichloromethane	EPA 524.2			0.15	1	µg/L		26.8	26.4	27.2
Bromoform	EPA 524.2			0.15	- †	ug/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	1	ug/L		n.d.	2.2 J	3.6 J
Chloroform	EPA 524.2			0.10		ug/L		152	300	191
Total trihalomethanes	EPA 524.2			U. I		µg/L		183	329	222
True Color	ASTM D1209-05	1	5	1	<u>;</u>	APHA		6	329	8
	EPA 180.1	<u> </u>	1	-	3	NTU		7	291	<1
Turbidity	EPA 180.1 EPA 200.7	1	10	- 5	30	mg/kg µg/L	19.4	10	291	n.d.
Zinc	≧PA 200.7	<u> </u>	ŧŲ		3U	mg/kg µg/L	19.4	10		H.U.

n.d. = Not Detected

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

⁻⁻⁻ Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

^{*} See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

REPORT OF ANALYSIS

Report Number:

09-352-2148

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

Date Received:

12/18/09 11/24/09

(402) 995-2310

Date Sampled:

11/23/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653221

Sample ID:

RM801SSM

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 12/2/2009

	. 0 0	•	•			
Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
n.d.	1.173	51	Endrin	n.d.	0.964	9.9
n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
n.d.	14.013	50	Heptachlor	n.d <i>.</i>	0.508	5.1
n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
n.d <i>.</i>	15.475	50	beta- BHC	n.d.	0.905	5.1
n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
n.d.	0.691	9.9				
	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	FoundDetection Limitn.d.0.789n.d.0.611n.d.0.952n.d.1.173n.d.0.645n.d.15.402n.d.14.013n.d.9.776n.d.9.943n.d.11.144n.d.15.475n.d.14.811n.d.8.240n.d.9.896	Found Detection Limit Limit (μg/L) n.d. 0.789 9.9 n.d. 0.611 9.9 n.d. 0.952 9.9 n.d. 1.173 51 n.d. 0.645 5.1 n.d. 15.402 50 n.d. 14.013 50 n.d. 9.776 50 n.d. 9.943 50 n.d. 11.144 50 n.d. 15.475 50 n.d. 14.811 50 n.d. 8.240 50 n.d. 9.896 50	Found Detection Limit Limit (μg/L) Analysis n.d. 0.789 9.9 Endosulfan I n.d. 0.611 9.9 Endosulfan II n.d. 0.952 9.9 Endosulfan sulfate n.d. 1.173 51 Endrin n.d. 0.645 5.1 Endrin aldehyde n.d. 15.402 50 Endrin ketone n.d. 14.013 50 Heptachlor n.d. 9.776 50 Heptachlor epoxide n.d. 9.943 50 alpha-Chlordane n.d. 11.144 50 alpha-BHC n.d. 15.475 50 beta- BHC n.d. 14.811 50 delta-BHC n.d. 8.240 50 gama-BHC (Lindane) n.d. 9.896 50 gama-(Chlordane)	Found Detection Limit Limit (μg/L) Analysis Found n.d. 0.789 9.9 Endosulfan I n.d. n.d. 0.611 9.9 Endosulfan II n.d. n.d. 0.952 9.9 Endosulfan sulfate n.d. n.d. 1.173 51 Endrin n.d. n.d. 0.645 5.1 Endrin aldehyde n.d. n.d. 15.402 50 Endrin ketone n.d. n.d. 14.013 50 Heptachlor n.d. n.d. 9.776 50 Heptachlor epoxide n.d. n.d. 9.943 50 alpha-Chlordane n.d. n.d. 11.144 50 alpha-BHC n.d. n.d. 15.475 50 beta-BHC n.d. n.d. 14.811 50 delta-BHC n.d. n.d. 8.240 50 gama-BHC (Lindane) n.d. n.d. 9.896 50 gama-(Chlordane) </td <td>Found Detection Limit Limit (μg/L) Analysis Found Detection Limit n.d. 0.789 9.9 Endosulfan I n.d. 0.615 n.d. 0.611 9.9 Endosulfan II n.d. 0.733 n.d. 0.952 9.9 Endosulfan sulfate n.d. 0.945 n.d. 1.173 51 Endrin n.d. 0.964 n.d. 0.645 5.1 Endrin aldehyde n.d. 0.985 n.d. 15.402 50 Endrin ketone n.d. 0.795 n.d. 14.013 50 Heptachlor n.d. 0.508 n.d. 9.776 50 Heptachlor epoxide n.d. 0.745 n.d. 9.943 50 alpha-Chlordane n.d. 0.730 n.d. 15.475 50 beta- BHC n.d. 0.323 n.d. 15.475 50 beta- BHC n.d. 1.733 n.d. 8.240 50 gama-BH</td>	Found Detection Limit Limit (μg/L) Analysis Found Detection Limit n.d. 0.789 9.9 Endosulfan I n.d. 0.615 n.d. 0.611 9.9 Endosulfan II n.d. 0.733 n.d. 0.952 9.9 Endosulfan sulfate n.d. 0.945 n.d. 1.173 51 Endrin n.d. 0.964 n.d. 0.645 5.1 Endrin aldehyde n.d. 0.985 n.d. 15.402 50 Endrin ketone n.d. 0.795 n.d. 14.013 50 Heptachlor n.d. 0.508 n.d. 9.776 50 Heptachlor epoxide n.d. 0.745 n.d. 9.943 50 alpha-Chlordane n.d. 0.730 n.d. 15.475 50 beta- BHC n.d. 0.323 n.d. 15.475 50 beta- BHC n.d. 1.733 n.d. 8.240 50 gama-BH

REPORT OF ANALYSIS

Report Number:

09-348-2097

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

01/04/10 11/24/09

Date Received:

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653213 **Sample ID:**

RM801

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d <i>.</i>	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	_ ,			

REPORT OF ANALYSIS

Report Number:

09-357-2212

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

Date Received:

12/23/09 11/24/09

(402) 995-2310

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653239 **Sample ID:**

RM801SSC ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

awr

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01				

Report #:

09-352-2149 09-348-2097 09-357-2213 Page 1 of 4

USACE DAVE JENSEN 106 SOUTH 15TH STREET OMAHA NE 68102 Project Name: Project #: Trip Number:

ESH CREATION SPS-ESHSED-001 EDXDEJ112309

Lab Number:				1		T	1653222	1653213	1653240	1653240
Sample ID:	 			1			RM801BWD	RM801	RM801BWD	Elutriate
Parameter	Method	Met Dete	ction nit	Repo	ratory orting mit	Units	Soil	Receiving Water	Pre-Elutriate Water	Elutriate Water
Alkalinity	SM 2320 B		4	-	10	mg/kg mg/L	5,301	152	w==	187
Aluminum	EPA 200.7	2	25	10	75	mg/kg_ug/L	3,122	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1 1	0.1	mg/kg mg/L		0.07		0.74
Ammonia as N - Total	EPA 350.2	0.2	0.02	<u> 1</u>	0.1	mg/kg mg/L	20.9	0.07	0.71	1
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	0.5 J		0.8 J
Arsenic	EPA 200.8	1	1	5	3	mg/kg µg/L	n.d.	2		2 J
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	n.d.	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	12,665	57		62
Chemical Oxygen Demand-COD	ASTM 1252		3	-	10	mg/L		12		10
Chlorophyil	SM 10200	-	1		3	μg/L		5		
Chromium	EPA 200.7	0.2	1	1	10	mg/kg µg/L	5.4	n.d.		n.đ.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg μg/L	4.6	n.d.		n.đ.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg μg/L	n.d.	n.d.		n.d.
Iron	EPA 200.7	4	7	10	20	mg/kg_µg/L	9,907	n.d.		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		n.d.		1.0
Kjeldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	827	0.3J	1.2	
Lead	EPA 200.7	1	0.5	5	2	mg/kg_µg/L	n.d.	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	3,178	19.6		26.4
Manganese	EPA 200.7	1	2	5	10	mg/kg μg/L	557	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg μg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg μg/L	10	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	***	0.15		0.13
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	0.73	0.15	0.13	
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	mg/kg µg/L		n.d.		0:03
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B					m∨	147	287		227
Particle Size	Sieve						See Attached			
Hq	SM 4500-H	0.	1	0	.2		8.3	8.31		8.17
Selenium	EPA 200.8	1	1	4	3	mg/kg µg/L	n.d.	2		2 J
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	1	0.5	5.0	2	mg/kg_µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	20	mg/L		480		660
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1_	mg/kg mg/L		2.9		3.7
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	10,900	3.2	7.1	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		0.04J
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	332	n.d.	0.22	
Total Suspended Solids	SM 2540D		4	-	10	mg/L		4	198	
Bromodichloromethane	EPA 524.2			0.15	1	μg/L		26.8	27	29
Bromoform	EPA 524.2			0.25	1	μg/L	v	n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	1	μg/L.	**-	n.d.	n.d.	3.0 J
Chloroform	EPA 524.2			0.1	1	μg/L		152	314	214
Total trihalomethanes	EPA 524.2				1	μg/L		183	343	246
True Color	ASTM D1209-05	1	5	1	5	APHA		6		11
Turbidity	EPA 180.1		1	-	3	NTU		7	195	<1
Zinc	EPA 200.7	1	10	5	30	mg/kg μg/L	26.3	10		n.d.

n.d. = Not Detected

--- Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

REPORT OF ANALYSIS

Report Number:

09-352-2149

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

(402) 995-2310

Date Received: 11/24/09

Date Sampled:

11/23/09

12/18/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653222

Sample ID:

RM801BWD

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 12/2/2009

	011110	P5.1.9	raidiyot. am	Date 017 (1141) 0101 12/2/200	•		
Analysis	Level Found	Method Detection Limit	Reporting Limit (μg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d <i>.</i>	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9				

(402) 995-2310

REPORT OF ANALYSIS

Report Number:

09-348-2097

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

Date Received:

01/04/10 11/24/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653213 **Sample ID:**

RM801

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	·			

(402) 995-2310

REPORT OF ANALYSIS

Report Number:

09-357-2213

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

Date Received:

12/23/09 11/24/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653240 Sample ID:

RM801BWD ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan l	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n <i>.</i> d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d <i>.</i>	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01				

Report #:

09-348-2205 09-348-2096

09-348-2096

Page 1 of 4

USACE DAVE JENSEN 106 SOUTH 15TH STREET OMAHA NE 68102 Project Name: Project #: Trip Number:

ESH CREATION SPS-ESHSED-001 EDXDEJ112309

Lab Number:						1	1653217	1653212	1653235	1653235
Sample ID:							RM779SSM	RM779	RM779SSM	Elutriate
		Met	had	Labo	ratory					
	İ	Dete			orting		İ	Receiving	ļ.	Elutriate
Parameter	Method	Lir			mit	Units	Soil	Water	Pre-Elutriate Water	Water
Alkalinity	SM 2320 B	-	4	-	10	mg/kg mg/L	200	160		166
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	1,923	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1 1	0.1	mg/kg mg/L		0.06 J		n.d.
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	0.07J	n.d.	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	0.5 J		0.6 J
Arsenic	EPA 200.8	1	1	5	3	mg/kg µg/L	n.d.	2 J	****	2 J
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	n.d.	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	5,709	60		69
Chemical Oxygen Demand-COD	ASTM 1252	-	3	 	10	mg/L		13		16
Chlorophyll	SM 10200	-	1	-	3	µg/L		7		
Chromium	EPA 200.7	0.2	1	1	10	mg/kg μg/L	4.4	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg μg/L	2.1	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg μg/L	n.d.	n.d.		n.d.
Iron, Total	EPA 200.7	4	7	10	20	mg/kg µg/L	8,560	n.d.		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		0.32J		0.31J
Kjeldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	87.9	0.40J	0.64	
Lead	EPA 200.7	1	0.5	5	2	mg/kg µg/L	n.d.	n.d.		ກ.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	1,913	22.2		26.3
Manganese	EPA 200.7	<u>=</u>	2	5	10	mg/kg µg/L	222	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1 <u>1</u>	0.05	ma/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	10.3	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1 7	0.05	mg/kg mg/L		0.17		0.19
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	 	0.05	mg/kg mg/L	0.74	0.17	0.19	
Orthophosphate phosphorus	SM 4500 P		0.02	 	0.05	mg/kg µg/L		n.d.		0.03
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page
Oxidation reduction potential	SM 2580B					mV	275	290		272
Particle Size	Sieve						See Attached			
pH	SM 4500-H	0.			.2		8.3	8.28		8.4
Selenium	EPA 200.8	1	1	4	3	mg/kg µg/L	n.d.	1 J		1 J
Silver	EPA 200.7		3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	 -	0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D	<u>-</u>	0.0	5.0	20	ma/L		518		520
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		3.3		3.7
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0		mg/kg mg/L	1,500	4.12	4.8	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		0.06	1.0	0.03J
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	316	0.06	0.16	
Total Suspended Solids	SM 2540D	<u> </u>	4		10	mg/L		12	103	
Bromodichioromethane	EPA 524.2			0.15	1	μα/L		29	31	30.5
Bromoform	EPA 524.2			0.15	- †	μg/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	'	μg/L		n.d.	n.d.	n.d.
Chloroform	EPA 524.2	-		0.10	1	µg/L		166	219	174
Total trihalomethanes	EPA 524.2			0.1	1	μg/L		200	254	210
True Color	ASTM D1209-05	1	5	1		APHA		6.		8
Turbidity		<u> </u>	1	-	3	NTU		21	101	- <1
	EPA 180.1	1	10	5	30	mg/kg ug/L	23.9	n.d.		n.d.
Zinc	EPA 200.7	<u> </u>	· IU	<u> </u>	30	myrky pyrt	∠ა.უ	n.u.	L	rı.u.

n.d. = Not Detected

--- Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

REPORT OF ANALYSIS

Report Number:

09/348/2205

Page 2 of 4

12/14/09

Reported to:

US ARMY CORPS OF

ENGINEERS DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

(402) 995-2310 Date Received:

 Date Received:
 11/24/09

 Date Sampled:
 11/23/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653217

Sample ID:

RM779SSM

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr Date

Date of Analysis: 12/2/2009

			y =				
Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9	,			

REPORT OF ANALYSIS

Report Number:

09-348-2096

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

Date Received:

01/04/10 11/24/09

(402) 995-2310

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653212 **Sample ID**:

D:

Method: EPA 8081A/8082

Units: µg/L

Analyst:

RM779

awr5

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d <i>.</i>	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00				

REPORT OF ANALYSIS

Report Number:

09-257-2208

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

12/23/09

11/24/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEK082709

Lab number:

1653235

Sample ID:

RM779SSM ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	800.0	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01	, ,			

Report #:

09-352-2145 09-348-2096 09-357-2209 Page 1 of 4

USACE DAVE JENSEN 106 SOUTH 15TH STREET OMAHA NE 68102 Project Name: Project #: Trip Number:

ESH CREATION SPS-ESHSED-001 EDXDEJ112309

Lab Number:				1		1	1653218	1653212	1653236	4653000
Sample ID:				 			RM779SSC	RM779	RM779SSC	1653236
Cample ID:				-			NW11955C	RIVI/19	RIVI71955C	Elutriate
		Met		1	ratory	·		l		
		Dete			orting			Receiving		Elutriate
Parameter	Method	Liz			mit	Units	Soil	Water	Pre-Elutriate Water	Water
Alkalinity	SM 2320 B		4	<u> </u>	10	mg/kg mg/L	244	160		168
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	1,621	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		0.06 J		0.08 J
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	n.d.	0.07J	n.d.	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	0.5 J		0.7 J
Arsenic	EPA 200.8	1	1	5	3	mg/kg µg/L	n.d.	2 J		2 J
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	n.d,	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	5,879	60		64
Chemical Oxygen Demand-COD	ASTM 1252		3	-	10	mg/L		13		18
Chlorophyll	SM 10200	-	1	-	3	μg/L		7		
Chromium	EPA 200.7	0.2	111	1	10	mg/kg μg/L	3.6	n.d.		n.đ.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg μg/L	1.9	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg μg/L	n.đ.	n.d.		n.d.
Iron, Total	EPA 200.7	4	7	10	20	mg/kg μg/L	7,498	n.d.		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	***	0.32J		0.2J
Kjeldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	72.9	0.40J	0.89	~~~
Lead	EPA 200.7	1	0.5	5	2	mg/kg µg/L	n.d.	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	1,687	22.2		24.1
Manganese	EPA 200.7	1	2	5	10	mg/kg µg/L	217	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg μg/L	ก.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg μg/L	9.5	n.d.		n.đ.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		0.17		0.19
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	1.24	0.17	0.19	
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	mg/kg μg/L		n.d.		0.03
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV	258	290		271
Particle Size	Sieve						See Attached			
pH	SM 4500-H	0.	1	0	.2		8.4	8.28		8.36
Selenium	EPA 200.8	.1	1	- 4	3	mg/kg µg/L	n.d.	1 J		3 J
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	1	0.5	5.0	2	ma/ka ⊔a/L	n.đ.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	20	mg/L		518		520
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		3.3		2.9
Total Organic Carbon - TOC	EPA 415.1	<u>=</u>	0.2	10.0	1	mg/kg mg/L	1,900	4.12	4.8	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		0.06		0.02J
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	ma/ka ma/L	248	0.06	0.16	
Total Suspended Solids	SM 2540D	-	4	-:-	10	mg/L		12	103	
Bromodichioromethane	EPA 524.2			0.15	1	μg/L		29	28	28.7
Bromoform	EPA 524.2			0.25	1	μα/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	- 1	µa/L		n.d.	n.d.	n.d.
Chloroform	EPA 524.2			0.1	1	ha/r		166	198	164
Total trihalomethanes	EPA 524.2				<u></u>	µg/L		200	230	197
	ASTM D1209-05	1	5	1	5	APHA		6		7
1100 00101				_					1	•
Turbidity	EPA 180.1	_	1	-	3	NTU	!	21	195	<1

n.d. = Not Detected

--- Test not requested/Applicable

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager Midwest Laboratories, Inc.

J = Estimated concentration below laboratory reporting limit.

REPORT OF ANALYSIS

Report Number:

09-352-2145

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported: (402) 995-2310

Date Received:

12/18/09

Date Sampled:

11/24/09 11/23/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653218

Sample ID:

RM779SSC

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 12/2/2009

			•	• • • • • • • • • • • • • • • • • • • •			
Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor,	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9				

REPORT OF ANALYSIS

Report Number:

09-348-2096

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

01/04/10 11/24/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653212 **Sample ID:**

RM779

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n <i>.</i> d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d <i>.</i>	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	. ,			

REPORT OF ANALYSIS

Report Number:

09-257-2209

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

e Reported: 12/23/09

(402) 995-2310

Date Received:

11/24/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653236

236 **Sample ID:**

RM779SSC ELUTRIATE

Method: EPA 8081A/8082

A/8082 Units: μg/L

Analyst:

awr

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n,d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01				

Report #:

09-352-2146 09-348-2096

09-357-2210

Page 1 of 4

USACE DAVE JENSEN 106 SOUTH 15TH STREET OMAHA NE 68102

Project Name: Project #: Trip Number:

ESH CREATION SPS-ESHSED-001 EDXDEJ112309

Lab Number:							1653219	1653212	1653237	1653237
Sample ID:						 -	RM779BWD	RM779	RM779BWD	Elutriate
cample ib.		Met	hod	Labo	ratory		KIVI / 9DVVD	KIVITY	KWITABAAD	caumate
		Dete	ction	Repo	orting	Î		Receiving		Elutriate
Parameter	Method	Lir	nit		mit	Units	Soil	Water	Pre-Elutriate Water	Water
Alkalinity	SM 2320 B	-	4	-	10	mg/kg mg/L	3,245	160	****	175
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	2,876	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		0.06J		0.79
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	5.9	0.07J	0.76	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	0.5 J		0.2 J
Arsenic	EPA 200.8	1	1	5	3	mg/kg µg/L	n.d.	2 J		1 J
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg μg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	n.d.	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	10,655	60		58
Chemical Oxygen Demand-COD	ASTM 1252	-	3	-	10	mg/L		13		18
Chlorophyll	SM 10200	-	1	-	3	μg/L		7		9
Chromium	EPA 200.7	0.2	1	1	10	mg/kg µg/L	5.6	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	3.9	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg µg/L	n.d.	n.d.		ก.d.
Iron, Total	EPA 200.7	4	7	10	20	mg/kg µg/L	9,635	n.d.		n.d.
Kieldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		0.32J		0.2J
Kjeldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	194	0.40J	1.48	
Lead	EPA 200.7	1	0.5	5	2	mg/kg ug/L	n.d.	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	3.031	22.2		24.5
Manganese	EPA 200.7	1	2	5	10	mg/kg µg/L	324	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1	0.05	ma/kg ug/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	12	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		0.17		0.14
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	0.79	0.17	0.14	
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	ma/ka µa/L		n.d.		0.03
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV	162	290		230
Particle Size	Sieve					***	See Attached			
pH	SM 4500-H	Õ.	1	0	2		8.1	8.28		8.23
Selenium	EPA 200.8	1	1	4	3	ma/ka µa/L	n.d.	1 J		1 J
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	1	0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	20	mg/L		518		534
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		3.3		3.4
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	3,900	4.12	6.8	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	ma/ka ma/L		0.06		0.02J
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	ma/kg mg/L	303	0.06	0.21	
Total Suspended Solids	SM 2540D		4	-	10	mg/L		12	205	
Bromodichloromethane	EPA 524.2			0.15	1	µg/L		29	27.6	28.8
Bromoform	EPA 524.2			0.25	- <u>-</u> 1	μg/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	1	μg/L		n.d.	3.1 J	4.4 J
Chloroform	EPA 524.2			0.1	- i	μg/L		166	237	177
Total trihalomethanes	EPA 524.2			-		ug/L		200	268	211
	ASTM D1209-05	1	5	1	5	APHA		6		8
True Color										
True Color	EPA 180.1	<u> </u>	1	_	3	NTÚ		21	232	<1

n.d. = Not Detected

--- Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

REPORT OF ANALYSIS

Report Number:

09-352-2146

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

(402) 995-2310

Date Received: Date Sampled:

12/18/09 11/24/09 11/23/09

PO/Proj. ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653219

Sample ID:

RM779BWD

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

Date of Analysis: 12/2/2009

1110tilloui: 217(000170002	O 11115.	. P.D	Analyst. aw	Dute of Allarysis. 12/2/20	00		
Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin .	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d,	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9	·			

awr

REPORT OF ANALYSIS

Report Number:

09-348-2096

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

01/04/10 11/24/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653212 **Sample ID**:

RM779

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d <i>.</i>	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n,d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	- ,			

REPORT OF ANALYSIS

Report Number:

09-257-2210

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported: (402) 995-2310

Date Received:

12/23/09

11/24/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653237 **Sample ID**:

RM779BWD ELUTRIATE

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01				

Report #:

09-348-2202 09-348-2095 09-342-2173 Page 1 of 4

USACE DAVE JENSEN 106 SOUTH 15TH STREET OMAHA NE 68102 Project Name: Project #: Trip Number:

ESH CREATION SPS-ESHSED-001 EDXDEJ112309

li a na a a							100001			
Lab Number:							1653214	1653211	1653232	1653232
Sample ID:						ļ	RM757SSM	RM-757	RM757SSM	Elutriate
		Meti	hod	Labo	ratory					1
	ļ	Detec	ction	Repo	orting		İ	Receiving		Elutriate
Parameter	Method	Lin	nit	Li	mit	Units	Soil	Water	Pre-Elutriate Water	Water
Alkalinity	SM 2320 B	-	4	-	10	mg/kg mg/L	291	174		189
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	1,992	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	****	0.07		n.d.
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	2.9	0.1	n.d.	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	n.d.		n.d.
Arsenic Total	EPA 200.8	1	1	5	3	mg/kg µg/L	n.d.	2 J		n.d.
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.d.	n.đ.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	n.d.	n.ď.	~~~	n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	6,643	65		71
Chemical Oxygen Demand-COD	ASTM 1252	-	3	-	10	mg/L	,	14		23
Chlorophyll	SM 10200	-	1	-	3	μg/L		9		+
Chromium	EPA 200.7	0.2	1	1	10	mg/kg ug/L	4.7	n.d.		n.đ.
Copper	EPA 200,7	0.2	1	1.0	5	mg/kg µg/L	2.1	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg µg/L	n.d.	n.d.		n.d.
Iron, Total	EPA 200.7	4	7	10	20	mg/kg µg/L	8,329	n.d.		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		0.4J		0.3
Kieldahl Nitrogen - Total	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L	119	0.4J	0.77	
Lead	EPA 200.7	1	0.5	5	2	mg/kg µg/L	n.d.	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	2,251	26.2		27.2
Manganese	EPA 200.7	1	2	5	10	mg/kg μg/L	202	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	10.3	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	ma/ka mg/L		0.12		0.18
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	 i 	0.05	mg/kg mg/L	2.90	0.12	0.17	
Orthophosphate phosphorus	SM 4500 P	0.2	0.02	 '	0.05	mg/kg µg/L		0.03		0.03 J
Organochlorine Pesticides	EPA 8081		0.02		*		n.d.* Page 2			n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2			n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV	277	295		281
Particle Size	Sieve						See Attached	250		201
pH	SM 4500-H	0.			.2		8.3	8.24		8.34
Selenium	EPA 200.8	1	1	4	3	ma/kg µg/L	n.d.	2 J		2
Silver	EPA 200.7	- i	3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7		0.5	5.0	2	mg/kg μg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D		0.0	5.0	20	mg/L		586		556
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		4.6		3.9
	EPA 415.1	2	0.2	10.0	. 1	mg/kg mg/L	2,000	4.93	6.4	
Total Organic Carbon - TOC	SM 4500 P-F	0.2	0.02	10.0	0.05	mg/kg mg/L	2,000	n.d.		0.05
Dissolved Phosphorus			0.02	1	0.05	mg/kg mg/L	244	n.d.	0.30	
Total Phosphorus	SM 4500 P-F SM 2540D	0.2	4	-	10	mg/L		17	261	
Total Suspended Solids	EPA 524.2		4	0.15	1	ug/L		36	32	39.6
Bromodichloromethane	EPA 524.2 EPA 524.2			0.15	1	µg/L µg/L		n.d.	n.d.	n.d.
Bromoform				0.25	1			5.8	n.d.	6.8
Chlorodibromomethane	EPA 524.2					μg/L		189	196	211
Chloroform	EPA 524.2			0.1	1	μg/L		231	231	257
Total trihalomethanes	EPA 524.2					µg/L			231	8
True Color	ASTM D1209-05	1	5	1	5	APHA		8 17	286	<1
Turbidity	EPA 180.1	-	1	-	3	NTU		10	∠00	n.d.
Zinc	EPA 200.7	1	10	5	30	mg/kg μg/L	18.3	10		ž I.U.

n.d. = Not Detected

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

⁻⁻⁻ Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

^{*} See attached report

REPORT OF ANALYSIS

Report Number:

09-348-2202

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported:

Date Received:

12/14/09 11/24/09

(402) 995-2310

Date Sampled:

11/23/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653214

Sample ID:

RM757SSM

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d <i>.</i>	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9	,			

(402) 995-2310

REPORT OF ANALYSIS

Report Number:

09-342-2173

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

Date Received:

12/30/09 11/24/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653232 **Sample ID:**

RM757SSM

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.03
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.003	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	3		5.500	2.00

REPORT OF ANALYSIS

Report Number:

09-348-2095

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

(402) 995-2310

01/04/10 Date Received: 11/24/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653211 **Sample ID**:

RM757

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01				

Report #:

09-348-2203 09-348-2095 09-357-2206

Page 1 of 4

USACE DAVE JENSEN 106 SOUTH 15TH STREET OMAHA NE 68102 Project Name: Project #: Trip Number:

ESH CREATION SPS-ESHSED-001 EDXDEJ112309

	·									
Lab Number:							1653215	1653211	1653233	1653233
Sample ID:							RM757SSC	RM-757	RM757SSM	Elutriate
		Met	hođ	Labo	ratory			1		
		Dete	ction	Repo	orting	İ		Receiving		Elutriate
Parameter Parameter	Method	Lir	nit	Li	mit	Units	Soil	Water	Pre-Elutriate Water	Water
Alkalinity	SM 2320 B	-	4	1	10	mg/kg mg/L	691	174		182
Aluminum	EPA 200.7	2	25	10	75	mg/kg μg/L	2,400	n.d.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		0.07	***	0.27
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	0.88	0.1	0.25	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	n.d.		n.d.
Arsenic Total	EPA 200.8	1	1	5	3	mg/kg µg/L	n.d.	2 J		n.d.
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg μg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	ma/kg μg/L	n.d.	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	7,910	65		70
Chemical Oxygen Demand-COD	ASTM 1252	-	3		- 10	mg/L		14		10
Chlorophyll	SM 10200	-	1	 -	3	µg/L		9		
Chromium	EPA 200.7	0.2	1	1	10	mg/kg µg/L	5.8	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	2.5	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg µg/L	n.d.	n.d.		n.d.
Iron, Total	EPA 200.7	4	7	10	20	mg/kg µg/L	7,275	n.đ.		n.d.
Kieldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		0.4J		0.6
Kjeldahi Nitrogen - Total	EPA 351,3	2	0.2	10	0.5	mg/kg mg/L	88.5	0.4J	0.9	
Lead	EPA 200.7		0.5	5	2	mg/kg µg/L	n.d.	n.d.		n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	2,717	26.2		27.2
Manganese	EPA 200.7	1	2	5	10	mg/kg µg/L	236	n.d.		n.d.
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	mg/kg µg/L	10.8	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	ma/kg ma/L	70.0	0.12		0.15
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	ma/kg mg/L	1.2	0.12	0.16	
Orthophosphate phosphorus	SM 4500 P	V. <u>L</u>	0.02	 	0.05	mg/kg µg/L		0.03	n.d.	0.03 J
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2	n.d.* Page 3	11.01	n.d.* Page 4
Polychlorinated Biphenvis (PCB's)	EPA 8082			-	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B		***			mV	279	295		283
Particle Size	Sieve						See Attached		-	
pH	SM 4500-H	0.		0			8.2	8.24		8.15
Selenium	EPA 200.8	 1	<u>,</u>	4	3	ma/ka µa/L	n.d.	2 J		1
Silver	EPA 200.7	- i	<u>.</u>	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	- i	0.5	5.0	2	mg/kg µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	20	mg/L	11.0.	586		602
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L		4.6		4.0
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	2,400	4.93	5.6	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	ma/ka ma/L	2,400	n.d.	5.0	0.03 J
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L	310	n.d.	0.2	0.000
Total Suspended Solids	SM 2540D	-	4	-	10	mg/L	310	17	161	
Bromodichloromethane	EPA 524.2		4	0.15	1			36	29	33.7
Bromoform	EPA 524.2 EPA 524.2			0.15	-	μg/L μσ/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2 EPA 524.2			0.25	1	μg/L μg/L		5,8	n.d.	6.1
					1	μg/L μg/L		189	11.G. 142	161
Chloroform	EPA 524.2			0.1				231	175	200
Total trihalomethanes	EPA 524.2			<u> </u>	1	µg/L APHA		231 8	1/5	8
True Color	ASTM D1209-05	1	5	1	5		·			
Turbidity	EPA 180.1	-	1 10	-	3	NTU		17 10	204	. <1 n.d.
Zinc	EPA 200.7	11	10	5	30	mg/kg µg/L	24.0	10		13.0.

n.d. = Not Detected

--- Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

REPORT OF ANALYSIS

Report Number:

09-348-2203

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported: (402) 995-2310

Date Received:

12/14/09 11/24/09

Date Sampled:

11/23/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653215

Sample ID:

RM757SSC

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9	- ,		-	

REPORT OF ANALYSIS

Report Number:

09-357-2206

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

(402) 995-2310

Date Received:

12/23/09 11/24/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653233 **Sample ID**:

RM757SSC

Analyst:

Method: EPA 8081A/8082

Units: µg/L

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan l	n.d.	0.006	0.05
4,4'-DDD	n.d.	0,005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	,			

REPORT OF ANALYSIS

Report Number:

09-348-2095

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

(402) 995-2310

01/04/10 Date Received: 11/24/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653211 Sample ID:

RM757

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n,d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	0.01	- · · · · ·			

Report #:

09-348-2204 09-348-2095

09-357-2207

Page 1 of 4

USACE DAVE JENSEN 106 SOUTH 15TH STREET OMAHA NE 68102 Project Name: Project #: Trip Number:

ESH CREATION SPS-ESHSED-001 EDXDEJ112309

II at Minut							T		T	
Lab Number:				ļ			1653216	1653211	1653234	1653234
Sample ID:						ļ	RM757BWD	RM-757	RM757BWD	Elutriate
		Met			ratory					i
		Dete	ction	Rep	orting			Receiving		Elutriate
Parameter Parameter	Method	Lir	nit	Li	mit	Units	Soil	Water	Pre-Elutriate Water	Water
Alkalinity	SM 2320 B	-	4	-	10	mg/kg mg/L	2,516	174		183
Aluminum	EPA 200.7	2	25	10	75	mg/kg µg/L	3,003	n.đ.		n.d.
Ammonia as N - Dissolved	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L		0.07		n.d.
Ammonia as N - Total	EPA 350.2	0.2	0.02	1	0.1	mg/kg mg/L	2.6	0.1	0.25	
Antimony	EPA 200.8	1	0.5	5	2	mg/kg µg/L	n.d.	n.đ.		0.7 J
Arsenic Total	EPA 200.8	1	1	5	3	mg/kg µg/L	n.d.	2 J		n.d.
Beryllium	EPA 200.7	0.1	2	0.5	5	mg/kg µg/L	n.d.	n.d.		n.d.
Cadmium	EPA 200.8	0.5	0.2	2	1	mg/kg µg/L	n.d.	n.d.		n.d.
Calcium	EPA 200.7	5	1	25	3	mg/kg mg/L	9,942	65	Ī	70
Chemical Oxygen Demand-COD	ASTM 1252	-	3	-	10	mg/L		14		4.1
Chlorophyli	SM 10200	-	1	-	3	µg/L		9		
Chromium	EPA 200.7	0.2	1	1	10	mg/kg µg/L	6.5	n.d.		n.d.
Copper	EPA 200.7	0.2	1	1.0	5	mg/kg µg/L	3.2	n.d.		n.d.
Cyanide	SM 4500 CN-E	0.5	8	3	20	mg/kg µg/L	n.đ.	n.d.		n.d.
Iron, Total	EPA 200.7	4	7	10	20	mg/kg µg/L	9,557	n.d.		n.d.
Kjeldahl Nitrogen - Dissolved	EPA 351.3	2	0.2	10	0.5	mg/kg mg/L		0.4J		0.15 J
Kjeldahl Nitrogen - Total	EPA 351,3	2	0.2	10	0.5	mg/kg mg/L	183	0.4J	0.76	
Lead	EPA 200.7	1	0.5	5	2	mg/kg µg/L	6.4	n.d.	***	n.d.
Magnesium	EPA 200.7	2	1	10	3	mg/kg mg/L	3,217	26,2		28.7
Manganese	EPA 200.7	1	2	5	10	mg/kg µg/L	265	n.d.		20
Mercury	EPA 245.1	0.2	0.02	1	0.05	mg/kg µg/L	n.d.	n.d.		n.d.
Nickel	EPA 200.7	0.2	10	2	30	ma/kg ug/L	11.6	n.d.		n.d.
Nitrate/Nitrite Nitrogen - Dissolved	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L		0.12		0.13
Nitrate/Nitrite Nitrogen - Total	EPA 353.2	0.2	0.02	1	0.05	mg/kg mg/L	2.81	0.12	0.12	
Orthophosphate phosphorus	SM 4500 P		0.02		0.05	mg/kg ug/L		0.03		n.d.
Organochlorine Pesticides	EPA 8081			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Polychlorinated Biphenyls (PCB's)	EPA 8082			*	*		n.d.* Page 2	n.d.* Page 3		n.d.* Page 4
Oxidation reduction potential	SM 2580B					mV	280	295		277
Particle Size	Sieve						See Attached			-+
На	SM 4500-H	0.	1	0	.2		8	8,24		8.05
Selenium	EPA 200.8	1	1	4	3	mg/kg µg/L	n.d.	2 J		2 J
Silver	EPA 200.7	1	3	5	10	mg/kg µg/L	n.d.	n.d.		n.d.
Thallium	EPA 200.7	1	0.5	5.0	2	ma/ka µg/L	n.d.	n.d.		n.d.
Total Dissolved Solids	SM 2540D			5.0	. 20	mg/L		586		594
Dissolved Organic Carbon - DOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L.		4,6		3.9
Total Organic Carbon - TOC	EPA 415.1	2	0.2	10.0	1	mg/kg mg/L	3,600	4.93	5.7	
Dissolved Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	mg/kg mg/L		n.d.		n.d.
Total Phosphorus	SM 4500 P-F	0.2	0.02	1	0.05	ma/ka ma/L	306	n.d.	0.16	
Total Suspended Solids	SM 2540D	-	4		10	mg/L		17	136	
Bromodichloromethane	EPA 524.2		•	0.15	1	µg/L	4.74	36	29	31.8
Bromoform	EPA 524.2			0.25	- i	ug/L		n.d.	n.d.	n.d.
Chlorodibromomethane	EPA 524.2			0.16	1	µg/L		5.8	n.d.	5.3
Chloroform	EPA 524.2			0.10	<u>-</u> -	ya/L		189	151	155
Total trihalomethanes	EPA 524.2	-1***			- i	µg/L		231	185	192
True Color	ASTM D1209-05	1	5	1	5	APHA		8		8
Turbidity	EPA 180.1		1		3	NTU		17	204	<u> </u>
Zinc	EPA 200.7	1	10	5	30	mg/kg µg/L	26.9	10	201	n.d.
All IV .	A Z00.1	- '	10			mgmg pg/E				17141

n.d. = Not Detected

--- Test not requested/Applicable

J = Estimated concentration below laboratory reporting limit.

* See attached report

Note: Pre-Elutriate water analysis was performed on unfiltered elutriate extract.

Prem N. Arora, Environmental Project Manager

Midwest Laboratories, Inc.

REPORT OF ANALYSIS

Report Number:

09-348-2204

Page 2 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEERS Date Reported: (402) 995-2310

Date Received:

12/14/09 11/24/09

Date Sampled:

11/23/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653216

Sample ID:

RM757BWD

Method: EPA 8081/8082

Units: µg/Kg

Analyst:

awr

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)	Analysis	Level Found	Method Detection Limit	Reporting Limit (µg/L)
4,4'-DDE	n.d.	0.789	9.9	Endosulfan I	n.d.	0.615	5.1
4,4'-DDD	n.d.	0.611	9.9	Endosulfan II	n.d.	0.733	9.9
4,4'-DDT	n.d.	0.952	9.9	Endosulfan sulfate	n.d.	0.945	9.9
4,4'-Methoxychlor	n.d.	1.173	51	Endrin	n.d.	0.964	9.9
Aldrin	n.d.	0.645	5.1	Endrin aldehyde	n.d.	0.985	9.9
Aroclor 1016	n.d.	15.402	50	Endrin ketone	n.d.	0.795	9.9
Aroclor 1221	n.d.	14.013	50	Heptachlor	n.d.	0.508	5.1
Aroclor 1232	n.d.	9.776	50	Heptachlor epoxide	n.d.	0.745	5.1
Aroclor 1242	n.d.	9.943	50	alpha-Chlordane	n.d.	0.730	5.1
Aroclor 1248	n.d.	11.144	50	alpha-BHC	n.d.	0.323	5.1
Aroclor 1254	n.d.	15.475	50	beta- BHC	n.d.	0.905	5.1
Aroclor 1260	n.d.	14.811	50	delta-BHC	n.d.	1.733	5.1
Aroclor 1262	n.d.	8.240	50	gama-BHC (Lindane)	n.d.	0.562	5.1
Aroclor 1268	n.d.	9.896	50	gama-(Chlordane)	n.d.	0.745	5.1
Dieldrin	n.d.	0.691	9.9	- ,			

REPORT OF ANALYSIS

Report Number:

09-357-2207

Page 3 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

(402) 995-2310

te Reported: 12/23/09

Date Received: 11/24/09

PO/PROJ#: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653234

Sample ID:

RM757

Method: EPA 8081A/8082

Units: µg/L

Analyst:

awr5

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.171	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.30	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n.d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d.	0.006	0.05
Dieldrin	n.d.	0.004	1.00	- ,			

REPORT OF ANALYSIS

Report Number:

09-348-2095

Page 4 of 4

Reported to:

US ARMY CORPS OF

ENGINEERS

DAVE JENSEN

1616 CAPITOL AVE 5TH FLOOR

OMAHA NE 68102

For: (20061) US ARMY CORPS OF ENGINEE Date Reported:

(402) 995-2310

01/04/10

Date Received:

11/24/09

PO/Proj. #: 91554383 ESH CREATION

SPS-ESHSED-001 EDXDEJ112309

Lab number:

1653211 **Sample ID:**

RM757

Method: EPA 8081A/8082

Units: µg/L

Analyst:

Date of Analysis: 12/2/2009

Analysis	Level Found	Method Detection Limit	Reporting Limit	Analysis	Level Found	Method Detection Limit	Reporting Limit
4,4'-DDE	n.d.	0.005	0.10	Endosulfan I	n.d.	0.006	0.05
4,4'-DDD	n.d.	0.005	0.10	Endosulfan II	n.d.	0.003	0.1
4,4'-DDT	n.d.	0.004	0.10	Endosulfan sulfate	n.d.	0.01	0.1
4,4'-Methoxychlor	n.d.	0.005	0.50	Endrin	n.d.	0.003	0.1
Aldrin	n.d.	0.008	0.50	Endrin aldehyde	n.d.	0.011	0.1
Aroclor 1016	n.d.	0.110	1.00	Endrin ketone	n.d.	0.006	0.1
Aroclor 1221	n.d.	0.194	2.00	Heptachlor	n.d.	0.009	0.05
Aroclor 1232	n.d.	0.110	1.00	Heptachlor epoxide	n.d.	0.007	0.05
Aroclor 1242	n.d.	0.107	1.00	alpha-Chlordane	n.d.	0.011	0.05
Aroclor 1248	n.d.	0.218	1.00	alpha-BHC	n.d.	0.009	0.05
Aroclor 1254	n.d.	0.155	1.00	beta- BHC	n.d.	0.009	0.05
Aroclor 1260	n,d.	0.129	1.00	delta-BHC	n.d.	0.014	0.05
Aroclor 1262	n.d.	0.157	1.00	gama-BHC (Lindane)	n.d.	0.035	0.05
Aroclor 1268	n.d.	0.236	1.00	gama-(Chlordane)	n.d <i>.</i>	0.006	0.05
Dieldrin	n.d.	0.004	0.01				

APPENDIX C.

Data Quality Assessment Report

Data Quality Assessment Report

for

Project Number SPS-ESHSED-001

2009 Elutriate Sampling – Emergent Sandbar (ESH) Creation

Assessment of the Existing Condition of the Missouri River Sediments from Fort Randall Dam to Ponca State Park, Nebraska

July 2010

Water Control and Water Quality Section
Hydrologic Engineering Branch
Engineering Division
Omaha District
U.S. Army Corps of Engineers

1. SCOPE AND APPLICABILITY

1.1. BACKGROUND

The U.S. Army Corps of Engineers' Omaha District (District) conducts elutriate testing of sediments to evaluate potential dredge material for contamination. Elutriate testing of the collected sediment samples is conducted pursuant to the Inland Testing Manual, "Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual (USEPA and USACE, 1998).

All water quality data collected by the District's Water Control and Water Quality Section goes through a Data Quality Review (DQR) process prior to data finalization and utilization for assessments and reporting. Part of the DQR process includes the creation of a Data Quality Assessment Report (DQAR). The DQAR is used to document overall quality of a water quality dataset with respect to established Data Quality Indicators and Measurement Quality Objectives.

1.2. PURPOSE

This DQAR documents the quality of data collected under the Sampling and Analysis Plan (SAP) for water quality monitoring project number SPS-ESHSED-001, "2009 Elutriate Sampling – Emergent Sandbar Habitat (ESH) Creation: Assessment of the Existing Condition of Missouri River Sediment from Fort Randall Dam to Ponca State Park, Nebraska." The quality of the collected data was assessed according to water quality Standard Operating Procedure (SOP) WQ-27202, "Data Quality Review" (USACE, 2010). Field data and laboratory analyses were assessed for completeness, correctness, and representativeness. Any missing or incorrect data were identified and addressed. Field and laboratory split samples prepared as part of the data collection were used to assess precision. Systematic and random sampling errors were identified and quantified as major or minor. This report serves as a "usability screening" and is not intended to determine the "ultimate usability" of the dataset.

2. LOCATION AND DATES OF SAMPLING

Data were collected at 3 locations at 7 sites along the Missouri River from Fort Randall Dam to Ponca State Park, Nebraska. Sampling occurred on July 16 and 29, August 27, and November 23, 2009. Core samples of alluvial sediment and grab samples of Missouri River water were collected. GPS locations of sampled sites and field measurements of Missouri River water quality conditions were taken. All targeted sites and locations in the SAP were sampled (Table 1).

Table 1. Field determined latitude and longitude for sediment sampling site locations.

Site	Location	Latitude*	Longitude*
RM867	SSM – Main Channel	42° 55' 40.6" N	98° 25' 18.4" W
RM867	SSC – Side Channel	42° 55' 41.0" N	98° 24' 50.2" W
RM867	BWD – Backwater/Detritus	42° 55' 43.2" N	98° 25' 00.5" W
RM853	SSM – Main Channel	42° 50′ 36.8″ N	98° 11' 42.3" W
RM853	SSC – Side Channel	42° 50′ 31.0″ N	98° 10′ 53.2″ W
RM853	BWD – Backwater/Detritus	42° 50′ 31.8″ N	98° 11' 00.1" W
RM842	SSM – Main Channel	42° 45' 58.8" N	98° 00' 33.1" W
RM842	SSC – Side Channel	42° 46' 13.1" N	98° 00' 24.6" W
RM842	BWD – Backwater/Detritus	42° 46' 10.7" N	98° 00' 30.7" W
RM827	SSM – Main Channel	42° 51' 06.4" N	97° 47' 38.4" W
RM827	SSC – Side Channel	42° 51' 22.5" N	97° 47' 57.7" W
RM827	BWD – Backwater/Detritus	42° 51' 21.0" N	97° 48' 02.0" W
RM800	SSM – Main Channel	42° 51' 45.3" N	97° 17' 41.5" W
RM800	SSC – Side Channel	42° 51' 49.7" N	97° 17' 49.3" W
RM800	BWD – Backwater/Detritus	42° 51' 55.1" N	97° 17' 49.8" W
RM779	SSM – Main Channel	42° 45' 10.9" N	96° 57' 36.3" W
RM779	SSC – Side Channel	42° 45' 25.3" N	96° 57' 56.9" W
RM779	BWD – Backwater/Detritus	42° 45' 24.6" N	96° 57' 56.3" W
RM756	SSM – Main Channel	42° 37' 56.9" N	96° 41' 47.7" W
RM756	SSC – Side Channel	42° 37′ 56.0″ N	96° 41′ 39.3″ W
RM756	BWD – Backwater/Detritus	42° 37' 59.5" N	96° 41′ 38.6″ W

^{*} NAD27 CONUS

3. DATA QUALITY ASSESSMENT

3.1 TECHNICAL CRITERIA FOR DATA QUALITY ASSESSMENT

3.1.1 Precision

The precision of the methods used for collecting and analyzing the sediment and prepared elutriate samples were assessed using the split field sediment sample (i.e. RM842SSM), and the particle size duplicate (split) samples (i.e., RM867BWD, RM852SSM, RM842SSM - Field Split, and RM801SSC). The difference in analytical results for the split samples were quantified as the relative percent difference (RPD) between the paired samples. The RPD for the split samples were calculated as follows:

$$RPD = 100\% \left(\frac{|x1 - x2|}{\overline{x}} \right)$$
 (equation 1)

where: x1 and x2 are the values of the original and split samples, and x is the mean of the two values.

3.1.2 Representativeness

For the purposes of this project, representativeness is defined as how well the sampled population (i.e., collected sediment samples) reflects the target population (e.g., Missouri River

alluvial sediments). Two sources of error may affect the representativeness of the sampled population: sampling error and measurement error.

Sampling error is caused by the natural variability inherent among samples from a population. In alluvial sediment monitoring situations it is largely dependent on the amount of spatial and temporal variability present in the target population. Measurement error refers to the inaccuracies and errors that can and should be avoided by using sound data collection techniques and analytical methods.

3.2 Precision

3.2.1 Particle Size Split Samples

Table 2 presents the sample measurements and calculated RPD values for the split particle size samples. All the calculated RPD values were considered minor. The higher RPD values were associated with lower measurements and the higher RPD values were attributed to differences in small values.

Table 2.	Measured particle size percent composition for collected and split Missouri River alluvial sediment
	samples and calculated RPD values for the paired samples.

		%Gı	avel	%Sand			%Fi	%Fines		
Sample	%Cobble	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
RM867BWD	0	0	0	0.2	15.3	76.7	6.6	1.2		
Lab Split	0	0	0.2	0.2	16.1	76.7	5.6	1.2		
RPD	0%	0%		0%	5%	0%	16%	0%		
RM852SSM	0	0	0	0	7.2	91.5	0.5	0.8		
Lab Split	0	0	0	0	8.1	90.7	0.4	0.8		
RPD	0%	0%	0%	0%	12%	1%	22%	0%		
RM842SSM	0	0	0	0	1.1	96.6	1	1.3		
Field Split	0	0	0	0.2	0.9	96.2	1.4	1.3		
RPD	0%	0%	0%		20%	0%	33%	0%		
RM842SSM	0	0	0	0.2	0.9	96.2	1.4	1.3		
Lab Split	0	0	0	0	0.7	96.2	1.8	1.3		
RPD	0%	0%	0%		25%	0%	25%	0%		
RM801SSC	0	0	0.4	1	19.5	77	1.8	0.3		
Lab Split	0	0	0	0.9	19.5	76.9	2.4	0.3		
RPD	0%	0%		11%	0%	0%	29%	0%		

3.2.2 Sediment, Pre-Elutriate, and Elutriate Samples

Table 3 presents sample measurements and calculated RPD values for collected alluvial sediment samples. All the calculated RPD values were considered minor. It is noted that the RPD values for several metals (i.e., chromium, copper, nickel, and zinc) were greater than 50%. This is attributed to the difficulty of homogenizing the composite sediment sample and the general variable occurrence of these metals in the environment. The relative values of these metals were low, and the "small" difference in the split samples seemingly resulted in higher RPD values.

Table 3. Measured constituents for the alluvial sediment sample and split collected at site RM842SSM and the RPD value calculated for the paired samples.

Parameter	RM842SSM	Split	RPD
Alkalinity (mg/kg)	362	317	13%
Aluminum (mg/kg)	1,657	1,754	6%
Antimony (mg/kg)	0	0	0%
Arsenic (mg/kg)	0	0	0%
Beryllium (mg/kg)	0	0	0%
Cadmium (mg/kg)	0	0	0%
Calcium (mg/kg)	2,339	2,478	6%
Chromium (mg/kg)	5.1	2.7	62%
Copper (mg/kg)	2.76	1.43	63%
Cyanide (mg/kg)	0	0	0%
Iron (mg/kg)	3,047	3,299	8%
Lead (mg/kg)	0	0	0%
Magnesium (mg/kg)	1,046	1,115	6%
Manganese (mg/kg)	106	113	6%
Mercury (mg/kg)	0	0	0%
Nickel (mg/kg)	7.7	3.5	75%
Organochlorine Pesticides (mg/kg)	0	0	0%
Oxidation Reduction Potential (mV)	-83.6	-87.5	5%
PCBs (mg/kg)	0	0	0%
pH (S.U.)	8.2	8.2	0%
Selenium (mg/kg)	0	0	0%
Silver (mg/kg)	0	0	0%
Thallium (mg/kg)	0	0	0%
Total Ammonia (mg/kg)	0	0	0%
Total Kjeldahl Nitrogen (mg/kg)	59.3	74.5	23%
Total Nitrate/Nitrite Nitrogen (mg/kg)	1.1	1.1	0%
Total Organic Carbon (mg/kg)	400	400	0%
Total Phosphorus (mg/kg)	131	126	4%
Zinc (mg/kg)	18.4	10.3	56%

Table 4 presents sample measurements and calculated RPD values for the prepared standard elutriate samples. All the calculated RPD values were considered minor.

Table 5 presents sample measurements and calculated RPD values for the prepared preelutriate samples. All the calculated RPD values were considered minor.

3.3 REPRESENTATIVENESS

To address temporal variation, this project collected all alluvial sediments within a 5-month period. Spatial variation was addressed by the a priori identification of three habitat types of alluvial sediment to be sampled: 1) shallow submerged sandbar in main river channel (SSM), 2) shallow "side-channel" area (SSC), and 3) depositional backwater area with vegetative growth and accumulated detritus (BWD). It is believed these three location types characterize the sediment conditions that could be dredged for ESH creation. Measurement error was controlled by ensuring that SOPs and the project SAP were followed.

Table 4. Measured dissolved constituents for the elutriate samples prepared from sediment and split samples collected at site RM842SSM and the RPD value calculated for the paired samples.

Parameter	RM842SSM	Split	RPD
Alkalinity (mg/l)	168	170	1%
Aluminum (ug/l)	0	0	0%
Ammonia (mg/l)	0.2	0	
Antimony (ug/l)	0.5	0	
Arsenic (ug/l)	0	0	0%
Beryllium (ug/l)	0	0	0%
Cadmium (ug/l)	0	0	0%
Calcium (mg/l)	60	63	5%
Chemical Oxygen Demand (mg/l)	18	22	20%
Chromium (ug/l)	0	0	0%
Copper (ug/l)	0	0	0%
Cyanide (ug/l)	0	0	0%
Iron (ug/l)	0	0	0%
Kjeldahl Nitrogen (mg/l)	0.9	0.9	0%
Lead (ug/l)	0	0	0%
Magnesium (mg/l)	20.5	20.1	2%
Manganese (ug/l)	0	0	0%
Mercury (ug/l)	0	0	0%
Nickel (ug/l)	0	0	0%
Nitrate/Nitrite Nitrogen (mg/l)	0	0	0%
Organic Carbon (mg/l)	3	3.3	10%
Organochlorine Pesticides (ug/l)	0	0	0%
Oxidation Reduction Potential (mV)	-74.9	-30.1	85%
PCBs (ug/l)	0	0	0%
pH (S.U.)	8.09	8.05	0%
Phosphorus (mg/l)	0	0	0%
Phosphorus-Ortho (mg/l)	0	0	0%
Selenium (ug/l)	3	3	0%
Silver (ug/l)	0	0	0%
Thallium (ug/l)	0	0	0%
THM Formation Potential (ug/l)	261	315	19%
Total Dissolved Solids (mg/l)	534	594	11%
True Color (S.UAPHA)	5	6	18%
Zinc (ug/l)	90	90	0%

Table 5. Measured total constituents for the pre-elutriate samples prepared from sediment and split samples collected at site RM842SSM and the RPD value calculated for the paired samples.

Parameter	RM842SSM	Split	RPD
Ammonia (mg/l)	0.3	0	
Nitrate/Nitrite Nitrogen (mg/l)	0	0	0%
Organic Carbon (mg/l)	3	3.3	10%
Phosphorus (mg/l)	0.26	0.26	0%
THM Formation Potential (ug/l)	196	309	45%
Total Suspended Solids (mg/l)	275	196	34%
Turbidity (NTU)	269	301	11%

RFERENCES

- **U.S. Army Corps of Engineers. 2010.** Data Quality Review SOP Number: WQ-27202. Water Quality Unit, Water Control and Water Quality Section, Hydrologic Engineering Branch, Engineering Division, Omaha District, U.S. Army Corps of Engineers.
- **USEPA and USACE. 1998.** Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. Test Manual: Inland Testing Manual. EPA-823-B-98-004, February 1998. U.S. Environmental Protection Agency, Office of Water. Department of Army, U.S. Army Corps of Engineers. Washington, D.C

APPENDIX D.

Sampling and Analysis Plan

SAMPLING AND ANALYSIS PLAN

for

2009 Elutriate Sampling - Emergent Sandbar Habitat (ESH) Creation

Assessment of the Existing Condition of Missouri River Sediments from Fort Randall Dam to Ponca State Park, Nebraska

Project Number: SPS-ESHSED-001

Prepared By:

Water Quality Unit
Water Control and Water Quality Section
Hydrologic Engineering Branch
U.S. Army Corps of Engineers – Omaha District

Distribution List:

U.S. Army Corps of Engineers – Omaha District – ED – Hydrologic Engineering Branch

Dave Jensen (Water Quality Unit)
Bill Otto (Water Quality Unit)
John Hargrave (Water Quality Unit)
Dan Pridal (Sedimentation & Channel Stabilization Section)

U.S. Army Corps of Engineers - Omaha District - OD - Natural Resources Section

Kelly Crane

U.S. Army Corps of Engineers – Omaha District – Planning Branch

Luke Wallace

TABLE OF CONTENTS

	Page
1. PROJECT DESCRIPTION	4
1.1. Background Information	4
1.1.1. Missouri River Biological Opinion	
1.1.2. Past Construction of ESH on the Missouri River	
1.2. Section 404 Permitting Requirements	
1.3. Specific Water Quality Concerns	6
1.4. Representative Sites to Characterize Missouri River Segments	7
1.4.1. Segment 10	7
1.4.2. Segment 9	7
1.4.3. Segment 8	7
2. Project/Task Organization and Responsibilities	7
3. Data Quality Objectives	
4. DATA COLLECTION APPROACH	8
4.1. Data Collection Design	
4.2. Measurement and Sampling Methods	
4.2.1. Receiving Water Sample	
4.2.2. Sediment Samples for Elutriate Sample Preparation	
4.2.3. Elutriate Samples	
4.3. Sample Handling, Custody, and Transport	
4.4. Parameters to be Measured and Analyzed	
4.5. Analytical Methods	
4.6. Quality Control	
5. DATA MANAGEMENT AND REPORTING	
6. Estimated costs for field collection and laboratory analysis of elutriate Samples	
7. References	17
ATTACHMENTS	18

1. PROJECT DESCRIPTION

1.1. BACKGROUND INFORMATION

1.1.1. Missouri River Biological Opinion

The U.S. Fish and Wildlife Service (USFWS) issued a Biological Opinion (BiOp) with recommendations for the U.S. Army Corps of Engineers' (Corps) operations of the Missouri River Mainstem System for protection and enhancement of threatened and endangered species. The BiOp found that the Corps' operations on the Missouri River were not likely to jeopardize the endangered interior least tern (*Sterna antillarum*) and threatened piping plover (*Charadrius melodus*) populations if the Reasonable and Prudent Alternative (RPA) set forth in the BiOp was implemented. The RPA includes recommendations for the mechanical creation and maintenance of Emergent Sandbar Habitat (ESH) as nesting habitat for these two species in terms of habitat acres per river mile. In accordance with the BiOp, the Corps is conducting ongoing efforts to create and/or reclaim a sufficient amount of ESH to stabilize, and eventually recover, interior least tern and piping plover populations along the Missouri River.

The BiOp separates the Missouri River from Ponca, NE upstream to Fort Randall Dam into three separate segments: 1) Segment 10 - Ponca, NE to Gavins Point Dam; 2) Segment 9 – Gavins Point Dam to the Niobrara River; and 3) Segment 8 – Niobrara River to Fort Randall Dam (Figure 1). All three segments are identified as "High Priority" reaches for the interior least tern and piping plover. ESH goals of 40 acres per river mile by the year 2005 and 80 acres per river mile by the year 2015 have been established for Segments 9 and 10. ESH goals of 10 acres per river mile by the year 2015 have been established for Segment 8. Existing ESH acreages within these segments are currently below these goals.

1.1.2. Past Construction of ESH on the Missouri River

Past construction of ESH on the Missouri River by the Corps has utilized hydraulic dredges, sand scrapers, bulldozers and other construction equipment to build up sandbars. Hydraulic dredges are used to pump and place material to build up existing shallowly submerged sandbars. The hydraulic dredges typically use a cutter-head to break up sediment and a pump and pipeline to transport the dredged material to the deposition site. The dredged material is usually mined from "sediments" within the "high-water elevation" of the Missouri River. It is believed that using deposited material from the "river channel" emulates a natural process of redistribution of sediments within the river, and results in no net addition or removal of sediment from the system. Sand Scrapers, bulldozers and other construction equipment are used to form the dredged sand to the specified elevations in order to create sandbars that closely resemble naturally formed ESH.

Avoiding bottom sediments high in organic matter and utilizing coarser, "sandy" material for fill material improves the habitat quality of the ESH created. Coarser fill material is easier to "work" and contour and is better suited for the construction of ESH. Typically, coarser material also contains significantly less nutrients and seed stocks which should slow down the encroachment of vegetation on the created sandbars. This maximizes the time period the created sandbars provide quality habitat for the terns and plovers, and extends the time before control measures are needed to manage encroaching vegetation.

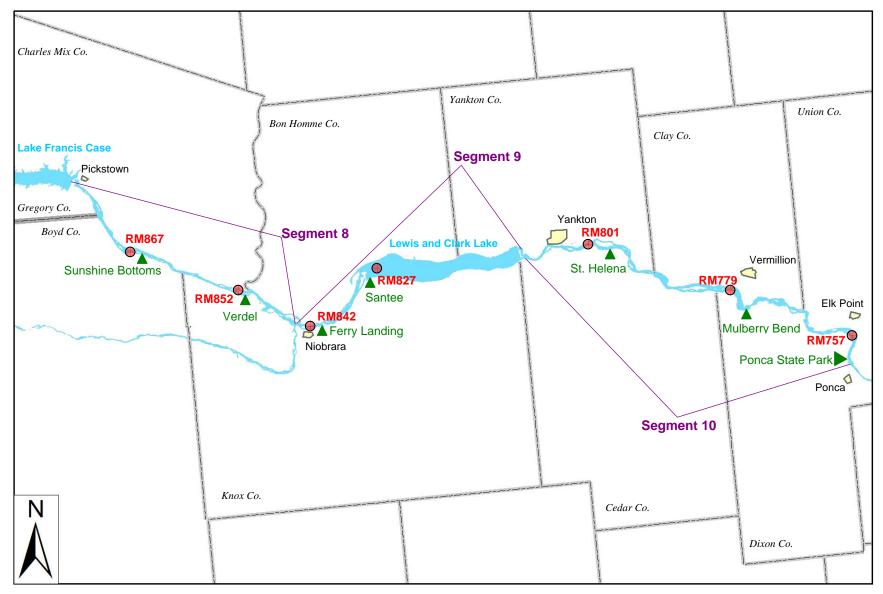


Figure 1. Locations of representative sites (by RM) and boat ramps on BiOp segments 8, 9, and 10 of the Missouri River.

1.2. Section 404 Permitting Requirements

The requirements for a USACE Individual Section 404 permit must be met for most dredging activities conducted on the Missouri River. To meet the Section 404 Individual Permit requirements, a Section 401 Certification must be obtained from the appropriate States that "certifies" that the proposed actions will not "violate" State water quality standards. To facilitate review of past "Shallow Water Habitat" (SWH) projects for Section 401 Certification, "elutriate sampling" of material from the proposed dredging sites has been conducted. It has been recently requested by the State of Nebraska that elutriate sampling also be conducted on ESH projects. It has also been suggested by Nebraska that representative "elutriate samples" could be collected from the three priority segments to ascertain that sediment contamination was not a concern within the segments. This information could then be utilized to facilitate Section 401 Certification of future ESH projects on Segment 8, 9, and 10. This monitoring project plan was developed to collect representative sediment samples from Segments 8, 9, and 10 as identified in the BiOp. The collected sediment samples will be of the appropriate materials for elutriate analysis pursuant to the Inland Testing Manual, "Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual (USEPA and USACE, 1998).

1.3. SPECIFIC WATER QUALITY CONCERNS

The States of Nebraska and South Dakota have not identified any portions of Segments 8, 9, or 10 as an impaired waterbody pursuant to Section 303(d) of the Federal Clean Water Act. Neither State has issued fish consumption advisories applicable to the three segments.

In a 401 Certification letter for a proposed Corps ESH project at RM842, the State of Nebraska stated the following:

"In order to establish certainty of compliance, an elutriate test must be conducted first on appropriate samples of the sediment which will be discharged to the waterway. The test should cover the following contaminants:

Heavy metals: lead, arsenic, mercury, chromium, zinc, copper

Ammonia

Persistent pesticides such as:

Chlordane, Dieldrin, Aldrin, DDT and its metabolites

PCB's

If the concentration of any of these pollutants is sufficient to cause violation of Title 117 – Nebraska Surface Water Quality Standards when the sediments are discharged to the river, the applicant must make arrangements for disposal elsewhere or revise the discharge schedule and/or volume to bring it into compliance."

Some public drinking water facilities that use the Missouri River and Lewis and Clark Lake for source water have expressed concerns that creation of ESH increases the loading of organic matter in their raw water supply. They believe this may cause them to exceed drinking water standards for trihalomethanes (THMs) in their treated water. Increasing the amount of organic matter in water can increase the levels of THM precursors. This may pose a problem for facilities with inadequate treatment processes as THMs can form when the water is chlorinated.

1.4. REPRESENTATIVE SITES TO CHARACTERIZE MISSOURI RIVER SEGMENTS

1.4.1. Segment 10

Three sites have been identified for sediment sampling and elutriate testing to characterize Segment 10: RM757, RM779, and RM801. The site at RM757 is about 3.5 miles upstream from the Ponca State Park boat ramp (Figure 1 and Attachment1). This site is believed to represent conditions downstream of the Vermillion River. The site at RM 779 is about 3.5 miles upstream of the Mulberry Bend boat ramp (Figure 1 and Attachment 2). This site is believed to represent conditions downstream of the James River and upstream of the Vermillion River. The site at RM801 is about 2 miles upstream of the St. Helena boat ramp and is immediately above the confluence of the James River (Figure 1 and Attachment 3). The site is believed to represent conditions from just downstream of Gavins Point Dam to the James River.

1.4.2. Segment 9

Two sites have been identified for sediment sampling and elutriate testing to characterize Segment 9: RM827 and RM842. The site at RM827 is about 2 miles downstream of the Santee boat ramp (Figure 1 and Attachment 4). This site is believed to represent conditions in the "delta area" of Lewis and Clark Lake. The site at RM 842 is about 1 mile upstream of the Ferry Landing boat ramp (Figure 1 and Attachment 5). This site is believed to represent conditions downstream from the confluence of the Niobrara River to the "delta area" of Lewis and Clark Lake.

1.4.3. Segment 8

Two sites have been identified for sediment sampling and elutriate testing to characterize Segment 8: RM852 and RM867. The site at RM852 is about 1 mile upstream from the Verdel boat ramp (Figure 1 and Attachment 6). This site is believed to represent conditions in the lower half of Segment 8. The site at RM 867 is about 1 mile upstream of the Sunshine Bottoms boat ramp (Figure 1 and Attachment 7). This site is believed to represent conditions in the upper half of Segment 8.

2. PROJECT/TASK ORGANIZATION AND RESPONSIBILITIES

The USACE's Water Control and Water Quality Section will conduct the sampling required to facilitate elutriate testing of sediment samples collected at the representative sites.

Staff Responsibilities and Contacts for Sampling:

Sample Collection: Dave Jensen (995-2310), Bill Otto (995-2313), John Hargrave

(995-2347), Jim Laney (996-3733)

Sampling Coordination: Dave Jensen Data Quality Review: Dave Jensen

Laboratory Analysis: Midwest Laboratories, Prem Arora (829-9878)

3. DATA QUALITY OBJECTIVES

The data collected through this monitoring project will be used to assess sediment conditions at representative sites in Segments 8, 9, and 10 of the Missouri River. The data will be used to characterize sediment conditions in each of the three segments. The sediment

condition characterization will be provided to the State of Nebraska to facilitate Section 401 water quality certification review of future ESH projects on the three segments. The information will also be used by the Corps to plan future ESH creation on Segments 8, 9, and 10.

4. DATA COLLECTION APPROACH

4.1. DATA COLLECTION DESIGN

Sediment samples will be collected at eight sites (RM757, RM779, RM801, RM827, RM842, RM852, and RM867) on the Missouri River. At each site three locations will be sampled: 1) shallowly submerged sandbar in main river channel (SSM), 2) shallowly submerged "chute" area between emergent sandbars (SSC), and 3) depositional backwater area with accumulated detritus (BWD). It is believed these three types of locations will characterize the sediment types that could be dredged for ESH creation. Potential SSM, SSC, and BWD sampling locations at each of the seven sites are shown in Attachments 1 through 7. At each location at each site, core samples will be collected to represent the location (i.e., SSM, SSC, and BWD). The separate core samples at each location will be combined into one composite sample for analyses.

4.2. MEASUREMENT AND SAMPLING METHODS

4.2.1. Receiving Water Sample

Water from the Missouri River will be collected at each site and will be used to prepare elutriate samples (see Section 1.2). The laboratory requires 4-gallons of receiving water for each 1-gallon of sediment to be analyzed. In addition to the 4-gallons of water for each 1-gallon of sediment, an additional 1-gallon of receiving water is required for "background" analysis. The receiving water will be collected from the main river channel at each site.

At the time the receiving water is collected, the following field measurements will be taken: water temperature, dissolved oxygen, pH, conductivity, oxidation-reduction potential, turbidity, and chlorophyll a. The measurements will be obtained with a "HydroLab" equipped with a MS5 DataSonde and Surveyor data logger in accordance with the Water Quality Unit's SOP Number WQ-21201, Using a "Hydrolab DS4a and DS5" to Directly Measure Water Quality (USACE, 2008). Measurements will be taken by immersion of the DataSonde directly into the river, or a plastic bucket will be used to collect a near-surface water sample. The Hydrolab would then be immediately placed in the plastic bucket and the measurements taken. Measurements will be appropriately recorded on a field sheet (Attachment 8).

4.2.2. Sediment Samples for Elutriate Sample Preparation

Sediment samples will be collected for elutriate analysis. The sediment samples will be collected at three locations at each of seven sites (i.e., RM757, RM779, RM801, RM828, RM842, RM852, and RM867) for a total of 21 sediment samples. Digital pictures will be taken of all sampled locations. The equipment, supplies, and procedures to be used to collect the sediment samples are as follows.

4.2.2.1. Sampling Equipment and Supplies

Supplies and Miscellaneous Equipment

- 1 gallon wide mouth glass jars
- 1 gallon narrow mouth glass jugs

- Sample bottle labels
- ARF
- Field sheets
- GPS device
- 5 gallon buckets
- Shovel
- Tarp
- Hammer, screwdriver, trowel
- Scrub brush
- Cooler with Ice
- · Waders and rain gear

"Emergent" Sediment Sampling Equipment

- Gas powered auger and gasoline mix
- · 2-inch stainless steel corer head
- Auger extensions

"Submerged" Sediment Sampling Equipment

- 2-inch stainless steel Ogeechee sand corer (36-inch and 48-inch)
- Extension handle and segments
- Hand corer head
- Ogeechee slide hammer
- Polyethylene liner tubes and caps, core catchers, nose pieces
- · Core sample removal tool

4.2.2.2. "Emergent" Sediment Collection Procedure – Composite Sample

- Select sample site and record general information (including Latitude/Longitude) on the field sheet.
- Remove any vegetation near the proposed boring site.
- Set out equipment near boring site. Using a tarp can help keep vegetation and other material away from the collection bucket.
- Attach the corer to the auger head and bore down and collect sample in approximately one-foot increments to a total depth of 3 to 4 feet.
- After each coring suspend the corer over a clean 5-gallon collection bucket. Make sure the power head is away from the collection bucket and deposit the sample into the bucket.
- Heavy clays may require a trowel, screwdriver, hammer and/or wooden stake to remove the sample from the corer.
- When all cores from one site have been collected in the bucket, thoroughly mix the collected soil and transfer it to a wide mouth glass jar. Affix the sample label to the jar (easier if done prior to filling the jar with soil).
- Clean the coring device, tools and sample collection bucket between sample locations.
- Deliver the samples and an analytical request form to the laboratory analyzing the samples.

4.2.2.3. "Submerged" Sediment Collection Procedure – Composite Sample

- Select sample site and record general information (including Latitude/Longitude) on the field sheet.
- Stage collection equipment on a nearby bank or in a small boat anchored at sample site.

- Locate selected boring site with an appropriate marker (e.g., survey marker, pipe, etc.)
- Attach the appropriate head assembly and extensions to corer.
- If possible, collect a 2 to 3 foot sediment core sample in one "increment" using the slide hammer if necessary. If the sediment core can't be collected in one "increment" because of consolidation of the sediment, carefully remove the corer, process the sample, and reinsert the corer in the bore hole. Proceed until a sediment core is collected to a 2 to 3 foot depth. If a rock of other buried obstruction is encountered, start a new coring and continue until enough sediment is collected to create the composite sample.
- After each coring suspend the corer over a clean 5-gallon collection bucket and deposit the collected sample into the bucket. Use the core sample removal tool as necessary
- When all cores from one site have been collected in the bucket, thoroughly mix the collected sediment and transfer it to a wide mouth glass jar. Affix the sample label to the jar (easier if done prior to filling the jar with soil).
- Clean the coring device, tools and sample collection bucket between sample locations.
- Deliver the samples and an analytical request form to the laboratory analyzing the samples.

4.2.3. Elutriate Samples

4.2.3.1. Standard Elutriate Samples

Standard elutriate samples will be prepared in accordance with the "Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual: Inland Testing Manual" (USEPA and USACE, 1998). The elutriate sample will be prepared by using water collected on site from the Missouri River River. The sample will be prepared by subsampling approximately 1-liter of the collected sediment sample from the well-mixed original sample. The sediment material and unfiltered receiving water are then combined in a sediment-to-water ratio of 1:4 on a volume basis at room temperature (22 \pm 2°C). This is best accomplished by volumetric displacement. After the correct ratio is achieved, the mixture is stirred vigorously for 30 minutes with a mechanical stirrer/shaker. After the 30 minute mixing period, the mixture is allowed to settle for at least one hour. The supernatant will then be siphoned off and filtered through a 0.45 micron filter. The filtered water is the elutriate sample that will be analyzed.

4.2.3.2. Pre-Elutriate Samples

The pre-elutriate samples will be prepared the same as standard elutriate samples up through the point of vigorous mixing for 30 minutes. At that time the mixture will be allowed to settle "10 minutes" (allow heavier, coarse material to settle). A sub-sample will be siphoned off without filtration and identified as a pre-elutriate sample.

4.3. SAMPLE HANDLING, CUSTODY, AND TRANSPORT

The collected samples will be transported by Water Control and Water Quality Section personnel to Midwest Laboratories, Inc. in Omaha, Nebraska for analysis. An Analytical Request Form (ARF) will be completed and submitted with the samples delivered to the laboratory (Attachment 9).

4.4. PARAMETERS TO BE MEASURED AND ANALYZED

The parameters that will be measured or analyzed for the different types of samples are listed in Tables 1 through 5.

4.5. ANALYTICAL METHODS

Tables 2 through 5 list the methods that will be used by Midwest laboratories to analyze the samples for the required parameters. A maximum laboratory turn-around time of 30 days is required. A turn-around time of 30 days or less is needed to ensure the USACE can stay on schedule regarding the planning of a possible project.

4.6. QUALITY CONTROL

Where applicable, field measurements and samples will be collected in accordance with SOPs developed by the USACE's Water Quality Unit. A split sample will be prepared from one collected sediment sample (i.e., RM842SSC). The split sediment sample will be analyzed and used to prepare an elutriate sample.

5. DATA MANAGEMENT AND REPORTING

All water quality measurements and analyses will be verified, validated, and compiled. A report will be prepared that documents sampled locations, methods, and findings. The report will be provided to Kelly Crane (CENWO-OD-TN).

6. ESTIMATED COSTS FOR FIELD COLLECTION AND LABORATORY ANALYSIS OF ELUTRIATE SAMPLES

Field Collection:

Field Mobilization and Collection of Samples: 100 man hours @ \$100 = \$10,000

Laboratory Analysis (Midwest Laboratories – Omaha, Nebraska):

Sample Type	Number of Samples	Analytical Cost per Sample	Total Cost		
Sediment	21	\$571	\$11,991		
Split Sediment	1	\$571	\$571		
Standard Elutriate	21	\$824	\$17,304		
Standard Elutriate (Split Sediment)	1	\$824	\$824		
Pre-Elutriate	21	\$266	\$5,586		
Pre-Elutriate (Split Sediment)	1	\$266	\$266		
Receiving Water	7	\$741	\$5,187		
Total Estimated Laboratory Analytical Costs <u>\$41</u> ,					

Total Estimated Sampling Costs:

Sample Collection	\$10,000
Sample Analyses	\$41,729
Total Estimated Costs	\$51,729

Table. 1. Field Parameters to be Measured.

			Measurem	nent Taken
Parameter	Method	Resolution Limit	Lat/Long	Receiving Water
Coring Location	GPS	25 feet	Х	
Water Temperature (°C)	HydroLab	0.1		Х
Dissolved Oxygen (mg/l and % sat.)	HydroLab	0.1		Х
pH (S.U)	HydroLab	0.1		Х
Conductivity (umhos/cm)	HydroLab	1		Х
Oxidation-Reduction Potential	HydroLab	1		Х
Turbidity (NTU)	HydroLab	0.1		Х
Chlorophyll a (ug/l)	HydroLab	1		Х

Table. 2. Parameters to be Analyzed in Collected Soil/Sediment Samples and Unit Costs.

Parameter	Method	Detection Limit	Analytical Cost
PHYSICAL AND AGGREGATE PROPERTIES			
Particle Size	Sieve (Minimum Sieve #200)	0.001 mm	\$60
Alkalinity, Total	SM2320B	4 mg/l	14
Oxidation Reduction Potential	SM2580B	1 mV*	30
рН	EPA 150.1	0.1 S.U.*	7
NUTRIENTS			0
Ammonia, Total as N	EPA 350.1	0.02 mg/kg	18
Kjeldahl Nitrogen, Total as N	EPA 351.3	0.2 mg/kg	20
Nitrate/Nitrite, Total as N	EPA 353.2	0.02 mg/kg	12
Phosphorus, Total	SM4500PF	0.02 mg/kg	18
AGGREGATE ORGANIC CONSTITUENTS			0
Chemical Oxygen Demand	ASTM D1252	3 mg/kg	17
Total Organic Carbon	EPA 415.1	0.4 mg/kg	25
METALS			0
Metals Scan (Total)	EPA 6010B	See Table 6a	175
PESTICIDES AND PCBs			0
Organochlorine Pesticide and PCB Scan	EPA 8081 and EPA 8082	See Table 7a	175
Total Labor	ratory Cost for Analyzing a Soil/S	ediment Sample	\$571

^{*} Resolution limit.

Table. 3. Parameters to be Analyzed in Standard Elutriate Water Samples and Unit Costs.

Parameter*	Method	Detection Limit	Analytical Cost
SAMPLE PREPARATION			
Elutriate Sample Preparation	1:4 Sediment:Receiving Water		\$160
PHYSICAL AND AGGREGATE PROPERTIES			0
Alkalinity	SM2320B	4 mg/l	14
Color	ASTM D-1209-05	1 S.U.	10
рН	EPA 150.1	0.1 S.U.**	7
Total Dissolved Solids	EPA 160.1	5 mg/l	10
NUTRIENTS			0
Ammonia, as N	EPA 350.1	0.02 mg/l	18
Kjeldahl Nitrogen, as N	EPA 351.3	0.2 mg/l	20
Nitrate/Nitrite, as N	EPA 353.2	0.02 mg/l	12
Phosphorus, Dissolved	SM4500PF	0.02 mg/l	18
Ortho-Phosphorus, Dissolved	EPA 365.1	0.02 mg/l	13
AGGREGATE ORGANIC CONSTITUENTS			0
Chemical Oxygen Demand	ASTM D1252	3 mg/l	17
Dissolved Organic Carbon	EPA 415.1	0.4 mg/l	25
Trihalomethane Formation Potential	SM5710	2.5 ug/l	150
METALS			0
Metals Scan	EPA 6010B	See Table 6b	175
PESTICIDES AND PCBs			0
Organochlorine Pesticide and PCB Scan	EPA 8081 and EPA 8082	See Table 7b	175
Total Laboratory Cost	for Analyzing a Standard Elutriate		

^{*} Since the final step in preparing elutriate samples is filtration (0.45 micron filter), the results for all parameters will be reported as dissolved.

Table. 4. Parameters to be Analyzed in Pre-Elutriate Water Samples and Unit Costs.

Parameter*	Method	Detection Limit	Analytical Cost
PHYSICAL AND AGGREGATE PROPERTIES			
Total Suspended Solids	EPA 160.1	5 mg/l	\$10
Turbidity	EPA 180.1	1 NTU	13
NUTRIENTS			0
Ammonia, Total as N	EPA 350.1	0.02 mg/l	18
Kjeldahl Nitrogen, Total as N	EPA 351.3	0.2 mg/l	20
Nitrate/Nitrite, Total as N	EPA 353.2	0.02 mg/l	12
Phosphorus, Total	SM4500PF	0.02 mg/l	18
AGGREGATE ORGANIC CONSTITUENTS			0
Total Organic Carbon	EPA 415.1	0.4 mg/l	25
Trihalomethane Formation Potential	SM5710	2.5 ug/l	150
Total Laboratory Cost for Analyzing a Pre-Elutriate Water Sample			

^{**} Resolution limit.

Table. 5. Parameters to be Analyzed in Receiving Water Sample and Unit Costs.

Parameter	Method	Detection Limit	Analytical Cost
PHYSICAL AND AGGREGATE PROPERTIES			
Alkalinity, Total	SM2320B	4 mg/l	\$14
Color	ASTM D-1209-05	1 S.U.	10
Total Dissolved Solids	EPA 160.1	5 mg/l	10
Total Suspended Solids	EPA 160.2	4 mg/l	10
NUTRIENTS			0
Ammonia, Total as N	EPA 350.1	0.02 mg/l	18
Kjeldahl Nitrogen, Total as N	EPA 351.3	0.2 mg/l	20
Nitrate/Nitrite, Total as N	EPA 353.2	0.02 mg/l	12
Phosphorus, Dissolved	SM4500PF	0.02 mg/l	18
Phosphorus, Total	SM4500PF	0.02 mg/l	18
Ortho-Phosphorus, Dissolved	EPA 365.1	0.02 mg/l	13
AGGREGATE ORGANIC CONSTITUENTS			0
Chemical Oxygen Demand	ASTM D1252	3 mg/l	17
Chlorophyll a (corrected)	SM10200H2	1 ug/l	31
Dissolved Organic Carbon	EPA 415.1	0.4 mg/l	25
Total Organic Carbon	EPA 415.1	0.4 mg/l	25
Trihalomethane Formation Potential	SM5710	2.5 ug/l	150
METALS			0
Metals Scan (Total)	EPA 6010B	See Table 6b	175
PESTICIDES AND PCBs			0
Organochlorine Pesticide and PCB Scan	EPA 8081 and EPA 8082	See Table 7b	175
Total Laboratory	Cost for Analyzing the Receivir	ng Water Sample	\$741

Table 6a. Detection and Reporting Limits for individual metals included in the Metals Scan of sediment samples.

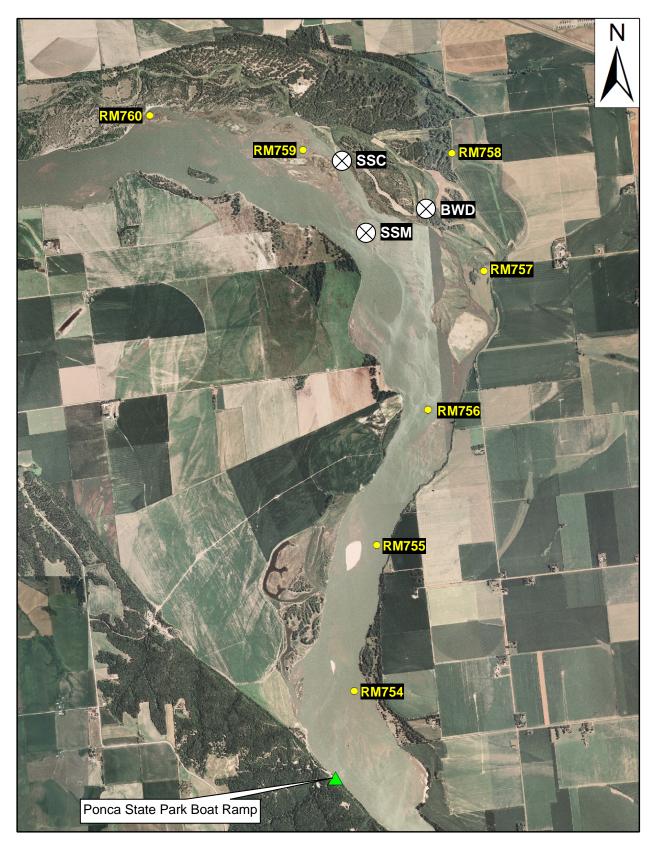
Metal	Detection Limit (mg/kg)	Reporting Limit (mg/kg)	Metal	Detection Limit (mg/kg)	Reporting Limit (mg/kg)
Aluminum	13		Lead	13	50
Antimony	10	30	Magnesium	3	10
Arsenic	10	30	Manganese	1	5
Beryllium	0.25	5	Mercury	0.1	0.5
Cadmium	0.2	1	Nickel	1	5
Calcium	14	50	Selenium	10	30
Chromium	1	3	Silver	1	3
Copper	1	5	Thallium	10	30
Cyanide	1	5	Zinc	2	10
Iron	11	50			

Table 6b. Detection and Reporting Limits for individual metals included in the Metals Scan of elutriate and receiving water samples.

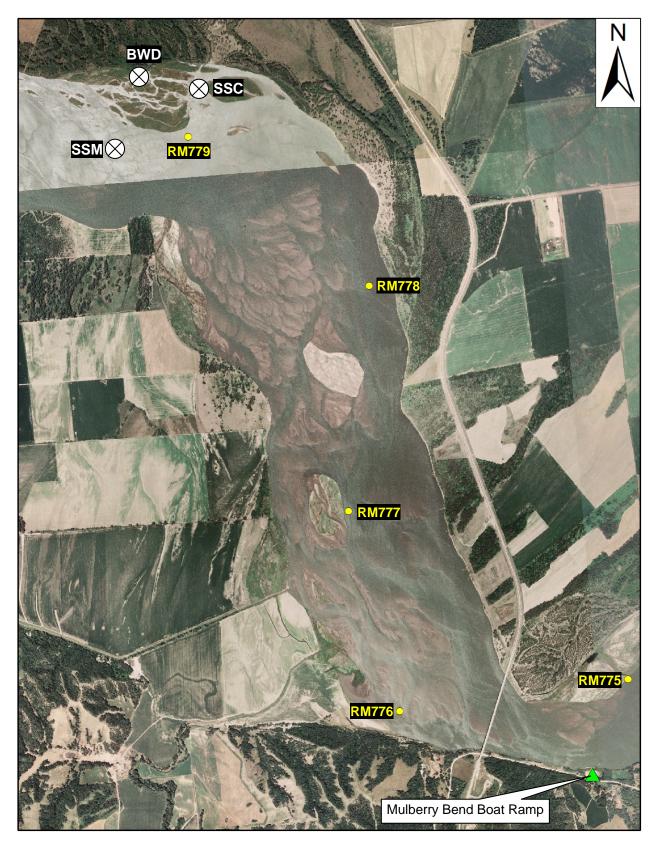
Metal	Detection Limit (μg/l)	Reporting Limit (μg/l)	Metal	Detection Limit (μg/l)	Reporting Limit (μg/l)
Aluminum	25	75	Lead	0.5	2
Antimony	0.5	2	Magnesium	1,000	3,000
Arsenic	1	3	Manganese	2	10
Beryllium	2	5	Mercury	0.02	0.1
Cadmium	0.2	1	Nickel	10	30
Calcium	1,000	3,000	Selenium	1	3
Chromium	1	10	Silver	1	3
Copper	1	5	Thallium	0.5	2
Cyanide	8	20	Zinc	10	30
Iron	7	20			

Table 7a. Detection and Reporting Limits for individual parameters included in the Organochlorine Pesticide and PCB Scan of sediment samples.

Parameter	Detection Limit (μg/kg)	Reporting Limit (μg/kg)	Parameter	Detection Limit (μg/kg)	Reporting Limit (μg/kg)
DDE	0.8	9.9	Alpha-BHC (alpha-Lindane)	0.4	5.1
DDD	0.7	9.9	Beta-BHC (beta-Lindane)	1.0	5.1
DDT	1.0	9.9	Delta-BHC (delta-Lindane)	1.8	5.1
Methoxychlor	1.2	5.1	Gamma-BHC (gamma-Lindane)	0.6	5.1
Aldrin	0.7	5.1	Gamma-Chlordane	0.8	5.1
Dieldrin	0.7	9.9	PCB - Aroclor1016	10	50
Endosulfan 1	0.7	5.1	PCB - Aroclor1260	10	50
Endosulfan 2	0.8	9.9	PCB - Aroclor1221	10	50
Endosulfan Sulfate	1.0	9.9	PCB - Aroclor1248	10	50
Endrin	1.0	9.9	PCB - Aroclor1268	10	50
Endrin Aldehyde	1.0	9.9	PCB - Aroclor1232	10	50
Endrin Ketone	0.8	9.9	PCB - Aroclor1254	10	50
Heptachlor	0.6	5.1	PCB - Aroclor1242	10	50
Heptachlor Epoxide	0.8	5.1	PCB - Aroclor1262	10	50
Alpha-Chlordane	0.8	5.1			


Table 7b. Detection and Reporting Limits for individual parameters included in the Organochlorine Pesticide and PCB Scan of water samples.

	Detection	Reporting		Detection	Reporting
Parameter	Limit	Limit	Parameter	Limit	Limit
	(μg/l)	(μg/l)		(μg/l)	(μg/l)
DDE	0.005	0.1	Alpha-BHC (alpha-Lindane)	0.009	0.05
DDD	0.005	0.1	Beta-BHC (beta-Lindane)	0.009	0.05
DDT	0.004	0.1	Delta-BHC (delta-Lindane)	0.014	0.05
Methoxychlor	0.005	0.5	Gamma-BHC (gamma-Lindane)	0.035	0.05
Aldrin	0.008	0.5	Gamma-Chlordane	0.006	0.05
Dieldrin	0.004	0.1	PCB - Aroclor1016	0.2	1.0
Endosulfan 1	0.006	0.05	PCB - Aroclor1260	0.2	1.0
Endosulfan 2	0.003	0.1	PCB - Aroclor1221	0.2	2.0
Endosulfan Sulfate	0.010	0.1	PCB - Aroclor1248	0.3	1.0
Endrin	0.003	0.1	PCB - Aroclor1268	0.3	1.0
Endrin Aldehyde	0.011	0.1	PCB - Aroclor1232	0.2	1.0
Endrin Ketone	0.006	0.1	PCB - Aroclor1254	0.2	1.0
Heptachlor	0.009	0.05	PCB - Aroclor1242	0.2	1.0
Heptachlor Epoxide	0.007	0.05	PCB - Aroclor1262	0.2	1.0
Alpha-Chlordane	0.011	0.05			


7. REFERENCES

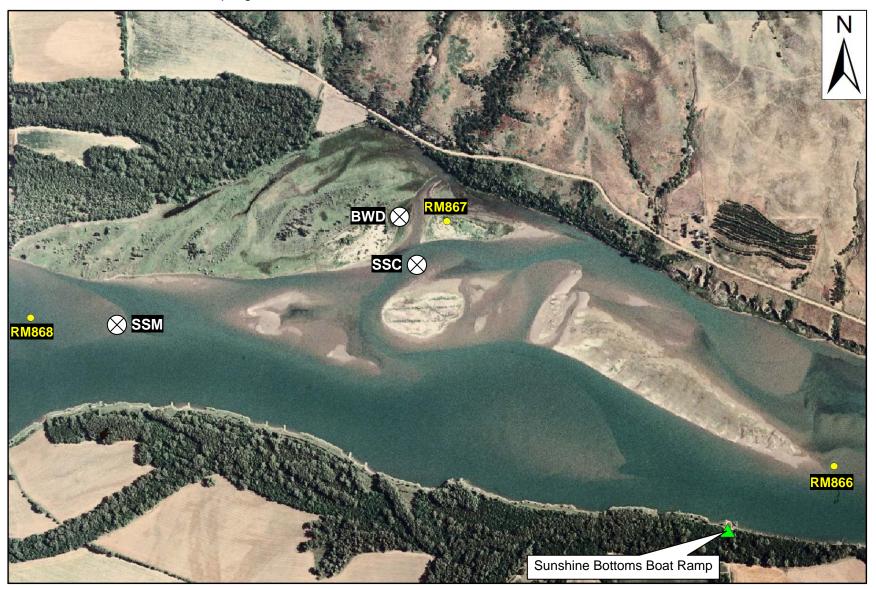
- USEPA and USACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. Test Manual: Inland Testing Manual. EPA-823-B-98-004, February 1998.
 U.S. Environmental Protection Agency, Office of Water. Department of Army, U.S. Army Corps of Engineers. Washington, D.C
- **USACE. 2008.** Using a "Hydrolab DS4a and DS5" to directly Measure Water Quality. October 2008. Water Quality Unit, Water Control and Water Quality Section, Hydrologic Engineering Branch, Engineering Division, Omaha District, U.S. Army Corps of Engineers. Omaha, Nebraska.

ATTACHMENT 1. Potential sampling locations at RM757.

ATTACHMENT 2. Potential sampling locations at RM779.

ATTACHMENT 3. Potential sampling locations at RM801.

ATTACHMENT 4. Potential sampling locations at RM828.


ATTACHMENT 5. Potential sampling locations at RM842.

ATTACHMENT 6. Potential sampling locations at RM852.

ATTACHMENT 7. Potential sampling locations at RM867.

Attachment 8A. Field Sheet for Elutriate Sampling for ESH Creation.

(U.S. Army Corps of Engineers – Omaha District – Water Quality Unit)

FIELD DATA SHEET

Project Name: ESH Creation - Fort Randall Dam to Po	nca, NE Project Number: SPS-ESHSED-001
Trip Number:	Date:
Site Location: Segment 10 of Missouri River	
Site Numbers: RM757, RM779, and RM801	
Collectors:	
GPS MEASUF	
GPS Device Used:	
RM757 (SSM): Latitude:	Longitude:
RM757 (SSC): Latitude:	Longitude:
RM757 (BWD): Latitude:	Longitude:
RM779 (SSM): Latitude:	Longitude:
RM779 (SSC): Latitude:	Longitude:
RM779 (BWD): Latitude:	Longitude:
RM801 (SSM): Latitude:	Longitude:
RM801 (SSC): Latitude:	Longitude:
RM801 (BWD): Latitude:	Longitude:

	WATER MEASUREMENTS							
Site	Temp. (°C)	D.O. (mg/l)	D.O. (% Sat)	pH (S.U.)	Cond. (umho/cm)	ORP (mV)	Turbidity (NTUs)	Chlorophyll (ug/l)
RM757								
RM779								
RM801								

	SAMPLES COLLECTED					
Sample Type	Sample ID	Sampled Depth	Collection Time	Sampling Method		
Water	RM757	Surface		Grab		
Sediment	RM757SSM			Composite Core		
Sediment	RM757SSC			Composite Core		
Sediment	RM757BWD			Composite Core		
Water	RM779	Surface		Grab		
Sediment	RM779SSM			Composite Core		
Sediment	RM779SSC			Composite Core		
Sediment	RM779BWD			Composite Core		
Water	RM757	Surface		Grab		
Sediment	RM801SSM			Composite Core		
Sediment	RM801SSC			Composite Core		
Sediment	RM801BWD			Composite Core		

Attachment 8B. Field Sheet for Elutriate Sampling for ESH Creation. (U.S. Army Corps of Engineers – Omaha District – Water Quality Unit)

FIELD DATA SHEET

Project Name: ESH Creation - Fort Randall Dam to	Ponca, NE Project Number: SPS-ESHSED-001
Trip Number:	Date:
Site Location: Segment 9 of Missouri River	
Site Numbers: RM828, RM842	
Collectors:	
	UREMENTS
GPS Device Used:	
RM828 (SSM): Latitude:	Longitude:
RM828 (SSC): Latitude:	Longitude:
RM828 (BWD): Latitude:	Longitude:
RM842 (SSM): Latitude:	Longitude:
RM842 (SSC): Latitude:	Longitude:
RM842 (BWD): Latitude:	Longitude:

	WATER MEASUREMENTS							
Site	Temp. (°C)	D.O. (mg/l)	D.O. (% Sat)	pH (S.U.)	Cond. (umho/cm)	ORP (mV)	Turbidity (NTUs)	Chlorophyll (ug/l)
RM828								
RM842								

SAMPLES COLLECTED						
Sample Type	Sample ID	Sampled Depth	Collection Time	Sampling Method		
Water	RM828	Surface		Grab		
Sediment	RM828SSM			Composite Core		
Sediment	RM828SSC			Composite Core		
Sediment	RM828BWD			Composite Core		
Water	RM842	Surface		Grab		
Sediment	RM842SSM			Composite Core		
Sediment	RM842SSC			Composite Core		
Sediment	RM842BWD			Composite Core		
Sediment	RM842SPLIT			Composite Core		
1	1					

Split Sample Site: RM842SSC

Attachment 8C. Field Sheet for Elutriate Sampling for ESH Creation. (U.S. Army Corps of Engineers – Omaha District – Water Quality Unit)

FIELD DATA SHEET

Project Name: ESH Creation - Fort Randall Dam to Por	nca, NE Project Number: SPS-ESHSED-001
Trip Number:	Date:
Site Location: Segment 8 of Missouri River	
Site Numbers: RM852, RM867	
Collectors:	
GPS MEASUR	
GPS Device Used:	
RM852 (SSM): Latitude:	_Longitude:
RM852 (SSC): Latitude:	_Longitude:
RM852 (BWD): Latitude:	_ Longitude:
RM867 (SSM): Latitude:	_Longitude:
RM867 (SSC): Latitude:	Longitude:
RM867 (BWD): Latitude:	_Longitude:

	WATER MEASUREMENTS							
Site	Temp. (°C)	D.O. (mg/l)	D.O. (% Sat)	pH (S.U.)	Cond. (umho/cm)	ORP (mV)	Turbidity (NTUs)	Chlorophyll (ug/l)
RM852								
RM867								

SAMPLES COLLECTED					
Sample Type	Sample ID	Sampled Depth	Collection Time	Sampling Method	
Water	RM852	Surface		Grab	
Sediment	RM852SSM			Composite Core	
Sediment	RM852SSC			Composite Core	
Sediment	RM852BWD			Composite Core	
Water	RM867	Surface		Grab	
Sediment	RM867SSM			Composite Core	
Sediment	RM867SSC			Composite Core	
Sediment	RM867BWD			Composite Core	
-	•	•	•		

Attachment 9A. Analytical Request Form for Elutriate Sampling for ESH Creation.

(U.S. Army Corps of Engineers – Omaha District – Water Quality Unit)

ANALYTICAL REQUEST FORM

Project Name:	ESH Creation	Project Number:	SPS-ESHSED-001
Trip Number:			

Samples to be Analyzed:

Site Number	Sample Description	Sample Identification Number	Collection Date	Collection Time	Number of Sample Containers
RM757	Missouri River Receiving Water	RM757NS			13*
RM757SSM	Sediment Sample	RM757SSM			1
RM757SSC	Sediment Sample	RM757SSC			1
RM757BWD	Sediment Sample	RM757BWD			1
RM779	Missouri River Receiving Water	RM779NS			13*
RM779SSM	Sediment Sample	RM779SSM			1
RM779SSC	Sediment Sample	RM779SSC			1
RN779BWD	Sediment Sample	RN779BWD			1
RM801	Missouri River Receiving Water	RM801NS			13*
RM801SSM	Sediment Sample	RM801SSM			1
RM801SSC	Sediment Sample	RM801SSC			1
RM801BWD	Sediment Sample	RM801BWD			1
* Assuming 1-0	nallon containers Total Num	ber of Sample Co	ontainers Deli	vered to Lab:	•

Assuming 1-ganon containers	Total Number of Campic Containers Delivered to Lab.
Samples Collected By:	·
Samples Delivered By:	
Samples Received By:	Date/Time Received:

REQUESTE	D LABORATOR	RY ANALYSES		
Parameter		Standard	Pre-Elutriate	Receiving
(See SAP for detection and reporting limits)	Sediment	Elutriate Water	Water	Water
PHYSICAL AND AGGREGATE PROPERTIES				
Particle Size	Х			
Alkalinity, Total	Х	Х		Х
Color		Х		Х
Oxidation-Reduction Potential	Х			
pH	Х	Х		
Total Dissolved Solids		Х		Х
Total Suspended Solids			Х	Х
Turbidity			Х	
NUTRIENTS				
Ammonia, Total as N	Х	Х	Х	Х
Kjeldahl Nitrogen, Total as N	Х	Х	Х	Х
Nitrate/Nitrite, Total as N	Х	Х	Х	Х
Phosphorus, Dissolved		Х		Х
Phosphorus, Total	Х		Х	Х
Ortho-Phosphorous, Dissolved		Х		Х
AGGREGATE ORGANIC CONSTITUENTS				
Chemical Oxygen Demand	Х	Х		Х
Chlorophyll a (corrected)				Х
Dissolved Organic Carbon		Х		Х
Total Organic Carbon	Х		Х	Х
Trihalomethane Formational Potential		Х	Х	Х
METALS				
Metals Scan	Х	Х		Х
PESTICIDES AND PCBs				
Organochlorine Pesticide and PCB Scan	Х	Х		Х

Page 29 of 30

Attachment 9B. Analytical Request Form for Elutriate Sampling for ESH Creation. (U.S. Army Corps of Engineers - Omaha District - Water Quality Unit)

ANALYTICAL REQUEST FORM

Project Name: ESH Creation	Project Number: SPS-ESHSED-001
Trip Number:	

Samples to be Analyzed:

Site Number	Sample Description	Sample Identification Number	Collection Date	Collection Time	Number of Sample Containers
RM828	Missouri River Receiving Water	RM828NS			13*
RM828SSM	Sediment Sample	RM828SSM			1
RM828SSC	Sediment Sample	RM828SSC			1
RM828BWD	Sediment Sample	RM828BWD			1
RM842	Missouri River Receiving Water	RM842NS			13*
RM842SSM	Sediment Sample	RM842SSM			1
RM842SSC	Sediment Sample	RM842SSC			1
RN842BWD	Sediment Sample	RN842BWD			1

^{*} Assuming 1-gallon containers

	Total Number of Sample Containers Delivered to Lab:		
Samples Collected By:			
Samples Delivered By:			
Samples Received By:	Date/Time Received:		

REQUESTE	D LABORATOR	RY ANALYSES		
Parameter		Standard	Pre-Elutriate	Receiving
(See SAP for detection and reporting limits)	Sediment	Elutriate Water	Water	Water
PHYSICAL AND AGGREGATE PROPERTIES				
Particle Size	Х			
Alkalinity, Total	Х	Х		Х
Color		Х		Х
Oxidation-Reduction Potential	Х			
pH	Х	Х		
Total Dissolved Solids		Х		Х
Total Suspended Solids			Х	Х
Turbidity			Х	
NUTRIENTS				
Ammonia, Total as N	Х	Х	Х	Х
Kjeldahl Nitrogen, Total as N	Х	Х	Х	Х
Nitrate/Nitrite, Total as N	Х	Х	Х	Х
Phosphorus, Dissolved		Х		Х
Phosphorus, Total	Х		Х	Х
Ortho-Phosphorous, Dissolved		Х		Х
AGGREGATE ORGANIC CONSTITUENTS				
Chemical Oxygen Demand	Х	Х		Х
Chlorophyll a (corrected)				Х
Dissolved Organic Carbon		Х		Х
Total Organic Carbon	Х		Х	Х
Trihalomethane Formational Potential		Х	Х	Х
METALS				
Metals Scan	Х	Х		Х
PESTICIDES AND PCBs				
Organochlorine Pesticide and PCB Scan	Х	Х		Х

Attachment 9C. Analytical Request Form for Elutriate Sampling for ESH Creation. (U.S. Army Corps of Engineers - Omaha District - Water Quality Unit)

ANALYTICAL REQUEST FORM

Project Name: ESH Creation	Project Number: SPS-ESHSED-001
Trip Number:	

Samples to be Analyzed:

Site Number	Sample Description	Sample Identification Number	Collection Date	Collection Time	Number of Sample Containers
RM852	Missouri River Receiving Water	RM852NS			13*
RM852SSM	Sediment Sample	RM852SSM			1
RM852SSC	Sediment Sample	RM852SSC			1
RM852BWD	Sediment Sample	RM852BWD			1
RM867	Missouri River Receiving Water	RM867NS			13*
RM867SSM	Sediment Sample	RM867SSM			1
RM867SSC	Sediment Sample	RM867SSC			1
RN867BWD	Sediment Sample	RN867BWD			1

^{*} Assuming 1-gallon containers

· · · · · · · · · · · · · · · · · · ·	Total Number of Sample Containers Delivered to Lab:
	Total Number of Sample Containers Delivered to Lab.
Samples Collected By:	
Samples Delivered By:	
Samples Received By:	Date/Time Received:

REQUESTE	D LABORATOR	RY ANALYSES		
Parameter		Standard	Pre-Elutriate	Receiving
(See SAP for detection and reporting limits)	Sediment	Elutriate Water	Water	Water
PHYSICAL AND AGGREGATE PROPERTIES				
Particle Size	Х			
Alkalinity, Total	Х	Х		Х
Color		Х		Х
Oxidation-Reduction Potential	Х			
pH	Х	Х		
Total Dissolved Solids		Х		Х
Total Suspended Solids			Х	Х
Turbidity			Х	
NUTRIENTS				
Ammonia, Total as N	Х	Х	Х	Х
Kjeldahl Nitrogen, Total as N	Х	Х	Х	Х
Nitrate/Nitrite, Total as N	Х	Х	Х	Х
Phosphorus, Dissolved		Х		Х
Phosphorus, Total	Х		Х	Х
Ortho-Phosphorous, Dissolved		Х		Х
AGGREGATE ORGANIC CONSTITUENTS				
Chemical Oxygen Demand	Х	Х		Х
Chlorophyll a (corrected)				Х
Dissolved Organic Carbon		Х		Х
Total Organic Carbon	Х		X	Х
Trihalomethane Formational Potential		Х	X	Х
METALS				
Metals Scan	Х	Х		Х
PESTICIDES AND PCBs				
Organochlorine Pesticide and PCB Scan	Х	Х		X