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Abstract 
As global focus shifts to northern latitudes for their enhanced access to 
newly viable resources, US Army operational readiness in these extreme 
environments is increasingly important. Rapid and accurate intelligence 
on the conditions influencing operations in these regions is essential to 
mission success and warfighter safety. Arctic and boreal environments are 
highly heterogeneous, including changing extents of frozen versus thawing 
ground, snow, and ice that affect ground trafficability and visibility, terrain 
physics, and physicochemical properties of water and soil. Furthermore, 
projected climatic warming in these regions makes the timing of seasonal 
transitions increasingly uncertain. Broad coverage of long-term datasets is 
critical for assessing spatial and temporal variability in these northern 
environments at the landscape-scale. However, decadal measurements are 
difficult to acquire, manage, and visualize in the field setting. Here, we 
present a synopsis of data collection, management, and visualization for 
long-term permafrost, snow, vegetation, geophysics, and biogeochemical 
data from Alaska and review related literature. We also synthesize short-
term data from various permafrost affected sites in the US and northern 
Europe to further assess the state of northern landscapes. Altogether, this 
work provides a comprehensive approach for high-latitude field site 
management to accurately inform mission-related operations in extreme 
northern environments.   

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 
The amplified impacts of climate change on northern latitudes are 
attracting global interest to these regions for their enhanced access and 
newly viable resources, making US Army operational readiness in these 
environments increasingly important. In response, the Army issued its 
strategy “Regaining Arctic Dominance” in 2021 recognizing the 
importance of terrain analysis in cold regions. Due to the complexity of 
northern landscapes and the dynamic nature of Arctic and boreal 
ecosystems, comprehensive terrain analysis at the landscape scale is 
necessary to sufficiently assess the regional conditions that influence 
large-scale force maneuverability and function. A spatially contiguous 
network of long-term datasets is needed to recognize the physiographic 
and climatic variability experienced at various spatial and temporal scales 
across northern cold regions. These landscape-scale, long-term datasets 
provide integral information for accurately informing operations planning 
and execution by providing the data necessary for illustrating trends and 
isolating controls that inform modeling projections. However, collecting 
and maintaining large datasets poses a series of inherent challenges and 
can prove especially complicated in extreme northern environments.  

This report synthesizes numerous methods for characterizing northern 
terrain conditions and reviews related literature to serve as a general 
framework for the collection and management of vital datasets for 
investigating cold regions. We present a collection of measurements 
spanning various Arctic and boreal environments in Alaska, Finland, and 
Sweden. These datasets include decades of sampling and collection 
efforts from numerous research groups and integrate approximately 
700,000 individual observations and measurements on cryospheric and 
biogeochemical features that influence terrain conditions and their 
spatial and temporal change. The primary datasets incorporate thaw 
depths, seasonally thawed active layer thickness measurements, soil 
temperatures, ground-penetrating radar surveys, microbial community 
analyses, geochemical analyses, snowpack depths, localized 
meteorological data, and repeat ground-based light detection and 
ranging (lidar) scans. The compilation of long-term datasets from the 
respective study locations addresses numerous physical and 
biogeochemical phenomena, including heterogeneity in permafrost, 
ground ice, and snow conditions across space and time, chemical and 
biological characterization of terrain states, and landscape-scale change 
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over multiyear study periods. The methodology, analyses, and data 
reported here can serve as a basis for future analysis of terrain controls to 
inform models and projections in high-latitude cold regions. 

1.1 Background 

1.1.1 Data Collection for Cold Region Terrain Characterization 

Surface conditions in northern landscapes are significantly influenced by 
underlying permafrost characteristics, ice, biology, and snow. Soil 
moisture content, structural stability, and surface elevation change may 
vary markedly by permafrost ice content and top-down thaw extent, each 
of which may independently vary on an annual and seasonal basis. During 
fall freeze up and spring melt, the surface conditions of snow, ice, or frozen 
versus unfrozen soil can change in a matter of hours to days. These 
variations can lead to surface irregularity caused by the presence of 
wetlands, thaw subsidence, thermokarst lakes, thaw slumps, frost heaves, 
hummocky terrain, and other permafrost degradational features. 
Additionally, seasonal freeze and thaw cycles can result in significant frost 
heave and surface change. Much of this irregularity relates to ground ice 
content, ecotype, and soil hydrological processes that are confined within 
the seasonally thawed active layer. Active layer dimensions can therefore 
highly influence surface conditions and alter microtopography, making the 
active layer a critical parameter for evaluation in terrain analysis (Shur et 
al. 2005; Bockheim and Hinkel 2005).  

In addition to influencing terrain conditions and trafficability, thawed 
permafrost zones serve as biogeochemical hotspots amidst the otherwise 
frozen matrix of permafrost soils, and are important regions for organic 
carbon cycling, greenhouse gas production, and mineral weathering and 
transport (Barker et al. 2014; Doherty et al. 2020; Barbato et al. 2022; 
Barker et al. 2023 in press; Baker et al. 2023). Newly thawed soils expose 
labile carbon to microbial activity, resulting in the oxidation of soil organic 
carbon (SOC), a major factor in the global carbon budget (Douglas et al. 
2014; Ping et al. 2015). Permafrost soils are thought to contain double the 
amount of carbon that is currently in the Earth’s atmosphere (Schuur et al. 
2015), making the fate of this carbon upon thaw an important subject of 
study. A large volume of SOC is stored at depth in the permafrost of 
Alaska’s North Slope (Figure 1) (Hugelius et al. 2013; 2014) and as it 
thaws, deeper SOC stores are subjected to microbial decomposition and 
subsequent greenhouse gas emissions (i.e., carbon dioxide and methane) 
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(Ernakovich et al. 2022). Repeat measurements of permafrost thaw extent 
and active layer conditions are therefore of high importance both for 
evaluating northern terrain trafficability and suitability, and also 
understanding the setting for permafrost carbon feedback. 

Figure 1. Map of soil organic carbon (kg/m2) at (a) 30 cm and (b) 
100 cm depth in the soil profile for Alaska. (Map adapted from dataset 

by Hugelius et al. 2013, https://doi.org/10.5194/essd-5-393-2013. 
Creative Commons 4.0.) 

 

https://doi.org/10.5194/essd-5-393-2013
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A common metric for monitoring the status and change of seasonal thaw 
extent is repeat evaluation of the active layer thickness (ALT) across space 
and time. ALT is commonly measured by manually probing thaw depths in 
late fall when thaw has reached a near maximum extent. These probe-
derived depths can compare with geophysical surveys of ALT to expand 
the spatial coverage of ALT data. Additionally, since ALT is related to soil 
type and surface vegetation, ALT measured in situ may be upscaled based 
on notable landscape controls such as the biophysical settings, providing 
for large-scale characterization of ALT (Zhang et al. 2021). Repeat 
measurements of ALT through time illustrate change and can inform 
terrain models that rely on active layer controls on various surface 
parameters. More recently, various remote detection methods have 
emerged for assessing ALT (i.e., Schaefer et al. 2015; Parsekian et al. 2021) 
but are beyond the current scope of this report. 

While ALT is integral for assessing the state of near-surface permafrost, 
conditions within the active layer such as soil temperature and moisture 
content also influence chemical reaction rates and microbial activity, 
making these parameters important considerations in evaluating 
biogeochemical processes (Barbato et al. 2015). Soil temperature and 
moisture content are readily measured with various in situ 
instrumentation techniques including buried temperature sensors and 
conductivity probes. In addition, soil sampling from active layer materials 
allows for chemical and microbial analysis, which can each be indicative of 
various soil thermal and chemical conditions and processes. 

Soil composition and thermal state are also related to vegetation structure 
on the landscape. Vegetation surveys are critical for proper terrain 
assessment as root structure can directly influence the engineering 
properties of the soil matrix including particle cohesion, slope shear 
strength and stability, and compressibility (Waldron 1977; Tosi 2007). 
Additionally, vegetation composition defines ecotypes which can be 
indicative of underlying soil and snow conditions and their changes over 
time, and vegetation itself can create serious challenges in surface 
maneuverability. Vegetation surveys for root strength are key in assessing 
plant influence on soil strength and are performed at the point scale by 
generating random survey locations in the sites of interest. Root strength 
samples are then taken from a fixed plot at each location of interest. 
Species types are determined, and soil strength is quantified from 
representative root samples within each survey plot. Larger scale surveys 



ERDC TR-24-4 5 

 

of vegetation cover often rely on multispectral remote sensing techniques 
and image classification to map land cover types. These results can then 
compare with other landscape parameters such as ALT or snow depth to 
extrapolate these variables to greater spatial scales by their relationship to 
observable vegetation cover (Zhang et al. 2021). 

The final landscape parameter reviewed in this report is snowpack. Snow 
accumulation and snowpack thickness may directly inhibit surface transport 
during winter months, but also relates to surface moisture conditions 
during the successive melt season and can influence underlying soil thermal 
properties. Therefore, snowpack conditions are important considerations 
for all-season operations. Additionally, snow depths and snow densities 
may be used in forecasting water supply and projecting water resource 
availability following the melt season. Snow depths and density are 
commonly monitored with permanent or semipermanent meteorological 
stations and repeat field-based measurements. Upscaling of in situ snow 
depth measurements may also be performed based on present biophysical 
controls (Douglas and Zhang 2021). The detection of snow depths and water 
equivalents with remote sensing techniques is also increasingly employed 
but is improved by calibration with ground-based measurements. 

1.1.2 Data Management 

Data from various retrieval platforms and collaborative efforts assume 
multiple file types and require various management systems with ample 
storage capacity. External drives are useful for physically backing large 
quantities of data and provide a means for file compilation and 
organization. In consequence of multiple data sources, inconsistencies in 
data presentation and descriptions are common amidst compiled datasets. 
These inconsistencies are readily resolved by establishing data standards 
that apply for all files in a dataset, such as parameters and identifiers that 
must be included for each measurement and applying these standards to 
secondary data files. The raw and edited files can then be stored and 
shared in cloud-based networks such as a network shared drive for real-
time updates and sharing across collaborators. 

1.1.3 Data Visualization in Geographic Information Systems (GIS) 

Geospatial representation of environmental data is key in identifying 
spatial relationships and trends across regions. Geographic information 
systems (GIS) are commonly used to display spatial datasets as map 
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layers, known as feature classes, that contain discrete elements with 
attribute information. Map feature classes are often stored as shapefiles 
that associate objects (data points) with coordinates and stores their 
information in attribute tables. These shapefiles can be edited, shared, and 
accessed from multiple GIS platforms.  

Various developers provide GIS software and services with capabilities 
that have evolved to grant users many tools and options for creating, 
editing, and sharing spatial data. Common GIS software include QGIS® 
and Esri ArcGIS® products, each offering a multitude of mapping and data 
visualization capabilities. QGIS is an open-source GIS platform that 
supports various spatial data functionalities and formats. The Esri ArcGIS 
(2022) suite includes desktop mapping applications, an online platform 
for mapping and managing feature classes across multiple devices and 
users, and various mobile apps that allow users to access and edit spatial 
data from mobile devices while on or offline. This offline functionality 
allows for field-based mapping that couples digital object descriptions 
with GPS location, making spatial data convenient for sharing and 
eliminating the need to digitize field notes and GPS coordinates. Given its 
various capabilities, GIS have become instrumental for visualizing and 
managing spatial datasets in environmental studies. 

1.1.4 Site Physiography and History 

1.1.4.1  Interior Alaska 

This study includes measurements from four long-term research sites in 
Interior Alaska (Table 1, Figure 2, and Figure 3) including the ERDC-Cold 
Regions Research and Engineering Laboratory (CRREL) Permafrost Tunnel 
Research Facility, ERDC-CRREL Farmer’s Loop Permafrost Experimental 
Station, the State of Alaska Department of Natural Resources Creamer’s 
Field Migratory Waterfowl Refuge, and the US National Science 
Foundation’s Long Term Ecological Research (LTER) Alaska Peatland 
Experiment (APEX) research site (each are detailed below).  

Alaska’s interior is framed by the Alaska Range to the south, the 
Mackenzie Mountains to the east, and the Brooks Range to the north, 
which serve as orographic barriers to coastal moisture sources and 
contribute to a continental interior climate. The subarctic latitude of the 
region leads to low sun angles during winter months with day lengths near 
Fairbanks, Alaska, reaching below 4 hours on the December solstice, and 
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near constant sunlight during the summer months reaching near 22 hours 
of daylight on the June solstice (Hinzman et al. 2006). The mean annual 
temperature is −2.4°C and mean annual precipitation is 330 mm 
(Jorgenson et al. 2020), with snowfall accounting for 40%–45% of annual 
precipitation (Liston and Hiemstra 2011).* The region is underlain by 
discontinuous permafrost (Figure 2), with permafrost soils primarily 
confined to north-aspect slopes, lowlands, and localized areas where 
snowpack or insulative vegetation support ice. The permafrost of the 
interior study sites is generally syngenetic, organic carbon rich Yedoma 
with high ice content and silty texture owing to a largely loess (eolian silt) 
parent (Péwé 1975; Hamilton et al. 1988). Vertical continuity in 
permafrost of this region can reach 60 m depth with varying active layer 
thicknesses (Shur and Jorgenson 2007; Douglas et al. 2021), and where 
present, permafrost acts as a confining layer to groundwater infiltration 
causing many perched surface waters in permafrost-affected lowlands. The 
region falls within the boreal (taiga) biome, but the range in soil conditions 
supports a diverse collection of ecotypes including black spruce forest, 
mixed deciduous forest, tussock tundra, and various wetland types 
(Douglas and Zhang, 2021). 

Table 1. Location and biophysical setting of core study sites. 

 

 
* For a full list of the spelled-out forms of the units of measure used in this document and 

their conversions, please refer to US Government Publishing Office Style Manual, 31st ed. 
(Washington, DC: US Government Publishing Office, 2016), 248–52 and 345–47, https://www 
.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf. 

Interior Alaska
Site Name Latitude Longitude Elev. (m) Biome Permafrost 
Permafrost Tunnel 64.9514838°N 147.6209214°W 244 Boreal Forest Discontinuous
Farmer's Loop 64.8752564°N 147.6736551°W 145 Boreal Forest Discontinuous
Creamer's Field 64.8632479°N 147.7342481°W 135 Boreal Forest Discontinuous
APEX Bonanza Creek 64.7000433°N 148.3037300°W 120 Boreal Forest Discontinuous

North Slope Alaska
Site Name Latitude Longitude Elev. (m) Biome Permafrost
Imnavait Creek 68.6104465°N 149.3154900°W 896 Arctic tundra Continuous
Happy Valley 69.1491667°N 148.8327778°W 290 Arctic tundra Continuous
Utqiaġvik 71.2919976°N 156.7849005°W 3 Arctic tundra Continuous

Northern Europe
Site Name Latitude Longitude Elev. (m) Biome Permafrost
Sodankylä, Finland 67.3669009°N 26.6289743°E 174 Boreal Forest Sporadic
Abisko, Sweden 68.3544132°N 18.8157511°E 372 Boreal Forest Discontinuous

https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
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Figure 2. Map of Alaska study sites distributed across the discontinuous permafrost region in 
Alaska’s interior and the continuous permafrost region on Alaska’s North Slope. Individual 
sites labeled are (1) Utqiaġvik, (2) Happy Valley, (3) Toolik Lake, (4) Imnavait Creek, (5) the 
Permafrost Tunnel, (6) Creamer’s Field and Farmer’s Loop, and (7) Bonanza Creek / Alaska 

Peatland Experiment (APEX). (Permafrost continuity defined by Jorgenson et al. 2008.)  
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Figure 3. Map of all study sites in Northern Europe (top) and Alaska (bottom). 

 

1.1.4.2  The Permafrost Tunnel Research Facility 

The Permafrost Tunnel Research Facility (Permafrost Tunnel, hereafter) is 
owned and managed by CRREL on US Army land near the town of Fox, 
Alaska (Figure 3). The Permafrost Tunnel was excavated in the 1960s into 
a northwest-aspect hill and passes through mainly syngenetic permafrost, 
exposing a stratigraphic sequence containing Late Pleistocene eolian silts 
defined as the Goldstream Formation (Péwé 1975), underlain by reworked 
Fox Gravel (Péwé 1975; Hamilton et al. 1988; Kanevskiy et al. 2008; 
Douglas et al. 2011). Loess largely sources from glacial catchments of the 
Alaska Range and fluvial silt bars to the south, while the Fox Gravel is 
thought to issue from local bedrock parent material. Numerous ice 
wedges, segregation ice lenses, riparian vegetation remains, and 
Pleistocene megafaunal bones are found in the tunnel deposits. Growing 
atop these deposits at the ground surface is black spruce (Picea mariana) 
forest which supports an understory of shrubs Salix, Rhododendron, and 
Vaccinium, lichen (Cladonia), and mosses (Sphagnum).  



ERDC TR-24-4 10 

 

1.1.4.3  Farmer’s Loop Permafrost Experimental Station 

The Farmer’s Loop Permafrost Experimental Station (Farmer’s Loop) is 
operated by CRREL on Army land near the city of Fairbanks, Alaska (Figure 
3). The 1 km2 site was established in 1945 and has supported numerous 
geophysical, geotechnical, and engineering studies on permafrost (Douglas 
et al. 2008). The property features low-relief topography (Zhang et al. 2021) 
and vegetation cover is predominantly spruce (Picea spp.) forest with some 
mixed Betula canopy and a low shrub (Vaccinium) understory with moss 
(Sphagnum) substrate (Anderson et al. 2019).  

1.1.4.4  Creamer’s Field Migratory Waterfowl Refuge 

Creamer’s Field is a historical agriculture site in Fairbanks, Alaska (Figure 
3), that began operation as a dairy in the early 1900s. The cleared fields 
are now recognized and maintained as a National Wildlife Refuge for 
migratory waterfowl (Alaska.gov, n.d.). Boreal forest and wetlands frame 
the edges of the agricultural fields making the site a convenient location 
for comparing land cover controls on permafrost and snow characteristics. 
Vegetation structure in the undeveloped acres mainly consists of 
deciduous stands, mixed coniferous–deciduous (Picea, Larix, and Betula) 
forest, and shrubland with sedge tussocks.  

1.1.4.5  Alaska Peatland Experiment (APEX)/Bonanza Creek Site 

The APEX site is an extensively studied fen located in the Tanana River 
floodplain near the Bonanza Creek Experimental Forest southwest of 
Fairbanks, Alaska. APEX is a long-term peatland manipulation program 
that has involved multiple studies on boreal wetland carbon dynamics and 
microbial respiration (i.e., Turetsky et al. 2008; Fan et al. 2013; Anderson 
et al. 2019). The fen has produced a 1 m thick peat layer in contact with 
mineral soil below. Vegetation cover at the site transitions from black 
spruce (P. mariana) forest to diverse communities of peat mosses 
(Sphagnum) and emergent vascular species (Carex and Equisetum) 
(Turetsky et al. 2008).  

1.1.4.6  The North Slope of Alaska 

Alaska’s North Slope refers to the land area north of the Brooks Range, a 
vast expanse of Arctic tundra incorporating the Arctic Foothills and Arctic 
Coastal Plain physiographic provinces. This report draws on data acquired 
from various locations across the North Slope (Table 1 and Figure 3), 
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including numerous sites along the Dalton Highway and near the village of 
Utqiaġvik (Figure 3). The region experiences extreme seasonal ranges in 
temperature and sunlight hours and is underlain by continuous 
permafrost (Figure 2) reaching approximately 250 m depth in the foothills 
(Jorgenson et al. 2008) and up to 400 m depth on the northern coastal 
plain near Utqiaġvik (Jorgenson et al. 2008; Arp et al. 2011). Permafrost 
soils throughout the region exhibit many signs of freezing including 
cryoturbation, frost boils, frost heaves, polygons, and other patterned 
ground (Ping et al. 1998). Similarly, the effects of soil freezing are 
expressed in landscape features, creating palsas and other peat formations 
in the low Arctic, peat mounds, pingos, thermokarst lakes, and ice wedge 
polygons throughout the Arctic Coastal Plain, and extensive tussock 
microtopography throughout the region. The underlying geomorphology 
transitions from sloping deglaciated and unglaciated catchments in the 
foothills to low-relief deltaic and floodplain flats across the coastal plain 
(Ping et al. 1998; Wang et al. 2019). Together, the diverse spatial 
distribution of these features makes the North Slope terrain highly 
heterogeneous and important to characterize at high spatial resolution. 

Dominant land cover on the North Slope includes moist acidic and 
nonacidic tundra, dry tundra, scrublands, and wetlands (Wang et al. 
2019). Permafrost soil parent material on the North Slope is generally 
unconsolidated surficial deposits eroded from the passive margin 
sequence that was uplifted to form the Brooks Range and delivered north 
via alluvial, colluvial, and eolian processes (Wang et al. 2019). The Arctic 
Foothills are mantled by loess and glacial drift of the late Sagavanirktok 
advance and Itkillik phases of Pleistocene glaciation in the Brooks Range 
(Ping et al. 1998; Wang et al. 2019). The coastal plain consists of similar 
deposits with textures fining towards the coast, but also features marine 
sediments sourced from multiple marine transgressions and regressions 
(Sellmann 1975). 

1.1.4.7  Northern Europe 

An international scope is necessary to understand regional differences in 
cold-region terrain and climate zones across the Global North. This report 
features two primary study sites in northern Europe (Table 1 and Figure 3) 
including the Abisko Valley in the county of Norrbotten, Sweden, and the 
municipality of Sodankylä in Lapland, Finland.  
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The Abisko Valley has been researched for over a century following the 
establishment of the Abisko Scientific Research Station in 1912, which is 
managed by the Swedish Polar Research Secretariat. Many long-term 
datasets are available for the site such as ALT, which have been recorded 
since 1978 (Jonasson et al. 2012), and are accessible from INTERACT GIS 
(https://www.interact-gis.org/). The valley features an apparent glacial overprint 
and soils are developed from glaciofluvial deposits, with peat occurring in 
localized depressions (Berglund et al. 1996). Due to Abisko’s leeward 
position in a rain shadow, the climate undergoes strong orographic 
influence and generally receives less annual precipitation than the oceanic 
and continental climates of the surrounding areas (Kohler et al. 2006; 
Berglund et al. 1996). Meteorological instrumentation at the research 
station has recorded a mean annual precipitation for the region of 
approximately 310 mm and annual mean temperature of 0.7°C since 
record began in 1913 (Kohler et al. 2006). Vegetation cover follows the 
elevational gradient of the valley, ranging from alpine areas in the uplands 
to boreal forest in the lowlands containing mainly spruce (Picea), pine 
(Pinus), birch (Betula), various Populus, alder (Alnus), and willow (Salix) 
species (Berglund et al. 1996). 

The Finnish Meteorological Institute site in Sodankylä, Finland, sits near 
the margins of northern Finland’s periglacial area (as defined by the 0°C 
limit of the late 1990s) in the Lapland region (Kejonen, 1997). Mean annual 
precipitation is 539 mm and mean annual temperature is 0.2°C (Finnish 
Meteorological Institute, 2023). Soils in the Sodankylä area have a sandy 
texture and support lichens (Cladina and Cladonia), mosses (Dicranum 
and Hylocomium), and shrubs (Empetrum and Vaccinium) with tree cover 
dominated by Scots pine (Pinus sylvestris, Köster et al. 2013).  

1.2 Objectives 

This study presents a comprehensive synthesis of the field techniques and 
data management tools used by two US Army Corps of Engineers Research 
and Development Center (ERDC) labs: the CRREL and the Construction 
Engineering Research Laboratory (CERL). Further data were acquired from 
collaborators and other long-term monitoring efforts to provide a reference 
methodology for cold regions research. This report therefore can serve as an 
outline and description of the types of data useful for characterizing cold 
region terrain conditions and the associated collection, management, and 
visualization methodology. The basis for an extensive long-term monitoring 

https://www.interact-gis.org/
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dataset is provided here with repeat snow, vegetation, lidar, geophysical, 
and biogeochemical measurements collected from across the boreal 
Northern Hemisphere. 

1.3 Approach 

Site selection was informed by review of existing databases and sites with 
existing instrumentation that support histories of long-term collection 
programs. New sites were visited early in the study to install continuous 
measurement instrumentation such as soil temperature and moisture 
sensors, and various meteorological instruments. Upon site visitation, 
thaw depth measurements were taken manually, and where performed, 
non-destructive, catchment-scale probing of subsurface characteristics 
was carried out with geophysical techniques. This information was used to 
indicate frost table depths, thaw features, and where geophysics were 
surveyed, changes in soil media. Vegetation surveys were conducted to 
classify climatic and soil conditions at sites and to provide validation for 
future object-based land cover determinations. Soils were sampled for 
microbial and geochemical analyses throughout the growing season. Snow 
thickness and density were continuously monitored in winter months with 
meteorological instrumentation at study sites or measured manually at the 
end of the winter season to represent total accumulation. Repeat 
measurements would be conducted in the following years, and data 
continuously processed and visualized throughout the project duration. 
Statistical analyses of data were applied to reveal relationships between 
the acquired data and potential controls, and machine learning techniques 
were used to project the observed data to larger scales. Geospatial data 
were visualized and analyzed throughout the process with GIS. 
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2 Methods 
2.1 Satellite Imagery 

Satellite-based imagery can provide repeat, large-scale coverage of spectral 
information at multiple wavelengths that are useful for characterizing 
various terrain characteristics. Imagery can be a powerful resource for 
identifying and monitoring permafrost-affected landscapes as the 
subsurface processes associated with permafrost relate to identifiable 
surface characteristics (Philipp et al. 2021). Furthermore, satellite systems 
with along-track stereos sensors enable the generation of surface models 
to assess vegetation and snow cover (Kääb 2008). In this study, 
DigitalGlobe satellites were tasked through the Army Geospatial Center to 
acquire high resolution WorldView imagery in stereo for field sites in 
Alaska, Finland, and Sweden. DigitalGlobe was chosen for its tasking 
capability to specify acquisition times, the temporal resolution and optical 
stereo of retrievals, and the advanced spatial resolution of the WorldView 
satellite constellation. Imagery acquired with WorldView-2 yields 0.46 m 
spatial resolution in panchromatic bands and 1.84 m in eight-band 
multispectral while WorldView-3 provides 0.31 m panchromatic and 1.24 
eight-band multispectral resolutions.  

Imagery collection windows were maintained from June 2021 into April 
2022. WorldView imagery was tasked throughout this timeframe to capture 
seasonal variations including peak vegetation productivity in August 2021, 
the leaf-free period in September and October 2021, peak snow coverage in 
March 2022, and the spring snowmelt in April 2022 (Figure 4). Specific 
platform coverage for each field site is shown in Table 2.  

Table 2. DigitalGlobe tasked satellite imagery and associated field sites. 

Collection Site Satellite Acquisition Date 

Finnish Meteorological Institute WV-2 8/2/2021 
Happy Valley WV-3 9/4/2021 
Bonanza Creek WV-2 10/5/2021 
Imnavait Creek WV-2 10/8/2021 
Finnish Meteorological Institute WV-2 3/3/2022 
Abisko Scientific Research Station WV-3 3/13/2022 
Abisko Scientific Research Station WV-2 3/18/2022 
Permafrost Tunnel WV-3 4/4/2022 
Farmer’s Loop WV-4 4/5/2022 
Creamer’s Field WV-3 4/4/2022 
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Figure 4. WorldView-3 imagery view of the Bonanza Creek / APEX study area and adjacent 
Tanana River. (Image used with permission from ©2021 Maxar.) 

 

2.2 Permafrost 

2.2.1 Active Layer Thickness 

ALT in the CRREL sites was manually probed at 1 to 4 m spacing along 
defined survey transects with permanently fixed end markers on an 
annual basis. Thaw depths were measured and recorded late in the thaw 
season following the thaw probing procedures described in Douglas et al. 
(2016). Land cover observations were recorded for the extent of each 
survey transects to allow for comparisons of ALT with land cover type. 
Active layer was not measured where survey points had been eroded 
away or intersected with deep water. ALT in the Circumpolar Active 
Layer Monitoring (CALM) sites was manually probed following similar 
methods, although the measurement points were guided by an array of 11 
× 11 grid nodes evenly distributed within a 1 km2 grid (Brown et al. 2000; 
Shiklomanov et al. 2010). 

2.2.2 Soil Temperatures 

Continuous measurement of depth-specific soil temperatures was 
completed with instrumentation of HOBO® U23 Pro v2 two-channel 
temperature loggers (Onset, Bourne, Massachusetts) buried at regular 
depths throughout the soil profile. For sensor deployment, a 0.75 cm 
diameter hole was excavated to the desired depth using a slide hammer 
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and rod, and temperature sensors protected in plastic sleeves were then 
installed through the hole.   

2.3 Soil and Porewater Geochemistry 

Soil samples were either collected by excavating soil pits or collecting cores 
using a Snow Ice and Permafrost Research Establishment (SIPRE) coring 
barrel coupled to a powerhead. Soil pits were excavated in locations that 
contained rocks or pebbles greater than 5 cm, as this coarser substrate 
may damage SIPRE coring equipment. Photos of a soil core and an 
excavated soil pit are shown in Figure 5. Soil pits were opened by first 
temporarily removing the vegetative mat and storing it aside. Narrow 
spade shovels were used to remove thawed active layer material when 
sampling in summer months and a jackhammer was used to excavate 
frozen active layer in frost-supporting months. In summer months, a 
jackhammer was used as necessary when permafrost was reached within 
the 1 m target depth. Soil pits and cores were subsampled at 20 cm depth 
increments. Soil samples were thawed (if frozen) and dried at 60°C in a 
convection oven. The subset of samples allocated for Fe* speciation were 
immediately stored frozen at –4°C and remained frozen until analysis. 
Samples were analyzed for pH, major ions, trace elements, iron speciation, 
carbon, nitrogen, and organic content.  

Figure 5. Images showing excavated soil core from Storflaket Mire, Sweden (left), and soil pit 
from Imnavait Creek, Alaska (right), each differentiating sampling locations in vegetation, 

active layer, and permafrost. 

 

 
* For a full list of the spelled-out forms of the chemical elements used in this document, 

please refer to US Government Publishing Office Style Manual, 31st ed. (Washington, DC: US 
Government Publishing Office, 2016), 265, https://www.govinfo.gov/content/pkg/GPO 
-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf. 

https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
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Porewater samples were collected from subsections of the soil pit or SIPRE 
core by squeezing the soil fraction and collecting the porewater in 
centrifuge tubes, filtering the liquid to less than 0.45-micron filter size 
using a nylon membrane filter. Porewater samples for trace metal analysis 
were acidified with 6 mol/L ultrapure nitric acid (0.1 mL per 1o0 mL 
sample) and stored in a refrigerator at 4°C until analysis. Porewater 
samples were analyzed via ion chromatography for major ions, inductively 
coupled plasma-mass spectrometry for trace metals, and ultraviolet 
spectrophotometry for Fe speciation. 

2.4 Soil Microbiology 

Soil microbial communities mediate many biogeochemical processes and 
are an important factor to include in terrain characterization, particularly 
for forecasting landscape-level shifts. Microbial community characterization 
through DNA high throughput sequencing was performed at discrete 
sampling events across the field sites. A subset of soil samples was collected 
for microbial analysis from the soil pit or soil cores. Soil samples were 
generally collected from depths spanning surface soil to permafrost, 
depending on field site location. Samples were taken in triplicate or 
quadruplicate using ultraclean sampling methods and wearing Tyvek suits 
and N-95 face masks (see Figure 6). Tyvek suits and masks were not worn 
when sampling more microbially abundant surface soils.  

Figure 6. Images showing soil collection for microbial community analysis (top left and right) 
and the supplies used to ensure sterile sample collection (bottom left). 
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The collection tools were first cleaned with 70% ethanol or 70% 
isopropanol, followed by DNAse, and then RNAse solutions. Kimwipes were 
used for applying solution to the tools and wiping away excess. Soil samples 
were placed into Whirl-Pak bags and stored under –10°C or colder until 
analysis. Samples collected for DNA sequencing were stored at –80°C. 

2.5 Vegetation  

2.5.1 Root Strength 

Surveys on root strength and vegetation cover were performed in boreal 
forest sites to evaluate their influence on soil strength, compressibility, 
and cohesion. The locations of study plots were generated randomly then 
used to navigate to each site. The plot centers were marked and used as the 
starting point for measuring 7.3 m axes passing from the center to each 
cardinal direction, dividing each plot into 4 equal-area quadrants. 35 
random shear vane samples were collected from each quadrant at 10 cm 
depth using an H-4227 Field Shear Vane (Humboldt Manufacturing, 
Elgin, Illinois). A 25.4 mm × 50.8 mm tip was used where this 10 cm depth 
incorporated organic-rich soils and the standard 20 mm × 40 mm tip was 
used for mineral soils. The number and species of coniferous and 
deciduous trees with a diameter at breast height greater than 10 cm was 
recorded for each quadrant. Percent cover of graminoid and moss was 
measured in a 0.25 m2 quadrat to the nearest 5% across five random 
locations within each quadrant. Lastly, the depth to mineral soil was 
measured once for each quadrant, and frost table depths were manually 
probed in five random locations in each quadrant.  

Root samples were tested for tensile strength in the lab. Samples were 
washed to remove soil material while preserving the maximum root 
mass. Roots with no major defects were subsampled and measured for 
diameter at three different sites with a caliper. The diameter for the 
subsample was averaged and roots were trimmed to 15–30 times the 
average diameter following Genet et al. (2005). Root samples were then 
glued to steel eye nuts with the gauge and thread opening of eye nuts 
relating to root diameter. Once glued and cooled, root samples were 
stored in plastic wrap under refrigeration until testing to reduce cellulose 
degradation (Alam et al. 2018).  

Tensile strength tests were conducted using the MTS T-Slot Universal 
Testing Machine in Newmark Structural Engineering Laboratory at the 
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University of Illinois at Urbana-Champaign. Root samples were connected 
at the top to load cells, actuator, and crosshead via a threaded connecting 
link and eyebolt. The bottom was similarly connected to a base plate 
anchored to a T-slot table. The tensile strength was tested by elevating the 
actuator at a constant rate of 1 mm/min until failure. The maximum 
tensile force of the sample was then recorded in output files.  

2.5.2 Vegetation Cover 

Vegetation surveys were tailored in respect to the measurements or 
sampling performed at each site. Basic vegetation surveys were performed 
along repeat thaw probing and snow depth transects to identify the 
dominant ecotype (i.e., mixed taiga, coniferous taiga, deciduous forest, 
wetland, shrubland, sedge tundra, etc.). For sites instrumented for soil 
respiration and sampled for microbiology, vegetation structure was 
recorded in greater detail. A 1 m × 1 m plot was centered on the sampling 
site, then surveyed for substrate (i.e., mosses, lichens, bare soil, etc.), 
understory, and canopy species and percent coverage where applicable. 
For root sampling sites, the procedure is described in Section 2.5.1.  

2.5.3 Root Strength Statistical Analysis 

A simple univariate linear regression model was fit to each predictor 
variable regressed on the shear vane values. Next, spatial correlation 
among plots was tested using Moran’s I (Gittleman and Kot 1990). The 
null hypothesis was no spatial correlation; test statistics with p-values < 
0.05 were regarded as evidence of spatial correlation. For predictor 
variables that did not exhibit spatial correlation, the nonspatial simple 
linear regression was used and tested against a null model that did not 
include the predictors using the Anova function in the R (R Development 
Core Team 2021) package car (Fox 2019). If Moran’s I detected evidence of 
spatial correlation, a spatial regression model as implemented in the R 
package spaMM (Rousset and Ferdy 2014) was applied and the spatial 
coordinates Matern covariance function (Stein 1999) were included. A 
likelihood ratio test was used to compare the spatial model fit against a 
null model that only included the spatial coordinates as random effects 
using the likelihood ratio test (LRT) function in the R package spaMM. 



ERDC TR-24-4 20 

 

2.6 Snow Surveys 

Snow characteristics, namely snowpack depth and density, are essential 
considerations in terrain conditions as well as climate research and 
freshwater resource management. The following subsections explore the 
main methods used to conduct snow depth and density measurements. 

2.6.1 Snow Depth Measurement 

Numerous methods have emerged for measuring snow depth, including 
manual methods, electronic instrumentation, and remote sensing 
techniques. Manual measurements involve probing the snowpack with 
either a graduated avalanche probe or other measuring device, or 
automated depth-measurement probes such as a Magnaprobe 
(SnowHydro LL, Fairbanks, Alaska). Electronic snow depth sensors, such 
as ultrasonic sensors, (e.g., SR50 by Campbell Scientific, Logan, Utah, 
measure two-way travel times of sound waves to quantify snow depths in 
real time. Remote sensing techniques, such as airborne radar or satellite-
based sensors, offer spatially continuous measurements of snow depth 
over large areas. In this study, the CRREL team applied Magnaprobes for 
repeat measurements of snow depth along defined transects in the Alaska 
field areas. 

The Magnaprobe has two main components, a 153 cm steel rod equipped 
with a sliding plastic disc, and a backpack-mounted data logger with GPS 
unit (Sturm and Holmgren, 2018). Magnaprobes were selected for their 
capability to automatically assign geographic positioning to snow depth 
measurements. However, a tendency to over-estimate snow depths was 
recognized due to consistent penetration of the probe into frozen moss 
beneath the snowpack, or air pockets where snow is suspended over 
yielding vegetation. This was accounted for by taking control 
measurements for a subset of Magnaprobe measurements at each site and 
comparing actual snow depths to measured depths to assess error.  

Control measurements were taken using either a 2-m engineering folding 
ruler (e.g., Rhino Engineer’s Folding Ruler by US Tape, Pennsburg, 
Pennsylvania), a snow depth probe by Snowmetrics (Fort Collins, 
Colorado), or a commercial avalanche probe (e.g., QuickDraw Pro Probe 
240 by Black Diamond Equipment, Ltd). With these tools, snow depth 
measurements were made by inserting the ruler or probe vertically into 
the snow surface until reaching refusal by the ground surface, validating 
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that refusal was met at the ground surface by digging away snow, and 
recording the depth in cm and geographic coordinates into a field 
notebook, handheld GPS unit, or mobile device. 

2.6.2 Snow Density Measurement 

Snow density is typically measured by weighing a known volume of snow 
with a mobile scale in the field in order to capture unaltered snow 
properties. In this study, two volume extraction devices were applied 
according to snow conditions. A cylindrical tube of known volume 
(Snowmetrics, Fort Collins, Colorado) was favored in shallow snowpack 
and wedge cutters shaped as triangular prisms of known volume 
(Snowmetrics, Fort Collins, Colorado) were used in deeper snowpack. 
Each method involves inserting the volume extractor laterally into a 
freshly excavated snow-pit wall exposure, extracting a sample of known 
volume, and weighing the sample with a scale. Given sufficient snow depth 
(20 cm or more), density measurements were made using either a 100 cm3 
or 250 cm3 wedge cutter sampled from a snow pit wall that exposes the 
stratigraphic layers. Preferably, density sampling was performed on a 
north-facing wall of a snow pit to reduce melt of the excavated snow layers 
prior to sampling. In this study, snow pits were dug in a 1 m × 1 m 
perimeter and snow density measurements were duplicated every 10 cm 
depth in the snowpack starting from the surface and ending at the ground 
contact. The density of snow is calculated from the mass divided by the 
known volume of the sampling device. 

2.7 Terrestrial Lidar 

2.7.1 Field Collection 

Lidar surveys are used worldwide to develop high-resolution scans of 
surface elevation and other surface features. Repeat Lidar is a proven 
method for widespread identification of hot spots in surface change and 
has become increasingly applied for change detection in permafrost 
regions (Avian et al. 2008; Barnhart and Crosby 2013; Jones et al. 2013; 
Kociuba et al. 2014; Marx et al. 2017; Anders et al. 2020; Douglas et al. 
2021). Terrestrial laser scanning (TLS) and aerial laser scanning (ALS) 
involve the collection of lidar point cloud data for a surface and can 
provide high-resolution elevation data to allow for differencing of the 
derived digital elevation models (DEMs) or point clouds to illustrate 
surface change. In boreal forest areas, the portability of TLS systems and 
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use of multi-return lidar allows for ground surface measurements beneath 
dense forest canopies.  

TLS surveys were performed above the Permafrost Tunnel throughout the 
thaw seasons of 2017 and 2018. Scans were focused on two thaw features 
where noticeable surface erosion has ensued, a larger erosion feature (Site 
A) located at 64.9495327°N, 147.6173131°W and a smaller erosion feature 
(Site B) located at 64.9504113°N, 147.6162452°W. Elevation data were 
collected with a Leica C10 ScanStation (Leica, St Gallen, Switzerland) with 
an estimated 100 m range in clear line of sight conditions. Geographic 
positions of scans were referenced with a Trimble R8 GNSS base station 
(Trimble, Westminster, Colorado) that broadcasted corrections to a 
Trimble R8 rover, providing an internal GPS data file for post-processing 
the survey data.  

A real-time kinematic (RTK) survey style was applied to allow for 
corrections of multipath errors and atmospheric effects. Individual TLS 
scan lines were positioned to create maximum overlap and coverage of a 
continuous area once all scans were combined. Each scan was taken at a 
360° horizontal and 270° vertical sweep arc. This scan geometry collected 
point returns from multiple surfaces and subsequent RGB color images 
were taken for the scanned area if light conditions were suitable. Scans 
were performed at intermediate resolution producing a 10 cm gap between 
adjacent points at a 100 m radius from the instrument. For each scan, four 
to six Leica high-definition survey (HDS) targets were distributed 
throughout the scan area to serve as tie points for georeferencing the 
scans. The location of each target was surveyed with a Trimble DGPS R8 
rover in RTK mode. Each scan was acquired by the same individual 
researcher, therefore minimizing scan incoherence caused by contrasting 
subjectivity of multiple operators (Anders et al. 2020). 

Each elevation point was produced in x, y, z format of Easting, Northing, 
and Elevation. These points were projected to WGS84, Universal 
Transverse Mercator (UTM) Zone 6N. North American Vertical Datum of 
1988 (NAVD88) was used as the vertical projection calculated based on 
GEOID12B and is reported using the Orthographic elevation values. Each 
data point is associated with an intensity value (i), a measure of the return 
strength of the laser beam, and a color value (RGB) which was assigned 
from panoramic photos collected from an internal camera. The final data 
format produced values in (E, N, z, I, r, g, and b) for each data point.  
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2.7.2 Data Processing 

Location data for the survey points were processed using Trimble Business 
Center, where the base station’s internal GPS file is sent to the Online 
Positioning User Service (OPUS) operated by NOAA’s National Geodetic 
Survey. This tool automatically processes the internal file to compute 
global positions within centimeters of accuracy and allows for further 
refinement of locations acquired for the HDS targets. 

Lidar point cloud data were processed in Leica Geosystems Cyclone 
software using the REGISTER module to align the point clouds from scans 
captured in different positions and the Survey module for performing 
measurements on laser scan data. First, raw data were imported to 
Cyclone, point clouds were unified and images were blended, then 
ModelSpaces was created to begin modeling. Each file created by the 
scanner, including the point cloud, images, target scans, and all other data 
associated with scanner placement, was stored in a ScanWorld folder. 
Within each ScanWorld, a coordinate system was established based on the 
array of targets that were scanned, and registration mean absolute error 
(RMAE) or errors for each constraint, such as a target, were calculated 
simultaneously. Constraints on the coordinate system with error values 
greater than 6 mm were disabled and the registration was recalculated to 
produce a new set of errors for each constraint. The process was repeated 
until a low RMAE was achieved, allowing for an error range of 0.002 m to 
0.011 m for the output dataset. The project-centric coordinate system was 
referenced to a global coordinate system using information from the HDS 
targets, where the quality of the targets survey affects overall RMAE of the 
project (0.01 m to 0.13 m). Upon registration of the ScanWorlds files, 
minor edits were made to the output point cloud, including removal of 
extraneous points caused by the sun, the top handle of the scanner, and 
from midair objects. The processed point cloud was then exported and 
converted to a .las file for manipulation in geospatial software. 

2.8 Geophysics 

Geophysical methods offer an efficient, noninvasive means for probing 
permafrost continuity and other cryospheric characteristics (such as snow 
depth and stratigraphy) that are fundamental for characterizing cold 
regions. Ground-penetrating radar (GPR) is an electromagnetic 
geophysical technique well suited for permafrost investigations as the 
transmitted radio waves are sensitive to contrasts in dielectric 
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permittivity, an electromagnetic property that varies with soil type, soil 
water content, and water phase (Neal 2004). Therefore, GPR can detect 
material interfaces with differing physical properties within a substrate, 
such as the frost front, and can be used to map ALT in permafrost 
environments (Schaefer et al. 2015; Parsekian et al. 2021). In this study, 
GPR data were collected on 3 August 2022, in Abisko, Sweden. 

GPR surveys were collected using a 400 MHz antenna manufactured by 
Geophysical Survey System, Inc. (Nashua, New Hampshire) in bistatic 
transmitter/receiver geometry. A GSSI instrument console was used to 
record and measure the travel time of radar waves transmitted from the 
antenna at ground surface, to reflection from the top of permafrost 
underfoot (Arcone and Delaney 1982). Positioning information for the 
antenna was continuously retrieved from a handheld GPS mounted to the 
antenna platform that was pulled manually in a sled at approximately 
0.5 m/s. The GPS linked location information to each measured radar 
response, known as a trace.  

GPR instrument settings were adjusted to suit the survey substrate. Radar 
wave velocity through the survey media can then be calculated by 
comparing two-way travel times with frost probing depths recorded at 2 m 
increments along the GPR transect. In this study, the radar velocities were 
assumed, as radar wave speed in seasonally frozen soils range from those 
of ice to those of liquid water and depend on a number of pedophysical 
parameters (Arcone and Delaney, 1982; Bakian-Dogaheh et al. 2019). 
Table 3 lists radar wave velocities for common survey media. The travel 
times associated with radar reflection at the frost table were approximated 
from the assumed velocity and were manually picked to represent the frost 
table depth along the transect at the time of survey. 

Table 3. Radar wave velocities for common high-latitude 
soil constituents. 

Material  Permittivity Wave Velocity (m/ns) 

Liquid water 80 0.03 
Ice 4 0.15 
Soil 15 0.08 

For the Abisko site, a radar wave speed of 0.07 m/ns was used based upon 
a 0.75 m thaw depth revealed by SIPRE coring and a 21 ns two-way travel 
time for the thawed near-surface velocity. A basic processing sequence was 
applied to raw data in ReflexW (Sandmeier 2016) software using minimal 
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steps: subtraction of the mean for each trace to eliminate instrument 
noise, start time correction to zero to eliminate empty data times, 
horizontal distance correction using a trace interpolation from the GPS 
data and averaging traces every 0.1 m, manual linear and exponential gain 
function beginning after 7 ns, time cut below 70 ns to eliminate returns 
below the investigation depth, and topographic correction using local 
digital elevational data. The collection of radar traces for a survey transect 
are displayed as radargrams, each containing horizontal lines with color 
indicating the amplitude of the reflection (based on two-way travel time) 
to appear as cross-sectional approximations of subsurface reflections. 

In other studies, the CRREL team has applied GPR alongside electrical 
resistivity tomography (ERT) as an additional tool to parse liquid from 
solid water phases in the substrate (Barker et al. 2023 in press), and the 
method will be briefly mentioned here. ERT operates with a lower 
frequency electrical field to determine resistivity of the subsurface 
(Parsekian et al. 2014). Resistivity was measured with ERT to supplement 
the frost table depths inferred with GPR to better inform interpretations 
on active layer dimensions and the presence of thaw bulbs or cryopegs that 
remain liquid at subzero temperatures. Therefore, ERT in Barker et al. 
(2023 in press) was surveyed in overlap with GPR transects to allow 
comparison of the separate datasets for similar areas. A SuperSting R8 
system (Advanced Geosciences, Inc.) with 84 electrodes was used applying 
a dipole-dipole geometry to measure resistivity profiles. Electrode spacing 
was determined based on transect length, but was generally held as 1 m to 
2 m. A quasi-Newton optimization technique (Loke and Barker 1996) was 
applied to invert resistivity data for modeling profiles in RES2DINV 
(Geotomo software).  

2.9 Machine Learning 

Machine learning algorithms model and project results for unknown tasks 
or objects based on known training data and can be tailored for upscaling 
environmental data measured in situ. Typically, a relationship between an 
object of interest (dependent variable) and an object readily observed at 
large scales (independent variable) is established, then the large-scale 
coverage of the independent variable and its known relationship with the 
dependent variable is used to extrapolate dependent values to larger scales 
than feasibly observed. In high latitude studies, this technique is 
particularly useful for upscaling localized point measurements of 
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monitoring data such as ALT and snow depth to the landscape scale. Since 
many in situ measurements are time and labor intensive, upscaling allows 
for greater spatial coverage than realistically accomplished in the field, 
making spatial variations more apparent.  

Both ALT (Zhang et al. 2021) and snow depth (Douglas and Zhang, 2021) 
demonstrate significant relationships with the ecotype in which they occur. 
Therefore, machine learning algorithms can be applied to determine ALT 
and snow depth based on the ecotype present, which is readily classified at 
large scales with remotely sensed imagery. The following subsection 
summarizes the object-based machine learning ensembles tested for cold-
regions applications in former studies (Douglas and Zhang, 2021; Zhang et 
al. 2021). Due to similarities in the methods for upscaling ALT and snow 
depth, repeat measurements of thaw and snow depths, are collectively 
referred to in the following section as “in situ measurements”.  

In situ measurements were upscaled using hyperspectral classifications in 
an object-based learning algorithm that consults the relationships between 
ecotypes and the observed measurements (developed in Zhang et al. 2021; 
Douglas and Zhang 2021) (summarized in Figure 7). Hyperspectral 
imagery was collected during the most cloud-free periods of the growing 
season for each study site, reducing cloud interception of channel 
wavelengths and ensuring a strong representation of ecotypes. Any water 
bodies and impervious road surfaces in the imagery were masked before 
ALT processing. Thaw depths were manually recorded following the thaw 
probing procedures outlined in Douglas et al. (2016) during late fall 
(generally October) when thaw reaches its maximum depth and best 
represents the active layer thickness. Snow depths were measured late in 
the snowpack season along repeat transects with Magnaprobe 
(SnowHydro, Fairbanks Alaska) measurements taken at 1 m to 2 m 
spacing (Douglas and Zhang 2021). For snow surveys, lidar data was 
obtained where available.  

Upon imagery and measurement acquisition, the high dimensionality of the 
hyperspectral imagery was reduced with Minimum Noise Fraction (Green et 
al. 1988). This produced eigenimages that were further analyzed on the 
basis of visual appearance and their eigenvalues. Image segmentation was 
then performed using multiresolution segmentation in eCognition (Trimble 
2014) to produce image objects in preparation for Object-Based Image 
Analysis (OBIA). Image objects were defined based on color and geometry 
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for ALT, or geometry and size for snow depth, and the mean and standard 
deviation of these features were used as model predictors. In situ 
measurements were spatially matched with image objects to synchronize 
the field and hyperspectral data, giving the model context for upscaling 
measurements to un-surveyed areas based on their ecotype. Objects 
containing multiple measurements were assigned the average of their 
measurements. For snow surveys, lidar statistical descriptors of canopy 
heights and terrain for image objects were merged with spectral information 
where lidar coverage was available. Endmember scenarios for ALT and 
snow depth (minimums and maximums for the period of record) were 
matched with image objects to accommodate variability. 

An ensemble of regression algorithms was incorporated into the models, 
including two machine learning algorithms; Support Vector Machine (SVM) 
and Random Forest (RF); and the conventional Multiple Linear Regression 
(MLR). Each were administered through Waikato Environment for 
Knowledge Analysis (open-source software, Hall et al. 2009). The respective 
algorithms were selected by approach to regression and were leveraged 
together to produce multiple predictions. The respective outputs were 
integrated by weighting based on their coefficient of determination (r) 
values following Zhang et al. (2021) and the combining scheme in Zhang et 
al. (2018). The resulting ensemble predictions were validated for accuracy 
using a combination of the product r value, mean errors, and by comparing 
model predictions with the independent in situ datasets. Further details on 
the selected algorithms and model validations are discussed in Zhang et al. 
(2021) and Douglas and Zhang (2021). Similar machine learning 
approaches can be applied to upscale other environmental data provided a 
clear linkage with a readily obtainable, large-scale predictor dataset such as 
hyperspectral imagery. 
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Figure 7. Simplified workflow for applying hyperspectral imagery to upscale point 
measurements. (Methodology data from Zhang et al. 2021; image by authors.) 

 

2.10 Data Management 

The compilation of cryological, meteorological, hydrological, and 
biogeochemical data in this study culminate in a large composite dataset 
involving numerous file formats and sources. Data were initially backed on 
hard drives and stored locally on computers or external drives before 
being backed on a shared server. Attributes across the various datasets 
were considered to inform data standards that would guide all tabular 
storage and representation. These standards include site identifiers, 
geographic coordinates, collection date, subject of observation (e.g., snow 
depth), descriptions, and measurements or observations of the subject. 
Raw data files were then compiled and used to create tables that conform 
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to the noted standards. The raw files and edited files were uploaded to a 
cloud-based drive and shared amongst collaborators.  

Tabular geospatial data were archived in comma separated files (.csv) or 
spreadsheets (.xlsx) that associate data points with coordinate 
information. These files were ingested into a geospatial environment via 
Python (Van Rossum and Drake 2009) scripting for efficient conversion of 
multiple files. The code converted .csv files and spreadsheet data into the 
appropriate layer files in QGIS. Alternatively, .csv files were imported to 
ArcGIS Pro and converted to shapefiles.   

2.11 Data Visualization from Field to Feature 

Geospatial visualization of data is important for illustrating distributional 
trends in observed variables and in assessing potential geographical 
controls on observed phenomena. This study applied QGIS® and multiple 
Esri® ArcGIS products as known platforms for visualizing spatial data, but 
also as effective means for digitally collecting, storing, analyzing, and 
sharing spatial data.  

Field-based measurements exported from various acquisition platforms 
were converted to vector layers in Esri shapefile format in ArcGIS Pro® by 
inputting the geographical coordinates of observations and fixed 
acquisition platforms as x, y data, or by creating a point feature class and 
adding the sites by their geographical coordinates. Other field 
measurements or observations were directly recorded in the shapefile 
format to simultaneously map and collect data by using the field-based 
mapping functionality of ArcGIS Field Maps®. Editable shapefiles were 
created in ArcGIS Online® (AGOL) to serve as templates for intended 
datasets, including fillable forms with user-specified prompts to guide 
field observations. These editable layers were synced for offline access and 
loaded into the Field Maps web app, to be accessed in the field via the 
Field Maps mobile app. This allowed operators to view existing data layers 
while offline in the field and to collect new data points or information in 
the editable shapefiles. Upon completing field collection in the Field Maps 
app, edits were synced to AGOL where collaborators could access the 
updated shapefiles. Figure 8 demonstrates typical workflows for 
transferring data as shapefiles across desktop, offline, and online 
platforms for data visualization, editing, and sharing. 
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Figure 8. Simplified workflow for managing and editing shapefiles across desktop (ArcGIS 
Pro®), cloud (ArcGIS Online® [AGOL]), and mobile (ArcGIS Field Maps®) geospatial visualization 

platforms. 
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3 Results and Discussion 
3.1 Long-Term Trends in Permafrost Landscape Properties 

Repeat measurements of ALT provide critical insight into permafrost 
change over time. Several long-term monitoring efforts provide site-
specific ALT for various locations throughout Alaska, allowing for 
comparisons across major climatic, physiographic, and ecological zones. 
The following sections address spatial and temporal trends in the repeat 
ALT recorded for CRREL sites in Interior Alaska, compared with grid-
based ALT recorded on Alaska’s north slope by the CALM program (Brown 
et al. 2000; Shiklomanov et al. 2010). These results demonstrate 
variability in top-down thaw extent and progression across sites with 
contrasting soil thermal properties and land cover. 

3.1.1 Discontinuous Permafrost Region−Interior Alaska 

Interior Alaska lies within the discontinuous permafrost region (Figure 2) as 
defined by Jorgenson et al. (2008), where mean annual permafrost 
temperatures at 1.2 m depth range from –2.60°C to –0.05°C and are 
actively increasing (Douglas et al. 2021). Repeat measurements along four 
main transects in Interior Alaska represent ALT in multiple ecotypes of the 
taiga biome: conifer (P. mariana) forest above the Permafrost Tunnel; 
mixed conifer forest (Picea glauca and P. mariana), tussock tundra, and 
wetlands at Farmer’s Loop; mixed conifer-deciduous boreal forest (P. 
glauca, P. mariana, and Betula papyrifera), wetland, and sedge tussock in 
Creamer’s Field. Each survey transect was visited late in the thaw season 
from 2013 through 2020. Two locations along the ALT transect at the 
Permafrost Tunnel eroded away by 2017, decreasing n from 2017 to 2020 by 
two measurements. The collection of ALT for each site displays overall 
trends in the culmination of top-down thaw over 10 years of monitoring. 

Figure 9 and Figure 10 display ALT by ecotype across the Interior Alaska 
transects. Across all sites it is apparent that the top of near-surface 
permafrost is migrating downward as the permafrost degrades. 
Additionally, the lateral thaw of permafrost at some locations has resulted 
in decreased continuity of permafrost across the ground surface, since 
winter freeze back is typically no greater than approximately 1 m. Mean 
ALT for the CRREL transects in Interior Alaska shown in Figure 11, panel a 
display a general deepening trend and downward thaw propagation over 
time from an intersite mean of 58 m to 82 cm from 2013 to 2022 
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respectively. The Creamer’s Field transect demonstrated the highest 
percentage of increase over this 9-year period of 56%. The lowest increase 
occurred at the Farmer’s Loop sites, where transect B achieved 34% and 
transect A 31% of increase. For Interior sites collectively, average ALT 
increased at an annual rate of 4 cm/yr from 2013 to 2022, although the 
change was not uniform throughout the period of observation. The highest 
rate of ALT increase across sites occurred from 2013 to 2014, when 
average ALT increased by 16 cm. 

Spatial trends in ALT have been associated with ecotype or vegetation 
cover in many permafrost-affected regions, including the North Slope of 
Alaska (Nelson et al. 1997; 1998), Northwest Territories, Canada (Fisher et 
al. 2016), the Qinghai-Tibet Plateau (Wang et al. 2010; 2018), and 
maritime Antarctica (Guglielmin et al. 2012; Almeida et al. 2014). For the 
Interior Alaska sites in this study, the deepest ALT occurred in disturbed 
areas, averaging 103 cm, which is expected (Brown et al. 2015; Zhang et al. 
2021). Among natural land cover types, ALT is greatest in wetlands where 
the average is 100 cm, followed by mixed taiga forest at 85 cm, and tussock 
tundra at 68 cm. Spruce dominated forest with moss and lichen 
understory is generally underlain by the lowest ALT of 65 cm on average. 
These results generally support the land cover-to-ALT relationships 
discussed for the same transects in Zhang et al. (2021), but the additional 
ALT measured over 2021 and 2022 reveal an increased mean ALT in 
disturbed sites from those summarized in 2021. The relationships between 
ALT and ecotype presented in this study continue to support the potential 
for the influence of land cover on soil thermal properties to serve as a 
strong spatial control on ALT (Fisher et al. 2016). Namely, ALT is least 
beneath moss and lichen substrates, likely in response to their insulative 
capacity as a soil-air buffer and the surface cooling effect of nonvascular 
evaporation during the snow-free season (Heijmans et al. 2004; Loranty et 
al. 2018). As discussed in Zhang et al. (2021), ALT in wetlands is likely 
greatest due to enhancement from conductive heat transfer through 
ponded surface water.   
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Figure 9. Field-measured active layer thickness (ALT) along Farmer’s Loop transects a (“Fla”, 
top) and b (“FLb”, bottom), passing through mixed taiga, wetlands, tussock tundra, and moss 

spruce forest (“spruce forest”). 
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Figure 10. Field-measured ALT along transects at the Permafrost Tunnel (“PT”, top) and 
Creamer’s Field (“CF”, bottom), passing through mixed taiga, wetlands, tussock tundra, and 

moss spruce forest. Red arrows indicate high disturbance. 
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At the local scale, monitoring of soil temperatures at each of these sites 
display a warming trend at depth with buried sensors exceeding 0°C by 
2019 or earlier in each site. Soils at 1.5 m depth in Farmer’s Loop reached 
0°C in the summer of 2017 (Figure 11d), and above-freezing temperatures 
reached depths as low as 1.8 m above the Permafrost Tunnel in the 
summer of 2021 (Figure 11c). In Creamer’s Field, soils at 1.24 m depth 
ceased to freeze by 2016 and have remained unfrozen since (Figure 11b).  

The general trends in average ALT over time tend to covary among all 
three sites (Figure 11a) demonstrating consistency in temporal controls on 
ALT at the regional scale. Various environmental forcings have been 
related to temporal controls on regional ALT such as air temperature, 
summer precipitation, and snow conditions (Shiklomanov et al. 2010; 
Loranty et al. 2018). In particular, sensible heat transfer by summer 
precipitation was attributed to interannual increases in ALT at these study 
sites by Douglas et al. (2020), with the relative degree of influence 
dependent on insulative properties of overlying vegetation. These 
meteorological conditions are plotted for the study period in Figure 12. 
Considering these temporal controls, projected increases in summer 
temperatures and precipitation at boreal latitudes (Serreze et al. 2011; 
Stocker et al. 2013; Zhang et al. 2013) will likely lead to the continued 
increase of ALT in the future. The magnitude of ALT change will likely 
express differently by location however, following the spatial controls on 
ALT mentioned above. 

The notable changes in mean ALT for Interior Alaska sites represent the 
long-term permafrost state for the discontinuous region. Changes in ALT 
are less apparent in the Alaskan Arctic, where permafrost temperatures 
are the lowest among the study sites. 
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Figure 11. Mean ALT and soil temperatures for Interior Alaska sites, including (a) annual entire-
transect mean ALT for each Cold Regions Research and Engineering Lab (CRREL) site, and soil 

temperatures for actively thawing sites at (b) Creamer’s Field, (c) the Permafrost Tunnel, and (d) 
Farmer’s Loop. Soils at each site reach 0°C or higher at depths greater than 1 m by 2021. 
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Figure 12. Annual total precipitation and mean temperature for Fairbanks, Alaska (Alaska 
Climate Research Center 2023), for the period of ALT record. 

 

3.1.2 Continuous Permafrost Region - North Slope of Alaska 

While the deepening trend in ALT for Interior Alaska from 2013 to 2022 
illustrates change in the discontinuous permafrost region, ALT from sites on 
Alaska’s North Slope represent change in lower temperature (–2°C mean at 
1 m depth, Toolik Field Station) permafrost of the continuous permafrost 
region. Long-term ALT monitored by the CALM program was retrieved for 
a total of 8 sites to represent active layer changes in both the Arctic Foothills 
of the Brooks Range (Figure 13a), and the Arctic Coastal Plain (Figure 13b).  
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Figure 13. ALT averaged along transects for circumpolar active layer monitoring (CALM) sites 
in the Arctic Foothills (a) and Arctic Coastal Plain (b). Dashed lines represent trendlines for 

each data series.  
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While ecotype appeared to strongly influence small-scale spatial variability 
in ALT for the Interior sites, ecotypes differ minimally between moist or 
dry sedge or shrub tundra across Foothills sites. However, ALT generally 
decreases with increasing distance north from the Brooks Range, with 
greatest overall values near Galbraith Lake, where annual mean ALT 
averaged at 53 cm from 1995 to 2022 (n = 23). Annual mean ALT averaged 
47 cm at Toolik Lake (n = 56) and 50 cm at Imnavait Creek (n = 84) but 
only reached 42 cm at Happy Valley (n = 56) in the transition to the 
Coastal Plain. The gradient in average ALT across these sites may partially 
relate to the effect of increasing latitude on insolation, but other factors 
are evidently involved as mean ALT in Coastal Plain sites does not 
conform to a northward thinning gradient (Deadhorse average 65 cm, 
Atqasuk at 49 cm, etc.). Shiklomanov et al. (2010) evaluated the 
relationships between CALM-measured ALT and detailed landscape 
observations for Utqiaġvik on the Coastal Plain using variograms, and 
related ALT spatial variability with sediment texture and organic layer 
thickness. Therefore, the gradient of decreasing ALT with increased 
distance from the range front may relate to surficial geology whereas 
increasing distance from glacial catchments of the range results in fining 
texture class, which leads to lower conductivity when wet and slower thaw 
propagation in these areas. Precipitation patterns related to the orographic 
influence of the Brooks Range may play an additional role. 

Despite the spatial differences in mean ALT across the sites, the temporal 
variability in ALT at each follows a similar pattern over the 27-year period. 
Temporal controls on North Slope ALT have been commonly studied and 
are generally attributed to soil moisture content and the geological and 
meteorological conditions that influence it (Hinkel and Nelson 2003; 
Shiklomanov et al. 2010; Luo et al. 2016), as well as influences on soil 
thermal properties such as air temperature and snowpack thickness 
(Hinkel and Nelson, 2003; Shiklomanov et al. 2010; Luo et al. 2016). 
Consistent with these observations, the combination of low annual 
temperatures and consistent snowfall in 2002 correlates with the lowest 
ALT values across Foothills sites (Figure 14).  

Beyond interannual variability, longer-term change in ALT from 1995 to 
2022 is minimal in this region. For instance, Galbraith Lake and Toolik 
Lake exhibit 0% change while Imnavait Creek and Happy Valley show 
small ALT decreases of 6%. The mean interannual change in ALT is 0 cm 
across these sites with a maximum thickening of 12 cm from 2020 to 
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2021 and maximum thinning of 16 cm from 2019 to 2020 at Toolik 
caused by a decreased ALT in 2020 that was not experienced elsewhere. 
The greatest perturbation to the stability in ALT across the region was a 
decrease in 2002 of 2 to 10 cm across the sites. The potential driver for 
this decrease is minimal top-down thaw caused by low summer 
temperatures in 2002 (Figure 14).  

Figure 14. ALT averaged along transects for CALM sites in the Arctic Foothills of Alaska’s 
north slope. Climate data for Chandalar Shelf (Alaska Climate Research Center 2023). 

 

Mean ALT at sites on the Arctic Coastal Plain generally display low 
variability from 1995 to 2022 with the average ALT range of 17 cm for all 
sites (Figure 15). Interannual change averages at 0 cm for each of the 4 
sites but exhibits the highest range in Atqasuk where ALT decreased 12 cm 
from 2004 to 2005 but increased 21 cm from 2003 to 2004, likely due to 
changes in surface conditions as snowfall was variable during this period. 
Temporal change over this period diverges by region whereas the time-
series curves for Utqiaġvik and Atqasuk in the central Arctic share similar 
shapes, each differing from the temporal patterns of Deadhorse and Betty 
Pingo to the east. Comparisons of climatological data from NOAA Co-op 
meteorological sites (WRCC 2023) reveal similar mean annual 
temperatures for Utqiaġvik (–10°C) and Kuparuk (–11°C) but higher total 
snowfall throughout the year in Utqiaġvik as a potential mechanism. 
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Although ALT shows less of an apparent trend on the North Slope than in 
the Interior, subsidence records suggest that thaw in the last decade has 
potentially reached ice-rich layers at the top of permafrost for North Slope 
sites (Shiklomanov et al. 2010). Furthermore, the lack of ALT increase on 
North Slope soils may base from consolidation of active layer soils 
following thaw (Streletskiy et al. 2017), and it is likely that ground 
subsidence could lead to stable ALT measurements while the top of near-
surface permafrost migrated downward (Shiklomanov et al. 2013).  

Figure 15. ALT averaged along transects for CALM sites on the Arctic Coastal Plain of Alaska’s 
north slope. NOAA Cooperative Observer Program meteorological data from Desert Research 

Institute Western Regional Climate Center (2023). 

 

The overall low variability in ALT of North Slope sites compared to 
Interior sites represents different vertical extents of downward thaw 
propagation between the continuous and discontinuous permafrost 
regions, with nuances excluded by the ALT metric mentioned above. The 
repeat ALT measurements discussed in this section offer broadly spatially 
extensive coverage of active layer information but can be expanded further 
with machine learning approaches (see Zhang et al. 2021), or when 
coupled with geophysical techniques. The following section explores GPR 
applications for frost table detection in yet another permafrost setting, 
that of the Abisko Valley, Sweden, where soil temperatures are greater 
than Interior Alaska and permafrost is distributed more sparsely.   
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3.1.3 Geophysical Survey of Permafrost Distribution in Sweden 

Permafrost in Abisko, Sweden, is comparatively warmer (near 0°C at 5 m 
depth) than the previously discussed sites of the Interior and North Slope 
of Alaska and has undergone much degradation and thaw in recent 
decades (Johansson et al. 2011). Locating the permafrost distribution and 
depth in the Abisko region may therefore provide an analog of permafrost 
distribution and conditions for Alaska in the near future. The capacity of 
GPR for noninvasively probing water phase contacts along the permafrost 
freezing front offers the capability for mapping frost table depth, or lack 
thereof, at the catchment scale and was applied in Abisko for this purpose.  

The GPR traces either showed strong reflections at a subterranean interface 
between materials of contrasting permittivity, or were attenuated by excess 
surface moisture where present (Figure 17). The noted interface reflection 
may be sensitive to a number of stratigraphic contacts including (1) the 
organic-mineral soil contact with contrasting water content and therefore 
dielectric permittivity, (2) the redox boundary of soil minerals with differing 
porewater saturation and conductivities, (3) the groundwater table, and (4) 
the top of permafrost interface. The last interpretation is favored here, as 
the trace reflections tend to occur beneath topographic highs, suggesting 
potential frost mounds (surface elevated by ice content of soil beneath) or 
areas unaffected by thaw subsidence. Furthermore, the detected signal 
reflection consistently occurred at around 20 ns to 30 ns travel time, which 
roughly translates to 0.5 m to 1 m depth, comparable to ALT measured in 
the early 2000s for nearby Heliport, Kursflaket, and Mellanflaket, mires of 
around 50 cm to 80 cm (Åkerman and Johansson 2008). Despite the likely 
degradation since these reports, the ALT by Åkerman and Johansson and 
depth of GPR reflections from this study compare well since GPR surveys 
were collected in early August, likely before the thaw front reached its 
maximum extent for 2022. Alternatively, the detection of a shallow water 
table is possible, although groundwater in permafrost catchments is 
assumed to exist perched on the frost table (i.e., suprapermafrost baseflow) 
(Bense et al. 2009), making a detection of the water table roughly indicative 
of permafrost depth. Evaluation of the potential for the noted soil unit 
contacts to express in the GPR signal requires further testing and validation.  

Based on the interpretation of strong signal reflections on a frost table, the 
collection of survey transects together show the presence or absence of 
permafrost detections in the study area (Figure 16 and Figure 17). As 
mentioned, the trace reflections of a potential frost table are limited to 
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topographically higher areas such as the northern 25 m of Transect 3 (A to 
A′) and the northern 25 m of Transect 2 (B to B′), where the GPR survey 
transitioned from an elevated mound near the station (A and B′), down to 
a saturated low area (A′ and B). The lack of potential frost table detections 
in the low, poorly drained area to the south of the station are either caused 
by signal attenuation in a more highly saturated soil medium, the absence 
of a frost table in this area, or some combination of the two possibilities.  

Figure 16. Top, map of ground-penetrating radar (GPR) survey 
transects T1–5 near the Abisko Scientific Research Station in 

Abisko, Sweden. White arrows indicate the direction of GPR travel 
along each transect. Bottom, depths of GPR picks representing 

potential permafrost. 
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Figure 17. Annotated radargrams from transects 3 (a) and 2 (b) demonstrating example 
traces indicating a reflection on potential frost tables or attenuation of the radar signal due to 

saturated or nearly saturated conditions. 

 

Further field validation in the Abisko field area is required to resolve ALT 
from GPR, because minimal calibration data were available from the time 
of GPR survey for evaluating the trace interpretations discussed. Manual 
frost probe depths taken regularly along the GPR scan paths can be used to 
validate whether the depth of major reflections or absence thereof cooccur 
with probe refusal at a frost table. In lack of this information, other causes 
for the radar reflection such as the organic-mineral soil interface, soil 
redox boundary, or the water table cannot be excluded, and further lab 
testing is necessary to measure the local effect of soil organic-mineral and 
redox boundaries on GPR signals. 

Continued measurements of ALT, whether attained by manual thaw 
probing or GPR, will provide a consistent means for characterizing change 
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in permafrost depth into the future. Other techniques have developed for 
characterizing ALT over broad spatial scales, including use of machine 
learning to upscale manual ALT measurements based on biophysical 
controls. For an example of the application of this technique for Interior 
Alaska, please see Zhang et al. (2021). While ALT is a critical parameter for 
characterizing temporal and spatial trends in top-down permafrost thaw, 
ALT alone fails to represent localized effects of permafrost degradation. 
For instance, repeat ALT may overlook hot spots of surface change caused 
by thermokarst features, and fails to highlight localized biogeochemical 
processes and biophysical conditions in permafrost. The following section 
explores the application of repeat lidar for imaging surface expressions of 
permafrost thaw for Interior Alaska and explores various other short-term 
investigations of local character in permafrost-affected areas. 

3.2 Short-Term Investigations in Permafrost Regions 

3.2.1 Surface Change Hot Spots Viewed with Ground-Based Lidar 

Repeat annual measurements of landscape-scale changes across a terrain 
can inform model predictions that readily assess terrain conditions. For 
these measurements, lidar can be extremely useful as it allows for high-
resolution comparisons of ground surface elevation to illustrate zones of 
increased change, such as thermokarst hot spots and other degradational 
features, and can be employed in ground or aerial-based platforms (Kokelj 
and Jorgenson 2013; Rowland and Coon 2015; Douglas et al. 2016). In this 
study, a raster-based differencing of TLS-derived DEMs is explored to 
demonstrate the capability of lidar systems for change detection in 
permafrost terrain, where thaw-induced ground subsidence (sinking) or 
freeze-induced heave (rising) can commonly occur (see Barnhart and 
Crosby 2013; Marx et al. 2017; Anders et al. 2020 for demonstrations of 
point-cloud differencing in similar applications).  

Differencing of TLS-derived DEMs acquired at Site A above the 
Permafrost Tunnel on August 2017 from that acquired on June 2017 
(difference = June 2017 – August 2017) demonstrates a mean surface 
change of 8 cm increase (–0.08 differencing result, std. = 14 cm) over the 
2017 thaw season (Figure 18). The mean heave detected largely correlates 
with areas outside of a thaw trough feature centered in the scan zone while 
positive differencing values suggestive of subsidence are mainly focused 
along the trough (Figure 18). The detected mean heave versus subsidence 
may be attributed to surface water pooling from snowmelt and summer 
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precipitation or expansion of the moss substrate through water absorption 
by the time of scan acquisition in August. Alternatively, summer heave has 
been observed elsewhere and is thought to occur by downward transport 
of water in the thawed active layer to frozen sub-adjacent active layer or 
the top of permafrost (Mackay 1983), although observations on this 
mechanism of heave suggest it is generally more subtle than that detected 
at the Permafrost Tunnel. False heave caused by differences in scanning 
position or incidence angle between scans (Marx et al. 2017) is recognized 
as a possibility, although scan position and incidence angle were held 
constant for each acquisition.  

The maximum detected decreases of around 1 m occurred sporadically 
along the trench and most likely indicate locations of surface erosion or 
mass wasting, such as slumping. Difference values along the trough 
feature mainly indicate 0 cm to 50 cm of decrease. If interpreted as thaw-
induced subsidence, these rates far exceed that detected by TLS in Arctic 
Canada of under 10 cm (Marx et al. 2017), although the scan location in 
the Northwest Territories features colder permafrost than the actively 
degrading ice-rich yedoma found above the Permafrost Tunnel (Péwé, 
1975; Hamilton et al. 1988). Furthermore, the potential subsidence values 
at Site A are lower than that observed elsewhere (2 m–6 m) in Interior 
Alaska (Osterkamp et al. 2000). The detected differences may then be 
attributed to loss of excess ground ice (Shur et al. 2005), or localized 
erosion induced by thaw, but the influence from instrument effects caused 
by the differencing process should not be excluded (Marx et al. 2017; 
Anders et al. 2020).  

Figure 18. Terrestrial Laser Scanning (TLS)–derived digital elevation model (DEM) and DEM 
difference maps for Site A above the Permafrost Tunnel. Positive values indicate thaw 

subsidence, and negative values indicate heave. 
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Differencing of the DEMs scanned May 2018–August 2018 demonstrates 
a mean surface change of 6 cm decrease (0.06 differencing result, 
std. = 12 cm) over the 2018 thaw season in contrast to 2017. However, 
the mean is affected by an artificial “hot spot” of 2 m subsidence that is 
noticeable along the thaw trench where occlusion likely resulted from a 
thick accumulation of deadfall under a section of drunken forest. The 
absence of this artefact in the 2017 scan is likely due to increased 
stacking of deadfall from 2017 to 2018. An artificial heave effect caused 
by surface water pooling may be similar for the thaw season of 2018, as 
summer precipitation and snowpack the preceding winter are 
comparable to that of 2017. Detected differences along the thaw trough 
display greater subsidence or loss to erosion in 2017 than that of 2018 
and generally featured approximately 50 cm to 1 m of decrease in 2017 
versus approximately 0 cm to 50 cm of decrease in 2018. This level of 
interannual variability may be expected due to differences in various 
physical conditions from year to year (Shiklomanov et al. 2010; Bartsch 
et al. 2019; Douglas et al. 2020). 

For each scan at Site A, anomalous difference values were detected along 
the northwest periphery of the scan area where such changes are unlikely, 
suggesting those values were an artefact of decreased point cloud density at 
the limit of the scan range. These anomalies were excluded to remove their 
influence on the whole-scan statistics. Other effects caused by vegetation 
interference or occlusion may affect differencing results (Cifuentes et al. 
2014; Fan et al. 2o14; Anderson et al. 2018), although these effects are 
mitigated by the applied methodology of scanning from multiple positions 
and a consistent, low incidence angle (Marx et al. 2017). 

At Site B, scans were performed later into the thaw season and the 
May 2018–October 2018 difference raster (Figure 19) produced a mean 
value of −12 cm (std. = 10 cm), or mean surface heave. Overall, 
subsidence values of around 50 cm are comparable to that of Site A. 
However, unlike Site A, these subsidence values were less confined to the 
trough feature and seem more distributed across the scan area. This may 
be a result of scan timing and downward thaw propagation, with thaw 
reaching ice-rich permafrost (Shur et al. 2005; Zwieback and Meyer 
2021) by the later scanning date of October at Site B, resulting in greater 
widespread subsidence than that achieved outside of the trough feature 
in August at Site A. 
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Figure 19. TLS-derived DEM and DEM difference map for Site B above the Permafrost Tunnel. 
Positive values indicate thaw subsidence, and negative values indicate heave. 

 

Overall, the raster-based difference maps demonstrate substantial 
detections of elevation differences above the Permafrost Tunnel at the 
seasonal scale, especially along the “hot spot” trough feature at Site A. The 
difference results outside of this hot spot suggest a combination of heave 
and subsidence values, which may partially represent differential thaw 
settlement (Streletskiy et al. 2017), or some degree of surface water 
pooling effects. Differencing over greater time scales is likely to illustrate 
more drastic surface changes along the thaw features as erosion continues 
with permafrost degradation. The application of a raster differencing used 
in this study is susceptible to sampling and occlusion effects as mentioned, 
and point-cloud differencing is increasingly applied. Marx et al. (2017) 
report that plausible refinement of subsidence at the millimeter scale is 
achievable when a point cloud difference is applied correctly. Therefore, 
application of point-based differencing (Eitel et al. 2016) on future scans 
may yield refined deformation rates above the Permafrost Tunnel.  

3.2.2 Permafrost Geochemistry 

Geochemical cycling and elemental transport in permafrost is heavily 
impacted by vertical thaw extent, as the majority of subsurface water flow 
occurs within the active layer (McNamara et al. 1997) where mineral 
weathering and mobilization of trace elements may occur (Barker et al. 
2014). Likewise, elemental distributions in permafrost soils and surface 
waters may be suggestive of active layer processes and thaw status, and 
may indicate the potential for trace metal transport to surface waters. To 
visualize the mobility of trace metals in soils above the Permafrost Tunnel, 
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trace metal concentrations were quantified for bulk soils subsampled from 
a 100 cm SIPRE core (Figure 20). Concentrations were highest in Fe, Al, 
and Mg and generally decrease downcore with the most abrupt change 
occurring from 31 to 74 cm. Much lower concentrations were observed for 
Ba, Cr, Cu, Ni, Mn, and Zn, each showing a minor increase with depth 
before reaching 31 cm, from where concentrations begin to decrease with 
depth for each element. 

The core was collected on 7 May 2018 when seasonal thaw extent was 
minimal. These concentrations therefore likely represent the vertical 
distribution of trace metals from the time freezing ensued the previous 
fall. At that time, top-down thaw would have reached its maximum extent, 
allowing for liquid water passage through the full active layer thickness. 
The concentrations of most metals were enriched near 50 to 75 cm depths, 
likely indicating the active zone for water transport perched above the top 
of permafrost, and below the top-down freezing front. Downward leaching 
of metallic minerals and metal complexes with increasing moisture 
conditions may occur as the active layer thaws, leading to the 
accumulation of this illuvium above the frost table, below which further 
downward leaching is impeded. One exception to this general distribution 
trend is manganese, with enriched values at the ground surface. 
Manganese is known to accumulate in surface soils as a result of plant 
uptake and release at the end of the growing season (Li et al. 2021). 

Figure 20. Soil concentrations of chromium (Cr), copper (Cu), nickel (Ni), zinc (Zn), manganese 
(Mn), barium (Ba), aluminum (Al), iron (Fe), and magnesium (Mg) sampled from a permafrost 

core taken above the Permafrost Tunnel. 

 

The distribution of metals along a common depth is a likely indicator of 
groundwater transport and redox behavior, creating the potential for trace 
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metal sourcing to surface waters. Given sufficient loading, large metal 
concentrations in surface water can impact water quality. Further analysis 
of metal speciation, such as ferrous versus ferric iron, will lend insight to 
solubility and transportability of metals throughout the soil profile, and 
may aid with assessing this interpretation (Barker et al. 2023). 

For a detailed analysis of the effects of permafrost thaw on mineral 
weathering, trace metal distribution in soil, and trace metal transport to 
surface waters, see Barker et al. (2014) and Barker et al. (2023). 

3.2.3 Microbial Community Profiling 

Microbial communities in soil are structured by many environmental 
factors such as temperature, moisture, and vegetation (Moyano et al. 2013; 
Fierer 2017). Microbial community structure and function influence 
ecosystem-level processes such as soil strength, carbon and nutrient 
cycling, and plant-microbe interactions (Van Der Heijden et al. 2008; 
Vishwakarma et al. 2020). Permafrost thaw induced by climatic warming 
activates microorganisms and subsequently leads microbial communities 
to rearrange or assemble with new community members (Barbato et al. 
2022) with major differences in metabolic processes occurring between 
frozen and thawed conditions (Messan et al. 2020). By applying assembly 
theory to the permafrost microbiome, the balance between stochastic (i.e., 
random) or deterministic (i.e., driven by environmental factors) processes 
(Ernakovich et al. 2022) can be estimated. In permafrost-affected soils in 
Abisko, Sweden, stochastic processes dominate immediately following 
thaw, before deterministic processes eventually become more prevalent 
(Doherty et al. 2020). This technique combined with microbial 
characterization of soils enable predictions of microbial community 
response to disturbance such as thaw. We present here various datasets of 
microorganism characteristics in Arctic soils. 

Microbial communities were profiled at various field sites across Alaska 
and northern Europe from 2015 to 2023 (Table 4). In general, microbial 
datasets consist of replicate soil samples where microbial community 
structure is described as the relative abundance of an individual amplicon 
sequence variants (ASV) (Callahan et al. 2017) down to a particular 
taxonomic level depending on the best match to the sequencing database. 
These data were derived from high throughput marker-gene sequencing 
data using the 16S rRNA marker gene for profiling bacterial and archaeal 
communities and the internal transcribed spacer (ITS) gene for profiling 
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fungal communities. For a limited number of sites (e.g., the Permafrost 
Tunnel and Storflaket Mire, Sweden), shotgun metagenomics data were 
collected representing all genes of all organisms present in a soil sample, 
from which functional annotation of the microbial communities can be 
inferred. This technique enables characterization of microbial taxonomy 
and potential function. Microbial abundance measured via quantitative 
polymerase chain reaction (qPCR) was determined for several sites. 
Extracellular enzyme activity and soil respiration was measured across 
different temperatures and moistures for some of the soils collected. 

Microbial datasets were often accompanied by measurements of soil 
properties (e.g., pH, gravimetric water content, and organic matter 
content). Bulk soil collected from some of the field sites was characterized 
by generating water retention curves for various lab experiments. These 
curves describe the relationship between soil water content and the force 
with which water is held in soil pores. 

Geospatial visualization of soil microbial datasets is limited and primarily 
includes taxonomic identity of community members as static points in 
time. This is largely due to the limited understanding of microbial 
community equilibrium through time, resiliency after disturbance, and 
ability to extrapolate point observations across space. Information 
regarding microbial community structure and function could provide 
Army operations with awareness of environmental threats or microbial 
contributions to physical properties in the terrain. Included in the final 
section of this report is a conceptualized spatial visualization of a 
microbial dataset (Figure 21). The relative abundances of the top taxa are 
shown for a given timepoint that the soil was last analyzed. Similar 
visualizations of microbial community function could be applied at various 
locations across the Arctic. 
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Figure 21. Conceptual diagram of geospatial visualization of microbial community data across 
field sites. 
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Table 4. Collection of microbiological datasets, sampling efforts, and publications 
associated with this study. 

 

Sampling Site Data 
Category

Sample 
Type

Dataset Details Initial 
Sampling 
Date

Latest 
Sampling 
Date

Related 
Publication

Utqiagvik, AK
Soil, 
Microbial surface soil

amplicon sequencing - 
bacterial and fungal 
communties 2015 2018

Barbato et al., 
2017

Utqiagvik, AK
Soil, 
Microbial surface soil

qPCR - bacteria, fungi, 
petroleum degradation 
genes 2015 2018

Barbato et al., 
2017

Utqiagvik, AK Soil surface soil

soil properties - 
gravimetric water 
content, organic 
matter content, pH 2015 2018

Barbato et al., 
2017

Utqiagvik, AK Soil surface soil

petroleum chemistry - 
aromatic, aliphatic, 
VOC, BTEX, GRO, DRO, 
RRO 2015 2018

Barbato et al., 
2017

Utqiagvik, AK
Soil, 
Microbial surface soil

amplicon sequencing - 
bacterial and fungal 
communties 2015 2018

Barbato et al., 
2017

Utqiagvik, AK
Soil, 
Microbial surface soil

qPCR - bacteria, fungi, 
petroleum degradation 
genes 2015 2018

Barbato et al., 
2017

Utqiagvik, AK Soil surface soil

soil properties - 
gravimetric water 
content, organic 
matter content, pH 2015 2018

Barbato et al., 
2017

Utqiagvik, AK Soil surface soil

petroleum chemistry - 
aromatic, aliphatic, 
VOC, BTEX, GRO, DRO, 
RRO 2015 2018

Barbato et al., 
2017

Utqiagvik, AK
Soil, 
Microbial permafrost

amplicon sequencing - 
bacterial and fungal 
communties 9/24/2018 9/26/2018

Utqiagvik, AK Soil permafrost

soil properties - 
gravimetric water 
content, organic 
matter content, pH 9/24/2018 9/26/2018

Interior AK
Soil, 
Microbial surface soil

soil heterotrophic 
respiration from lab 
incubation 2018 2018

Interior AK Soil surface soil water retention curve 2018 2018

Interior AK Soil surface soil

soil properties - 
carbon, nitrogen, 
particle size, soil 
texture, pH, 
phosphorus, 
potassium, 
magnesium, GWC, 
WHC 2018 2018

Interior AK
Soil, 
Microbial surface soil

extracellular enzyme 
activity 2018 2018

Interior AK
Soil, 
Microbial surface soil

amplicon sequencing - 
bacterial and fungal 
communties 2018 2018

* 
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Table 4 (cont.). Collection of microbiological datasets, sampling efforts, and publications 
associated with this study. 

 

Fairbanks, AK
Peat, 
Microbial peat

amplicon sequencing - 
bacterial and fungal 
communties 2015 2016

Fairbanks, AK
Peat, 
Microbial peat

extracellular enzyme 
activity 2015 2017

Fairbanks, AK Peat peat

soil properties - 
gravimetric water 
content, pH, Eh 2015 2017

Fairbanks, AK
Peat, 
Microbial peat

amplicon sequencing - 
bacterial and fungal 
communties 2015 2016

Fairbanks, AK
Peat, 
Microbial peat

extracellular enzyme 
activity 2015 2017

Fairbanks, AK Peat peat

soil properties - 
gravimetric water 
content, pH, Eh 2015 2017

Fairbanks, AK
Peat, 
Microbial peat

amplicon sequencing - 
bacterial and fungal 
communties 2015 2016

Fairbanks, AK
Peat, 
Microbial peat

extracellular enzyme 
activity 2015 2017

Fairbanks, AK Peat peat

soil properties - 
gravimetric water 
content, pH, Eh 2015 2017

Fairbanks, AK
Soil, 
Microbial surface soil

amplicon sequencing - 
bacterial and fungal 
communties 2021 2021

Fairbanks, AK
Soil, 
Microbial surface soil

soil heterotrophic 
respiration from lab 
incubation 2021 2021

Fairbanks, AK Soil surface soil water retention curve 2021 2021

Fairbanks, AK Soil surface soil

soil properties - 
carbon, nitrogen, 
particle size, soil 
texture, pH, 
phosphorus, 
potassium, 
magnesium, GWC, 
WHC Fall 2020 Fall 2020 

Fairbanks, AK
Soil, 
Microbial permafrost

shotgun metagenomes 
from 5 locations - 
microbial community 
and function, frozen 
and thawed 2017 2017

Barbato et al., 
2022

Fairbanks, AK Soil permafrost

soil properties from 5 
locations - gravimetric 
water content, organic 
matter content, pH 2017 2017

Barbato et al., 
2022

Fairbanks, AK
Soil, 
Microbial surface soil

amplicon sequencing - 
bacterial and fungal 
communties 2021 2021

Fairbanks, AK
Soil, 
Microbial surface soil

soil heterotrophic 
respiration from lab 
incubation 2021 2021
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Table 4 (cont.). Collection of microbiological datasets, sampling efforts, and publications 
associated with this study. 

 
*VOC (volatile organic compounds), BTEX (benzene toluene ethylbenzene xylenes), GRO (gasoline range organics), DRO 

(diesel range organics), RRO (residual range organics), GWC (gravimetric water content), and WHC (water holding 
capacity). 

Fairbanks, AK Soil surface soil water retention curve 2021 2021

Fairbanks, AK Soil surface soil

soil properties - 
carbon, nitrogen, 
particle size, soil 
texture, pH, 
phosphorus, 
potassium, 
magnesium, GWC, 
WHC Fall 2020 Fall 2020 

Abisko, 
Sweden

Soil, 
Microbial

1 m depth 
profile

amplicon sequencing - 
bacterial and fungal 
communities, frozen 
and thawed 2019 2019

Doherty et al., 
2020

Abisko, 
Sweden Soil 

1 m depth 
profile

soil properties - 
gravimetric water 
content, pH, carbon 
content, nitrogen 
content 2019 2019

Doherty et al., 
2020

Abisko, 
Sweden Soil 

1 m depth 
profile

shotgun metagenomes 
- microbial community 
and function, frozen 
and thawed 2019 2019

Doherty et al., 
2020

Interior AK
Soil, 
Microbial permafrost

amplicon sequencing - 
bacterial and fungal 
communties 10/1/2018 10/1/2018

Interior AK Soil permafrost

soil properties - 
gravimetric water 
content, organic 
matter content, pH 10/1/2018 10/1/2018

Interior AK
Soil, 
Microbial permafrost

amplicon sequencing - 
bacterial and fungal 
communties 9/28/2018 9/28/2018

Interior AK Soil permafrost

soil properties - 
gravimetric water 
content, organic 
matter content, pH 9/28/2018 9/28/2018

Fairbanks, AK
Soil, 
Microbial permafrost

amplicon sequencing - 
bacterial and fungal 
communties 2017 2017

Fairbanks, AK
Soil, 
Microbial permafrost

shotgun metagenomes 
- microbial community 
and function, frozen 
and thawed 2017 2017

Fairbanks, AK Soil permafrost

soil properties - 
gravimetric water 
content, organic 
matter content, pH 2017 2017

Interior AK
Soil, 
Microbial

1 m depth 
profile

amplicon sequencing - 
bacterial and fungal 
communties 2019 2019 Baker et al., 2023

Interior AK Soil 
1 m depth 
profile

soil properties - 
gravimetric water 
content, organic 
matter content, pH 2019 2019 Baker et al., 2023

Interior AK Soil 
1 m depth 
profile

soil metal 
concentrations 2019 2019 Baker et al., 2023
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3.2.4 Root Strength 

The preceding subsections explored biogeochemical variables associated 
with permafrost conditions that can be indicative of change over time. 
This section instead summarizes the results on vegetation root strength 
as a control on soil strength of permafrost soils in the boreal forest region 
of Alaska. 

Shear vane samples were tested for the various ecotypes of the Farmer’s 
Loop and Creamer’s Field study sites to represent variability in the boreal 
forest biome. 905 shear vane samples from conifer forest cover produced a 
mean of 30.58 KPa (standard error = 3.95), while 700 samples for mixed 
canopy forest averaged at 46.07 KPa (standard error = 6.03), potentially 
due to the greater presence of woody shrub and grass understory in mixed 
canopy taiga versus coniferous canopy understory. The highest root 
strength values observed were in tussock tundra, where 420 shear vane 
samples were collected between tussock mounds, producing a mean of 
47.91 KPa (standard error = 8.12). Together, these results suggest greatest 
ground surface integrity in tussock fields, although the rugged 
microtopography of these ecotypes makes them nearly impassible. Among 
the forested taiga ecotypes, ground surface strength is likely greater under 
mixed canopies, due to higher shear vane values.  

The shear vane data are important parameters to consider when informing 
models of surface stability in each of these ecotypes, ultimately assisting 
with terrain condition projections in the future. The last environmental 
control on surface conditions discussed in this study, is snowpack depth, 
as snow can create immediate challenges to ground mobility during winter 
months at boreal latitudes, and over longer periods in the Arctic. 

3.3 Temporal and Spatial Trends in Snowpack Depth 

Snowpack can be highly variable in boreal forest ecosystems, largely due to 
vegetation cover (Douglas and Zhang 2021), causing spatially heterogenous 
challenges to ground transportation. The depth and distribution of 
snowpack also relates to snow water equivalent (SWE) which is not only 
used to project water resources (Jonas et al. 2009; Sturm et al. 2010; Hill et 
al. 2019) but may assist in anticipating areas prone to surface saturation 
upon spring runoff, with ramifications for assessing spring-time operations. 
Understanding the distribution of snowpack and potential controls can 
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therefore enhance both operations planning and water resource studies in 
northern regions. 

Repeat annual snow depth measurements at long-term CRREL survey 
transects have produced 9–10 years of data for the Interior Alaska sites to 
date. Temporal variability in transect-averaged snow depths throughout 
this period follow similar patterns across the sites (Figure 22) which is 
expected given meteorological controls on snow accumulation versus loss 
at the regional scale. As discussed in Douglas and Zhang (2021), Fairbanks 
experienced the warmest winter on record in 2015–2016 which currently 
remains true and correlates with the lowest measured snow depths across 
the sites. Conversely, the 2017–2018 winter temperatures fell below the 
2013–2022 mean of –11°C, and snow depths were approximately 40 cm 
greater than the preceding winter (nearly double) across sites. From the 
2019–2020 winter to March 2023, winter temperatures remained at or 
below the mean minimum temperature of –13°C for the study period and 
total snowfall averaged above the period of study mean of 237 mm. During 
this timeframe the transect-averaged snow depth exceeded the local 
averages in Creamer’s Field (mean = 60 cm, exceeded 2019-2020 and 
2020–2021), Farmer’s Loop (mean = 67 cm, exceeded 2019–2020, 2020–
2021, and 2021–2022), and at the Permafrost Tunnel (mean = 62 cm, 
exceeded 2021–2022 and 2022–2023), together demonstrating a general 
increase in snowpack thickness over the last 10 years. However, given the 
century-scale trend in increased winter temperatures for Fairbanks 
(Wendler and Shulski 2009), a trend towards shorter and milder winters 
is expected to continue (Littell et al. 2018; Lader et al. 2020) with the 
potential for increased ablation or altogether altered snow accumulation 
patterns (McAfee et al. 2014; Winski et al. 2017). 

While annual weather strongly influences the mean snowpack thickness 
across sites interannually, spatial variability in snow depth within sites 
tends to correlate with ecotypes present along the transects (Douglas and 
Zhang 2021). Figure 23 displays these ecotype-snow depth relationships 
that continue to support the patterns identified in Douglas and Zhang 
(2021), with the deepest snowpacks generally observed in tussock tundra 
that lacks continuous canopy cover to intercept snow. Coniferous forest, 
mainly dominated by spruce, supports nearly comparable snowpack to 
tussock tundra, with prior studies relating small-scale variability in the 
coniferous forest snowpack to tree density as a barrier to wind 
redistribution (Hedstrom and Pomeroy 1998; Pugh and Small 2013). In 
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these environments troop mobility can undergo significant hinderance by 
the combination of dense tree cover with deep snow. 

Figure 22. Transect-averaged snow depths along the interior-Alaska survey transects for the 
period of record (top) and meteorological data from Fairbanks, Alaska. (Data from Alaska 

Climate Research Center 2023.) 

 

Transect extents passing through wetland had slightly lower snow depths 
than those passing through tussock fields and spruce forest (Figure 23), 
likely due to their sporadic cover of black spruce (P. mariana), tamarack 
(Larix laricina), and various shrubs (Rhododendron sp. Vaccinium 
uliginosum) creating inconsistent cover for wind protection and canopy 
interception across space. Overall, mixed canopy forest supported the 
shallowest snowpack as multiple levels of tree and shrub canopy and dense 
shrub cover beneath deciduous trees may store intercepted snow for long 
periods, where it may sublimate instead of contributing to the snowpack 
(Essery et al. 2003; Pomeroy et al. 2012; Douglas and Zhang, 2021). 
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In addition to impacting surface trafficability, the seasonal snowpack can 
influence the thermal regime of underlying soil (Zhang et al. 2001; 
Stieglitz et al. 2003), as early-season snowpack can affect shallow 
permafrost temperatures during winter months (Yi et al. 2019; Jan and 
Painter 2020). Early winter snowpack can reduce winter refreeze of active 
layer soils and has been identified as a control on microbial decomposition 
potentials through arctic winters (Ricketts et al. 2016). Therefore, the 
anticipated alterations to winter precipitation patterns across Alaska and 
the global Arctic hold the potential of impacting active layer refreeze and 
high-latitude carbon storage.  

Snowpack thickness is furthermore an essential consideration for water 
resource studies as SWE calculations from remote sensing radar platforms 
require accurate snow depths (Deeb et al. 2011). Depending on the 
densities of snowpack layers, SWE is expected to be highest for deeper 
snow depths in the boreal biome (Sturm et al. 2010), which may result in 
the greatest surface water content in tussock tundra and conifer forest 
following spring melt, potentially degrading the integrity and particle 
cohesion of surface soils in these ecotypes seasonally. 

Various methods are in development for measuring snowpack thickness 
and SWE, including various satellite-based remote detection instruments 
(e.g., Liu et al. 2013; Wang et al. 2020), airborne systems (NASA SnowEx 
Alaska campaign), and GPS reflectometry (Boniface et al. 2015; Jin et al. 
2016; Larson 2016). Continued manual measurements of snowpack 
thickness along these transects will allow for robust ground truth 
information for developing snow depth algorithms and will allow for 
refined modeling of the controls on snow depth in boreal forest 
environments. Furthermore, the spatial relationships between snowpack 
depth and biophysical settings have been exploited to upscale these 
manual point measurements. For recent applications of machine learning 
in upscaling these point measurements of snow depth to the landscape 
scale, see Douglas and Zhang, (2021). 
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Figure 23. Snow depths along the CRREL transects at Farmer’s Loop (a and b) and Creamer’s 
Field (c) from 2014 to 2020. 
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3.4 Data Visualization and Management for Arctic Field Site 
Collaboration 

Geospatial data visualization has proven useful in all stages of the project 
timeline, from early site scouting to field-based digital data recording late 
in the iteration stages. The logistical challenges involved with reaching 
arctic and boreal field sites necessitates well-planned field campaigns, 
including the review of accurate geospatial information when selecting 
field sites and the capability to access this information when in the field. 
This allows researchers to make changes when necessary, or even to 
digitally record spatial observations in a geospatially explicit format. 
Additionally, in collaborative studies, managing spatial data as shapefiles 
makes sharing and updating files in collective access possible. 

Offline access to shapefiles in the field has proven particularly useful as it 
offers conveniences that enhance field work efficiency and sampling 
accuracy. In site scouting and planning stages, polygon shapefiles 
containing information about land administration agencies (USDOI 2022) 
and soil taxonomic groups (USDA, n.d.) were acquired from the respective 
agency geospatial hubs and made available for offline use in AGOL prior to 
field sampling. This allowed researchers to refer to maps of land 
ownership and soil types when choosing sampling locations. The built-in 
GPS capability of mobile devices allowed for real-time positioning within 
the shapefiles for accurate reference to the polygon units. During the field 
sampling stage, the field-based mapping capability of ArcGIS mobile apps 
is useful for simultaneously recording the location of survey points as 
vector features while digitally recording observations as attribute text. This 
saves the steps of digitizing hand-written field notes and transferring GPS 
coordinates into map points.  

In addition to collecting spatial data in real time as noted above, results 
from lab analyses may be entered into the geospatial environment through 
file conversion from tabular results to attribute information. Subsequent 
spatial visualization of analytical results can then be viewed in the field to 
inform sampling or to supplement new observations. For example, a 
conceptualized microbial community composition demonstrated in Figure 
21 is linked to survey locations to make spatial trends and relationships 
clear. In the case of this example, multiple vector files representing 
multiple sampling dates and their respective community profiles would 
allow for easier comparisons of community structure and distribution 
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through time. Viewing this data in remote field settings would allow an 
operator to refer to the distribution of microbial communities for a greater 
awareness of microbial contributions to physical terrain properties such as 
soil strength.  

Shapefiles linking spatial information to survey or potentially analytical 
results are easily shared amongst collaborators for geospatial 
visualization in GIS and export to tabular formats for use in other 
programs. However, the benefits of these digital methods are met with 
the limitations of operating mobile devices in field settings, such as 
battery life, processing speed, storage capacity, and device durability. 
Therefore, these limitations should be recognized and accounted for 
(external batteries, waterproof cases, etc.) before preparing to rely on 
mobile mapping and data collection platforms.  



ERDC TR-24-4 63 

 

4 Recommendations and Conclusions 
4.1 Recommendations 

The accuracy and reliability of terrain predictions depend closely on the 
diversity of field observations and their linkage to controls. Due to 
logistical challenges and time constraints, not all methods were performed 
for each site, inhibiting straight across comparisons of all methods for 
each region. A standardization of repeat measurement parameters across 
sites may prove necessary in order to enhance comparisons across regions.  

Continuation of long-term monitoring and enhanced spatial coverage of 
sites in future studies will allow for better isolation of controls on terrain 
conditions and illustration of trends, ultimately improving projections of 
land conditions to unknown areas. Recommended work for the future 
includes the following: 

• Continued monitoring of ALT and snow depth on long-term CRREL 
survey transects 

• Linkage of ALT with surface moisture conditions in various geological, 
topographical, biological, and hydrological settings 

• Development of repeat GPR surveys of ALT at the catchment scale in 
representative boreal and tundra study sites 

• Laboratory experiments to determine the effect of site-specific soil 
organic content and redox state on soil dielectric permittivity and 
resistivity 

• Time-lapse implementation of ERT to monitor changes in subsurface 
water phases in permafrost regions 

• Further exploration of the implementation of TLS and other lidar 
platforms in accurately characterizing surface change 

• Continued monitoring of surface elevation above the Permafrost 
Tunnel and in other Army training lands with TLS to characterize 
change over time 

• Modeling of soil biogeochemical processes that impact terrain state 
• Monitor soil and freshwater biogeochemistry in permafrost catchments 

to visualize changes over time and evaluating relationships between 
freshwater geochemistry and permafrost degradation 

• Model terrain conditions based on observations made in this study, 
followed by field validation of their accuracy 
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• Enhance projections of how, where, when, and at what rates future 
climate change will affect terrain state conditions 

• Test the applicability of detailed datasets from Interior and Arctic 
Alaska to serve as analogs for other boreal and arctic regions 

• Develop geospatial analyses and machine learning frameworks that can 
allow ingestion of new datasets, particularly where repeat 
measurements are made annually 

• Broad application of aerial-based remote sensing measurements in all 
seasons 

• Develop a streamlined integration of remotely sensed and ground-
based measurements into near real-time geospatial displays for 
warfighter and land manager use 

4.2 Conclusions 

As US Army operations continue to evolve in cold regions, the importance 
of terrain analysis will grow in suit. Applications of satellite, manned 
aircraft, and unmanned aerial systems, and remote sensing are leading to 
near real-time assessment of terrain surface conditions. However, before 
recently acquired data can be used to project terrain conditions over space 
and time, the relationships between remotely sensed and field-based 
measurements must be well synthesized. This report highlights methods 
for characterizing critical parameters that are influential on terrain 
conditions including permafrost characteristics, ground surface 
topography, and snowpack thickness. The primary focus is directed to 
Interior and Arctic Alaska permafrost terrains that are experiencing 
increased interest for Department of Defense training and infrastructure 
development. As high latitudes continue to warm, the seasonal 
uncertainties in terrain state conditions will continue to pose new 
challenges. In response, this report identifies a variety of field and 
laboratory measurements that establish a broad baseline for translating 
remote assessments into high-resolution understanding of local 
permafrost, vegetation, and snow conditions. 

Temporal trends in ALT were noticeable at the regional scale while spatial 
trends were identified at the local scale and are likely influenced by land 
cover. A long-term trend of ALT deepening was noticeable for warmer 
soils of the Interior Alaska sites, but colder soils of Alaska’s North Slope 
demonstrated little ALT change over the study period. In the warm and 
nearly sporadic permafrost of the Abisko Valley, Sweden, GPR surveys 
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near the research station demonstrated a snapshot of potential permafrost 
distribution in the area, with possible signal reflections from frost tables 
generally restricted to topographically higher areas. Alterations to surface 
elevation related to permafrost degradation were explored through TLS 
surveys which demonstrates potential for characterizing surface change 
over various spatial scales and identifying thermokarst hot spots such as 
the actively subsiding trough above the CRREL Permafrost Tunnel. 
Snowpack depths demonstrated a consistent temporal variability across 
Interior Alaska sites and spatial variability with relationship to land cover 
types, likely as a control on canopy interception of falling snow and 
barriers to wind redistribution. Each of these observations can inform 
models of terrain conditions in boreal and tundra environments to aid in 
the success of troop operations in these highly diverse settings. 
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