Water Operations Technical Support (WOTS) and Dredging Operations Technical Support (DOTS)

Proceedings from the Basin Sediment Management for Unique Island Topography Workshop, Mayagüez, Puerto Rico

Rhonda Fields, Damarys Acevedo-Acevedo, Burton C. Suedel, E. Michelle Bourne, Pat Deliman, Carlos Ruiz, Jack Milazzo, Ismael Pagán-Trinidad, Luis Villanueva-Cubero, Dave Hampton, Billy Johnson, and Tim Dekker

October 2023

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
Cover Photo:

Boquilla Nature Reserve at the La Boquilla Village and El Seco communities in Mayagüez, Puerto Rico. This site is where saltwater from Mayagüez beach mixes with freshwater from the Caño Boquilla. While residents in the surrounding communities continue to face major flooding events, they are not willing or are unable (due to social or economic challenges) to relocate (photo by Damarys Acevedo-Acevedo).

The US Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation’s public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirs.net/client/default.
Proceedings from the Basin Sediment Management for Unique Island Topography Workshop, Mayagüez, Puerto Rico

Damaris Acevedo-Acevedo, Burton C. Suedel, E. Michelle Bourne, Pat Deliman, and Carlos Ruiz

Environmental Laboratory (EL)
US Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Rhonda Fields

Regional Planning and Environmental Center
US Army Corps of Engineers, SWF
819 Taylor Street
Fort Worth, TX 76102

Ismael Pagán-Trinidad

University of Puerto Rico, Mayagüez Campus
Department of Civil Engineering and Surveying
Road PR 108
Mayagüez, PR 00681

Luis Villanueva-Cubero

Federal Emergency Management Agency – JRO
Road PR 165
Guaynabo, PR 00968

Dave Hampton, Billy Johnson, and Tim Dekker

LimnoTech
501 Avis Drive
Ann Arbor, MI 48108

Jack Milazzo

USACE New Orleans District
7400 Leake Avenue
New Orleans, LA 70118

Final report

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Prepared for US Army Corps of Engineers
Washington, DC 20314-1000

Under Water Operations Technical Support (WOTS) and Dredging Operations Technical Support (DOTS) programs, Funding Account Code: U4384227; AMSCO Code: 086000
Abstract

This report summarizes the Basin Sediment Management for Unique Island Topography Workshop hosted in-person and virtually at the University of Puerto Rico Mayagüez (UPRM) Department of Civil Engineering and Surveying, Mayagüez, Puerto Rico on 11 March 2022. The workshop was attended by approximately 80 federal, state, local, and academic organizations participants. It focused on Engineering With Nature® (EWN®), green infrastructure (GI) and low impact development (LID) opportunities for unique tropical island topography and included seven presentations from subject matter experts, a discussion on limitations and problems with prior projects, and two concurrent breakout sessions.

Preworkshop activities included a field trip to multiple sites in the Añasco watershed conducted 09 March 2022, which served as a base case for the workshop. The field trip provided participants a unique perspective of the island’s topography and post 2017 Hurricane María issues and impacts.

During the breakout sessions, participants identified new project opportunities for EWN®-GI and LID at two selected sites from the field trip. Each group developed alternatives for their chosen site and identified concepts that could turn into great opportunities for the surrounding communities and significantly benefit the state of practice in Puerto Rico’s unique tropical island topography.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
Contents

Abstract ... ii

Contents ... iii

Figures ... v

Preface .. vi

1 Introduction... 1
 1.1 Background ... 1
 1.2 Purpose ... 3
 1.3 Objectives .. 3

2 Agenda and Workshop Structure ... 4
 2.1 Pre-symposium field trip ... 4
 2.2 Welcome and Introductions ... 6
 2.3 Setting the stage ... 6
 2.4 Defining the system opportunities ... 7
 2.5 Prior experience with island EWN®-GI-LID construction ... 8
 2.6 Limitations and problems with prior projects ... 9
 2.7 Breakout session: Brainstorm new design measures: Challenges and opportunities 9

3 Report Out ... 10
 3.1 Group one .. 10
 3.1.1 Living laboratory concept .. 11
 3.1.2 Environment ... 13
 3.1.3 Education ... 14
 3.1.4 Social/recreation ... 15
 3.2 Group Two ... 21
 3.2.1 Infrastructure resilience: the ‘River Lance’ ... 21
 3.2.2 Advantages ... 24
 3.2.3 Disadvantages .. 25
 3.2.4 Additional questions .. 26
 3.2.5 Removing barriers to implementation: Policy opportunities 26
 3.2.6 Further research .. 28

4 Summary, Review, and Next Steps ... 29
 4.1 Summary and review .. 29
 4.2 Next steps ... 30

References .. 32

Acronyms and Abbreviations ... 124

Appendix A: Participant List ... 33
Figures

Figure 1. Key elements of EWN® projects. .. 7
Figure 2. Ajíes Dam Location Map. (Source: Google Maps 2022). 11
Figure 3. Ajíes Dam sub-watershed catchment area. (Source: Google Maps 2017). 12
Figure 4. Ajíes Dam impoundment. Waterbirds, waterfowl, and turtles were observed, and multiple songbirds were heard during the site visit (Photo: Burton Suedel). 13
Figure 5. Flowers (both top and bottom photos) exist on the current unmanaged Ajíes Dam and surrounding area. Such flowers offer food for pollinating species such as bees and butterflies also observed during the visit. Native plants species could be planted on site to increase the biodiversity of the area. The roots of these plants could also serve as soil engineers for purposefully stabilizing the dam (Photos: Burton Suedel). ... 15
Figure 6. Ajíes Dam and related flood control structure. The vegetation on the dam and surrounding area consists of volunteer species periodically maintained by mowing and bush-hogging (Photo: Burton Suedel). .. 16
Figure 7. Ajíes Dam Living Laboratory at Ajíes Conceptual Map (Map design by Rhonda Fields). ... 18
Figure 8. Examples of the Environmental Area (top Left, Photo by Rhonda Fields), Pervious Paving (bottom left, TRUEGRID PAVERS at https://www.truegridpaver.com/complete-guide-permeable-paving-systems%EF%BB%BF/) and Group Shelter/Meeting Site (right, Westcave Outdoor Discovery Center at https://westcave.org/visit-our-preserve/warren-skaaren-environmental-learning-center). .. 19
Figure 9. Living laboratory section illustrative. Rendering: Jack Milazzo.............. 19
Figure 10. Living laboratory environmental learning area. Rendering: Jack Milazzo. 20
Figure 11 Living laboratory maintenance considerations. Rendering: Jack Milazzo. 20
Figure 12. Bridge over the Lower Añasco River at Boquilla Village, Mayagüez. Image: Dave Hampton. .. 22
Figure 13. Clusters of bamboo (at left behind the group of people) grows tall and thickly along the Añasco River, Mayagüez. Photo: Dave Hampton. .. 22
Figure 14. Example of a bamboo check dam, Belford Natural Flood Management Scheme, England, UK. Image: Nicholas Barber, Newcastle University. 23
Figure 15. ‘Don Quixote’ by Pablo Picasso, 1955. Image: https://www.pablopicasso.net/don-quixote/. .. 23
Figure 16. The ‘river lance’, longitudinal section. Image: Dave Hampton. 24
Figure 17. The ‘river lance’, perspective facing downstream. Image: Dave Hampton. 24
Figure 18. Puerto Rico State Natural Hazard Mitigation Plan 2021 (Puerto Rico NMEAD 2021). ... 27
Preface

The writing of this report was funded by the Water Operations Technical Support (WOTS) and Dredging Operations Technical Support (DOTS) programs, Drs. Pat Deliman and Burton Suedel, program managers, respectively.

The authors would like to acknowledge the multiple cosponsors of the workshop and related activities because, without them, the diverse audience representation would not have been possible.

- Centro para la Conservación del Paisaje
- Programa del Estuario de la Bahía de San Juan
- Puerto Rico Departamento de Recursos Naturales y Ambientales
- Puerto Rico Water Resources and Environmental Research Institute
- Sociedad Puertorriqueña de Planificación
- The Nature Conservancy
- US Department of Agriculture
- US Army Engineer Research and Development Center
- US Federal Emergency Management Agency
- US Fish and Wildlife Service
- University of Puerto Rico at Mayagüez–US Department of Homeland Security - Coastal Resiliency Center

The work was performed by the Environmental Engineering Branch and the Environmental Risk Assessment Branch of the Environmental Processes and Engineering Division, US Army Engineer Research and Development Center, Environmental Laboratory (ERDC-EL). At the time of publication, Dr. Michael Rowland was chief, Environmental Engineering Branch, Mr. James Lindsay was chief, Environmental Risk Assessment Branch, and Mr. Warren Lorentz was division chief, Environmental Processes and Engineering Division. The deputy director of ERDC-EL was Dr. Brandon Lafferty, and the director was Dr. Edmund Russo.

COL Christian Patterson was the commander of ERDC, and Dr. David W. Pittman was the director.
1 Introduction

1.1 Background

In September of 2017, two major hurricanes, Irma and María, made landfall in Puerto Rico, destroying many homes and businesses, losing over 90% of the power grid, wireless communication, access to potable water, and flooding in many areas throughout the island. Hurricane María, the largest hurricane to hit Puerto Rico since 1928, made landfall in the southeast coast with sustained winds just under 155 miles per hour (249 km/hr) and tracked over 75 miles (121 km) through the heart of the island, exiting in the northwest coast (Kwasinski et al. 2019). Since that time, many steps have been taken to restore the island, reduce the risks associated with the impacts of natural hazards, and improve resilience of buildings and infrastructure.

Puerto Rico suffers from numerous stresses. Of these, the implementation of Engineering With Nature® (EWN®) initiatives for green infrastructure and low-impact development (GI-LID) can address urban deforestation and poor access to green spaces, improper use of the land, vulnerable populations in high-risk areas, high-risk to natural hazards, sea-level rise, coastal and riverine erosion, landslides, soil instabilities, limited governmental resources, and obsolete, deteriorated, and aging infrastructure. Currently, Puerto Rico has approximately 331,322 structures and 200,000 homes within the floodplain area, with 488,844 people living at risk of floods1. Puerto Rico is overpopulated with hundreds of communities living in remote clusters prone to hazards and isolation due to floods and other natural challenges; 44 municipalities are located on the coast. This makes the implementation of these initiatives even more important for human and nature well-being.

Two programs within the US Army Corps of Engineers (USACE), the Water Operations Technical Support (WOTS) and Dredging Operations Technical Support (DOTS), support the flood risk management program for Puerto Rico. Integrating these two programs with EWN® concepts and

practices provides resilient, sustainable, and ecologically friendly solutions to water and dredging problems. The WOTS Program was initiated in 1985 to support technology transfer efforts for environmental and water quality operational studies. It provides effective environmental and water management engineering technologies to address a wide range of water resource management problems at USACE’s reservoir and waterway projects, and in the river systems affected by project operations nationwide.

The WOTS program provides technology to solve water management and related environmental problems resulting from the presence of nonindigenous aquatic species and tailwater fisheries at pump-back hydropower projects. The program also examines water management impacts of shoreline erosion control and reservoir sedimentation, and other project operations related to environmental and water management issues. Since its inception, the WOTS program has provided environmental and water management technological solutions to over 1,100 problems identified at projects from every USACE District. The program annually publishes and distributes user manuals, information bulletins, technical notes, and technical reports. In addition, the program annually conducts specialty workshops and trains personnel on the latest environmental and water management techniques.

The DOTS Program provides environmental and engineering technical support to the USACE operations and maintenance navigation and dredging missions. Technology transfer products and activities support diverse field needs that directly benefit navigation and dredging operations throughout the US.

The WOTS and DOTS program’s personnel worked collaboratively with the University of Puerto Rico, Mayagüez Campus (UPRM), Department of Civil Engineering and Surveying, and the Federal Emergency Management Agency (FEMA) to host a workshop that was part of a three-day Puerto Rico River Basins Symposium from 09–11 March 2022. The WOTS and DOTS programs were feature considerations during the workshop, which sought new opportunities for implementing Engineering With Nature®–Green Infrastructure–Low Impact Development (EWN®-GI-LID) initiatives in Puerto Rico.
1.2 Purpose

The purpose of the workshop was to assemble subject matter experts (SMEs) from multiple disciplines to conceptualize research and development (R&D) geared towards identifying tropical island EWN®-GI-LID design questions that lead to demonstration projects and research strategies. These projects and research strategies evaluate outcomes for designing, constructing, and integrating EWN®-GI-LID types of features to assist in minimizing environmental damage from storm events.

EWN® shares concepts and constructs with the Ridge-to-Reefs initiative, which focuses on thriving, connected human and natural systems. Like Ridge-to-Reefs, EWN® works with local communities to develop nature-based solutions that create sustainable, resilient, healthy, and well managed river basins and coastal areas (IUCN 2022). This is particularly relevant in Puerto Rico; a land made up of ridges and reefs.

For the workshop, participants reviewed prior island best management practice designs and methods with a focus on projects using Natural and Nature-Based Feature (NNBF) construction methods consistent with EWN® principles. Alternative designs and construction methods were to be identified and discussed in context with integration of existing conventional construction techniques.

1.3 Objectives

By the close of the workshop, participants were able to do the following:

1. Identify technical design successes and lessons learned from prior tropical island design projects for basin sediment management.
2. Discuss opportunities and challenges of candidate island design techniques using EWN®-GI-LID technologies.
3. Identify those island EWN®-GI-LID design techniques that could be implemented for basin sediment management with unique short time of concentration limitations.
4. Identify design techniques that could be used for managing sediment removal in drinking water reservoirs to recover design capacity while promoting EWN®-GI-LID techniques.
2 Agenda and Workshop Structure

This one-day workshop followed a pre-symposium field trip to the Añasco River Watershed (09 March 2022) and a virtual and in-person Puerto Rico River Basin Symposium (From Mountain to Estuary, From Plan to Action, 10 March 2022). Participants attending the field trip and workshop are presented in Appendix A. Agendas for the field trip, symposium, and workshop are included in Appendix B.

2.1 Pre-symposium field trip

The pre-symposium field trip served as a baseline to the workshop, providing the attendees with a unique perspective of the island’s topography. Four different sites located within the Añasco River Watershed were visited during the field trip. The agenda for this field trip is presented in Appendix B. The first site visited was the Ajíes Dam, which included the following three presenters:

- Luis A. Cruz-Arroyo (Nature Resources Conservation Service [NRCS] Caribbean Area Director)
- Yilia Baucage-Bou (NRCS Caribbean Area Engineer)
- Dr. Eric Harmsen (UPRM researcher)

In 1980 NRCS supported the Puerto Rico Department of Natural and Environmental Resources (DNER) in the construction of two Floodwater Retarding Structures within the Añasco River Watershed: The Dagüey and Ajíes Dams. Both earthen dams mitigate major flooding to the Añasco Valley Communities and industries downstream of the dam. The presenters discussed that the dams served its purpose during Hurricane María but suffered serious damage, which poses a flooding risk to the community and industries nearby due to overtopping through a structure like an earthen emergency spillway. A new project will be implemented to repair both structures and restore them to their pre-Hurricane María condition. The presenters discussed details related to the dams, the rehabilitation project, research, and watershed modeling conducted in this area.

The second site visited was the Ovejas Bridge at the Añasco River floodplain. Professor Ismael Pagán-Trinidad (Civil Engineering and Surveying Department and Coastal Resilience Center Director, UPRM) was the presenter. This bridge is particularly important for the community
due to its location in a highly agricultural area. This low-lying area along the Añasco River is ideal for agriculture, which currently consists primarily of plantain production. There exists a beneficial and detrimental symbiotic relationship between the river and the community it supports. Flooding and inundation of the area as well as river flows, benefit the fields by laying down nutrient-rich sediment. However, floodwaters also damage crops, dwellings, and other structures, and the fertilizers and pesticides used in agriculture have a negative impact when they reach the water system. High sediment loads also decrease the river conveyance capacity and pollute Mayagüez Bay at the river outlet, negatively impacting the bay’s coral reefs and increasing seawater turbidity. Such sediment plumes at the bay disperse broadly for weeks. The bridge itself plays an important role in connecting communities to social, economic, and environmental resources. Damage from flood waters such as those experienced from hurricanes have the potential to exacerbate damages and impede recovery. Drought is also a concern in this area, as the lack of water limits agriculture and exposes infrastructure to shrinking and expanding soils and sedimentation, which could negatively impact the bridge infrastructure.

The Puerto Rico Aqueduct and Sewer Authority (PRASA) Water Intake was the third site visited. Presenters at this location included Engineer Glorymar Cortés-Arreizaga (Infrastructure Department, PRASA) and Dr. Walter F. Silva-Araya (Puerto Rico Water Resources and Environmental Research Institute [PRWRERI] Director, UPRM). The presenters discussed existing issues with the water intake and the communities that are served in this area. The components used for water treatment and the pump station were also discussed. A new project, which is currently under consideration for approval, will be implemented to improve the conditions of the pump station and water intake. Current research for modeling the meanders close to the water intake area was also discussed.

The last site visited was La Boquilla Village and El Seco Community, with Professor Ismael Pagán-Trinidad presenting. This site is within an area prone to major flooding and is surrounded by two different communities, known as La Boquilla Village and El Seco Community. The Mayagüez beach (saltwater) and Caño Boquilla (freshwater) both meet here, creating brackish water in the area. Red mangroves and a variety of fish were encountered at this location. Although the resilient communities in this area continue to face major flooding events, residents of these
communities are not willing or are not able to relocate. It is evident that these communities have lived there for long periods of time, but their location directly on the coast continues to subject them to periodic coastal and riverine flooding risks.

2.2 Welcome and Introductions

The workshop began with introductions and an overview of the purpose and objectives of the workshop, presented by Ismael Pagán-Trinidad (UPRM) and Carlos Ruiz (USACE). Each in-person attendee was asked to state their name and organization they represented, along with a brief description of their expected role in the workshop. Pat Deliman and Burton Suedel (both USACE) presented an overview of the workshop agenda, emphasizing and encouraging in-person workshop attendees to actively participate in the afternoon breakout sessions and the importance of receiving their feedback on GI-LID ideas for the Añasco River watershed. Please see Appendix A for a listing of both in-person and virtual workshop attendees. Appendix B presents the workshop agenda.

2.3 Setting the stage

After the facilitators’ opening remarks and review of workshop agenda and objectives, Burton Suedel and Chris Haring from the USACE presented information that addressed island basin sediment transport. Dr. Suedel gave an overview of the USACE EWN® initiative and described how its principles and concepts could be used to design and implement GI-LID through dredging operations and other activities in Puerto Rico. Figure 1 shows the key elements required for EWN® projects. Dr. Haring presented information on water operations being used in other regions to accomplish GI-LID objectives. Both presenters focused on using a systems approach to implementing Nature Based Solutions (NBS) that can provide benefits across flood risk management, ecosystem restoration, and water operations objectives in island watershed sites. They included examples from other regions applicable to Puerto Rico that used NNBF, natural infrastructure, and natural materials to implement GI-LID in practice. They emphasized that there are multiple opportunities to implement GI-LID designs within the Añasco River watershed sites that were visited during the pre-symposium field trip. Please see Appendix C for their presentation slides.
Two SMEs with local knowledge of watershed challenges in Puerto Rico presented their experiences at the workshop. The first presenter was Yasiel A. Figueroa-Sánchez (Protectores de Cuencas, Watershed Protectors). The presentation focused on Project Management of Watersheds in Puerto Rico. Watershed Protectors is a nongovernment organization focused on ecological restoration, green infrastructure, and erosion and sedimentation control. They have collaborated with local, state, and federal agencies, municipalities, and academia. Watershed Protectors continually impact approximately seven watersheds in Puerto Rico, along with numerous potential restoration projects. They discussed the background, purpose, cycle, minimum criteria, and implementation challenges of a Watershed Management Plan. The Guánica Bay Watershed Management Plan and the Northeast Ecological Corridor Natural Reserve Integrated Watershed Management Plan were presented. At the end of the presentation, a project associated with erosion control research and erosion control at coffee farms was presented.

![Figure 1. Key elements of EWN® projects.](image-url)

2.4 Defining the system opportunities

Billy Johnson (LimnoTech) and Todd Steissberg (ERDC–virtual participant) provided a presentation on defining EWN® and LID system opportunities. They presented multiple examples of EWN® and LID strategies in riverine and upland regimes, coastal plane and wetland regimes, and coastal regimes. Multiple case studies were presented as examples from implemented projects. These included the natural flood
management scheme at Belford and techniques for slowing the flow and reducing flood risk at Pickering in the United Kingdom; the beneficial use of dredged material project at Pierce Marsh Texas, the Long Beach Island coastal storm damage reduction in New York, the Florida mangrove reef walls, and the SmartGate system at Tomago Wetlands in Australia.

Various funding opportunities available through FEMA were discussed by Nitza Ayala-Fontánez and Kathia Sánchez-Ríos from the FEMA Hazard Mitigation Program. Various hazard mitigation techniques for riverine, coastal, and urban flooding, that could turn into project opportunities were discussed in this presentation. Examples of projects funded through the FEMA Hazard Mitigation Programs were presented. The Hazard Mitigation Programs include the Public Assistance Program and the Hazard Mitigation Assistance (HMA) Programs. The Public Assistance Program is disaster related and is used for mitigation of incident-caused damage. Four programs are part of the HMA Programs including the Hazard Mitigation Grant Program (HMGP), HMGP Post Fire, Building Resilient Infrastructure and Communities (BRIC), and Flood Mitigation Assistance (FMA) Program. Both the HMGP and HMGP Post Fire are disaster related and are used for multi-hazard statewide mitigation and mitigation after fire management assistance grant declarations, respectively. The BRIC and FMA Programs are nondisaster related and are used for multi-hazard project specific and flood mitigation for insured properties, respectively.

2.5 **Prior experience with island EWN®-GI-LID construction**

Dave Hampton and Tim Dekker (LimnoTech) discussed prior experience with island EWN®-GI-LID construction. They presented a three step processes consisting of reframing risks as opportunities, understanding the context, and actioning through the identification of projects involving people. For reframing risks as opportunities, a multicriteria analysis considering biophysical data (temperature, precipitation, vegetation cover, impervious area, salinity, sodicity, etc.), land use, political boundaries and jurisdictions, and demographics (populations, age, socio-economic and vulnerable populations) is recommended. There are three objectives for understanding the context including follow the water, use of typologies, and multi-scalar thinking. Multiple recommendations and examples were presented as part of actioning.
2.6 Limitations and problems with prior projects

Participants were asked to think about what challenges and limitations they have encountered during their experiences with both current and past GI-LID projects, and what potential solutions can overcome these challenges that could be applied as part of GI-LID in Puerto Rico. Participants were also asked to consider construction materials, alternative equipment, feature stability, material stability, operation and maintenance, property ownership, and social and economic impacts and benefits. They were then asked to bring these ideas with them for discussion during the afternoon breakout sessions.

2.7 Breakout session: Brainstorm new design measures: Challenges and opportunities

The objective of this breakout session was to identify specific project opportunities for incorporating EWN® principles and practices into GI-LID project development and operations by answering the following questions:

- How can EWN® principles and practices be integrated into both existing and new projects and operations?
- What do you consider to be the key aspects or elements to implement these projects?
- What are key next steps that should be taken to advance the project(s)?

Leaders divided participants into two breakout groups, based on affiliation and expertise. Group One was led by Burton Suedel (designated note-taker, Rhonda Fields, USACE SWF) and Group Two was led by Pat Deliman (designated note-taker, Dave Hampton, LimnoTech). As the group brainstormed ideas, Rhonda Fields (landscape architect) and Dave Hampton (architect, resiliency, and climate adaptation planner) sketched the group ideas to assist in visualizing how the GI-LID solutions would look if they became a reality.
3 Report Out

3.1 Group one

Group One started by answering the question “What is the highest GI-LID priority/opportunity within the Añasco River watershed of the field sites visited on 9 March 2022?” Their answer was the Ajíes Dam.

As background, the Ajíes Dam was built in 1984 as an earthen Floodwater Retarding Structure (FRS) within the Añasco River watershed to reduce flood risk to downstream communities. The dam performed its intended purpose by preventing major flooding to downstream communities in the watershed during Hurricane María in 2017. However, the dam suffered damage during the hurricane and hence needs repair to return the structure to meet current NRCS safety criteria and performance standards (http://www.pr.nrcs.usad.gov). The repair will also extend the life span of the dam beyond its initial 50 years. The scheduled repair offers a unique opportunity to advance the design of the repair to include various GI-LID features to greatly enhance the benefits associated with the repaired structure.

The overarching concept promoted by the group was to develop a Living Laboratory for the dam project that enhances the flood risk management capability of the structure while also promoting other unrealized environmental, social, and economic benefits of the infrastructure. The Living Laboratory would serve as a test bed for other similar dams and infrastructure across multiple Puerto Rico watersheds. As can be seen in Figure 2, the dam lies at the base of steep terrain and protects the community, industries, and croplands below. North of the dam exists wide areas of natural vegetation and interesting terrain, which provides multiple opportunities to create human interactions with nature.
This natural area, thick with vegetation provides multiple opportunities for social and environmental interactions. The discussion was as follows:

3.1.1 Living laboratory concept

The living laboratory concept operates in a real-life context with a user-centric, iterative, and open-innovation ecosystem approach. After experiencing the Ajíes Dam on the 09 March 2022 field trip, the team felt it was the ideal approach for addressing challenges and opportunities associated with the dam and the planned repair work expected to commence in late 2022.

The living laboratory approach for the Ajíes dam primarily focused on building the community, enhancing the ecological services associated with the infrastructure via GI-LID, improving the flood control benefits of the structure itself, and demonstrating processes and innovations broadly applicable to other similar areas. Figure 3 illustrates the sub-watershed
area considered for creating the living laboratory. This natural area, thick with vegetation provides multiple opportunities for social and environmental interactions.

Figure 3. Ajíes Dam sub-watershed catchment area. (Source: Google Maps 2017).

To implement this approach in practice, ideas were developed to seek opportunities for the ponded water behind the dam to serve as a surface water supply. In keeping with GI principles and ecological services, native herbaceous plants would be installed as soil engineers to trap soils on the dam and surrounding areas, which will reduce erosion and extend the life of the structure. Native plantings would be most beneficial on the dam itself and along its southwest side as shown in the foreground of Figure 4. Through these actions, the project could serve as a demonstration for managing soil, water quality, and conservation, which greatly increase the ecosystem services associated with the project.
3.1.2 Environment

Building a healthy living laboratory relies on the integration of people and natural resources. For this project, opportunities to create wildlife and biodiversity on the land and water, as well as developing an urban forest that creates GI-LID features promoting public access, is essential. This would be accomplished through developing a parkland environment and promoting eco-tourism and access to primitive campsites along a hiking trail.

Monitoring is an essential element of area management that will ensure the area remains viable and adaptive as appropriate to function as a living laboratory. As the impounded water is hydrologically connected to the nearest upstream impoundment, considerations should be given to managing the environmental flows of the basin to maintain higher water levels, which at present provides limited habitat for fish due to low water levels during dry periods. If the dam will be a multipurpose dam, then an operation plan to keep the water levels high during nonflood time periods and evacuate water to increase flood storage during large storm events will need to be developed. This will aid in creating a viable surface water supply in case of emergencies and will support larger fish, which will increase biodiversity and recreational use of the area. This information will help inform whether stocking with native fish would be a viable option.
to improve biodiversity. There is an immediate need for research and development (R&D) to conduct biological surveys of existing species utilizing the habitat and to better understand ground water behavior.

During the site visit, multiple birds were heard, along with sightings of waterfowl, colonial waterbirds, turtles, and pollinators such as butterflies and bees. It is essential to support biodiversity in the area through planting native pollinator plants, shrubs, and trees, as well as surveying existing trees to remove those with low habitat value. Removing less ecologically valuable trees will open the canopy for other plants to thrive, and the use of downed trees could be used as habitat, trail markers, and erosion control. Additionally, planting native aquatic vegetation provides shelter for fish and herptiles, food for waterfowl, improves water quality, and reduces erosion as water levels fluctuate.

3.1.3 Education

One key component of a living laboratory is education and social interaction. Education opportunities abound at the Ajies Dam site. R&D opportunities exist for everyone from kindergarteners through 12th grade and at universities to support science, technology, engineering, and mathematics, as well as build social networks and strong local communities. The living laboratory would naturally involve volunteers that support educational sessions, plant desired native species (Figure 5), and collaborate with local businesses to provide plants and other materials, as well as conduct open markets and other special events. The living laboratory would also provide opportunities for citizen scientists to get involved in monitoring various aspects of the project.
Figure 5. Flowers (both top and bottom photos) exist on the current unmanaged Ajíes Dam and surrounding area. Such flowers offer food for pollinating species such as bees and butterflies also observed during the visit. Native plants species could be planted on-site to increase the biodiversity of the area. The roots of these plants could also serve as soil engineers for purposefully stabilizing the dam (Photos: Burton Suedel).

3.1.4 Social/recreation

To create an environment that entices the local community to explore the area, a trail system should be constructed around the lake and into the surrounding sub-watershed. This would be supported through interpretive signage for public use, and the constructed trail should be suitable for walking, running, and cycling. Primitive campsites could be constructed for overnight stays in support of educational and recreational activities.

To ensure safety and reduce risks to the living laboratory, strategies should be explored to create a buffer zone around the lake, which might include adjacent owner buyout. Consideration should be given to support the predominant industry of the community, which is agriculture. Engaging the community in the planning, design, management, and use of the area will foster community ownership for the completed project. This would
include developing a series of dos and don’ts, related to behavior, activities, and physical construction related to the area. The community and SMEs could work together in exploring other ways that would link the broader lake purpose to the surrounding community’s well-being.

Maintenance of the grounds will require special consideration, as the area is intended to be primarily natural. One suggestion from the group is the use of goats to sustainably maintain vegetation of the dam project at the desired height. This would require an experienced goat herder and temporary fencing strategically placed to keep goat droppings away from the water; such practices are used in the western US to reduce fuel for fires in forested areas because the goat-enriched soil holds more moisture. This approach would ameliorate the concerns about fouling the water as was the concern when horses previously began grazing on the project footprint. Currently the area is maintained by periodic mowing and bushhogging, which would be problematic in maintaining a natural setting (Figure 6). The associated noise would also disturb wildlife.

While several ideas were captured by Group One during the workshop, there are a multitude of opportunities in which to develop the living laboratory and maintain and enhance the primary flood risk management
mission of the dam. These should be collaboratively explored through a variety of stakeholders such as the local communities, schools, universities, law enforcement, public health, fire protection, businesses, and local, state, and federal agencies. Working together, the Ajíes Dam living laboratory (Figures 7, 8, 9, and 10) will serve the community and the environment for decades to come.
Figure 7. Añís Dam Living Laboratory at Añís conceptual map (Map design by Rhonda Fields).

1. Scenic Overlook
2. Primitive Camping
3. Hiking & Cycling Trails
4. Environmental Learning Area
5. Pervious Parking Lot
6. Emergency Spillway
7. Group Shelter/Meeting Site
Figure 8. Examples of the environmental area (top left, Photo by Rhonda Fields), Pervious Paving (bottom left, TRUEGRID PAVERS at https://www.truegridpaver.com/easy-guide-permeable-paving-systems/%EF%BB%BF/) and Group Shelter/Meeting Site (right, Westcave Outdoor Discovery Center at https://westcave.org/visit-our-preserve/warren-skaaren-environmental-learning-center).

Figure 9. Living laboratory section illustrative. Rendering: Jack Milazzo.
Figure 10. Living laboratory environmental learning area. Rendering: Jack Milazzo.

Figure 11. Living laboratory maintenance considerations. Rendering: Jack Milazzo.
3.2 Group Two

The Group Two discussion centered on opportunities that could have beneficial impacts across the entire watershed. Two areas emerged from the discussion that are present – and common – in watersheds: infrastructure resilience and policy opportunities.

Group Two chose the bridge over the lower Añasco River at Boquilla Village, Mayagüez, which is shown in Figure 12. This river is a major water source used by the Puerto Rico Aqueduct and Sewer Authority (PRASA) to supply drinking water for the region. PRASA is the government-owned corporation water company responsible for water quality, management, and supply in Puerto Rico. The bridge is a major crossing for the community, and its failure would have a negative impact on the social and economic health of the region, not to mention the environmental impacts downstream from the destruction of the bridge. This was the case when the Río Grande bridge in Arecibo, Puerto Rico failed during Hurricane María. Employing EWN® principles would offer an effective, economical solution to this engineering problem.

3.2.1 Infrastructure resilience: the ‘River Lance’

First, the group identified general challenges, including flood control, soil management, debris impact, and the maintenance of plants. Opportunities included bank stabilization, buffer zones, sediment control, adaptive management, and debris reuse.

The presence of bamboo embodied both a challenge and an opportunity, being seen both as a disadvantage and advantage. The disadvantage being bamboo is an invasive species often growing thickly along stream and riverbanks (Figure 13) which may choke waterways as debris following storms or floods, creating a nuisance and hazard at bridges and other infrastructure. And, the advantage of bamboo, as a locally available source of material for building check dams (such as Figure 14) for erosion control and peak flow attenuation along the watershed. Figure 13 shows clusters of bamboo located at the PRASA intake located in the Añasco River.
Figure 12. Bridge over the Lower Añasco River at Boquilla Village, Mayagüez. Image: Dave Hampton.

Figure 13. Clusters of bamboo (at left behind the group of people) grows tall and thickly along the Añasco River, Mayagüez. Photo: Dave Hampton.
Figure 14. Example of a bamboo check dam, Belford Natural Flood Management Scheme, England, UK. Image: Nicholas Barber, Newcastle University.

Next, bridges such as the bridge over the lower Añasco River at Boquilla Village, Mayagüez were identified as common occurrences within the watershed (Figure 12), and therefore both an infrastructural and hydrological / ecological condition typology worthy of consideration for an intervention which could be repeated in various locations, adjusting for micro-local conditions.

A play on literature’s windmill-charging character Don Quixote (Figure 15) was suggested: the ‘River Lance’ consists of a vertical pole-like element or set of elements diagonally placed in the river some distance upstream from a bridge to intercept debris before striking the bridge or creating a debris jam (Figures 16 and 17).

Figure 15. ‘Don Quixote’ by Pablo Picasso, 1955. Image: https://www.pablopicasso.net/don-quixote/.
3.2.2 Advantages

Unlike its idealistic and impractically questing analogue, the river lance would be realistic, practical, and efficient. Single elements able to be economically placed, adjusted, and replaced would be relatively cost effective compared to traditional infrastructure. Replicability of component design and fabrication combined with flexibility of placement offer chances to retrofit existing conditions and tailor to new installment. Other advantages include structural independence as the system would be separate from bridges and would transfer no additional load or stress to the bridge structure, foundations, or abutments. The river lance would likely have mostly positive impacts by extending the bridge life span, and
by limiting degradation from debris. Adaptive management opportunities for this intervention are particularly noteworthy.

Again, the initial placement of lances would be determined by analyzing optimal location(s) based on factors including (but not limited to) bridge span, location in river, bathymetry, streambed composition, water velocity, and depth. Short-term temporal impacts, such as changes during extreme weather events (i.e., additional rainfall or flooding from hurricanes) and long-term impacts from climate change (i.e., sea level rise and drought) should also be considered. Therefore, a relatively small component or set of components nimble enough to allow for adjustments to changing local microclimatic and broader climatic conditions (rarely a hallmark of traditional gray infrastructure), which can also amplify the effectiveness of existing infrastructure, demonstrate the deep integration of adaptation as a core principle.

Workshops focused on implementation of low cost EWN® features using locally available materials will be offered to the community. The main goal of these will be to educate the community on how to design and construct NNBF and understanding the multiple benefits associated with them. It is important for the community to be engaged and understand these are not meant to be permanent features and will need to be maintained with time. This, in turn, will promote the communities’ involvement (and buy-in) with maintaining the integrity of the structures.

3.2.3 Disadvantages

As with all engineering solutions, there are a few disadvantages to implementing this technique. First, there is the potential for backwater effects and thus upstream flooding that currently may not occur, though this may be of little impact overall. Second, this technique requires a rigorous maintenance program to clean out debris captured by the river lances and ensure the system functions as intended. Included in the maintenance function is monitoring the sediment from upstream of the features, which may require dredging. This maintenance would also be required if the technique were not implemented, but it would be the bridge itself that would collect some of this debris.

It is important to consider the pre- and post-construction hydrodynamics of the river with and without the debris control structure. There may be
potential for some flow acceleration with additional potential of local bank erosion and scouring.

3.2.4 Additional questions

There are several questions that will need to be answered in preparation for designing and implementing the river lance technique for EWN®. Design and construction materials and methods, such as materials, engineering and design specifications, and construction sequencing, need to be carefully considered. It will also be important to determine ownership and jurisdiction to insure proper coordination in the design, implementation, and maintenance of the lances. Included in this are developing standards, regulations, and processes, that is, what codes or processes exist or need to be established for the design and placement of the river lances. Design standards (i.e., codes, regulations, and permitting) for design and placement will need to be followed or developed. It will also be critical to determine who has ongoing operational and maintenance responsibilities.

A large consideration is the handling of debris. This will include determining who will remove debris, how often, and where the debris will be stored or used. To continue the EWN® principles, sustainable ways for removal, reuse, and disposal of the material for nonhazardous material such as logs and branches need to be developed. Additionally, processes and programs need to be developed for mitigation of inorganic and hazardous materials.

3.2.5 Removing barriers to implementation: Policy opportunities

Group Two also identified opportunities for impact across the entire watershed and in response to overarching policy challenges, including policy enforcement, governance, and the prevalence of risk assessments, hazard mitigation plans (Figure 18), and territorial plans. Opportunities centered on the institutional capacity, such as that present at UPRM, to provide SMEs and technical expertise to fellow Puerto Ricans. This may include advising clients ranging from municipalities to nongovernmental organization (NGOs) and civil societies to private sector actors in matters of project implementation due diligence by providing SMEs and technical experts. These SMEs and technical experts will evaluate the assessments and plans mentioned above and collaboratively create roadmaps for implementation in coordination with stakeholders. Other tasks may
include advising on policy changes or assisting with policy enforcement such as inspections or providing training for homeowners on hurricane- and earthquake-safe home design and construction. The university system has 11 campuses conveniently located to act as hubs, never prohibitively far from the clients they would serve.

Additionally, effective SME expertise was seen by Group Two as being able to tailor solutions to the local context, such as the proper selection of plants for EWN®-NBS. Geological, hydrometeorological, and other knowledge of local conditions essential for the successful implementation of projects were also seen as an advantage to this approach. Other opportunities included the nature of jobs in installing, maintaining, and monitoring the performance of EWN®-NBS-LID, which would be primarily local and difficult to outsource or export.

Additional challenges for removing barriers were discussed, but for which no interventions were specifically identified, including political favoritism and how to mitigate its effects. Continuity of hazard mitigation plans and territorial plans are common, but follow-through on implementation is rare. There are also issues with the different timing, sequencing, or phasing of projects in municipal, territorial, and federal jurisdictions, as well as the limitations of election cycles. Election cycle problems stem
from the strategic and territorial plan horizons often exceeding the terms of elected officials and necessitate a reset or restart in familiarity with said plans, often requiring resubmittal of plans submitted under prior administrations.

3.2.6 Further research

The group identified generalized factors along the watershed which may affect the location, siting, and design of any EWN®-GI-LID interventions, and the “river lance.” These include events that may affect the effectiveness and maintenance of the river lances. To ensure the system is engineered to function as designed, changes in climate and weather, rainfall and temperature intensity, and extreme events such as droughts and wildfires need to be examined and modeled. Debris type, including small or lighter organics (bamboo, branches etc.) versus heavier, denser organics (i.e., logs, trees, dead livestock), and inorganics (i.e., vehicles, appliances) will need to be examined to determine the frequency and impact of this technique, especially during extreme events when debris loads are highest. Efficient ways to remove the debris collected by the river lance will need to be researched. Other factors to consider are the change in river or stream meander, flood stage variability, bathymetry, stream channel diversity, multiple cascading events (e.g., storm surge and extreme precipitation), and local geography, slope, and microclimate, such as local rainfall variations. For example, El Yunque Rainforest receives an average of 120 in. (305 cm) of annual rainfall, while Ponce on the drier southern side of the island is usually protected by the central cordillera from hurricanes receives an average of 32.9 in. (84 cm) per year.

Other research opportunities identified include hydrological modeling, hydraulics and hydrology (H&H) studies, sub-basin studies, groundwater quality, and ground-truthing in the field of models and studies. These studies would be done to ensure techniques are implementable over other projects in other areas and to improve the technique over time.
4 Summary, Review, and Next Steps

4.1 Summary and review

The objective of this workshop was to bring together SMEs and members of the community to explore EWN®-GI-LID strategies, and NBS for Puerto Rico’s natural water infrastructure needs. The workshop breakout sessions revealed unique ideas and concepts discussed within the two groups.

Group One proposed the development of a living laboratory concept for the Ajíes Dam project. The concept, if implemented, would enhance the existing flood risk management capability of the project while creating additional environmental, social, and economic benefits of the infrastructure. In a report on 30 September 2019 from the USDA Forest Service Institute of Tropical Forestry, it is stated that 340,461 acres (1,378 km²) of land, or 16% of the Island, are considered Natural Protected Areas (NPA’s) (Castro-Prieto et al. 2019). With the diverse beauty and grandeur of Puerto Rico’s natural environment, much of which is currently undeveloped, the living laboratory can serve as a prototype for developing communities along Puerto Rico’s many waterways. The living laboratory would serve as a test bed that could be applied at many other flood control infrastructure projects across Puerto Rico. This area is community based and offers opportunities for education, economic growth, and the study of the environment for people of all ages. The Ajíes Dam Living Laboratory has the potential to serve the community and the environment for decades to come.

Group Two discussed opportunities that could positively impact the entire watershed, focusing on infrastructure resilience and policy opportunities. One infrastructure opportunity discussed was using river bridges as an enhanced conduit for GI-LID, with the bridge over the lower Añasco River at Boquilla Village, Mayagüez as a key example. Bridges like this one serve as a major crossing for the community, and its failure would not only have negative social and economic health impacts, but also environmental impacts downstream if the bridge is destroyed during a storm. A river lance type structure was proposed, where a vertical pole-like element or set of elements diagonally placed in the river upstream from the bridge would intercept debris, preventing them from striking the bridge or creating a debris jam. The group also discussed opportunities to overcome policy challenges, including policy enforcement, governance, and the prevalence of risk assessments, hazard mitigation plans, and territorial
plans. Additionally, the group discussed opportunities for further research focused on the engineering and scientific data and information needed to design, implement, and maintain a successful project.

According to the National Bridge Inventory (ARTBA 2017), Puerto Rico has an estimated 2,334 bridges in the Commonwealth, with 282 (12%) of them classified as structurally deficient. Designing and constructing GI-LID to preserve these bridges will continue to rise in importance as a means of protecting the built and natural infrastructure into the future. The river lance concept developed during the workshop offers a cost-effective and easily implementable means of protecting these important pieces of infrastructure.

These ideas can be further developed and implemented across various locations and scales, bringing nature-based infrastructure solutions to Puerto Rico for the improvement of the environment, the economy, and the communities.

Bridges et al. (2018) states “We rely on natural process and landscapes to sustain human life and well-being. Our energy, water infrastructure, and agricultural systems use these processes and landscapes to satisfy our most basic human needs.” To be effective, a systems approach must be used in planning, designing, implementing, and operating these strategies. Through collaborative work with communities and other stakeholders, EWN® concepts and principles can bring communities together, protect vital infrastructure, and protect the natural beauty and functionality of Puerto Rico’s ecosystems.

4.2 Next steps

The next steps are follow-up meetings and workshops to continue refining the design details of the two proposed ideas presented. Participants tasked with the further development will include the project team and others with interest in the geographic area.

Anticipated workshop products are

1. Workshop proceedings report (this document) to be published with the support of the US Army Corps of Engineers Water Operations
Technical Support (WOTS), Dredging Operations Technical Support (DOTS), and EWN® Programs

2. Follow-on meetings with the USACE Jacksonville District, UPRM faculty and staff, and ERDC researchers to develop plans to identify funding sources and to implement the GI-LID designs presented in this report

EWN® is a continually renewing process, and each new project brings opportunities for future project development across different scales and lessons learned. It is important, then, to ensure the proper documentation of each step in the process, which this report serves as the first step. The authors envision after further analysis and design, optimum flood risk reduction alternatives in the Añasco River basin will likely consist of a set of hybrid solutions, which may include a series of conventional hard and natural infrastructure solutions working harmoniously. Future progress on these projects will require similar documentation, which will be housed within ERDC and distributed widely. USACE/ERDC would like to take this opportunity to thank all participants in this effort to create a more resilience, livable Puerto Rico.
References

Appendix A: Participant List

There were 41 participants in the pre-symposium field trip and 103 in the workshop, both in person and virtually. Information associated with those participants is included below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sector</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idania Rodríguez Santiago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adianez Santana Pruna</td>
<td>Student</td>
<td>Interamerican University of Puerto Rico: San Germán Campus</td>
</tr>
<tr>
<td>Alberto Camacho Meléndez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alberto Mercado</td>
<td>Professional</td>
<td>The Nature Conservancy</td>
</tr>
<tr>
<td>Alex Volcy-Sánchez</td>
<td>Government</td>
<td>PR Housing Department</td>
</tr>
<tr>
<td>Alexandra López Juarbe</td>
<td>Student</td>
<td>Universidad Ana G. Mendez</td>
</tr>
<tr>
<td>Alexandra Marie Galindo Estronza</td>
<td>Government</td>
<td>US Fish and Wildlife Service</td>
</tr>
<tr>
<td>Amarilys Rosa Torres</td>
<td>Government</td>
<td>FEMA</td>
</tr>
<tr>
<td>Ana Josefina Navarro Rodríguez</td>
<td>Faculty</td>
<td>UPR-Sea Grant</td>
</tr>
<tr>
<td>Andres Suarez Elicier</td>
<td>Government</td>
<td>Federal Government</td>
</tr>
<tr>
<td>Angela Isabel Perez</td>
<td>Professional</td>
<td>Private</td>
</tr>
<tr>
<td>Ann Ventura</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annette María Reyes</td>
<td>Professional</td>
<td>Business Insights</td>
</tr>
<tr>
<td>Antonio González-Walker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arben Albino</td>
<td>Professional</td>
<td>DISTRITO DE CONSERVACION DE SUELOS Y AGUAS DEL SUROESTE INC</td>
</tr>
<tr>
<td>Aurielee Diaz Conde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axel Omar Centeno Torres</td>
<td>Student</td>
<td>College</td>
</tr>
<tr>
<td>Brenda Torres Barreto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billy Johnson</td>
<td>Professional</td>
<td>LimnoTech</td>
</tr>
<tr>
<td>Burton Craig Suedel</td>
<td>Government</td>
<td>USACE ERDC</td>
</tr>
<tr>
<td>Carla Mari Montalvo Martínez</td>
<td>Student</td>
<td>Pontifical Catholic University of Puerto Rico</td>
</tr>
<tr>
<td>Carlos Gabriel Velázquez Sierra</td>
<td>Student</td>
<td>Yale University</td>
</tr>
<tr>
<td>Carlos J. Díaz Reyes</td>
<td>Student</td>
<td>Saint Louis University (SLU)</td>
</tr>
<tr>
<td>Carlos R Robert-Colón</td>
<td>Government</td>
<td>FEMA</td>
</tr>
<tr>
<td>Carlos Ruiz</td>
<td>Government</td>
<td>USACE ERDC</td>
</tr>
<tr>
<td>Name</td>
<td>Sector</td>
<td>Institution</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Carmen J. Vega-Lugo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmen L. Bonilla</td>
<td>Community</td>
<td>Private industry</td>
</tr>
<tr>
<td>Carmen M. Reyes Colón</td>
<td>Faculty</td>
<td>Pontificia Universidad Católica de Puerto Rico</td>
</tr>
<tr>
<td>Chris Haring</td>
<td>Government</td>
<td>USACE ERDC</td>
</tr>
<tr>
<td>Christian Carlos Padilla Ortiz</td>
<td>Student</td>
<td>UPRM</td>
</tr>
<tr>
<td>Christian Torres</td>
<td>Professional</td>
<td>Coccoloba AgroEnvironmental</td>
</tr>
<tr>
<td>Christopher E. Orozco González</td>
<td>Student</td>
<td>Ana G Mendez University</td>
</tr>
<tr>
<td>Conrado Manuel Calzada Cordero</td>
<td>Faculty</td>
<td>Pontificia Universidad Católica de Puerto Rico</td>
</tr>
<tr>
<td>Cristina Ramírez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cristina Von Essen</td>
<td>Professional</td>
<td>CAAPPR</td>
</tr>
<tr>
<td>Cynthia A. Manfred</td>
<td>Community</td>
<td>Organized community group</td>
</tr>
<tr>
<td>Daleen Marie Torres Burgos</td>
<td>Student</td>
<td>UPRM</td>
</tr>
<tr>
<td>Damarys Acevedo</td>
<td>Government</td>
<td>US Army Engineer Research and Development Center</td>
</tr>
<tr>
<td>Dania Esther Serrano Castro</td>
<td>Government</td>
<td>Departamento de la Vivienda</td>
</tr>
<tr>
<td>Daniel Bair</td>
<td>Faculty</td>
<td>University of Puerto Rico, Mayagüez</td>
</tr>
<tr>
<td>Dave Gray Hampton, Jr.</td>
<td>Professional</td>
<td>LimnoTech</td>
</tr>
<tr>
<td>David J. Rodríguez Castro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deborah Diaz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deborah Rivera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilcia Margarita Torres Alvarado</td>
<td>Community</td>
<td>Colectivo El Ancón de Loíza</td>
</tr>
<tr>
<td>DRIVERA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eber Candelario Olivieri</td>
<td>Government</td>
<td>NMEAD</td>
</tr>
<tr>
<td>Edgar Raúl Montañéz-Pérez</td>
<td>Professional</td>
<td>Colegio de Arquitectos y Arquitectos Paisajistas de PR</td>
</tr>
<tr>
<td>Edgardo González</td>
<td>Professional</td>
<td>Centro para la Conservación del Paisaje</td>
</tr>
<tr>
<td>Ela Cruz Nazario</td>
<td>Government</td>
<td>FEMA</td>
</tr>
<tr>
<td>Elba G. Almedina Melendez</td>
<td>Government</td>
<td>Municipality of Cayey</td>
</tr>
<tr>
<td>Elvin Rodán</td>
<td>Government</td>
<td>Municipality of Mayagüez</td>
</tr>
<tr>
<td>Emma M. Quero Torres</td>
<td>Professional</td>
<td>Estudios Técnicos, Inc.</td>
</tr>
<tr>
<td>Enrique Rodríguez</td>
<td>Student</td>
<td>RUM</td>
</tr>
<tr>
<td>Eric William Harmsen</td>
<td>Faculty</td>
<td>UPRM</td>
</tr>
<tr>
<td>Name</td>
<td>Sector</td>
<td>Institution</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Erin Bennett</td>
<td>Academia</td>
<td>Trent University</td>
</tr>
<tr>
<td>Ethien Soto González</td>
<td>Professional</td>
<td>Private</td>
</tr>
<tr>
<td>Federico T. Del Monte Garrido</td>
<td>Professional</td>
<td>Sociedad Puertorriqueña de Planificacion</td>
</tr>
<tr>
<td>Fernando Figueroa Bonaparte</td>
<td>Professional</td>
<td>Freelancer</td>
</tr>
<tr>
<td>Fernando Pantoja Agreda</td>
<td>Faculty</td>
<td>University of Puerto Rico</td>
</tr>
<tr>
<td>Francisco Arroyo Rojas</td>
<td>Professional</td>
<td>FARchitecture</td>
</tr>
<tr>
<td>Franco A. Catalá Míguez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabriel López De la Rosa</td>
<td>Government</td>
<td>Municipio de Mayagüez</td>
</tr>
<tr>
<td>Gladys Jaime Fernández</td>
<td>Professional</td>
<td>Consultora independiente</td>
</tr>
<tr>
<td>Gloria Brana Mulero</td>
<td>Professional</td>
<td>Private Industry</td>
</tr>
<tr>
<td>Glorymar Cortés Arreizaga</td>
<td>Private</td>
<td>AAA</td>
</tr>
<tr>
<td>Gradissa Fernandez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gury Truck Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hector Gonzalez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Héctor R. Rivera Mercado</td>
<td>Professional</td>
<td>Private Industry</td>
</tr>
<tr>
<td>Iris González-Alfonzo</td>
<td>Professional</td>
<td>IGA Design Group</td>
</tr>
<tr>
<td>Isabel Nieves</td>
<td>Government</td>
<td>municipality</td>
</tr>
<tr>
<td>Ismael Pagan Trinidad</td>
<td>Faculty</td>
<td>University of Puerto Rico - Mayagüez</td>
</tr>
<tr>
<td>Israel Alberto Román Martínez</td>
<td>Community</td>
<td>Surcando la Historia</td>
</tr>
<tr>
<td>Israel Matos Mercado</td>
<td>Professional</td>
<td>Former NOAA employee</td>
</tr>
<tr>
<td>Iván C. Llerandi Román</td>
<td>Government</td>
<td>US Fish and Wildlife Service</td>
</tr>
<tr>
<td>Ivelisse M. Ramos López</td>
<td>Student</td>
<td>UPRM</td>
</tr>
<tr>
<td>Javier L. Bonnin Orozco</td>
<td>Professional</td>
<td>Private- Javier L Bonnin Orozco, Arquitecto</td>
</tr>
<tr>
<td>Jeff Smythe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jesica Enid Suárez Cuadrado</td>
<td>Professional</td>
<td>Private Industry</td>
</tr>
<tr>
<td>Jessica C. Diaz</td>
<td>Student</td>
<td>UPR</td>
</tr>
<tr>
<td>Jobel Yometh Villafañe Pagán</td>
<td>Student</td>
<td>UPRM</td>
</tr>
<tr>
<td>Jorge F. Bauza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jorge Luis Nina Espinosa</td>
<td>Government</td>
<td>Department of Natural and Environmental Resources</td>
</tr>
<tr>
<td>Jorge Rivera Santos</td>
<td>Faculty</td>
<td>University of Puerto Rico at Mayagüez</td>
</tr>
<tr>
<td>José Elizalde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Sector</td>
<td>Institution</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Jose Luis Gomez</td>
<td>Community</td>
<td>Gruta Troglodita Norman Veve</td>
</tr>
<tr>
<td>José M Soto</td>
<td>Government</td>
<td>USEPA</td>
</tr>
<tr>
<td>Jose Maldonado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jose R. Ortega</td>
<td>Professional</td>
<td>Estuario de la Bahía de San Juan</td>
</tr>
<tr>
<td>Jose Santiago</td>
<td>Government</td>
<td>US Army Corps of Engineers</td>
</tr>
<tr>
<td>Jose Tirado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joselín Ramírez</td>
<td>Professional</td>
<td>Consulting services</td>
</tr>
<tr>
<td>Juan A. Rivera Oquendo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juan A. Santiago Rivera</td>
<td>Government</td>
<td>FEMA</td>
</tr>
<tr>
<td>Juan David Murcia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juan De Dios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Julio Noel Torres</td>
<td>Community</td>
<td>Private</td>
</tr>
<tr>
<td>Karla Michelle Pagán-González</td>
<td>Government</td>
<td>Federal government</td>
</tr>
<tr>
<td>Karlos Felix Gongon</td>
<td>Student</td>
<td>UPRM</td>
</tr>
<tr>
<td>Karlyn Grafals Nieves</td>
<td>Professional</td>
<td>Para la Naturaleza</td>
</tr>
<tr>
<td>Kathia Sánchez Rios</td>
<td>Government</td>
<td>FEMA</td>
</tr>
<tr>
<td>Katsi Ramos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laura Almodóvar Acevedo</td>
<td>Professional</td>
<td>Programa del Estuario de la Bahía de San Juan</td>
</tr>
<tr>
<td>Leyshka Rivera Hernandez</td>
<td>Student</td>
<td>UPRM</td>
</tr>
<tr>
<td>Lillian Ramirez</td>
<td>Government</td>
<td>Sea Grant Puerto Rico</td>
</tr>
<tr>
<td>Linna Irizarry-Mayoral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luis Alberto Cruz Aroyo</td>
<td>Government</td>
<td>USDA-NRCS</td>
</tr>
<tr>
<td>Luis Angel Rivera</td>
<td>Government</td>
<td>Municipio de Trujillo Alto</td>
</tr>
<tr>
<td>Luis Antonio Cuba Gerena</td>
<td>Student</td>
<td>University of Puerto Rico Mayagüez Campus</td>
</tr>
<tr>
<td>Luis Jorge Rivera Herrera</td>
<td>Government</td>
<td>Federal agency</td>
</tr>
<tr>
<td>Luis Lebron Ginorio</td>
<td>Professional</td>
<td>Private</td>
</tr>
<tr>
<td>Luis Villanueva Cubero</td>
<td>Government</td>
<td>FEMA</td>
</tr>
<tr>
<td>Luisa Feliciano Cruz</td>
<td>Student</td>
<td>UPRM</td>
</tr>
<tr>
<td>Luraída Rivera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luz Estella Torres Molina</td>
<td>Faculty</td>
<td>UAGM</td>
</tr>
<tr>
<td>Luz Ivelisse Fantauzzi</td>
<td>Government</td>
<td>FEMA</td>
</tr>
<tr>
<td>Manuel Matos Rodríguez</td>
<td>Government</td>
<td>USDA-NRCS</td>
</tr>
<tr>
<td>Name</td>
<td>Sector</td>
<td>Institution</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Marcos Alejandro Quiñones Otero</td>
<td>Student</td>
<td>UPR</td>
</tr>
<tr>
<td>Mari Aurora Villariny Marrero</td>
<td>Professional</td>
<td>Sociedad Puertorriqueña de Planificación</td>
</tr>
<tr>
<td>Mari Glory Gonzalez Guerra</td>
<td>Government</td>
<td>Junta de Planificación</td>
</tr>
<tr>
<td>Maria Camacho-Rodríguez</td>
<td>Government</td>
<td>DNER</td>
</tr>
<tr>
<td>Maria de Lourdes Olmeda Marrero</td>
<td>Government</td>
<td>Departamento de Recursos Naturales y Ambientales</td>
</tr>
<tr>
<td>María N. Colón Mulero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maria Vega-Rodríguez</td>
<td>Government</td>
<td>Puerto Rico Department of Environmental & Natural Resources</td>
</tr>
<tr>
<td>Maribelis Santiago</td>
<td>Government</td>
<td>USDA Forest Service IITF</td>
</tr>
<tr>
<td>Maricela Perryman</td>
<td>Professional</td>
<td>San Juan Bay Estuary Program</td>
</tr>
<tr>
<td>Mariela Collazo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marielys Ramos Villanueva</td>
<td>Government</td>
<td>USACE Regulatory</td>
</tr>
<tr>
<td>Mario Rodríguez</td>
<td>Government</td>
<td>USDA</td>
</tr>
<tr>
<td>Megh R. Goyal</td>
<td>Faculty</td>
<td>UPRM</td>
</tr>
<tr>
<td>Melisa Diaz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael Poland</td>
<td>Government</td>
<td>USACE ERDC</td>
</tr>
<tr>
<td>Michelle Bourne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miguel A. Pagán</td>
<td>Professional</td>
<td>Self Employed</td>
</tr>
<tr>
<td>Miguel Ángel Silva Marte</td>
<td>Government</td>
<td>Municipio de Canóvanas</td>
</tr>
<tr>
<td>Miguel Antonio García Bermudez</td>
<td>Government</td>
<td>Fish and Wildlife Service</td>
</tr>
<tr>
<td>Mónica Amara Flores Hernandez</td>
<td>Student</td>
<td>Universidad de Puerto Rico</td>
</tr>
<tr>
<td>Natalia Almodóvar Rosario</td>
<td>Professional</td>
<td>Private</td>
</tr>
<tr>
<td>Natalia María Rodríguez</td>
<td>Government</td>
<td>University of Puerto Rico</td>
</tr>
<tr>
<td>Nikki Martin Choquecota Castillo</td>
<td>Student</td>
<td>Universidad Nacional Federico Villarreal</td>
</tr>
<tr>
<td>Nilda I. Luhring</td>
<td>Government</td>
<td>Puerto Rico Tourism Company</td>
</tr>
<tr>
<td>Nitza Ayala Fontanez</td>
<td>Government</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>Norman J. Rodríguez</td>
<td>Government</td>
<td>US EPA</td>
</tr>
<tr>
<td>Olga Torres</td>
<td>Professional</td>
<td>Private</td>
</tr>
<tr>
<td>Omar Gutiérrez del Arroyo</td>
<td>Government</td>
<td>Instituto Internacional de Dasonomía Tropical</td>
</tr>
<tr>
<td>Omayra Avilés Santiago</td>
<td>Professional</td>
<td>Departamento de la Vivienda</td>
</tr>
<tr>
<td>Oscar Hernán Martinez Pinilla</td>
<td>Professional</td>
<td>Private Industry</td>
</tr>
<tr>
<td>Name</td>
<td>Sector</td>
<td>Institution</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Oscar R. Cordero Perez</td>
<td>Student</td>
<td>University of Puerto Rico - Mayagüez</td>
</tr>
<tr>
<td>Oscar Rafael Cordero Pérez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pamela Bonilla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patrick Deliman</td>
<td>Government</td>
<td>USACE ERDC</td>
</tr>
<tr>
<td>Pedro Israel Matos Llavona</td>
<td>Student</td>
<td>University of Massachusetts Amherst</td>
</tr>
<tr>
<td>Pedro Janer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ Santa</td>
<td>Professional</td>
<td>Private industry</td>
</tr>
<tr>
<td>Rafael Diaz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rafael Olivencia Llavona</td>
<td>Professional</td>
<td>Rafael Olivencia and Associates</td>
</tr>
<tr>
<td>Raúl E. Zapata López</td>
<td>Faculty</td>
<td>University of Puerto Rico</td>
</tr>
<tr>
<td>Raul Santini Rivera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebeca De Jesus Crespo</td>
<td>Faculty</td>
<td>Louisiana State University</td>
</tr>
<tr>
<td>Reyes E Rodríguez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhonda Fields</td>
<td>Government</td>
<td>USACE Ft. Worth District</td>
</tr>
<tr>
<td>Ricardo A. Berrios-Perez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ricardo Javier Colón Merced</td>
<td>Government</td>
<td>USDA-NRCS</td>
</tr>
<tr>
<td>Ricardo Ramos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richelle Vázquez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert Jonathan Hobbins</td>
<td>Faculty</td>
<td>Georgia State University</td>
</tr>
<tr>
<td>Rodolfo Ariel Serrano Rodríguez</td>
<td>Professional</td>
<td>Private Industry</td>
</tr>
<tr>
<td>Roxanne Marie Almodovar Perez</td>
<td>Community</td>
<td>--</td>
</tr>
<tr>
<td>Rubén Rolando Solla Rosario</td>
<td>Community</td>
<td>BARRIO</td>
</tr>
<tr>
<td>Sacha Ivette Caraballo Vega</td>
<td>Government</td>
<td>FEMA</td>
</tr>
<tr>
<td>Sally González</td>
<td>Faculty</td>
<td>UPRM-CCA-SEA</td>
</tr>
<tr>
<td>Samuel Garcia</td>
<td>Government</td>
<td>Department of Natural and Environmental Resources</td>
</tr>
<tr>
<td>Sandra E. Rosas Vélez</td>
<td>Government</td>
<td>Municipality of Hormigueros</td>
</tr>
<tr>
<td>Sandra Marlín Velázquez Rivera</td>
<td>Government</td>
<td>HUD</td>
</tr>
<tr>
<td>Sixto A. Machado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sofia Burgos Caraballo</td>
<td>Community</td>
<td>NA</td>
</tr>
<tr>
<td>Sofía Olivero Lora</td>
<td>Government</td>
<td>USEPA</td>
</tr>
<tr>
<td>Suhey Ortiz Rosa</td>
<td>Student</td>
<td>UPRM</td>
</tr>
<tr>
<td>Tamara Orozco</td>
<td>Professional</td>
<td>CIPM</td>
</tr>
<tr>
<td>Name</td>
<td>Sector</td>
<td>Institution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Teresa H. Pérez Rivera</td>
<td>Professional</td>
<td>Industry</td>
</tr>
<tr>
<td>Teresita M. Del Valle Beltrán</td>
<td>Professional</td>
<td>tmdv</td>
</tr>
<tr>
<td>Thayria Warner Peña</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas Douthat</td>
<td>Faculty</td>
<td>LSU</td>
</tr>
<tr>
<td>Timothy Dekker</td>
<td>Professional</td>
<td>LimnoTech</td>
</tr>
<tr>
<td>Trisha Muñoz Erickson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walter F. Silva Araya</td>
<td>Faculty</td>
<td>PRWRERI</td>
</tr>
<tr>
<td>Walter Soler Figueroa</td>
<td>Professional</td>
<td>Ambienta Inc.</td>
</tr>
<tr>
<td>Wilberto González Muñoz</td>
<td>Community</td>
<td>FEMA</td>
</tr>
<tr>
<td>William J Hernandez</td>
<td>Faculty</td>
<td>UPR Mayagüez</td>
</tr>
<tr>
<td>Yasiel Angel Figueroa Sánchez</td>
<td>Professional</td>
<td>Protectores de Cuencas</td>
</tr>
<tr>
<td>Yesenia Franqui</td>
<td>Student</td>
<td>UPRM</td>
</tr>
<tr>
<td>Yesenia Marie Rivera López</td>
<td>Student</td>
<td>University of Puerto Rico - Mayagüez Campus</td>
</tr>
<tr>
<td>Yilia Baucage-Bou</td>
<td>Government</td>
<td>NRCS-USDA</td>
</tr>
<tr>
<td>Yohaira Maritza Ayala Torres</td>
<td>Government</td>
<td>DRNA</td>
</tr>
<tr>
<td>Yulianna de la Cruz Montañez</td>
<td>Professional</td>
<td>PEBSJ</td>
</tr>
<tr>
<td>Zilkia M. Hernández López</td>
<td>Professional</td>
<td>IAPPR</td>
</tr>
</tbody>
</table>
Appendix B: Agendas

PR 2022 River Basin Symposium: Pre-Symposium Field Trip
Agenda: Wednesday, March 9, 2022

Activity: Pre-Symposium Field Trip
Date: Wednesday, March 9, 2022
Time: 8:30 am – 4:00 pm
Location: Añasco River Watershed
Limit: 30 people

Stops:

1. Starting Point (18.215097, -67.139374): University of Puerto Rico, Civil Engineering and Surveying Dept (Parking Lot)
2. Presenter # 1: Prof. Ismael Pagán-Trinidad, CRC (Brief 5 min introduction)
3. Presenter # 2: Dr. Patrick N. Deliman, USACE (Brief 5 min introduction)

[25 min. de UPR-Mayagüez to Ajíes Dam]

1. Ajíes Dam (18.298161°, -67.137101°):
2. Presenter #1: Mr. Luis A. Cruz-Arroyo, NRCS
3. Presenter # 2: Mr. Mario Rodríguez, NRCS
4. Presenter # 3: Dr. Eric Harmsen, UPRM (Description of the Añasco River Watershed and his research)

[10 min. from Ajíes Dam to Ovejas Bridge]

1. Ovejas Bridge (18.272885, -67.126913):
2. Presenter: Prof. Ismael Pagán-Trinidad, CRC

[5 min. from Ovejas Bridge to PRASA Water Intake]

1. PR Aqueduct & Sewer Authority Water Intake (18.264000°, -67.133800°):
2. Presenter # 1: Ing. Joel Lugo-Rosa, PRASA Infrastructure director
3. Presenter # 2: Dr. Walter Silva, PRWRERI

[20 min. from PRASA Water Intake to La Boquilla Nature Reserve]
2. Presenter: Prof. Ismael Pagán-Trinidad, CRC

[5 min. from La Boquilla Nature Reserve to UPR-Mayagüez]
Basin Sediment Management for Unique Island Topography Engineering With Nature® (EWN®)

Green Infrastructure – Low Impact Development (GI-LID)

University of Puerto Rico Mayagüez (UPRM)

Department of Civil Engineering

Date: Friday, 11 March 2022. 9:00am – 4:30pm (AST)

Purpose: The purpose of the workshop is to assemble subject matter experts to conceptualize research and development geared towards identifying tropical island EWN®-GI-LID design questions that will lead to demonstration projects and research strategies to evaluate outcomes for designing, constructing, and integrating these types of features to assist in minimizing environmental damage from storm events.

We will review prior island best management practice designs and methods with a focus on projects using Natural and Nature-Based Feature (NNBF) construction methods consistent with EWN® principles. Alternative designs and construction methods will be identified and discussed in context with integration with existing conventional construction techniques. The results of the workshop will be documented in a Proceedings Report that will be published with the support of the US Army Corps of Engineers Water Operations Technical Support (WOTS), Dredging Operations Technical Support (DOTS), and EWN® Programs.

Objectives:

By the close of the workshop, participants will:

- Identify technical design successes and lessons learned from prior tropical island design projects for basin sediment management.
- Discuss opportunities and challenges of candidate island design techniques using EWN®-GI-LID technologies.
- Identify those island EWN®-GI-LID design techniques that could be implemented for basin sediment management with unique short time of concentration limitations.
• Identify design techniques that could be used for managing sediment removal in drinking water reservoirs to recover design capacity while promoting EWN®-GI-LID techniques.

Participants:

<table>
<thead>
<tr>
<th>TIME</th>
<th>CONTENT/ACTIVITIES</th>
<th>MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 – 8:50</td>
<td>Facilitator login and setup</td>
<td>All PPT slides or other documents to be shared</td>
</tr>
<tr>
<td></td>
<td>• Assign cohosts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Upload any shared documents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Assign participant privileges</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Record</td>
<td></td>
</tr>
<tr>
<td>8:50 – 9:00</td>
<td>Participant login and setup</td>
<td></td>
</tr>
<tr>
<td>9:00 – 9:30</td>
<td>Welcome and Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Meeting opening: Ismael Pagan & Carlos Ruiz</td>
<td>Opening slide:</td>
</tr>
<tr>
<td></td>
<td>a. Welcome participants, review workshoppurpose and objectives.</td>
<td>Welcome/Workshop Title</td>
</tr>
<tr>
<td></td>
<td>2. Review Agenda: Pat Deliman & Burton Suedel</td>
<td>Slide: Purpose, Objectives</td>
</tr>
<tr>
<td></td>
<td>3. Review How to Engage: Pat Deliman & Burton Suedel</td>
<td>Slide: Agenda</td>
</tr>
<tr>
<td></td>
<td>a. Facilitate participant Introductions</td>
<td>Slide: How to engage</td>
</tr>
<tr>
<td></td>
<td>b. Ask people to share their name, organization, and role</td>
<td>Slide: Relevant experience</td>
</tr>
<tr>
<td>9:30 – 10:30</td>
<td>Setting the Stage: Defining Island Basin Sediment Transport</td>
<td>20 min for each speaker</td>
</tr>
<tr>
<td></td>
<td>• Water Operations EWN®-GI-LID: Chris Haring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dredge Operations EWN®-GI-LID: Burton Suedel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local Speakers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Yasiel A. Figueroa-Sánchez, Protectores deCuencas (Watershed Protectors)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Brenda Torres, San Juan Bay Estuary Program</td>
<td></td>
</tr>
<tr>
<td>10:30 – 11:00</td>
<td>Defining the System Opportunities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Billy Johnson & Todd Steissberg, USACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identifying Funding Opportunities: Example of Potential Mitigation Projects through FEMA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Nitza Ayala-Fontánez & Kathia Sánchez-Rios, FEMA Hazard Mitigation</td>
<td></td>
</tr>
<tr>
<td>11:00 – 11:15</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>11:15 – 11:45</td>
<td>Prior Experience with Island EWN®-GI-LID Construction</td>
<td>25 min for speaker + 5 min for Q&A</td>
</tr>
<tr>
<td>TIME</td>
<td>CONTENT/ACTIVITIES</td>
<td>MATERIALS</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>11:45 – 12:15</td>
<td>Limitations/Problems with prior projects Discuss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Participants take 5 minutes to jot down their notes/ideas on each of the aspects below. What limitations or challenges have occurred with prior projects, and what are solutions that can overcome these challenges?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Construction material</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Alternative equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Feature stability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Material stability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Operation and Maintenance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Property ownership</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Social and economic impacts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facilitator will guide discussion on each subtopic. This discussion designed to prepare for the breakout session after lunch.</td>
<td></td>
</tr>
<tr>
<td>12:15 – 1:00</td>
<td>LUNCH</td>
<td></td>
</tr>
<tr>
<td>1:00 – 2:00</td>
<td>Breakout Session: Brainstorm new design measures: Challenges and Opportunities Purpose: The objective of this breakout session is to identify specific project opportunities for incorporating EWN® principles and practice into GI-LID project development and operations. How can EWN® principles and practices be integrated into both existing and new projects and operations? What do you consider to be the key aspects or elements to implement these projects? What are key next steps that should be taken to advance the project(s)? Leaders will divide participants into two breakout groups. Group 1 – Pat Deliman (to designate note-taker) and Group 2 – Burton Suedel (to designate note-taker) will each lead a breakout. As the group is brainstorming ideas Rhonda Fields, TBD (landscape architects) will sketch out the breakout group ideas to help visualize.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Group 1 – Water Operation Activities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Group 2 – Dredging Operation Activities</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>CONTENT/ACTIVITIES</td>
<td>MATERIALS</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>2:00 – 2:15</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>2:15 – 3:00</td>
<td>Report out
Share
Group 1 (Pat Deliman) will share for 20 minutes
Group 2 (Burton Suedel) will share for 20 minutes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-minute Energizer
TBD based on energy (or lack of) levels of the group</td>
<td></td>
</tr>
<tr>
<td>3:15 – 4:15</td>
<td>Brainstorm new research and development opportunities and projects for EWN®-GI-LID related to island basin sediment management
Discuss
• Conventional Current State of the Art
• Hybrid Construction with NNBF
• Innovative Future Concepts</td>
<td></td>
</tr>
<tr>
<td>4:15 – 4:30</td>
<td>Summary and Review, Next Steps
Activity: Review objectives – did we get there?
Participants will use annotation features to rank how well objectives were met
Activity: I like, I wish exercise – participants provide feedback in the chat. What did they like about the workshop? What worked well? Conversely, what could have been improved? What do they wish had happened?
Deliman/Suedel share next steps – what will be done with the information generated?
A proceedings report will be generated to publish the participants, presentations, discussions, and results of the workshop as an USACE ERDC Technical Report jointly published with the UPR, etc.</td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td>Adjourn</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C: Presentations

By: Chris Haring, PhD, USACE ERDC
EWN® ACROSS USACE MISSION SPACE

Navigation
- Strategic placement of dredged material supporting habitat development
- Habitat integrated into structures
- Enhanced Natural Recovery

Flood Risk Management
- Natural and Nature-Based Features to support FRM
- Levee setbacks

Ecosystem Restoration
- Ecosystem services supporting engineering function
- "Natural" development of designed features

Water Operations
- Shoreline stabilization using native plants
- Environmental flows and connectivity

Engineering With Nature® Elements

47
A SYSTEMS VIEW OF SOLUTIONS

NNBF ENGINEERING PERFORMANCE

Levee Setbacks
- Decreased flood risk and mitigates economic damages
- Reduced frequency of levee breaches and failures
- Reduced lifetime maintenance requirements

Performance Factors
- Amount of new floodplain affects hydrologic loading
- Stormwater management options
- Ecological benefits of levee breaches

Benefits/Processes
- Increased recreation, cultural, and educational opportunities
- Recreational and interpretive opportunities
- Improved fisheries, water quality, and wildlife habitat

Naturalization of Channel Design
- Reduced frequency of levee breaches and failures
- Improved water quality and aquatic habitat
- Increased recreational and interpretive opportunities

Performance Factors
- Hydrologic and thermal benefits
- Fisheries and wildlife habitat
- Increased recreational and interpretive opportunities

Benefits/Processes
- Improved ecological and recreational benefits
- Reduced flood risk and economic damages
- Reduced maintenance costs

Watershed Treatments
- Increased floodplain connectivity
- Reduced flood risk and economic damages
- Improved water quality and aquatic habitat

Performance Factors
- Watershed management options
- Ecological and recreational benefits
- Improved floodplain connectivity
- Reduced flood risk and economic damages

Benefits/Processes
- Increased floodplain connectivity
- Reduced flood risk and economic damages
- Improved water quality and aquatic habitat
- Increased recreational and interpretive opportunities
MISSOURI RIVER LEVEE SETBACK
OMAHA DISTRICT

Producing Efficiencies
Setback reduces frequency of maintenance and repair of levees, reduced navigational maintenance; reduction in associated O&M and R&R costs.

Using Natural Processes
Setback leverages reduced hydrologic loading, decreased flood velocities, and reduced erosion/scour.

Broadening Benefits
Improved ecosystem sustainability, improved hazard mitigation; increased recreational, cultural and educational opportunities.

Promoting Collaboration
NWO collaboration with USGS, USFWS, Idaho Dept. of Natural Resources, NGOs, and stakeholders.

R&D: Opportunities to quantify ecological, engineering, and societal benefits; increase USACE's capacity to provide effective programs for NCA applications, and data/research learned will advance guidance and policy that supports future levee setback projects.

US Army Corps of Engineers • Engineer Research and Development Center

USACE ALBUQUERQUE DISTRICT:
SANTA CLARA PUEBLO WATERSHED EWN

Producing Efficiencies
Working with natural processes using local materials to stabilize the watershed and stream channels; reduced time and cost of importing materials, ecological and aesthetics benefits.

Using Natural Processes
Uses local material in system vs. introducing riprap, placement of materials in situ with native vegetation to re-establish natural channel tendencies.

Broadening Benefits
New options to place existing materials: habitat created; restoration of channel and reduction of sediment delivered to channels and reservoirs.

Promoting Collaboration
Partnersing with Santa Clara Pueblo, USGS, USFS, BIA, NMDOT, and NRCS

R&D: Implement, study and long-term performance of NNB. Offers opportunities to determine appropriate performance metrics aligned with ecosystem and engineering services.

Funded by DOTS REQUEST

US Army Corps of Engineers • Engineer Research and Development Center
Santa Clara Canyon-Recovery

NNBF Applications
Santa Clara Canyon, NM

- Wetland & Erosion Control
- Bottomless Culvert
NNBF Applications
Santa Clara Canyon, NM

- Wood structures
- Rock onsite
- Combination

NNBF Applications
Santa Clara Canyon, NM

- Wood structures
- Rock onsite
- Combination
NNBF Applications
Watershed Assessment Tool

- Wood structures
- Rock onsite
- Combination

BUILDING PROGRESS

- Expand the “vision” to diversify project benefits
- Increase collaboration and cross-sector partnerships
- Commit to innovation
- Pursue realistic and affordable projects
- Document the value created
- Coordinate communication across partnering organizations for maximum impact
INTERNATIONAL GUIDELINES ON THE USE OF NATURAL AND NATURE-BASED FEATURES FOR SUSTAINABLE COASTAL AND FLUVIAL SYSTEMS

Purpose: Develop guidelines for using NNBF to provide engineering functions relevant to flood risk management while producing additional economic, environmental and social benefits.

- Publish NNBF technical guidelines 2021:
 - Multi-author: government, academia, NGOs, engineering firms, construction companies, etc.
 - Addressing the full project life cycle
 - Guidelines in 4 Parts
 - Overarching
 - Coastal Applications
 - Fluvial Applications
 - Conclusions

WHAT IS FLUVIALGEOMORPH?

FluvialGeomorph (FG): is a rapid watershed assessment toolkit developed by the Corps of Engineers to assess stream channel stability. It uses existing high-resolution terrain data-Light Imaging Detection and Ranging (LiDAR) or other available data sets to measure and compare channel morphology. Channel morphology is then mapped and compared against representative stable channel dimensions (empirical relationships) to identify locations within the watershed where channel instability exists. Assessments are completed on a single data set or multiple years depending on the availability of data. Geomorphic mapping and the associated metrics provide a basis to identify and assess priority locations within the watershed for further data collection and study or concentrated restoration.
Questions

By: Burton Suedel, PhD, USACE ERDC

Dredging Operations Technical Support (DOTS) Program Overview

- Primary technology transfer mechanism for dredging and navigation since 1978
- Provides “one-door-to-the-Corps” access to comprehensive information on technology related to navigation operations and maintenance functions
- Program functions include:
 - Rapid, short-term technical responses for field offices
 - Technology demonstrations
 - Training
 - Database management
 - Publications
 - Development and dissemination of technical guidance

https://dots.el.erdc.dren.mil/
Engineering With Nature®

...the intentional alignment of natural and engineering processes to efficiently and sustainably deliver economic, environmental and social benefits through collaboration.

Key Elements:
- Science and engineering that produces operational efficiencies
- Using natural process to maximum benefit
- Broaden and extend the benefits provided by projects
- Science-based collaborative processes to organize and focus interests, stakeholders, and partners

www.engineeringwithnature.org

Leveraging EWN + Landscape Architecture to Promote GI-LID

- Collaborations amongst science, engineering, and landscape architects jointly contribute to EWN implementation through best management practices and scientific research
- CSRM projects are being implemented that incorporate EWN+LA practices to achieve additional environmental and social benefits maintaining intended engineering project functions

EWN website designs page: https://ewn.el.erdc.dren.mil/designs.html

Drawing showing a potential augmentation to an existing coastal flood protection system (King et al. 2021)
Detailed Renderings Aid GI-LID Decision-making

Common coastal infrastructure types that can be enhanced for biodiversity:
- Thin layer placement
- Living shoreline
- Seawall
- Revetment
- Bulkhead
- Detached breakwater and jetty
- Sill
- Tidal control structure
- Groin

From Sundel et al. (In Review)

EWN GI-LID R&D

Southeast Louisiana Urban Flood Control Project (SELA) Project
- Responding to extensive flood damage in SE Louisiana in 1989 & 1995
- Providing flood risk reduction up to a level associated with a 10-year rainfall event
- Strengthening the City's neutral grounds as greenway connectors
- Reinforcing sustainable and resilient image through visual design
- Expanding New Orleans' urban forest
- Enhancing environmental value of urban green spaces
- Reducing burden on the storm drainage system
- Slowing land subsidence through groundwater recharge and infiltration
- Improving water quality

Cross-sectional rendering of the primary components of the bio-retention areas of the SELA project. Arrows mark surface and near surface water flow designed to reduce flood risk (Seavey et al. In Review)

Ground-level view of the bio-retention component of the neutral ground. Serrata grass was planted, consistent with Park and Parkways maintenance standards, to foster infiltration.
EWN GI-LID Best Practice

Fowl River Private Living Shorelines (AL)

- Living shorelines constructed by TNC for private landowners with river-adjacent property
- Replaced failing bulkheads experiencing erosion caused from boat wakes
- Stabilized existing bulkhead using tiered gabion baskets filled with dredged sediment, then planted with native marsh grass
- 40 ft of natural shoreline and an existing marsh island were protected by two gabion-basket breakwaters utilizing sediment dredged from nearby canal
- Protected 200 ft of shoreline and enhanced 720 ft² of marsh
- Design leaves failing bulkhead in place and stabilizes the structure, saving cost of removal

EWN GI-LID Best Practice

Mangroves & Recreation Infrastructure

Nature-based Solutions

- Ecological Functions
- Amenities / recreational values
- Cost reduction (e.g., vs. seawall)
- Adaptability to sea level rise

Potential Environmental Design Features

- Living shorelines
- Mangrove islands
- Boardwalks & kayak trails

Mangrove Shoreline
(Harborside, Jupiter, FL)

Mangrove Shoreline
(Admiral's Cove, Jupiter, FL)

Mangrove Marina Edge
(Jupiter Yacht Club, FL)

Courtesy: Esteban Biondi (ATM)
EWN GI-LID R&D

Milwaukee Harbor Green Breakwater
- Modify design of rubble mound breakwater during maintenance
- Extend beyond indirect and unplanned habitat creation
- Provide features creating habitat opportunities for fish and other aquatic life
- Examine creation of habitat surfaces using rubble mound
 - Stone size
 - Gentle sloping shelf
- Create habitat for fish such as walleye and lake trout
- Approach widely applicable

EWN in New Jersey Back Bays
- Federal navigation channel and coastal marsh habitat damaged by Hurricane Sandy
- Restore the New Jersey Intracoastal Waterway and local marshes
- Improve coastal navigation in New Jersey
- Stone Harbor Black Skimmer habitat restored via thin-layer placement with dredged sediment from adjacent navigation channel
Barrier Island: Deer Island, Biloxi, MS

- Biloxi Harbor Navigation Project – 3.85 m (12 ft) deep navigation channel
- Sediment beneficial use to restore marsh, create terrestrial and aquatic habitat, provide a more resilient shoreline for future storm events, create long-term disposal capacity
- Hurricanes over time destroyed forests, significantly eroded shoreline, and left elevations too low to support marsh vegetation
- Filled breach in west end of the island
- 1.5 m mom dredged material to restore southern shoreline using 4 km long wave barrier
- Strategic vegetation plantings (625,000+ plants)
- Construction of a 0.75 m mom lagoon for BU dredged material from navigation channels
- Providing significant environmental, coastal storm, and recreational benefits

Coastal Wetland: Jekyll Island, GA

- Two objectives:
 - Elevation enhances marsh resiliency to marsh subsidence and sea level rise
 - Added dredged material promotes new growth of marsh grasses
- ~5,000 cy non-beach quality was dredged from Jekyll Creek
- Placed in an adjacent 5 ac salt marsh using a thin-layer placement technique to increase marsh elevation
- First TLP project in GA
- Increases resiliency of communities upland of the site
Horseshoe Bend River Island Producing Multiple Benefits

- **Problem:** capacity of bankline disposal areas exhausted
- **Solution:** mid-river mounding of dredged material
- Island formation reduced dredging requirements
- Natural channel formed east of the island due to self-scouring
- US Coast Guard realigned channel
 - channel length reduced
 - sharp bends eliminated
 - improved navigation safety
- Reduction in long-term dredging requirements
- Resultant carbon savings and reduced air pollution

500,000 cy 10-21
Jan 2020

Swan Island, Chesapeake Bay

- Erosion 2-3 meters per year for Swan Island & Martin National Wildlife Refuge since 1942
- Island fragmented, low marsh at sub-optimal elevations
- Natural wave break for Town of Ewell
Swan Island Restoration Sediment Beneficial Use

- Economic benefits from proximity to Federal navigation channel
- Social benefits to Smith Island communities
- USACE Baltimore District beneficially placed dredged sediment from Federal navigation channels (completed April 2019)
- ~60,000 CY, 65% silt, 35% fine grained sand

Take Home Points

- Environmental and developmental pressures increasingly threaten coastal communities, yet hardened shorelines are leading to environmental degradation and biodiversity loss.
- Such pressures necessitate the development of GI-LID to provide protection in ways that balance economic, environmental, and social benefits through collaboration.
- Engineering practice can be advanced through structured decision-making that integrate multiple disciplines for enhancing coastal resiliency.
- Challenges >>> Opportunities
CONTACT INFORMATION

Burton Suedel
US Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180
Burton.Suedel@usace.army.mil
Appendix C.3: “Gerencia y Manejo de Cuencas Hidrográficas en Puerto Rico”

By: Yasiel Figueroa-Sánchez, Protectores de Cuencas
Institutional Capacity Building

- More than 60,000 plants produced yearly
- Restoration Projects across the Island

- HI-OH 2500Q Portable Turbidimeter
- HI-9120 Portable pH and Conductivity Meter
- HAB Multigate Meter
- HI994045 Ammonia Medium Range Portable Photometer
- I2DK2 Quanti-Tray System for bacteria

Equipment

- 52 4x4 Pick-up Trucks
- 6 4x4 GM Dune Trucks
- 1 Bed Service Truck
- 2 20m Dune Trucks
- 2 Backhoes
- 2 Caterpillar Diggers
- 2 Compacting Rollers
- 2 Self Loader
- 3 dirt Trucks
- 6 Trailers
- 1 Water Tanker
- 2 Flail Mowers
- 1 M/H mowers
- 1 Hiab Excavator
- 1 Steamroller

- 8 Technical Personnel
- 50 General Laborers in BMR and Green Infrastructure

Colaboradores

[Logos of various organizations]
Áreas de Trabajo de PDC

Preguntas Guías

1. ¿Cómo se establece un plan de manejo y cómo se puede incorporar medidas de mitigación?

2. ¿Cuáles son los retos de la implementación de un plan de manejo y a quién le toca resolverlos?

La CUENCA es una perspectiva... una manera de interpretar el paisaje.

¿Plan de Manejo de Cuenca?

- El Plan debe ser una Guía flexible y adaptativa que exponga las necesidades principales de la cuenca y como atenderlas.
- Nace de problema o interés común identificado por residentes locales, academia y/o gobierno.
- Recoge los problemas ambientales asociados a los usos y recomienda soluciones para resolverlos.
- Debe ser elaborado en conjunto con las personas que viven en la cuenca.
- Es un esfuerzo multisectorial.
Ciclo del Plan de Manejo

- Definir limites geográficos
- Identificar y priorizar problemas
- Medir efectividad
- Integración de partes interesadas
- Proponer proyectos
- Adapta
- Conocer Cuenca
- Implementar

Criterios mínimos para planes de manejo de Cuenca de la EPA

- a. Identify causes and sources of pollution
- b. Estimate load reductions expected
- c. Describe management measures and targeted critical areas
- d. Estimate technical and financial assistance needed
- e. Develop an information and education component
- f. Develop a project schedule
- g. Describe interim, measurable milestones
- h. Identify indicators to measure progress
- i. Develop a monitoring component
Problemas principales de plan de manejo para la Bahía de Guánica

A number of critical issues were identified in the GIS, watershed related to the impact of land based sources of pollutants on the near shore coral reefs in the area surrounding the Guánica Bay. These include:
1. Upland erosion in the coffee growing region;
2. Reservoir sedimentation and transport;
3. Invasive channel erosion;
4. Loss of Historic Guánica Lagoon;
5. Legacy contamination;

Guánica Bay Watershed Management Plan

Prepared by:
Center for Spatial Protection
P.O. Box 2415
Ponce, PR 00731-2415
(787) 273-2786

Ejemplo del Plan de Manejo Integrado de Cuencas del Corredor Ecológico del Noreste
¿Cuáles son los retos de la implementación de un plan de manejo y a quién le toca resolverlos?

- Retos filosóficos
- Retos económicos
- Retos políticos
- Retos logísticos

Implementaciones en caminos de tierra en cafetales
Fincas trabajadas

Tasa de erosión para 4 unidades de paisaje en el cafetal

Estabilización de caminos de tierra en fincas de café
Estructuras de gobernanza.

¿Cómo se desarrollan? ¿Ejemplos en PR?

¿Lecciones aprendidas?

Sugerencias o plataforma de gobernanza sugerida.

Evaluación de efectividad de prácticas de control de erosión

Comparación de erosión (kg m⁻²) en tratamientos control y tratados

Contraterroristas vs. Modelado fenológico

Modelo Comunitario

Juntas de Co-Manejo
Gracias

By: Billy Johnson & Todd Steissberg, USACE ERDC
Low Impact Development

Low-impact development (LID) is a term used in Canada and the United States to describe a land planning and engineering design approach to manage stormwater runoff as part of green infrastructure.

LID emphasizes conservation and use of on-site natural features to protect water quality.

This approach implements engineered small-scale hydrologic controls to replicate the pre-development hydrologic regime of watersheds through infiltrating, filtering, storing, evaporating, and deterring runoff close to its source.

Green infrastructure investments are one approach that often yields multiple benefits and builds city resilience.

Riverine and Upland Regimes
Compost filter socks are a three-dimensional tubular sediment control and storm water runoff filtration device typically used for perimeter control of sediment and soluble pollutants (such as phosphorus and petroleum hydrocarbons).

Compost filter socks trap sediment and soluble pollutants by filtering runoff water as it passes through the matrix of the compost filter socks and by allowing water to temporarily pond behind the compost filter socks, allowing deposition of suspended solids.

Compost filter socks are also used to reduce runoff flow velocities on sloped surfaces.

Upland Areas

Low Cost Check Dam using Local Materials

Slowing the Flow at Pickering - Pickering, North Yorkshire, England, United Kingdom

An integrated application of a range of land management interventions and measures was investigated to help reduce flood risk at the catchment scale. A set of seven measures were planned, including constructing low-level berms in the Pickering Beck catchment to increase flood storage capacity within the floodplain, planting 50 hectares of riparian woodland on the Pickering Beck catchment and 30 hectares of oak woodland in the neighbouring catchment of the River Seven, constructing appropriate dikes to delay and reduce flood flows, constructing 100 large woody debris dams in the Pickering Beck catchment and a further 50 in the River Seven catchment to increase floodplain storage and delay flood flows, and planting 3 hectares of farm wood and five separate copses to increase soil infiltration and reduce rapid surface runoff, erosion, and sediment delivery to watercourses.

The project gained a very strong national profile and is well suited as a case study demonstrating the value of working with natural processes. Of special note was the project role in helping a site and integrate the implementation of government policy on flood risk and land use management. In particular, the project’s success has underpinned key regional and national initiatives on Woodlands for Water, including the use of opportunity woodlands to identify priority catchments for planting to reduce flood risk, and the introduction of a Woodland for Water grant payment per hectare under the previous English Woodland Grant Scheme.
Bendway Weirs

Advantages of Bendway Weirs in the realm of streambank stabilization are:

- flow can be redirected
- flow within the weir field is considered controlled
- weirs work best under high-flow, high-energy conditions
- costs are competitive or lower than traditional methods
- weirs blend well with other bank protection methods and have been retrofitted into existing under-performing projects to improve hydraulic performance of those projects

Buffers! Reduce the Energy! Slow It Down!
Coastal Plane and Wetland Regimes

Belford Natural Flood Management Scheme - Belford, Northumberland, England, United Kingdom

The approach presented in the proactive study was to install passive intervention on farms to control large volumes of runoff.

The features are multipurpose and address water quality, trapping sediment, creating new habitats, and storing and attenuating flood flow.
Pierce Marsh - Hitchcock, Texas, United States

Silt and soft clays, also known as fines, are the most common material excavated in maintenance dredging in this reach of the Gulf Intracoastal Waterway.

The material is ideal for beneficial-use projects that restore eroded habitat.

Therefore, the Pierce Marsh project took advantage of this plentiful resource to elevate the marsh and restore habitat for colonial nesting birds and native vegetation.

By using engineered perimeter berms and grade control structures, the team contained the dredged sediment in target areas while avoiding previously restored sections of the marsh.

Now the coastal marsh can provide its own natural engineering benefits, such as protection against storm surge.

Tomago Wetlands - Tomago, New South Wales, Australia

Examining hydroperiods of salt marsh and mangrove systems across the estuary determined the optimal operational design to promote ecosystem recovery.

The project team incorporated these variables into a detailed ecohydrodynamic model to provide on-the-ground site management options.

To maximize salt marsh growth while also ensuring that adjoining landholders were not negatively affected, the team implemented an innovative SmartGate system at Tomago.

The gates permit adaptive tidal inundation control across the large intertidal flats, protecting both the restored areas and the adjoining commercial properties from river-based floods.
Coastal Regimes

Long Beach Island Coastal Storm Damage Reduction – Long Island, NY

This project consisted of creating a berm and dune extending along the oceanside of the Island. These nature-based features were designed to eliminate flooding and coastal storm damage for the Island’s communities. The features were built with sand obtained from an offshore borrow source incorporated into the natural and nature-based features. The project plans were periodic sand nourishments every 7 years for 50 years.

This project has tremendous coastal and economic value, as it was designed to mitigate erosion, flooding, and property damage that can result from storms, hurricanes, and other extreme weather events. The revitalized beach will also improve recreational opportunities for the Island’s inhabitants and visitors. The plantings will provide habitat for wildlife and environmental benefits.

This project was a joint effort between the USACE and the project sponsor and cost-sharing non-federal partner, NIDEP. In 2016 USACE awarded a contract to the Great Lakes Dredge and Dock Company to complete initial construction of the project.
Mangrove Reef Walls – Englewood and Fort Pierce, FL

Mangrove Reef Wall panels are an ecologically responsive and viable approach to shoreline enhancement. The custom high-strength concrete is balanced with oyster flour, silica fume, and microfiber reinforcement to attract oysters, resist saltwater deterioration, reduce spilling risk, and double the material’s lifespan. Further, the design uses existing seawall production methods, creating a high-impact investment when replicating many panels.

Mangrove Reef Walls create a scaffold for native, enhancing ecosystems alongside human development. The walls’ ability to dissipate wave energy in the same way that mangroves do improves water clarity by reducing suspended sediment and increases the walls’ stability by preventing sediment erosion. The small eddies produced by the uneven surface of the walls help attract drifting organisms, diversifying the ecosystem and attracting grazing species, which in turn attract larger predators.

The filtration capacity of tidal ecosystems directly affects water quality.

Increasing filter-feeder populations may also mitigate harmful algal blooms (red tides), one of the most serious environmental and economic threats to Florida communities.
Appendix C.5: “Identifying Funding Opportunities”

By: Nitza Ayala-Fontánez and Kathia Sánchez-Ríos, FEMA

Identifying Funding Opportunities

Nitza Ayala Fontánez, AIT, Grants Specialist | Kathia Sánchez Ríos, AIT, FA Mitigation HPA Crew Lead

Objectives

- Present FEMA Hazard Mitigation (HM) funding programs available.
- Identify how Nature-Based Solutions can be integrated in FEMA HM Programs.
- Provide examples of potential Mitigation Projects through FEMA.
FEMA’s Hazard Mitigation Definition

"Any cost-effective sustained action taken to reduce or eliminate long-term risk to people and property from natural hazards and their effects."

FEMA – Hazard Mitigation Programs

<table>
<thead>
<tr>
<th>Stafford Act Section</th>
<th>Stafford Act Section</th>
<th>Stafford Act Section</th>
<th>National Flood Insurance Act of 1968</th>
</tr>
</thead>
<tbody>
<tr>
<td>406</td>
<td>404</td>
<td>203</td>
<td>NFIA</td>
</tr>
<tr>
<td>PA Program</td>
<td>Hazard Mitigation Assistance (HMA) Programs</td>
<td>Non-disaster-related programs</td>
<td></td>
</tr>
<tr>
<td>Disaster-related program</td>
<td>Disaster-related program</td>
<td>Non-disaster-related programs</td>
<td></td>
</tr>
</tbody>
</table>

HMGF: Hazard Mitigation Grant Program
HMGF Post Fire: Hazard Mitigation Grant Program Post Fire
BRIC: Building Resilience Infrastructure and Communities
FMA: Flood Mitigation Assistance Program
Public Assistance (PA) Mitigation

Implements mitigation measures to reduce the potential of future, similar damages during facility repair.

- Funding is available when authorized through a Presidential major disaster declaration. (For example, Hurricane Maria in 2017.)
- Eligibility criteria is established by the Public Assistance Program and Policy Guide (PAPPG).
- Mitigation projects must be reasonable, feasible, cost effective and compliance with EHP laws, regulations, and E04s.
- FEMA provides assistance for facilities that were damaged during a declared incident.
- The mitigation cannot negatively impact the facility’s operation or surrounding areas or create susceptibility to damage from another hazard.

Hazard Mitigation Grant Program (HMGP)

Implements mitigation measures to reduce risk of loss of life and property from future natural disasters during reconstruction process following a disaster.

- Funding is available when authorized through a Presidential major disaster declaration. (For example, Hurricane Maria in 2017.)
- All Applicants and Subapplicants must have a FEMA-approved mitigation plan, in accordance with 44 CFR Part 206.
- The Governor’s Authorized Representative (GAR) or equivalent serves as the grant administrator for all assistance provided.
- Mitigation projects funded by HMGP must be cost-effective and feasible at mitigating the risks of the hazard(s) for which the project was designed.
- FEMA cannot provide assistance for activities funded or under the authority of another federal agency or program.

FEMA
Summary of PA Mitigation and Hazard Mitigation Grant Program

<table>
<thead>
<tr>
<th>PA Mitigation</th>
<th>Hazard Mitigation Grant Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>- FEMA administers the program (PA)</td>
<td>- State administers the program</td>
</tr>
<tr>
<td>- Funding is not competitive</td>
<td>- Funding is competitive and limited</td>
</tr>
<tr>
<td>- FEMA can prepare applications</td>
<td>- Only applicants prepare applications</td>
</tr>
<tr>
<td>- Only damaged facilities are eligible</td>
<td>- Undamaged facilities are eligible</td>
</tr>
<tr>
<td>- Only declared areas participate in the program</td>
<td>- Entire state participates in the program</td>
</tr>
<tr>
<td>- Mitigation work completed before FEMA funding approval is eligible</td>
<td>- Work started before approval is not eligible</td>
</tr>
</tbody>
</table>

FEMA – Hazard Mitigation Assistance Programs

<table>
<thead>
<tr>
<th>PA Mitigation (406)</th>
<th>Use funds to provide protection against future events to elements of a facility that were damaged during a disaster.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIMGP (404)</td>
<td>Use funds to provide protection against future events to elements of a facility regardless of if the elements were damaged or not during a disaster.</td>
</tr>
</tbody>
</table>

Leveraging 404 and 406 is appropriate when:
- Mitigation is needed to provide protection to both damaged and undamaged eligible sites.
- A comprehensive, more complex solution is needed/desired. For example, including watershed wide solutions to address flooding.

Benefits of leveraging 404 and 406:
- Allows a comprehensive project scope.
- Extends the use of limited Section 404 funds.
- Combines project benefits in one SCA.
Funding Nature-Based Solutions through FEMA HM Programs

FEMA’s Nature-Based Solutions Definition

“Sustainable planning, design, environmental management, and engineering practices that weave natural features or processes into the built environment to build more resilient communities.”
Nature-Based Solution Intent Example

- In urban areas, about 55% remains as runoff.
- Weakens faster, expensive to build, maintain, and repair.

- In forested areas, about 50% of rainfall is infiltrated.
- Only 10% flows along the surface as runoff.

FEMA

Steps for identifying a Nature-Based Solution as HM Strategy

- FEMA - HM Assistance Programs
- Mitigation Techniques
- Quantifying Benefits
- Approach & Strategy

- Is the need for a mitigation project driven by post-disaster recovery or pre-disaster preparation?
- Is the primary hazard affecting the site's coastal flooding, riverine, urban flooding, landslide, drought?
- How to best quantify the benefits of NBS using FEMA's Benefit Cost Analysis (BCA) tool?
- How to maximize possible mitigation benefits and/or improve project impact?
Promoting NBS through FEMA programs

Small Scale Largo Scale

Nature-based solutions often work best when applied at larger scales across whole landscapes, ecosystems, or communities.

Mitigation Techniques

Riverine Flood
- Shoreline Protection
- Shoreline/River Restoration
- Horizontal Sediment Levees
- Streamside Stabilization

Coastal Flood
- Coral Reef Restoration
- Coastal Wetland Restoration
- Tidal Circulation
- Beach Parks

Urban Flood
- Rain Gardens
- Bioretention Basins
- Vegetated Swales
- Permeable Pavement

Sources for images: The Nature Conservancy, Promoting Nature-Based Hazard Mitigation Through FEMA Mitigation Grants, 2017 (page 32) / Nature Conservancy is a nonprofit organization / FEMA
Mitigation Techniques – Riverine Flood Watershed Scale

Mitigation Techniques – Streambank and Slope Stabilization

Sources for images: FEMA, J. K. J. Bioengineering Streambank Stabilization (Page 5), 2017 / REWPERM, W. A. P. Beach stabilization / Green Banker system in operation provided by GEORGE L. R. V. R.
Mitigation Techniques

- COASTAL FLOOD
 - Dune Restoration
 - Coastal Wetland Restoration
 - Reef Restoration

- URBAN FLOOD
 - Vegetated Swales
 - Flash Sandbags
 - Infiltration Basins

Sources for images: [Image 1](https://example.com/image1) [Image 2](https://example.com/image2)

Quantifying Benefits

Direct Benefits
- Technical Benefits (BCA)
- Economic Benefits
- Ecological Benefits

Indirect Benefits
- Social and Cultural Benefits

Technical Benefits (BCA)
- Infrastructure retrofit
- Planning and design
- Vegetation and soil stabilization
- Elevator doors

Economic Benefits
- Reduce property losses
- Advance economic development
- Funding

Ecological Benefits
- Improved water quality
- Reduce soil erosion
- Wetland restoration
- Native plantings

Social and Cultural Benefits
- Wildlife habitats
- Waterfowl
- Education
- Recreation

Examples of Potential Mitigation Projects through FEMA

Slope Stabilization Project

- Applicants are proposing to install gray infrastructure, such as gabion walls.
- Proposed Scope of Work: install living system with vegetation to reinforce soil and create resistance through root development.
- Benefits: reduce long-term maintenance and stabilization results

Sources for Images: Taken by H.V. Specialist - Kathleen Sanchez © Memoria
General Hospital / Science and Stanford - Coastal and Environmental Marine
and John Resource Engineering - DoD Civilian
Watershed Management Project

- **Proposed Scope of Work**: Realign channel in several sections, grading, built instream structure (add wood debris, gravel, etc.) and stabilize stream bank (add native plants). Potential Land Acquisition.

- **Benefits**: Reduces erosion, sediments and flooding.

Sources for images: RiverisEngineering.com / Figure 8. Context for Stream Restoration in Rio Yau Novel - Government Florida, FL (page 12)

Aquifer Storage Recovery

- **Proposed Scope of Work**: Harvest rainwater overflow from Patillas Reservoir into Salinas through a canal.

- **Benefits**: Reduce drought and flood risks, improve water recharge, increase flora and fauna, protect freshwater supply from saltwater intrusion, among others.

Sources for images: Aquifer Water Management Foundation / Aquifer Storage and Recovery: A Strategy for Long-Term Water Security in Puerto Rico, USA, Climate Resilience Toolkit
Coral Reef Restoration

- **Proposed Scope of Work:** Integrate different types of coral and distribution of artificial reef module/system.
- **Benefits:** Improve durability and strengthen structure, attenuate energy of incoming waves, reduce shoreline erosion and attenuate surge water levels.

Sources for images: DHER shared this information with Public Assistance Staff / handshake_with_beach_reef / habitat

Available Resources

- Hazard Mitigation Assistance Grants | FEMA.gov
- Promoting Nature-Based Hazard Mitigation through FEMA Mitigation Grants
- Natural and Nature-Based Features International Guidelines
- Building Community Resilience with Nature-Based Solutions: A Guide for Local Communities
- Innovative Drought and Flood Mitigation Projects
- FEMA Fact Sheet – Bioengineered Streambank Stabilization
- FEMA Fact Sheet – Aquifer Storage and Recovery
- FEMA Fact Sheet – Flood Diversion and Storage
- FEMA Fact Sheet – Floodplain and Stream Restoration
- FEMA Fact Sheet – Green Infrastructure Methods
Thank you!

Nitza Ayala Fortánez
(202) 714-6547
nitza.ayala@fema.dhs.gov

Kathia Sánchez Ríos
(202) 717-5669
Kathia.sanchezrios@fema.dhs.gov

By Dave Hampton and Tim Dekker, LimnoTech
1. From risks to opportunities

Understand the context

Reframe risks as opportunities

Multi-criteria analysis
- Bio-physical data
 - Temperature
 - Precipitation
 - Vegetation cover
 - Impervious area
 - Salinity, sodicity
- Etc.
- Land use
- Political boundaries / jurisdictions
- Demographics
 - Populations
 - Age
 - Socio-economic
 - Vulnerable populations

Multi-criteria sensitivity map

Source: GeoKapitve LLC. http://geokapivte.com/
Human settlement
Geology

Source: Geospatial Data and Regional Planning (Geospatial Analysis) Map

Precipitation

Source: https://dataisewater.usgs.gov/geochemistry/
Flood risk

Landslide susceptibility
Seismic

Storm / wind
Community exposure

6 key questions
1. Who determines hazard, vulnerability, and risk?
2. What are its implicit biases?
3. Who/how determines priorities?
4. Are biophysical hazards enough?
5. Consider multi-hazards (not just flooding)
6. What about socio-economic vulnerabilities?

Community exposure

Who and what is (most) at risk?
For what?
When?
Where?

How might you reduce exposure?
Community assets / adaptive capacity

Source: WPAI Coastal Resilience Evaluation and Design Tool (CREDT)
https://coastalresilience.org/tools/credit/credit.gif
2. Understand the context

3 objectives
1. Follow the water
2. Use typologies
3. Multiscalar thinking

Typologies

Not every single location can be addressed. So...

Think typologically

<table>
<thead>
<tr>
<th>A.1 Highlands</th>
<th>A.2 Midlands plains and valley</th>
<th>A.3 Lowlands</th>
<th>A.3.1 Highlands (south slope)</th>
</tr>
</thead>
<tbody>
<tr>
<td>low vegetation</td>
<td>mature high-canopy trees</td>
<td>low vegetation</td>
<td>mature high-canopy trees</td>
</tr>
<tr>
<td>fields</td>
<td>orchard trees</td>
<td>human settlement</td>
<td>livestock cattle</td>
</tr>
<tr>
<td>corn</td>
<td>human settlement</td>
<td>livestock cattle</td>
<td>cacao</td>
</tr>
<tr>
<td>human settlement</td>
<td></td>
<td>cacao</td>
<td>banana plantations</td>
</tr>
<tr>
<td>cattle</td>
<td></td>
<td>bananas</td>
<td>trees</td>
</tr>
<tr>
<td>grases</td>
<td></td>
<td></td>
<td>fruit-bearing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>understory</td>
</tr>
</tbody>
</table>

Taking a theoretical section, or transect, across a landscape and using it to identify a typology - or set of typologies - can be a useful tool for understanding a socio-ecological system. While typologies may not hold true over an entire region, one begins to see patterns emerging which can aid the learning process, without becoming bogged down in the details of each specific instance.

Source: Trevor Hugton, Chief Technical Officer
Scale

The watershed is an appropriate scale for conceiving of challenges and opportunities, and implementing EWN interventions.

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jurisdictional cuts</td>
<td>Can bring disparate communities, biomes, and</td>
<td>> Effort to coordinate</td>
</tr>
<tr>
<td></td>
<td>disciplines together</td>
<td></td>
</tr>
<tr>
<td>Working in section,</td>
<td>Easier to work typologically</td>
<td>> Neutral nature to many stakeholders</td>
</tr>
<tr>
<td>not just in plan</td>
<td>Educational info more intuitive</td>
<td></td>
</tr>
<tr>
<td>Continuity</td>
<td>Intuitive water flows from high (Mountains) to</td>
<td>> Effort to plan and implement holistically</td>
</tr>
<tr>
<td></td>
<td>low (Sea)</td>
<td>across entire watershed</td>
</tr>
<tr>
<td>Breadth</td>
<td>Knits whole landscape together</td>
<td>> Effort to coordinate across jurisdictions,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disciplines</td>
</tr>
</tbody>
</table>
3. **Actioning**: Identifying projects, involving people

1. “Pwooblm lan souvan gen solisyon an”
 “The problem often contains the solution”

2. Solisyon lokal yo pwisan
 Local solutions are powerful

Pivot quickly from problems to opportunities

Avoid overreliance on outside experts and ideas.
Empower local actors, culturally-relevant approaches
Hold workshops.
Group sectors/disciplines by local expertise and interest.
Allow for cross-pollination

‘Risk-opportunity’ reflects dual nature

Multi-hazards/risks
Pick two inter-related risks
(‘hazard-perspective’)
Try to draw from both ‘accepted practice’ and local technologies

Scale: toggle between household, community, and landscape.

Ideate and test scenarios against actual sites. Visit field to determine feasibility.
Repeat.
- Cut into slopes to build
- Impede surface water flow
- Make buildings need to resist hydrostatic pressure
- Increase risk of landslide vulnerability

- Consider construction which doesn’t impede surface water flow
- Buildings elevated on pilings, columns, or piers
- Provide technical assistance and education for homeowners and builders

HOWEVER must:
- Be engineered
- Be seismic landslide, and hurricane resistant
- Ensure built correctly (inspect, inspections)

https://www.sfusm.edu/building-to-withstand-tsunamis/

Hanna, Dominica. Photo: Emma Prentiss
Middle Watershed
Streambank stabilization

Puget Sound Restoration, Bellingham, WA

Streambank stabilization, Eadda, Washington. (Photo by LimnoTech)

Levee along the Klickitat River in the Columbia Basin. The levees are designed to provide flood control and prevent erosion. (Photo by LimnoTech)

Streambank stabilization

Puget Sound Restoration, Bellingham, WA

Aerial view of Shoreline community on the Skagit River. (Photo by LimnoTech)

Streambank stabilization
Lower Watershed

<table>
<thead>
<tr>
<th>Project</th>
<th>Eligibility in Midwest</th>
<th>Navigability/support</th>
<th>Nature of source</th>
<th>Coverage</th>
<th>Targeted Federal-Aiding (source)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streambank stabilization</td>
<td>Yes</td>
<td>Rivers and streams, lakes, high-energy, shallow water, surface or beach</td>
<td>EMAP - WET</td>
<td>FY02 1051</td>
<td></td>
</tr>
<tr>
<td>Wetland gray-green</td>
<td>N/A</td>
<td>Rivers and streams, lakes, high-energy, shallow water, surface or beach</td>
<td>EMAP - WET</td>
<td>FY02 1051</td>
<td></td>
</tr>
<tr>
<td>Living shoreline</td>
<td>N/A</td>
<td>Rivers and streams, lakes, high-energy, shallow water, surface or beach</td>
<td>EMAP - WET</td>
<td>FY02 1051</td>
<td></td>
</tr>
<tr>
<td>Coastal conservation</td>
<td>N/A</td>
<td>Rivers and streams, lakes, high-energy, shallow water, surface or beach</td>
<td>EMAP - WET</td>
<td>FY02 1051</td>
<td></td>
</tr>
<tr>
<td>Fishing access improvement</td>
<td>N/A</td>
<td>Rivers and streams, lakes, high-energy, shallow water, surface or beach</td>
<td>EMAP - WET</td>
<td>FY02 1051</td>
<td></td>
</tr>
<tr>
<td>Shoreline protection</td>
<td>N/A</td>
<td>Rivers and streams, lakes, high-energy, shallow water, surface or beach</td>
<td>EMAP - WET</td>
<td>FY02 1051</td>
<td></td>
</tr>
</tbody>
</table>

LimnoTech

ERDC/EL SR-23-7

119
- Ignore debris and fill... until it becomes a liability.
- Move it and forget it.
- Leave coastal development to chance.

- Manage debris upstream (see Upper Watershed).
- Use debris and dredge material creatively.
- Plan in advance for how newly created land will be used.
- Reli only on "Maghrot Line": one layer of traditional gray, hard infrastructure
- Wait to manage water and waste at "end of the pipe"
- Impervious barriers

- Use hybrid gray-green or multiple layers of infrastructure
- Manage water upstream
- Permeable: allows water exchange, aquatic species movement, substrate for organisms
- Use breakwaters to break up wave energy offshore and maintain beach access

Single-layer, hard infrastructure
- Vulnerable
- Takes some of security
- Requires for no movement of species

Source images: 1. Photo Credit: daycare; 2. Photo Credit: LimnoTech; 3. Photo Credit: Department of Forestry, Puerto Rico.
Multi-layered / Permeable systems:
- water exchange
- aquatic species movement
- substrate for organisms
- community involvement

Coastline Living Shoreline, Southern Island, South Carolina, USA

The new shoreline is designed to increase biological habitat and promote the ecological integrity of the site. The approach includes a combination of natural and artificial elements to create a dynamic, self-sustaining shoreline that enhances biodiversity and supports coastal ecosystems. This transformative design integrates natural processes with innovative engineering solutions to restore and protect the coastline.

Brownsfield Tower, Fort Anderton, Texas, USA

The project coasts enjoy increased biodiversity and enhanced ecological functions, contributing to the overall health and sustainability of the coastal environment.

LimnoTech
Muchas gracias!
Thank you!
Abbreviations

BRIC Building Resilient Infrastructure and Communities
DNER Department of Natural and Environmental Resources
DOTS Dredging Operations Technical Support
ERDC Engineer Research and Development Center
ERDC-EL Engineer Research and Development Center
Environmental Lab
EWN® Engineering With Nature®
FEMA Federal Emergency Management Agency
FMA Flood Mitigation Assistance
FRS Floodwater Retarding Structure
GI Green Infrastructure
H&H Hydraulics and Hydrology
HMA Hazard Mitigation Assistance
HMGP Hazard Mitigation Grant Program
LA Landscape Architecture
LID Low Impact Development
NBS Nature Based Solutions
NNBF Natural and Nature Based Features
NGO Non-Governmental Organization
NPA Natural Protected Areas
NRCS Nature Resources Conservation Service
PR Puerto Rico
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRASA</td>
<td>Puerto Rico Aqueduct and Sewer Author</td>
</tr>
<tr>
<td>PRWRERI</td>
<td>PR Water Resources and Environmental Research Institute</td>
</tr>
<tr>
<td>R&D</td>
<td>Research & Development</td>
</tr>
<tr>
<td>SME</td>
<td>Subject Matter Expert</td>
</tr>
<tr>
<td>SWF</td>
<td>Southwestern Division</td>
</tr>
<tr>
<td>UPRM</td>
<td>University of Puerto Rico Mayagüez</td>
</tr>
<tr>
<td>USACE</td>
<td>United States Army Corps of Engineers</td>
</tr>
<tr>
<td>WOTS</td>
<td>Water Operations Technical Support</td>
</tr>
</tbody>
</table>
Proceedings from the Basin Sediment Management for Unique Island Topography Workshop, Mayagüez, Puerto Rico

Rhonda Fields, Damarys Acevedo-Acevedo, Burton C. Suedel, E. Michelle Bourne, Pat Deliman, Carlos Ruiz, Jack Milazzo, Ismael Pagán-Trinidad, Luis Villanueva-Cubero, Dave Hampton, Billy Johnson, and Tim Dekker

See reverse.

Water Operations Technical Support (WOTS) and Dredging Operations Technical Support (DOTS) programs, Funding Account Code: U4384227; AMSCO Code: 086000

This report summarizes the Basin Sediment Management for Unique Island Topography Workshop hosted in-person and virtually at the University of Puerto Rico Mayagüez (UPRM) Department of Civil Engineering and Surveying, Mayagüez, Puerto Rico on 11 March 2022. The workshop was attended by approximately 80 federal, state, local, and academic organizations participants. It focused on Engineering With Nature® (EWN®), green infrastructure (GI) and low impact development (LID) opportunities for unique tropical island topography and included seven presentations from subject matter experts, a discussion on limitations and problems with prior projects, and two concurrent breakout sessions.

Preworkshop activities included a field trip to multiple sites in the Añasco watershed conducted 09 March 2022, which served as a base case for the workshop. The field trip provided participants a unique perspective of the island’s topography and post 2017 Hurricane María issues and impacts.

During the breakout sessions, participants identified new project opportunities for EWN®-GI and LID at two selected sites from the field trip. Each group developed alternatives for their chosen site and identified concepts that could turn into great opportunities for the surrounding communities and significantly benefit the state of practice in Puerto Rico’s unique tropical island topography.

This report summarizes the Basin Sediment Management for Unique Island Topography Workshop hosted in-person and virtually at the University of Puerto Rico Mayagüez (UPRM) Department of Civil Engineering and Surveying, Mayagüez, Puerto Rico on 11 March 2022. The workshop was attended by approximately 80 federal, state, local, and academic organizations participants. It focused on Engineering With Nature® (EWN®), green infrastructure (GI) and low impact development (LID) opportunities for unique tropical island topography and included seven presentations from subject matter experts, a discussion on limitations and problems with prior projects, and two concurrent breakout sessions.

Preworkshop activities included a field trip to multiple sites in the Añasco watershed conducted 09 March 2022, which served as a base case for the workshop. The field trip provided participants a unique perspective of the island’s topography and post 2017 Hurricane María issues and impacts.

During the breakout sessions, participants identified new project opportunities for EWN®-GI and LID at two selected sites from the field trip. Each group developed alternatives for their chosen site and identified concepts that could turn into great opportunities for the surrounding communities and significantly benefit the state of practice in Puerto Rico’s unique tropical island topography.
Environmental Laboratory (EL)
US Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Regional Planning and Environmental Center
US Army Corps of Engineers, SWF
819 Taylor Street
Fort Worth, TX 76102

University of Puerto Rico, Mayagüez Campus
Department of Civil Engineering and Surveying
Road PR 108
Mayagüez, PR 00681

Federal Emergency Management Agency – JRO
Road PR 165
Guaynabo, PR 00968

LimnoTech
501 Avis Drive
Ann Arbor, MI 48108

USACE New Orleans District
7400 Leake Avenue
New Orleans, LA 70118