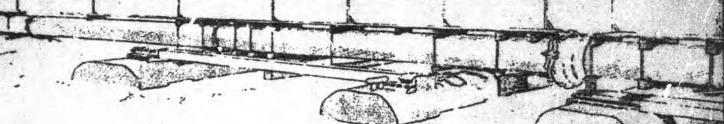


DREDGED MATERIAL RESEARCH PROGRAM Technical Report D-78-15

HABITAT DEVELOPMENT FIELD INVESTIGATIONS, BOLIVAR PENINSULA MARSH AND UPLAND HABITAT DEVELOPMENT SITE, GALVESTON BAY, TEXAS

> APPENDIX A: BASELINE INVENTORY OF WATER QUALITY, SEDIMENT QUALITY, AND HYDRODYNAMICS


> > by

John D. Lunz, Ellis J. Clairain, Jr., John W. Simmere

Environmental Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631. Vicksburg, Miss. 39180

> June 1978 Final Report

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Prepared for Office, Chief of Engineers, U. S. Army Washington, D. C. 20314

Under DMRP Work Unit No. 4A13C

HABITAT DEVELOPMENT FIELD INVESTIGATIONS, BOLIVAR PENINSULA MARSH AND UPLAND HABITAT DEVELOPMENT SITE GALVESTON BAY, TEXAS

Appendix A: Baseline Inventory of Water Quality, Sediment Quality, and Hydrodynamics

Appendix B: Baseline Inventory of Terrestrial Flora, Fauna, and Sediment Chemistry

Appendix C: Baseline Inventory of Aquatic Biota

Appendix D: Propagation of Vascular Plants and Postpropagation Monitoring of Batanical, Soil, Aquatic Biota, and Wildlife Resources

> Destroy this report when no longer needed. Do not return it to the originator.

	NTATION PAGE	READ INSTRUCTIONS
REPORT NUMBER		BEFORE COMPLETING FORM
echnical Report D-78-15		
. TITLE (and Subtritio) HABITAT DEV	FI OPMENT FIFT INVESTI-	5. TYPE OF REPORT & PERIOD COVERED
ATIONS, BOLIVAR PENINSULA DEVELOPMENT SITE, CALVESTON	MARSH AND UPLAND HABITAT	Final report
BASELINE INVENTORY OF WATER		5. PERFORMING ORG. REPORT NUMBER
HALTY AND HYDRODYNAMICS		B. CONTRACT OR GRANT NUMBER ()
John D. Lunz		
Ellis J. Clairain, Jr.		
John W. Simmers		
. PERFORMING ORGANIZATION NAME A	ND ADDRESS	10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK INIT NUMBERS
. S. Army Engineer Waterwa avironmental Laboratory . O. Box 631, Vicksburg, M	ys Experiment Station iss. 39180	DMRP Work Unit No. 4A13C
I. CONTROLLING OFFICE NAME AND AD		12. REPORT DATE
ffice, Chief of Engineers,	U. S. Army	June 1978
Ashington , D. C. 20314		13. NUMBER OF PAGES
	Printed dilloam have Contraction a Pathows	51 15. SECURITY CLASS. (of this report)
BUN TOWNS ASENCY NAME & AUDR	Las(it different from Controlling Unico)	Unclassified
		UNC188SILLER
		15. DECLARTICATION/CORRELATION
pproved for public release	; distribution unlimited	
PREGNES For public release		
I. DIETRIOHTION STÄTRMENT (of the obs		
I. DIETRIOHTION STÄTRMENT (of the obs	etract entored in Block 20, 11 different fro	er Report)
I. DIETRI ENTRI STATEMENT (el the ebe I. HIPPLEMENTARY NOTES I. NEY WORDS (Continue on reveree side la Iolivar Peninsula Habi Dredged material Habi	necessary and identify by block number, tat development Sedi tats Wate odynamics	er Report)
METRICIPION STATEMENT (of the observation of the statement of the statemen	necessary and identify by block number, tat development Sedi tats Wate odynamics hes necessary and identify by block number) and hydrodynamics in Gal ed in connection with a	ment r quality veston Bay at Bolivar Penin- proposed experimental marsh

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

20. ABSTRACT (Continued).

The water and sediments were found to be free of levels of metals or organic pollutants likely to adversely influence the experimental habitat development. Nutrient concentrations were low and dissolved oxygen values high. The site was influenced by small short-period waves that scour the sediments on the site. Water stages were between 0.85 and -0.37 m (National Geodetic Vertical Datum) 98 percent of the time and were strongly influenced by seasonal wind conditions. Winds from the northwest at 16 to 23 km/hr may lower the water stage as much as 0.30 m. Currents flowed in southwesterly and northeasterly directions with an average velocity of 21 cm/sec during usual tide and wind conditions.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.

1

Summary

This report presents water quality, sediment quality, and hydrodynamic information collected by the U. S. Ceological Survey during April, May, June, and August 1975, along with a review c selected historical data. The information was collected for use by the U. S. Army Corps of Engineers in evaluating environmental conditions at a proposed marsh and upland habitat development site on Bolivar Peninsula in Galveston Bay, Texas. The low concentrations of nitrogen and phosphorus species, the low bicchemical oxygen demand (BOD), the low concentrations of heavy metals, the near absence of insecticide and herbicide residues, and the bigh dissolved oxygen saturation indicated that conditions at the test site were favorable for salt-marsh plant and animal growth.

Water velocities at the test site exceeded 30 cm/sec during one storm period but were less than 21 cm/sec during usual wind and tidal conditions. Water stages for 13 years of record were between 0.85 and -0.37 m (National Geodetic Vertical Datum) during 98 percent of the time. The mean water stage from October 1973 to September 1975 was 0.32 m.

The climate at the test site was described by data collected at the Galveston airport. The mean monthly air temperatures for 1940-60 were 12.3° to 28.8°C, and the mean annual temperature was 21.2°C. The mean monthly rainfall was 72.1 to 151.9 mm. The mean annual rainfall was 1160.8 mm.

Wind speeds greater than 21 km/hr, which occurred 45 percent of the days each year, caused changes in the water stages. West and northwest winds caused the greatest stage change for the least wind. Winds of 24 to 32 km/hr from any direction caused stage changes between 0.15 and 0.30 m, but southeast winds greater than 32 km/hr were required to cause more than an 0.30-m stage change.

Preface

Data presented in this report were collected under Interagency Agreement Nos. WESRF 75-95 and 76-59 dated 25 March 1975 and 18 November 1975, between the U. S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi, and the U. S. Geological Survey (USGS), Austin, Texas. The agreements were sponsored by the Office, Chief of Engineers, U. S. Army, under the Dredged Material Research Program (DMRP) which was managed by the Environmental Laboratory (EL), formerly the Environmental Effects Laboratory, WES.

Field collections and observations, sample analyses, and initial data reduction were conducted under the supervision of Mr. D. C. Hahl, Chief, Texas Bays and Estuaries Project, USGS, and transmitted to the Environmental Laboratory as an open-file report, "Data on Water Quality and Hydrodynamics at the Bolivar Wetland - Habitat Development Site, Galveston, Texas." Hydrologic aspects of the open-file report are contained herein as amplified and revised by Mr. Ellis J. Clairain, Jr., Fisheries Biologist, EL. Technical reviews and revisions of text tabular materials for publication were made by M. John D. Lunz, Marine Biologist, EL, and Dr. John W. Simmers, Biologist, EL. The editorial supervisor was Ms. Dorothy P. Booth.

The agreement was monitored by Mr. Lunz and coordinated by Dr. John Byrne, Site Coordinator, EL.

The project was under the general supervision of Dr. H. K. Smith, Project Manager, Habitat Development Project; Dr. C. J. Kirby, Chief, Environmental Resources Division; and Dr. John Harrison, Chief, EL.

Commanders and Directors of WES during the preparation and publication of this report were COL G. H. Hilt, CE, and COL J. L. Cannon, CE. Technical Director was Mr. F. R. Brown.

Contents

	Page
Summary	2
Preface	3
Introduction	5
Climate	6
Water and Sediment Quality	7
Eistorical data Data collection and analysis during this project	77
Water Velocities and Directions	9
Water Stages	10
Deviations of Water Stages	11
Conclusions and Recommendations	13
References	14
Tables 1-13	
Figures 1-5	

HABITAT DEVELOPMENT FIELD INVESTIGATIONS BOLIVAR PENINSULA MARSH AND UPLAND HABITAT DEVELOPMENT SITE GALVESTON BAY, TEXAS

APPENDIX A: BASELINE INVENTORY OF WATER QUALITY, SEDIMENT QUALITY, AND HYDRODYNAMICS

Introduction

1. This report presents water quality, sediment quality, water stage, and water velocity and direction data collected by the U. S. Geological Survey (USGS) in response to a 30 January 1975 request from the U. S. Army Engineer Waterways Experiment Station (WES) to participate in a study of environmental conditions at the Bolivar Peninsula habitat development site (Figure 1).

2. The Lolivar Peninsula test site is located near lat. 29°25'N and long. 94°44'W about 20.1 km northeast of the Galveston, Texas, airport. The test site is in the Galveston Bay reach of the Trinity-San Jacinto Estuary about 6.4 km from the western end of Bolivar Peninsula.

3. The objective of the program is to develop a marsh and upland habitat complex using dredged material from the Intracoastal Waterway as a substrate. The dredged material will be protected by a dike. The objective of the work by the USGS was to document the water and sediment quality and hydrodynamic conditions at the proposed project location.

4. To achieve the objectives, the USGS scheduled hydrologic studies prior to and during development of the site. In the conduct of these studies, the USGS arranged:

- a. To review and summarize climatic data for the nearest weather station.
- b. To collect water quality and sediment quality data at the test site and to perform a literature search to ascertain the applicability of historical data.
- c. To establish a water stage recorder at the test site or determine historical water stages by correlation of

the test site data with data from a nearby long-tern water stage recorder and evaluate changes in water stage due to wind velocities.

d. To measure water velocities and directions at the test site during extreme conditions.

5. The work proposal and sampling sites (Figure 2) were agreed upon by USGS and WES representatives, and work began in April 1975. By June 1975, a water stage recorder was installed; three water quality surveys were completed; water velocities were measured; and historical water quality, climatological, and water stage data were obtained. In September 1975, a change in dredging plans by the Corps of Engineers caused discontinuance of all work by the USGS except operation of the water stage recorder.

Climate

6. The test site is on the bayward side of a 3.2-km-wide barrier peninsula along the Gulf of Mexico. The following data, taken from "Climatography of the United States" (U. S. Weather Bureau 1965), indicate the mild climate of the area.

7. Mean monthly air temperatures at the Galveston airport for 21 years of record (1940-60) ranged from a high of 28.8 °C to a low of 12.3 °C. The mean annual temperature was 21.2° C. Air temperature for 10 years of record (1951-60) was 32.2° C or more on an average of 35 times a year and was 0° C or less on an average of only 2 times a year. The extreme temperatures recorded in Galveston during 1951-60 were 36.7° and -7.8°C.

8. Mean monthly rainfall at Galveston airport for 21 years of record (1940-60) ranged from a high of 151.9 mm to a low of 72.1 mm. The mean annual rainfall was 1160.8 mm. Rainfall for 10 years of record (1951-60) was 12.7 mm or more on an average of 23 days a year and for 7 years of record (1954-60) was 2.5 mm or less on an average of 52 days a year.

9. Frequency of wind occurrence and mean wind velocity data based on 87,690 hourly observations during the 10-year period 1951-60 (U.S. Weather Bureau 1962) for the Galveston airport are surmarized in Table 1. These data show that winds occur on an average of 99 percent of the days each year and that the mean daily wind speed exceeds 21 km/hr 45 percent of the days each year.

10. The selection of the two periods shown in Table 1 is based on predominant wind directions. From March through Aigust, wind is from the south quadrant 69 percent of the days; from September through February, wind is from the northeast quadrant 46 percent of the days.

Water and Sediment Quality

11. Water and sediment quality at the proposed site were determined by considering both historical data from the area and an analysis of water and sediment samples collected by the USGS during this project. Historical data

12. As part of its Galveston Bay project, the Texas Water Quality Board (TWQB) conducted an extensive sampling program in the bay from July 1968 to September 1971. Samples were collected monthly from 15 to 39 stations, at 2- or 3-hour intervals during five 24-hour periods. The data collected during this period and related material are presented in a publication by Huston (1971). The TWQB site 29, located at the Hanna Reef tide gage shown in Figure 1, was sampled 27 times during the TWQB study. Review of the data from site 29 and TWQB data from other sites in Galveston Bay indicates that water quality was nearly uniform in the area of the bay between Bolivar Peninsula and Hanna Reef; therefore, data from site 29 can be considered representative of conditions at the test site from July 1968 to September 1971.

Data collection and analysis during this project

13. During April, May, June, and August 1975, in situ measurements of dissolved oxygen (DO), pH, specific conductance, and temperature were made, and laboratory analyses for nutrients, major constituents, metals,

insecticides, herbicides, and radiochemicals were performed. Specific parameters and procedures for both field collection/analysis and laboratory analysis are presented in Table 2.

14. Table 3 is a comparison of water quality data for samples collected at a depth of 0.3 m from July 1968 to September 1971 by the TWQB at site 29 and of similar data for samples collected at depths of 0.3 up to 4.9 m from April to August 1975 by the USGS at the Bolivar Peninsula test site. All of the water and sediment data collected for this project by the USGS are presented in Tables 4-10.

15. Data collected by the USGS show that the differences in chemical and physical characteristics between water in the bay and water in the Intracoastal Waterway are minor except for the dissolved oxygen concentration, which averaged about 0.5 mg/l less in the Intracoastal Waterway.

16. Turbidity at the test site is a direct function of wave energy. On 14 May 1975, after 2000 hours, northerly winds increased to about 32 km/hr. The turbidity increased through the night until a predawn lessening of the wind reduced the wave heights. Through 16 May 1975, winds continued at speeds greater than 24 km/hr and the turbidity remained high. Southerly winds during the April, June, and August 1975 sampling periods were less than 24 km/hr, and the resultant turbidities were much less than in May.

17. The concentrations of nitrogen species were low, but phosphorus concentrations ranged from 0.06 to 0.35 mg/l. Biochemical oxygen demand (BOD) did not exceed 2.7 mg/l, indicating that a deficiency of dissolved oxygen would not occur.

18. Analyses for minor elements and pesticides showed that the concentrations of these constituents were low; most of them were too low for the analytical methods to detect. Results of an analysis for lead, mercury, and zinc based on samples collected in 1972 about 91 m from line 610, site 40 (Galveston District 1975), showed concentrations

of the same order of magnitude as those collected by the USGS 1. 1975 (USGS 1976).

19. The low concentrations of nitrogen and phosphorus species, the low BOD, the low concentrations of heavy metals, the absence of insecticide and herbicide residues, and the high dissolved oxygen saturation indicate that the Bolivar Peninsula test site is nearly free of pollutants; therefore, marsh development at the site should not be adversely affected by water quality.

Water Velocities and Directions

20. Water velocities and directions were measured hourly at line 640, site 40, from 1425 hours on 14 May until 0100 hours on 16 May 1975. Surface winds during this sampling period were from the north at 24 to 32 km/hr. Measurements were repeated at this site during the period from 1300 hours on 25 June until 1200 hours on 26 June 1975. During the June sampling period, winds were from the southeast and moderate. Observations were also made on line 620, site 40, during the same periods in May and June. However, these measurements were obtained only when the water depth allowed boat access to the site. The data for both sampling periods are presented in Tables 11 and 12.

21. Water velocities and directions at line 640, site 40, differed significantly between May and June (Figure 3). In May, with the strong northerly wind predominant, water movement was to the southwest 84) percent of the time, and water velocity averaged 24.4 cm/sec. Northeasterly water movement only occurred 20 percent of the time, and water velocity averaged 21.0 cm/sec.

22. During the June sampling period, when moderate winds were from the southeast, flow at line 640, site 40, was to the southwest 38 percent of the time, and velocity averaged only about half (13.6 cm/ sec) of that observed in May. Flow to the northeast, however, occurred 62 percent of the time with an average velocity of 12.5 cm/sec.

23. At line 620, site 40, close to the proposed habitat development project dike, only 7 observations were made in May and 19 in June 1975. May current measurements, made during the strong northerly wind, are presented in Figure 4. The average current velocity during the sampling period was 14.8 cm/sec, and all flow was in a southwesterly direction.

24. In June, with the moderate southeasterly winds, current velocity averaged 7.7 cm/sec for the 39 percent of the time that flow was to the southwest. During the remaining 61 percent of the time. average current velocity was 10.0 cm/sec, and flow was to the northeast (Figure 4).

25. In summary, observations made during this study show that currents flow parallel to the proposed site in Galveston May regardless of the tide or wind condition. Water velocities and directions are influenced by both wind and tide. Effects of prichest winds blowing water out of the bay are negated by incoming tides during short periods of large stage differences between the gulf and the bay. Velocity difference during a tide cycle or between different tide cycles is a function of head differences if wind can be ignored. Antecedent wind and water stages have a marked effect on velocities. Nearshore current speeds were lower than offshore current speeds during both sampling periods.

Water Stages

26. A water stage recorder was installed at the test site on 16 May 1975. Datum of the gage was set to that of the U. S. Army Corps of Engineers benchmark (BM) 2960 + 43.9 at 1.786 m National Geodetic Vertical Datum (NGVD) as determined in 1975. By using a water level datum transfer based on 39 days of nonstorm record, it was determined that the datum of the gage at Hanna Reef must be raised by 0.378 m to agree with the NGVD elevation for BM 2960 + 43.9.

The following discussion of water stages is based on the datum of BM 2960 + 43.9.

27. The range in water stage for the period January 1963 through September 1975 at Hanna Reef was 1.28 to -1.07 m. However, during about 98 percent of that period, water stages were between 0.85 and -0.37 m; during more than 50 percent of the period, water stages were between 0.70 and -0.21 m.

28. A few storms occurred during the period of common record between the gages at Hanna Reef and the test site. This common record indicates that water stages are the same at both places when water is being blown into the bay, but that water stage, are different when water is being blown out of the bay. Tides driven by northerly winds overrun the land, and during moderate storms, the overrun persists for most of the storm period and appears to cause stages as much as 0.06 m higher at the test site than those at Hanna Reef.

29. The wake from oceangoing vessels causes significant wave action at the site. These waves are 0.3 m or more in height; they occur in groups; and they roll onto the shore with surflike action. These groups of waves, even though they occur at irregular intervals, probably will have an undetermined effect on the test site.

30. Review of the data suggests that historical records for the gage at Hanna Reef represent water stages at the test site most of the time. The mean water stage at Hanna Reef, adjusted to the datum of EM 2960 + 43.9, for the 24 months from October 1973 through September 1975 is 0.317 m. An illustration of application of the historical water stage data to the elevation specifications of the proposed habitat development project is presented by Figure 5.

Deviations of Water Stages

31. Deviations in water stage from symmetrical tidal fluctuations are usually caused by wind. Daily wind data for 1974 (National Oceanic and Atmospheric Administration 1974) were obtained from the

Galveston office of the National Weather Service, tabulated, and reduced, and tide charts for Galveston Bay at the Hanna Reef tide gage were obtained from the Galveston District. For periods of wind greater than 23 km/hr during 1974, the daily mean wind velocities and directions were selected from the National Weather Service data; corresponding deviations in tide stage as recorded on the tide charts were noted. These paired events ware grouped first by wind direction and second by wind velocity. The data were then sorted by the magnitude of the change in stage. The results are given in Table 13.

32. The greatest deviations from mean water stage occur with winds from the west and northwest. It appears that westerly winds may either decrease the water stage when combined with an ebbing tide or increase the water stage by action with the flooding tide. Northwesterly winds tend to push water out of the bay or retard water entering the bay. Winds off the Gulf of Mexico from the south, southeast, and southwest all tend to increase the mean water stage by moving water into or holding water in the bay. For the period of record in 1974, wind conditions from the southeast were most common, and velocities often exceeded 32 km/hr raising water stages by 0.3 m. Less common winds from the southwest had similar effects at more moderate velocities of 24 to 32 km/hr.

33. Different antecedent wind velocities and the coincidence of peak winds with high or low tides alter the magnitude of the recorded changes in stage. Although antecedent conditions were not examined, the data in Table 13 show that different wind velocities have unique effects on water stages. The magnitude and frequency of deviation from usual tidal stages and the time of year that the deviations should occur can be inferred by a combination of the information contained in Tables 1 and 13.

34. Winter wind conditions favor a lower mean water stage than spring and summer conditions. September to February wind conditions during the 10-year period of record (1951-60) were characterized by dominant winds (condition based on percent frequency of occurrence)

varying between those that tend to increase water stages and those that decrease water stages. Strongest average wind velocities occur in winter from the north, northeast, and northwest, conditions that favor greatest downward deviations in water stage. By comparison with winter wind conditions, spring and summer winds predominantly come from southerly directions and tend to increase the mean water stage.

Conclusions and Recommendations

35. Water quality and sediment quality parameters are favorable for the establishment and growth of salt-marsh plants and animals. Phosphorus and nitrogen species were present in low concentrations as were heavy metals. Additionally, herbicide and insecticide residues were absent, BOD was low, and dissolved oxygen saturation was high.

36. Current velocities exceeded 30 cm/sec only during oue storm period and were less than 21 cm/sec during usual wind and tide conditions. Water stages for 98 percent of the period January 1963-September 1975 were 0.85 to -0.37 m, and the mean water stage for the period October 1973-September 1975 was 0.317 m.

37. The historical climate information for 1940-60 indicated mean monthly temperatures of 12.3° to 28.8° C and a mean annual temperature of 21.2° C. The mean monthly rainfall was 72.1 to 151.9 mm, and the mean annual rainfall was 1160.8 mm.

38. Wind velocities greater than 21 km/hr occurred 45 percent of the days each year and caused changes in the water stage. West and northwesterly winds caused the greatest stage change for the least wind. Winds of 24 to 32 km/hr from any direction caused stage changes of 0.15 to 0.30 m, but southeasterly winds had to be greater than 32 km/hr to cause more than a 0.30-m stage change.

39. The test site is an environment characterized by high wave energy. Development of a gulf coast salt marsh would be facilitated by the absence of water and sediment pollutants but would require protection from the wave actions and water stage fluctuations, as well as selection of species adaptable to this energy regime.

References

Brown, Eugene et al. 1974. Methods for collection and analysis of water samples for dissolved minerals and gases; Chapter Al in techniques of water-resources investigations of the United States geological survey. United States Government Printing Office, Washington, D.C. No. 2401-1015.

Goerlitz, Donald F. and Eugene Brown. 1972. Methods for analysis of organic substances in water, Chapter A3 in techniques of water-resources investigations of the United States geological survey. United States Government Printing Office, Washington, D.C. No. 2401-1227.

Huston, R. J. 1971. Galveston Bay Project compilation of waterquality data, July 1968-September 1971. Tracor. Doc. No. T 71-Au-9617 U, Austin, Tex.

National Oceanic and Atmospheric Administration. 1974. Local climatological data. National Weather Service monthly pub., Galveston, Tex.

U. S. Army Engineer District, Galveston. 1975. Final environmental statement on the Gulf Intracoastal Waterway main channel and tributaries maintenance dredging. Galveston, Tex. vol. I; table 3.

U. S. Geological Survey. 1976. Mercury, dissolved. atomic absorption spectrometric, cold-vapor (I-1462-77) parameter and code: mercury, dissolved (mg/l): 71850.

U. S. Weather Bureau. 1962. Climatic guide for the Houston-Galveston area, Texas. Climatography of the United States No. 40-41, U. S. Dept. of Commerce, pp. 32-33.

U. S. Weather Bureau. 1965. Climatic summary of the United States, supplement for 1951 through 1960, Texas. Climatography of the United States No. 86-36, U. S. Dept. of Commerce.

Table	1
-------	---

Frequency and Mean Velocity of Surface Wi

Galveston Airport, 1951-1960*

		September-Febru	lary	March-August				
	Mean Daily		Percent of with Wi	-	Mean Daily		Percent of with Wi	
Wind Direction	Wind Speed km/hr	Percent of Days with Wind	20.9-38.6 km/hr	>38.6 km/hr	Wind Speed km/hr	Percent of Days with Wind	20.9-38.6 km/hr	>38.6 km/hr
North	24.5	15.6	8.2	1.5	20.9	6.4	3.0	0.6
Northeast	22.0	15.0	7.0	0.8	19.5	6.4	2.7	0.1
East	20.1	15.2	6.3	0.4	19.3	9.5	4.5	0.0
Southeast	18.0	21.1	6.8	0.1	19.5	26.0	12.0	0.2
South	18.5	15.2	5.3	0.1	20.3	32.2	15.3	0.1
Southwest	18.3	5.6	2.0	0.2	18.2	10.7	4.5	0.1
West	16.7	3.9	1.1	0.1	17.1	3.6	0.8	0.1
Forthwest	22.0	7.2	3.4	0.7	20.1	4.3	1.5	0.4
	Calm	1.2			Calm	0.9		
Total		100.0	40.1	3.9		100.0	44.3	1.6
Average	20.0		-		19.4	adar-quir	r/db.+entr	Sam water

* Adapted from U. S. Geological Survey open-file report.

Table 2

Water and Sediment Quality Parameters and Procedures

Parameter	Sample Type	Collection/In Situ Analysis	Method of Analysis	Reference	Table
510 ₂	Water	Drawn from submerged in situ analysis probe holding manifold	Atomic absorption	Brown et al. (1	1974) 5
NO 3	Water (total)	48	Brucine (spectro- photometric, manual)	29	5
NH 3	Water (total)	11	Diazotization (spectro- photometric, manual)	79	5
NO2	Water (total)	57	Distillation (spectro- photometric, manual)	F#	5
Total P	Water (total)	88	Phosphomolybdate (spectrophotometric, manual)	11	** 5 **
BOD	Water (total)	8.8	Manometric	\$ 7	5
Ca	Water	£8	Atomic absorption	17	6
Mg	Water	85	Atomic absorption	88	- 6
Na	Water	5 8	Atomic absorption		- 6
K	Water	<u>a</u> 8	Atomic absorption	88	6
HCO3	Water	н	Manual calculation	29	6
so4	Water	11	Thorin (spectropho- tometric, manual)	84	6

(Continued)

(Sheet 1 of 6)

Table 2 (Continued)

Parameter	Sample Type	Collection/In Situ Analysis	Method of Analysis	Reference	Tarle
Cl (Chloride)	Water	Drawn from submerged in situ analysis probe holding manifold	Mohr (Titrimetric, manual)	Brown et al. (1974)	6
Total dissolved solids	Water	18	Manual calculation	5.9 5	6
Al (aluminum)	Water	9.9	Ferron-orthophen- anthroline (spectro- photometric, manual)	28	7
As	Water	89	Silver-diethyldithi- ocarbamate (spectro- photometric, manual)	71	7
	Sediment	Ponar grab	Silver-diethyldithi- ocarbamate (spectro- photometric, manual)		7
Cd	Water	Drawn from manifold	Atomic absorption	÷8	7
	Sediment	Ponar grab	Atomic absorption	**	7
Cr	Water	Drawn from manifold	Atomic absorption	9 #	7
Co	Water	Drawn from manifold	Atomic absorption	29	7
	Sediment	Ponar grab	Atomic absorption	3 U	2
Cu	Water	Drawn from manifold	Atomic absorption	ξ\$	7
	Sediment	Ponar grab	Atomic absorption	98	7

Tab1	100	 1.1.1.1.1.1.1.1	1.00.00.00	(baun

Parameter	Sample Type	Collection/In Situ Analysis	Method of Analysis	Reference	Table
CN	Sediment	Ponar grab	Pyridine-pyrazolone (spectrophotometric, manual)	Brown et al. (1974)	7
Fe	Water	Drawn from manifold	Atomic absorption	11	7
РЬ	Water	Drawn from manifold	Atomic absorption	B	7
	Sediment	Ponar grab	Atomic absorption	建 模	7
Li	Water	Drawn from manifold	Atomic absorption	71	7
Min	Water	Drawn from manifold	Atomic absorption	8葉	7
	cediment	Ponar grab	Atomic absorption	53	7
Hg	Water	Drawn from manifold	Atomic absorption	USGS (1976)	7
	Sediment	Ponar grab	Atomic absorption	USGS (1976)	7
Ni	Water	Drawn from manifold	Acomic absorption	Brown et al. (1974)	7
Sr	Water	Drawn from manifold	Atomic absorption	11	7
Zn	Water	Drawn from manifold	Atomic absorption		7
	Sediment	Ponar grab	Atomic absorption	FX	7
Aldrin	Water (total)	Drawn from manifold	Gas chromatography	Goerlitz and Brown (1972)	8
	Sediment	Ponar grab	Gas chromategraphy	и.	\$
Chlordane	Water (total)	Drawn rrom manifold	Gas chromatography	\$ş	8
	Sediment	Ponar grab	Gas chromatography	51	8

(Sheet 3 of 6)

and 1. 4. 4	100	2.00	11
Table		(Contin	(here
TOTTO	-	1.0000031	10007

Parameter	Sample Type	Collection/In Situ Analysis	Method of Analysis	Reference	Table
DDD	Water (total)	Drawn from manifold	Gas chromatography	Goerlitz and Brown (1972)	3
	Sediment	Ponar grab	5 B	李章	8
DDE	Water (total)	Drawn from manifold	華	2.8	8
	Sediment	Ponar grab	\$ F	9 T	8
DDT	Water (total)	Drawn from manifold	1 P	88	8
	Sediment	Ponar grab	9 f	\$ S	8
Dieldrin	Water (total)	Drawn from manifold	5 B	5 f f	8
	Seviiment	Ponar grab	53	FF	8
Endrín	Water (total)	Drawn from manifold	÷ 8	28	8
	Sediment	Ponar grab	5.8	5.5	8
Heptachlor	Water (total)	Drawn from manifold	55	82	8
	Sediment	Ponar grab	\$9	9. #	8
Heptachlor-epoxide	Water (total)	Drawn from manifold	F S	31	8
	Sediment	Ponar grab	11	81	8
Lindane	Water (total)	Drawn from manifold	\$P	34	8
	Sedim:nt	Ponar grab	88	88	8
Parathion	Water (total)	Drawn from manifold	11	88	8
Methyl parathion	Water (total)	Drawn from manifold	17	18	S

(Sheet 4 of 6)

	-			1.000			
11.00	AL 1	~	7 1	10	10.45 1-	• • • • • • • • • • • • • • • • • • •	-C. (1)
Ta	12.4	- C	6 5	1.4	OD1:	1.1113	ed)
				_			

Parameter	Sample Type	Collection/In Situ Analysis	Method of Analysis	Reference	Table
Malathion	Water (total)	Drawn from manifold	Gas chromatography	Goerlitz and Brown (1972)	8
Diazinon	Water (total)	Drawn from manifold	FE	11	8
PCB	Water (total)	Drawn from manifold	it g	18	8
	Sediment	Ponar grab	12	28	8
2,4-D	Water (total)	Drawn from manifold	9 K	19	8
	Sediment	Ponar grab	3.9	4 .6	8
2,4,5-T	Water (total)	Drawn from manifold	98	P #	8
	Sediment	Ponar grab	11	\$ \$	8
Silvex	Water (total)	Drawn from manifold	17	88	8
	Sediment	Ponar grab	89	9 B	8
Toxaphene	Water (total)	Drawn from manifold	17		8
	Sediment	Ponar grab	TR		8
Ethion	Water (total)	Drawn from manifold	18	18	8
	Sediment	Ponar grab	11	F 1	8
Methyl-trithion	Water (total)	Drawn from manifold	4	19	8
	Sediment	Ponar grab	FI.	2.9	8
Trithion	Water (total)	Drawn from manifold	88	24	8
	Sediment	Ponar grab	92	9 B	8

(Sheet 5 of 6)

Table 2 (Concluded)

Parameter	Sample Type	Collection/In Situ Analysis	Method of Analysis	Reference	Table
Organic Carbon	Water	Drawn from manifold	Infrared analysis	Goerlitz and Brown (1972)	9
	Suspended	Drawn from manifold	16	10	9
	Total	Drawn from manifold	3.0	48	9
RA-226	Water	Drawn from manifold	22	88	10
U	Water	Drawn from manifold	15	28	10
Gross a (U-NAT)	Water	Drawn from manifold	θΨ.	79	10
	Suspended	Drawn from wanifold	11	48	10
Gross β (SR 90/Υ 90)	Water	Drawn from manifold	99 9	88	10
	Suspended	Drawn from menifold	F #	ê S	10
Gross & (CS-137)	Water	Drawn from manifold	2.0	99	10
	Suspended	Drawn from manifold	2 2	89	10
Filterable residue	Water (total)	Drawn from manifold	н	59	1.0
Nonfilterable residue	Water (total	Drawn from manifold	E P	23	10

(Sheet 6 of 6)

/P1	5. 7		25
1 13	D 1	D	- 5
-3-53	D.T	Sec.	~

Domonohow	Hanna Reef	Bolivar Peninsula	Mean Value at Surface+
Parameter	Site 29 Data*	Test Site Data**	For All Sampling Sices
Organic nitrogen, mg/L			
Maximum			
Minimum	0.4		
Mean (x)	0.7	nelula Alama	
Total nitrate, mg/l			0
Maximum	0.2	0.0	
Minimum	<0.05	0.0	0
Mean (x)	0.1	+	Ō
Amaonia nitrogen, mg/l			
Max imum	1.3	0.13	
Minimum	0.0	0.00	0.01
Mean (x)	0.06	with HEAU	0.02
Total nitrite, mg/l			
Maximum	0.05	0.01	
Minimum	<0.005	0.00	0.005
Mean (x)	0.01	Allande factore	0.003
Total phosphorus, mg/L			
Maximum	0.63	0.35	
Minimum	0.06	0.06	0.18
Mean (x)	0.28		0.19

Comparison of Water Quality Data Collected Near Hanna Reef With That Collected Near Bolivar Peninsula Test Site

(Sheet 1 of 3)

Table 3 (Continued)

	Hanna Reef	Bolivar Peninsula	Mean Value at Surface+
Parameter	Site 29 Data*	Test Site Data**	For All Sampling Sites
Dissolved organic carbon, mg/2			
Maximm		15	
Minimum		5.0	6.5
Mean (x)		5.0	7.5
riedii (A)			1 4 2
Suspended organic carbon, mg/L			
Maximum		1.4	
Minimum	-same mains	0.6	0.9
Mean (\overline{x})		-	1.0
Dissolved oxygen, mg/2			
Maximum	11.1	10.1	
Minimum	5.4	5.6	8.6
Mean (x)	8.0		8.2
BOD, mg/l			
Maximm	4	2.7	
Man iman	0	0.5	1.4
Mean (x)	2	-Care within	1.7
Total coliform, MPN/100 ml			
Maximum	200		
Minimum	<2	white-doub.	
Mean (x)	15	-	
Pecal coliform, MPN/100 ml			
Maximum	23		
Minimum	<2		
Mean (x)	<2		
A A.		(bound)	

(Sheet 2 of 3)

Table 3 (Concluded)

		Bolivar	
	lanna Reef	Peninsula	Mean Value at Surface
Parameter	Site 29 Data*	Test Site Data**	For All Sampling Sites
Specific conductance, unhos			
Maximum	37.600	30,000	
Minimum	7,400	11,000	14,655.2
Mean (x)	22,300		14,755.6
Surbidity, JTU			
Maximum		275	
Minimum		5	69.1
Mean (\mathbf{x})		2006 MBH	97.9
Cemperature, [°] C			
Maximum	30.2	29.0	
Minimum	7.6	23.3	26.4
Mean (x)	20.3	_	26.1
			(Sheet 3 of 3)

Note: It should be remembered that the Hanna Reef Site 29 data were collected monthly over a period exceeding 3 years (Huston 1971), and that the Bolivar Peninsula test site data were collected by the USGS during 4 months of a single year (1975). *Based on samples collected from a depth of 0.3 m. **Based on samples collected from a depth of 0.3 m and other depths up to 4.9 m. +Surface samples are those collected from a depth of 0.3 m.

Date of Collecti	on '	Time	Site	Depth (m)	Specific Conductance (umhos) (Field)	Temper- ature (°C)	р <u>Н</u>	Dissolved Oxygen (mg/l)	Percent Satura- tion	Turbidity (JTU)	Transparenc Secchi Disk (cm)
					-	Line 610				*	
Apr 25,	75 1	1500	40	0.3 1.5 3.0 4.9	18000 18000 19000 19000	24.7 24.6 23.9 23.9	8.2 8.2 8.2 8.1	8.8 8.7 8.2 8.1	111 1.10 102 101	10 5 10 10	
Jun 24,	75 1	1245	40	0.3 1.5 3.0 4.9	16000 16000 18000 18000	27.2 27.2 27.2 27.2	8.3 8.2 8.2 8.2	7.9 7.5 5.9 7.0	103 97 91 92	25 25 25 50	62
Aug 06,	75 1	1040	40	0.3 1.5 3.0 4.6	23000 23000 30000 30000	28.8 28.0 28.2 28.0		7.2 5.6 6.0 5.9	100 77 86 84	10 20 15 15	\$1
					a	Line 620					
Apr 25,	75 1	1430	40	0.3	19000 19000	26.7 26.6	8.4 8.4	9.3 9.3	122 122	15 30	
Jun 24,	75 1	1400	40	0.3	17000 17000	26.6 26.6	8.3 8.3	9.2 8.8	121 116	50 50	45
					(Continued)	,				

Bolivar Peninsula Test Site Data; Field Determinations"

Table 4

* Taken from U. S. Geological Survey open-file report.

(Sheet 1 of 5)

Table 4	(Continued)
---------	-------------

Date of Collection	Time	Site	Depth (m)	Specific Conductance (µmhos) (Field)	Temper- ature (^O C)	DH	Dissolved Oxygen (mg/l)	Percent Satura- tion	Turbidity (JTU)	Transparency Secchi Disk (cm)
				Line	620 Contin	ued				
Aug 06, 75	1245	40	0,5	17000	29.0	Safety agent.	8.7	119		datas apato
					Line 630					
Apr 25, 75	1415	40	0.3	19000 19000	25.3	8.4	9.5 9.5	122 120	10 10	=
Jun. 24, 75	1345	40	0.3 1.2	16000 17000	26.9 26.7	8.3 8.3	8.7 8.1	114 107	25 40	55
Aug 06, 75	1230	40	0.3	18000 25000	28.5 28.0		8.0 7.0	108 97	15 20	
					Line 640					
Apr 25, 75	1330	40	0.3 0.9 1.4	18000 18000 18000	24.9 24.7 24.6	8.4 8.4 8.4	9.3 9.3 9.1	118 118 115	10 10 10	Ξ
May 14, 75	1425	40	0.3	13000 13000	27.7		9.1 9.3	118 119	55 70	
tay 14, 75	1500	40	0.3	14000 14000	27.9		9.1 8.8	120 113	40 85	
May 14, 75	1600	40	0.3	13000 15000	28.2	inda akin akin akin	9.6 8.9	126 114	35 80	-

(Sheet 2 of 5)

Tabl	~ 1	1 6	n and	a James	15-
Tabl	e 4	4 (I	LOII	tinu	ed)

		Site	Depth (m)	Conductance (µmhos) (Field)	Temper- ature (°C)	рН	Dissolved Oxygen (mg/l)	Percent Satura- tion	Turbidity (JTU)	Transparence Secchi Disk (cm)
				Line (640 Contir	ued				
lay 14, 75	1700	40	0.3	13000 15000	28.3 26.6	-475 7004 0.005	10.1 7.2	133 94	30 60	
lay 14, 75	1805	40	0.3	14000 15000	27.8 26.5	am 12.0	10.0	132 95	30 50	
lay 14, 75	1900	40	0.3 1.4	14000 17000	27.6 26.4		9.8 7.2	127 94	30 60	
ay 14, 75	2000	40	0.3	14000 15000	27.3		9.3 7.6	121 97	30 50	inna di, s
ay 14, 75	2230	40	0.6	12000 12000	26.8 26.8	3.2 8.1	8.9 8.7	114 112	120	
ay 14, 75	2400	40	0.6	12000 12000	26.3 26.3	8.3	8.3 8.2	105 104	170	
ay 15, 75	0105	40	1.1	11000	25.5	8.1	8.2	101	190	aliny stille
ay 15, 75	0205	40	1.1	12000	25.0	8.3	7.9	98	2.30	-
ay 15, 75	0305	40	1.1	12000	24.7	8.2	7.9	98	180	outer your
ay 15, 75	0410	40	1.0	12000	24.4	8.2	7.9	96	170	
ay 15, 75	0505	40	1.0	12000	24.0	7.9	7.9	96	180	
ay 15, 75	0610	40	1.1	12000	23.8	8.2	7.9	96	170	
ay 15, 75	0710	40	1.2	11000	23.4	8.2	7.8	93	180	-

TUNTE 4 (ODHETHNOR)	Tab.	Le	4	(Continued)
---------------------	------	----	---	-------------

Date of Collection	<u>Time</u>	Site	Depth (m)	Specific Conductance (µmhos) (Field)	Temper- ature (°C)	рН	Dissolved Oxygen (mg/l)	Percent Satura- tion	Turbidity (JTU)	Transparency Secchi Disk (cm)
				Line (540 Contin	ued				
May 15, 7.	5 0810	40	1.1	11000	23.7	8.3	7.6	90	130	
May 15, 7	5 0930	40	0.3	12000 12000	24.3 23.9	8.4	7.7 7.9	94 96	140 240	=
day 15, 7	5 100 0	40	0.3	12000 12000	24.5	8.4	7.6	93 94	130 ?60	
lay 15, 7	5 1100	40	0.3	12000 12000	24.4		7.8 7.9	95 96	120 200	
tay 15, 7	5 1200	40	0.3	12000 12000	24.8 24.9	anter milita Terre alter	7.9 8.0	98 99	105 200	
lay 15, 7	1300	40	0.3	12000 12000	25.2	710 CM	8.1 8.2	100 102	80 100	
lay 15, 7	5 1400	40	0.3	12000 12000	25.4		8.5 8.5	106 106	100 95	
lay 15, 7	1500	40	0.3	12000 12000	25.1		8.4	104 106	115 150	
lay 15, 7	i 1600	40	0.3	12000 12000	25.3 25.2		8.4 8.8	105 10 9	150 225	
tay 15, 7	1700	40	0.3	11000 11000	25.7		8.0 8.3	99 102	210 275	

(Sheet 4 of 5)

Table	4	(Concluded)

Date of Collection	<u>Time</u>	Site	Depth (m)	Specific Conductance (µmhos) (Field)	Temper- ature (°C)	рН	Dissolved Oxygen (mg/l)	Percent Satura- tion	Turbidity (JTU)	Transparency Secchi Disk (cm)
				Line	640 Contin	ued				
May 15, 75	1800	40	0.3	11000 11000	25.4	+ +	8.2 8.3	101 102	190 270	-
May 15, 75	5 1900	40	0.3	11000 11000	25.2 25.3		8.1 8.5	99 105	200 200	
y 15, 75	2010	40	0.6	11000 11000	24 .9 24.8		8.1 8.2	99 100	200	
May 15, 75	2110	40	0.6	11000 11000	24.6		8.0 8.1	98 98	240	
lay 15, 75	2210	40	0.6	11000 12000	24.4 24.2		7.9	96 96	180	1.2
fay 15, 7 5	2300	40	0.6	12000 12000	24.0 23.8		7.9 7.9	96 96	200	
lay 15, 75	2400	40	0.6	13000 13000	23.6 23.5	angan yanan Karan Pada	7.9 7.9	95 95	1.50	den Max
tay 16, 75	0100	40	0.6	12000 12000	23.4 23.3	-	7.8 7.9	94 95	1.30	Ξ
lun 24, 75	1320	40	0.3 1.4	16000 19000	26.9 27.3	8.3	8.5	112 91	25 60	53
lug 06, 75	1215	40	0.3	21000 28000	28.4		7.4	101 89	20 20	-

(Sheet 5 of 5)

Date of Collection	Time	Site	Depth (چ)	Dissolved Silica (SiO ₂) (mg/ ^g)	Total Nitrate (N) (mg/1)	Nitrogen (N) (mg/t)	Total Nitrite (w) (mg/1)	Dissolved Phosphorus Ortho (P) (mg/t)	Total Phosphorus (P) (mg/1)	fiochamical Oxygen Demand (BOD) (mg/2)	Chemical Oxygen Demand (COB) (mg/L)
						Line 610					
pr 25, 75	1500	40	0.3	2.2	0.0	0.00	0.00	Ξ.	0.06	2.3	
lua 24, 75	1245	40	0.3	2.5	0.0	0.04	0.00	ath an	0.19	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
ug 06, 75	1040	4 0	0.3 4.6	4.4	0.0	0.01 0.01	0.01 0.01		0.27 0.27	1.4	Ξ
						Line 620					
pr 25, 75	1430	40	0.6	1.9	0.0	0.01	0.00		0.08	2.5	-
un 24, 75	1400	40	0.3	2.5	0.0	0.01	0.01		0 18	1.1	
ug 06, 75	1245	40	0.5	6.4	0.0	0.01	0.00		6.18	2.1	esperite
						Line 530					
pr 25, 75	1415	40	1.1	2.2	0.0	0.00	0.00	alle-alle	0.07	2.1	
um 24, 75	1345	40	0.3	2.5	0.0	0.01	0.01		0.17	0.6	
ug 06, 75	1230	40	1.1	alisi-was	0.0	0.03	0.00	sil)-sile	0.35		-
						Line 640					
pr 25, 75	1330	40	0.3 1.4	2.1	0.0	0.01 0.01	0.00		0.09	2.4	· starts
ua 24, 75	1320	40	0.3	2.6	0.0	0.01	0.01		0.17	0.9	
ug 06, 75	1215	40	0.3	4.6	0.0	0.01	0.00	60 TO	0.27	2.7	

Bolivar Peninsula Test Site Data: Nutrients and Other Environmental Characteristics*

Table 5

* Zaken from U. S. Geological Survey open-file report.

-

Date of Collection	<u>.</u>	Time	Site	Depth (m)	Dissolvad Calcium (Ca) (mg/ī)	Dissolved Magnesium (Ng) (mg/1)	Dissolved Sodium (Na) (ms/1)	Dissolved Potassium (K) (um/1)	Sicarbozate (HCO ₃) (mg/1)	Dissolved Sulfate (504)	Dissolved Chloride (Cl) (mg/1)	Dispolved Solids (Sum of Constituents) (mg/1)
							Line 610					
Apr 25, 7	5	1500	40	0.3	150.0	390.0 400.0	3400 3400	130 140	117 116	850 870	6000 6100	11000
Jun 24, 7	5	1245	40	0.3	140.C 160.0	350.0 410.0	3100 3600	120 180	115	760 880	5400 6200	9930 11500
lug 06, 7	5	1,040	40	0.3	290.0	750.0	6600	260	138	1300	11000	30500
							Line 620					
pr 25, 7	5	1430	40	0.6	160.0	410.0	3600	140	119	940	6400	11760
lun 24, 7	5	1400	40	0.3	150.0	380.0	3300	140	108	950	5800	10800
lug 06, 7	5	1245	40	0.3	150.0	360.0	3200	130	128	740	5600	10300
							Line 630					
pr 25, 7	5	1415	40	1.1	160.0	410.0	3500	140	117	970	5200	11400
un 24, 7	5	1345	40	0.3	140.0	350.0	3100	130	111	790	5500	10100
wg 06, 7	3 :	1230	40	1.1	40+40		-	silveria		canvelly	-	
							Lize 640					
pr 25, 7	5	1330	40	0.3	150.0	400.0	3400 3400	140 140	119 119	870 770	6200 6000	11200 10900
lay 15, 7	5 (0710	40	1.2			-000	-			-	-
lay 15, 7	5 :	2010	40	0.6		-	10-01		-		-	
un 24, 7	5 1	1320	40	0.3	140.0	420.0 360.0	3100 3600	130 150	111 117	780 930	5500 6400	10100 11700
ug 06, 7	5 1	1215	40	0.3	250.0	740.0	5900	250	135	1600	11000	19800

Solivar Paninsula Tasi Site Data, Major Constituents*

Table 6

* Taken from U. S. Geological Survey open-file report.

Date of Collection	Time	Site	Depth (m)	Dissolved Aluminum (A1) (µg/1)	Dissolved Arsenic (As) (ug/l)	Total Arsenic (As) (µg/l)	Bottom Deposit Arsenic (As) (µg/g)	Dissolved Cadmium (Cd) (µg/%)	Total Cadmium (Cd) (ug/l)	Bottom Deposit Cadmium (Cd) (ug/g)
					Line 610					
Apr 25, 75	1500	40	0.3	1 0 10	0	inanta polina panine tanàn	2	0		<10.0
Jun 24, 75	1245	40	0.3	20 20	1 1	oder yelds		0		
					Line 620					
Apr 25, 75	1430	40	0.6	10	1	-	1	0		<10.0
Jun 24, 75	1400	40	0.3	20	1		-	0	-	
					Line 630					
Apr 25, 75	1415	40	1.1	10	1	alli ille.	1	0	-1990: white	<10.0
Jun 24, 75	1345	40	0.3	9	2			0	And ages	-
					Line 640					
Apr 25, 75	1330	40	0.3	0 10	1			0	anti sta Marejan	<10.0
Jun 24, 75	1320	40	0.3	6 20	1	Miller dada Silaka fadar		0		
					(Continued)					

Bolivar Peninsula Test Site Data; Selected Ions Analyses*

Table 7

Taken from U. S. Geological Survey open-file report.

R

(Sheet 1. of 5)

Table 7 (Continued)

								Bottom			Botton
Date of Collection	Time	Site	Depth (m)	Dissolved Chromium (Cr)_ (µg/L)	Total Chromium (Cr) (µg/l)	Dissolved Cobalt (Co) (ug/l)	Total Cobalt (Co) (ug/1)	Deposit Cobalt (Co) (<u>HE/S</u>)	Dissolved Copper (Cu) (µg/1)	Total Copper (Cu) (ug/1)	Daposi Copper (Cu)
					Line	610					-
Apr 25, 75	1500	40	0.3	0	-	0		<10.0	4.0	Alleria	<10.0
Jun 24, 75	1245	40	0.3	0		0		Ξ	4.0		
					Line	620					
Apr 25, 75	1430	40	0.6	0	-	0	**	<10.0	12.0	-	<10,0
Jun 24, 75	1400	40	0.3	0	-	0	-		1.0	-	-
					Line	<u>630</u>					
Apr 25, 75	1415	40	1.1	0		0	ter Bet	<10.0	2.0		<10.0
Jun 24, 75	1345	40	0.3	0	444-6444	0	talas allat	*	4.0	-	dignas
					Line	640					
Apr 25, 75	1330	40	0.3	0		0		<10.0	2.0		<10.0
Jun 24, 75	1320	40	0.3	0	The set	0	-		1.0	40-101	silo, sia

(Sheet 2 of 5

Table 7 (Continued)

					Bottom			Bottom			Bottom
Date of Collection	Time	Site	Depth (a)	Dissolved Cyanide (Cn)	Deposit Cyanide (Cn) (ug/g)	Dissolved Iron (Fe) (ug/1)	Total Iron (Fe) (µg/1)	Deposit Irco (Fe) (µg/g)	Dissolved Lead (15) (15) (18/1)	Total Lead (Pb) (48/2)	Depos i Lead (Pb) (48/8
					Line	<u>e 610</u>					
Apr 25, 75	1500	40	0.3		0.3	40 40	Taip diggt		0	<i>Mayniga</i>	<10.0
Jun 24, 75	1245	40	0.3	1	-	40	which without	-age-age-	0		11
					Line	620					
Apr 25, 75	1430	40	0.6		0.0	50	nion olimi		1		<10.0
Jun 24, 75	1400	40	0.3		-uni-mile	40	vite-title		0		-
					Line	630					
Apr 25, 75	1415	40	1.1	angu-Anga.	0.0	50			1	-	<10.0
Jun 24, 75	1345	40	0.3	salar Adam	Manufact.	40			0		-
					Line	640					
Apr 25, 75	1330	40	0.3		0.0	40 40		igo esta	0		<10.0
Jun 24, 75	1320	40	0.3		-agas-agas -angas-agas	40 40	100-100- 100-100		0	and the second	

(Sheet 3 of 5)

The second second	 C 17 - Care	· · · · · · · · · · · · · · · · · · ·	the state of the
1 20 1 1 1 1	U.L. CIP	1020	med)

Date of Collection	Time	Site	Depth (m)	Dis- solved Lith- ium (Li) (ug/1)	Dis- solved Man- ganese (Mn) (ug/l)	Total Man- ganese (Mn) (µg/l)	Bottom Deposit Man- ganese (Mn) (µg/g)	Dis- solved Mer- cury (äg) (µg/l)	Total Mercury (Hg) (ug/l)	Bottom Deposit Mercury (Hg) (Hg/g)	Dis- solved Nickle (Ni) (ug/t)	Dis- solved Stron- tium (Sr) (ug/1)
					I	ine 610.						
Apr 25, 75	1500	40	0.3	60 50	19 16		140	0.3		0.9	0	2400 2300
Jun 24, 75	1245	40	0.3	50 60	10 10			0.0	-	Ξ	0	2100 2400
					L	ine 620						
Apr 25, 75	1430	40	0.6	50	10		50	0.1	-	0.7	4	2500
Jun 24, 75	1400	40	0.3	60	10		100-000	0.0			0	2200
					L	<u>ine 630</u>						
Apr 25, 75	1415	40	1.1	50	10		76	0.1		1.3	1	2400
Jun 24, 75	1345	40	0.3	50	10		-100.400	0.0			1	valjtatile
					I	ine 640						
Apr 25, 75	1330	40	0.3	50 50	10 10		80	0.2	++	1.3	0 1	2 30 0 230 0
Jun 21, 75	1320	40	0.3	50 60	10	-1955, 1950 2006-1950		0.0		499-498 489-498	0	2100 ⁴ 2300

(Sheet 4 of 5)

Date of Collection	Time	Site	Depth	Dissclved Zinc (Zn) (µg/l)	Total Zinc (Zn)	Bottom Deposit Zinc (Zn)	
				Line 610			
Apr 25, 75	1500	40	0.3	80 40	-	20.0	
Jun 24, 75	1245	40	0.3	110 110	-		
				Line 620			
apr 25, 75	1430	40	0.6	40	denisty results.	<10.0	
Jun 24, 75	1400	40	0.3	60	sites onto		
				Line 630			
apr 25, 75	1415	40	position of the second	60	-	<10.0	
Dun 24, 75	1345	40	0.3	110	-	MQD Mrg	
				Line 640			
Apr 25, 75	1330	40	0.3	40 40	-	<10.0	
Jun 24, 75	1320	40	0.3	30 80	-		

Table 7 (Concluded)

(Sheet 5 of 5)

Date of Collection	Time	Site	Depth	Total Aldrin (uz/2)	Bottom Deposit Aldrin (ug/kg)	Total Chlordane (µg/l)	Hettom Deposit Chlordene (ug/kg)	Total DDD	ästtom Deposit DDD	Total DBE (ug/l)	Depos DDB (UB/kg
					Lin	e 510					
pr 23, 75	1500	40	0.3 4.9	0.00	0.0	0.0	0.0	0.00	0.0	0.00	0.0
un 24, 75	1245	40	0.3	0.00	Ξ	0.0	Ξ	0.00 0.00	rheihdigt(s	0.00	
ug 06, 76	1040	40	4.6	-	0.0	Not age	0.0	-visation	0.0	relizion	0.0
					Lin	e 620					
pr 25, 75	1430	40	0.6	0.00	time and	0.0	Azergen	0.00	-california	0.08	-
un 24, 75	1400	40	0.3	0.00		0.0	-	0.00	diliciti	0.00	
ug 06, 75	1245	40	0.5	-	0.0	-	0.0	minus	0.0	(seadd	0.0
					Lin	e 6 30					
pz 25, 75	1415	40	0.3	0.00	0.0	0.0	0.0	0.00	0.0	0.00	0.3
un 24, 75	1345	40	0.3	9.00		0.0		0.00	-	8.00	-
					Lin	e 640					
pr 25, 75	13.30	40	0.3	0.00	0.0	0.0	0.0	0.00	0.4	0.00 0.00	0,1
un 24, 75	1320	40	0.3	0.00	nati tui-	0.0	=	0.00	-1995.0020	0.00	54 ga
ug 06, 75	1215	40	1.2	small (ppp).	0.0	4+40+404	0.0	006-009-	0.0	-	0.

Table 8

* faken from U. S. Geological Survey open-file report.

(Sheet 1 of 5)

Date of Collection	Time	Site	Depth (m)	Total DDT (ug/l)	Bottom Deposit DDT (µg/kg)	Total Dieldrin (ug/t)	Bottom Deposit Dieldrin (µg/kg)	Total Endrin (µg/%)	Bottom Deposit Endrin (ug/kg)	Total Heptachior (up/1)	Notton Deposit Heptecision
					61	ne 510					
Apr 25, 75	1500	40	0.3	0.00	0.0	0.00	0.1	0.09	0.0	12.00	0.9
Jun 24, 75	1245	40	0.3	0.00	1.1	0.00	=	0.00	-	0.00	
Aug 06. 75	1040	40	4.6	-	0.0		0.0	-	0.0	-	0.0
					Ld	ne 620					
Apr 25, 75	1430	40	0.0	0.00	-	0.00	-	0.00	-	0.00	voima .
Jun 24, 75	1400	40	N. 3	9.00	ware-place	0.00		0.00	-	9.00	400 yili-
wag 06, 75	1245	40	0.5	-straffip	0.0	water	0.0	-	0.0		0.0
					Li	ne 630					
Apr 25, 75	1415	4.0	0.3	0 00	0.0 /	0.00	0.0	0.00	0.0	0.00	0.0
Jun 24, 75	1.345	40	0.3	0.00	-	0.00	-	0.00	-	0.00	
					Li	ne 640					
tpr 25, 75	1.330	40	0.3 1.4	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0
Jun 24, 75	1320	40	0.3	0.00	1	0.00	1	0.00	Ξ	0.00	-ename energy
Aug 06, 75	1.215	40	1.2	-	0.0		0.0	-	0.0	-	9.0

Table 8 (Continued)

(Continued)

(Sheet ? of 5)

					Table 8 (Continued)					
Date of Collection	Time	Site	Depth (m)	Total H•ptachlor Epoxide (µg/l)	Bottom Deposit Heptachlor Epoxide (ug/kg)	Total Lindane (µg/l)	Bottom Deposit Lindane (ug/kg)	Total Parathion (µg/2)	Total Methyl Parathion (ug/l)	Total Malathion (µg/A)	Total Diazin (42/1)
					Line	610					
Apr 25, 75	1500	40	0.3	0.00	0.0	0.00		0.00	0.00	0.00	0.00 0.00
Jun 24, 75	1245	40	0.3 4.9	0.00	ing dan.	0.00	1916 - 191 2000 - 1910	0.00	0.00	0.00	0.00
Aug 26, 75	1040	40	4.6		0.0		0.0		P00-040	tari-sis	-40
					Line	620					
Apr 25, 75	1430	40	0,6	0.00	-	0.00		0.00	0.00	0.00	9.00
Jun 24, 75	1400	40	0.3	0.00	Nile war	0.00		0.00	0.00	0.00	0.00
Aug (R, 75	1245	40	0.5	-	0.0		0.0		Wester		-
					Line	630					
Apr 25, 75	1415	40	0.3 1.1	0.00	0.0	0.00	0.0	0.00	0.00	0.00	0.00
Jun 24, 75	1345	40	0.3	0.00		0.00		0.00	0.00	0.00	0.00
					Line	640					
Apr 25, 75	1330	40	0.3	0.00	0 . 0	0.00		0.00	0.00	0.00	0.00
Jun 24, 75	1320	40	0.3	0.00		0.00		0.00	0.00 6.00	0.00	0.00 0.00
Aug 06, 75	1215	40	1.2		0.0	clinit. 175/7	0.0	unja ngbi	-	and with "	10.01

(Sheet 3 of 5)

1 - - -

				T	able 8 (Cor	cinued)					
Date of Collection	Time	Site	Depth (m)	Total PCB (ug/k)	Bottom Deposit PCB (ug/kg)	Total 2,4-D (µg/1)	Bottom Deposit 2,4-D (ug/kg)	Total 2,4,5-T (ug/l)	Bottom Deposit 2,4,5-T (ug/kg)	Total Silvex (ug/l)	Bottom Deposit Silvex (ug/kg)
					Line 61	.0					
Apr 25, 75	1500	40	0.3	0.0		0.00	0.0	0.00	0.0	0.00	0.0
Jun 24, 75	1245	40	0.3	0.0		0.01 0.01		0.01 0.01	- 1	0.00 0.00	
Aug 06, 75	1040	40	0.3 4.6	-	0.0	0.02	-	0.01	Ξ	0.00	Ξ
					Line 62	20					
Apr 25, 75	1430	40	0.6	0.0		0.00	- States	0.00		0.00	-10.007
Jun 24, 75	1400	40	0.3	0.0		0.00	elde-sille	0.00	ane-ter.	0.00	
Aug 06, 75	1245	40	0.5	-	0.0	0.02		0.00		0,00	while runs
					Line 63	10					
Apr 25, 75	1415	40	0.3	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0
Jun 24, 75	1345	40	0.3	0.0	-	0.01 0.01		0.01		0.00	
					Line 64	0					
Apr 25, 75	1330	40	0.3	0.0	012 (pl)	0.00	0.0	0.00	0.0	0.00	0.0
Jun 24, 75	1320	40	0.3 1.4	0.0		0.00		0.01 0.01		0.00	empunda
Aug 06, 75	1215	40	0.3	-	0.0	0.02	-	0.01		0.00	

(Sheet 4 of 5)

				1	Table 3 (Cor	(cluded)					
Date of Collection	Time	Site	Depth (m)	Total Toxaphene (µg/l)	Bottom Deposit Toxaphene (ug/kg)	Total Ethion (µg/1)	Bot com Deposit Ethion (ug/kg)	Total Methyl Trithion (ug/L)	Bottom Jeposit Methyl Trithion (ug/kg)	Total Trithion (ug/1)	Bottom Deposit Trithion (ug/kg)
					Line 61	LO					
Apr 25, 75	1500	40	0.3	0.0	0.0		-		nati-nati-	-	nija djur
Jun 24, 75	1245	40	0.3	0.0				-			Ango alan
Aug 06, 75	1040	40	4.6	-	0.0	-		-siz-size	will Alah	-one diffe	T
					Line 62	20					
Apr 25, 75	1430	40	0.6	0.0	Gu en	-		ngin pilan		**	**
Jun 24, 75	1400	40	0.3	0.0	enger-doga				.data telefor	nigoda	
Aug 06, 75	1245	40	0.5	द लड़ीने अपूर्वता	0.0	aù î					
					Line 63	00					
Apr 25, 75	1415	40	0.3	0.0	0.0				Ξ	-	
Jun 24, 75	1345	40	0.3	0.0		-		ndahana	46.66		**
					Line 64	0					
Apr 25, 75	1330	40	0.3	0.0	0.0	10 M	dalà-dian		-		
Jun 24, 75	1320	40	0.3 1.4	0.0	anh agr			-		-	
Aug 06, 75	1215	40	1.2		0.0	year faib	viataequi	air an			

(Sheet 5 of 5)

- SINGI DI

Date of Collection	Time	Site	Depth	Dissolved Organic Carbon mg/l	Suspended Organic Carbon mg/%	Total Organic Carbon mg/1
			Line 610			
Apr 5	1500	40	0.3	5.9	1.2	7.1
			4.9	7.3	1.	8.4
Jui	1245	40	0.3		-	9.4
			4.9		day ter-	6.8
Aug 6, 75	1040	40	0.3	7.0	0.6	7.6
			4.6	5.8	0.8	6.6
			Line 620			
Apr 25, 75	1430	40	0.6	5.0	1.4	6.4
Jun 24, 75	1400	40	0.3	-	inati finit	6.2
Aug 6, 75	1245	40	0.5	7.0	0.7	7.7
			Line 630			
Apr 25, 75	1415	40	1.1	5.9	1.3	7.2
Jun 24, 75	1345	40	0.3	alatie texte	while lighty	9.8
Aug 6, 75	1230	40	1.1	15	1.0	16
			Line 640			
Apr 25, 75	1330	40	0.3	6.4	1.3	7.7
			1.4	8.1		
Jun 24, 75	1320	40	0.3	-	4	12
			1.4			11
Aug 6, 75	1215	40	0.3	6.8	0.6	7.4
			1.2	9.0	0.7	9.7

Table 9

Bolivar Peninsula Test Site Data; Organic Carbon Analyces*

* Taken from U. S. Geological Survey open-file report.

Collection	Time	Site	Depth m	Dissolved RA-226, Radon Method pc/2	Dissolved Uranium (U) µg/l	Dissolved Gross Alpha as U-NAT µg/%	Dissolved Gross Beta SR 90/Y 90 pc/1	Dissolved Gross Beta 35 CS-137 pc/2
Apr 25, 75	1500	40	4.9	0.18	Line 610	<95	85	110
Apr 25, 75	1330	40	1.4	0.18	Line 640	<97	130	170

Ta	b]	.e	10

Collection	Time	Site	Depth	Total Filterable Residue mg/1	Suspended Gross Alpha as U-NAT <u>µg/L</u>	Suspended Gross Beta as SR 90/Y 90 <u>pc/f</u>	Suspended Gross Beta as CS-137 pc/1	Total Non- filterable Residue mg/1
					Line 610			
Apr 25, 75	1.500	40	4.9	13,000	0.9	0.0	0.7	15
					Line 640			
Apr 25, 75	1330	40	1.4	13,000	2.0	1.6	1.8	14

* Taken from U. S. Geological Survey open-file report.

Т				

		Line 620	, Site	40
Date	Hour	Avera Veloci cm/se	ty	Gage Height cm
May	1405	12.19	SW*	58.22
14	1510	17.98	SW	59.74
	1600	17.98	SW	59.74
	1710	7.92	SW	55.17
	1800	10.97	SW	56.69
	1900	13.11	SW	56.69
	2005	23.47	SW	55.71
	2100	-00.000		and then
	2200			
	2300	anigo-gages		
	2400			

Current Velocity and Gage Height Observations at Bolivar Peninsula Test Site, 14-16 May 1975*

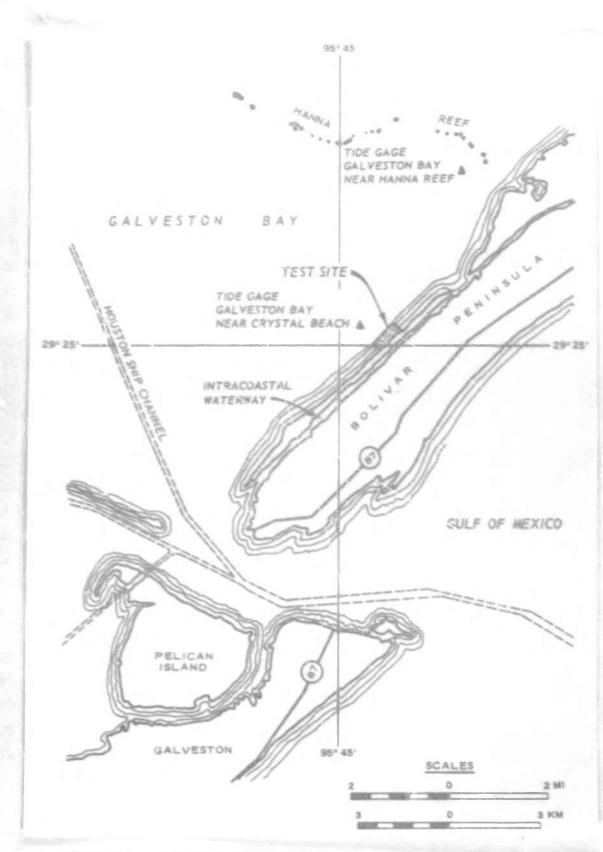
Line 640, Site 40

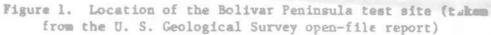
				and the second sec			
Date	Hour	iverage Velocity cm/sec	Cage Height cm	Date	Nour	Average Velocity cm/sec	Gage Height CB
May	1425	16.15 SW	56.69	May	0800	3.05 NE	21.64
14	1500	17.98 SW	56.69	15	0936	25.91 NE	27.74
	1610	20.12 SW	58.22		1000	27.43 NB	30.78
	1700	15.54 SW	55.71		1100	21.95 NE	35.36
	1805	12.19 SW	56.69		1200	21.03 NE	38.40
	1900	12.19 SW	56.69		1 300	20.73 SW	36.88
	2000	23.16 SW	55.71		1400	18.29 SW	38.40
	2100		53.64		1500	23.16 NE	42.98
	2200	27.74 SW	58.22		1600	24.69 NE	39.93
	2300	27.74 SW	38.40		1700	27.43 SW	41.45
	2400	30.78 SW	30.78		1800	22.55 SW	39.93
15	0100	29.56 SW	27.74		1900	29.87 SW	38.40
	0200	24.99 SW	21.64		2000	30.78 SW	38.40
	0300	22.25 SW	15.54		2100	38.10 SW	33.83
	0400	27.12 SW	9.45		2200	32.00 SW	30.78
	0500	25.60 SW	7.92		2300	32.92 SW	26.21
	0600	24.38 SW	7.92		2400	25.91 SW	18.59
	0700	20.42 SW	12.50	16	0100	28.35 SW	12.50

* SW--flow southwesterly; NE--flow northeasterly,

		620, Site 40	Cono			640, Site 40	
		Average Velocity	Gage Height			Average Valocity	Gage Height
Date	Rour	cm/sec	CE	Date	Ho :r	ca/sec	CB
Jun	1315	10.06 NE*	62.79	Jun	1300	14.02 NE	statement and the statement of
25	1400	12.50 NE	64.31	25			62.79
63	1505	7.62 NE	54.31	23	1405	11.38 NE 9.14 NE	64.31
	1605	8.53 SW	61.26		1500		64.31
					1000	11.58 NE	61.26
	1710	8.23 SW 7.92 SW	58.22		1700	13.41 NE	59.74
	1800		53.64		1805	17.37 SW	52.12
	1945	9.75 SW	47.55		1920	15.85 SW	50.60
	2000		ngan 2. a. 2. p.		2000	19.81 SW	47.55
	2100	8.53 SW	41.45		2100	15.24 SW	41.45
	2200	7.92 SW	33.83		2210	14.02 SW	33.93
	2310	2.74 SW	29.26		2300	16.15 SF	29.26
	2400	0.00	26.21				
26		-		26	0010	12.80 SW	24.69
	0100				0100	5.79 SW	23 16
	0200	unit-ture			0200	5.49 SW	21.64
	0300				0300	4.27 NE	23.16
	0400	-			0400	6.71 NB	24.69
	0510	11.58 NE	30.78		0500	15.85 NE	30.70
	0610	- 7.92 NE	35.36		0600	19.81 NE	35.36
	0705	5.49 NE	46.02		0700	19.51 ME	46.02
	0810	10.58 NE	42.98		0800	18.29 NE	42.98
	0900	10.36 NE	52.12		0905	14.02 NE	52.12
	1005	10.67 NE	49.07		1000	12.19 NE	49.07
	1100	10.67 NE	52.12		1105	9.15 NE	52.12
	1205	12.19 NE	50.60		1200	8.23 NE	50.60

Current Velocity and Gage Height Observations at Bolivar Peninsula Test Sites, 25-26 June 1975*

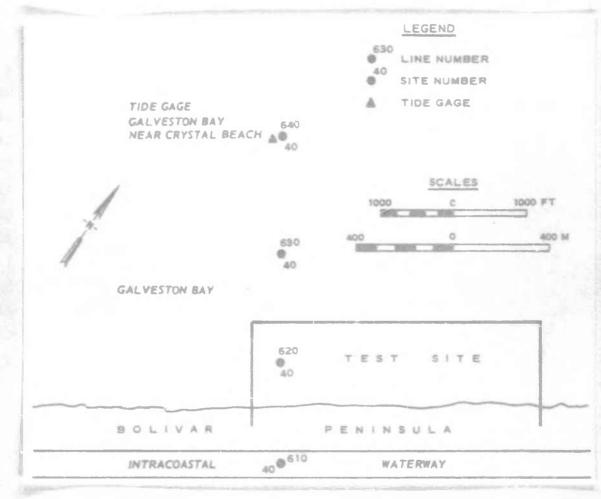
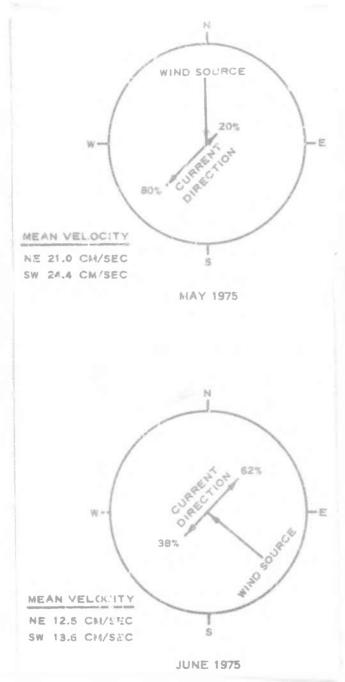
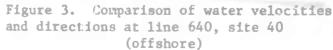
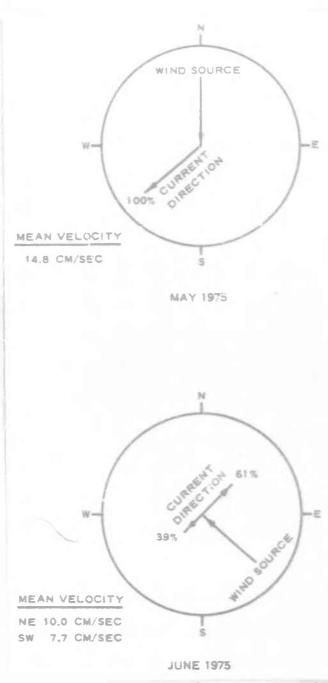
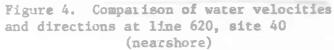

* SW--flow southewesterly; NE--flow northeasterly.

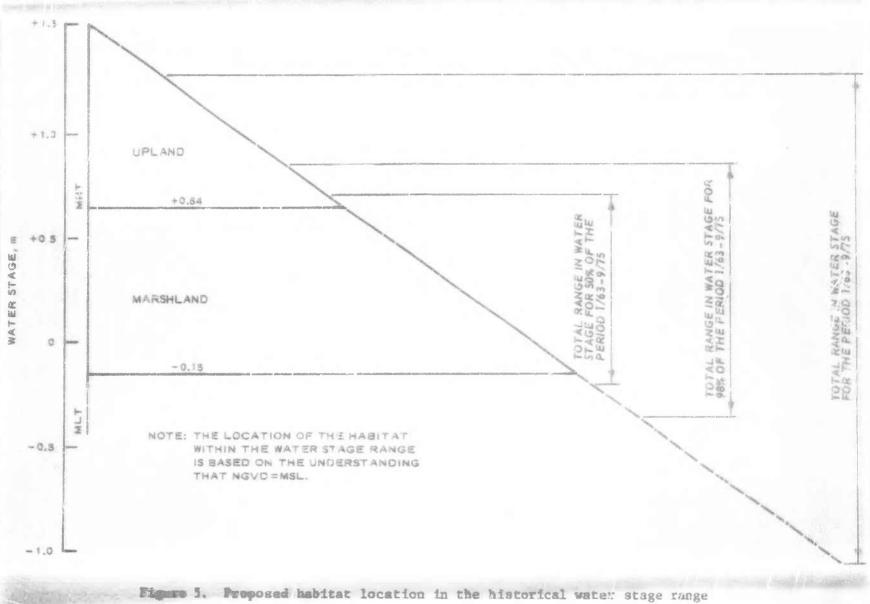

Table 12

	ble 13	į.
--	--------	----

	Deviations from Mean Water Stage Due to Wind Galveston Bay at Hanna Reef, 1974*							
Wind Velocity				Deviati	lon, m			
km/hr	North	Northeast	last	Southeast	South	Southwest	West	Rozthwes
16-23	0.15	<0.15	<0.15	<0.15	<0.15	<0.15	0.15-0.30	0.15-0.3
24-32	0.15-0.30	0.15-0.30		0.15	<0.15	0.30	0.15-0.30	
>32	-		vitaville	0.15-0.30		67/108	0.30-9.45	
Direction of stage change	anop	down	either	цр	up	up	either	down
Days Compared	17	17	11	45	26	2	3	10

* Adapted from U. S. Geological Survey open-file report.

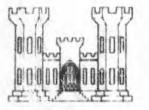







Figure 2. Sampling locations at the Bolivar Peninsula test site (taken from the U. S. Geological Survey open-file report)

and the second se

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Lunz, John D


Habitat development field investigations, Boliver Peninsula marsh and upland habitat development site, Galveston Bay, Taxas: Appendix A: Baseline inventory of water quality, sediment quality, and hydrodynamics / by John D. Lunz. Ellis J. Clairain, Jr., John W. Simmers. Vicksburg, Miss. : U. S. Waterways Experiment Station ; Springfield, Va. : available from National Technical Information Service, 1978.

14, g37, p. : ill.; 27 cm. (Technical report - U. S. Army Engineer Waterways Experiment Station; D-78-15, Appendix .) Prepared for Office, Chief of Engineers, U. S. Army, Wasning-

ton, D. C., under DMRP Work Unit No. 4A13C.

References: p. 14.

 Bolivar Peninsula. 2. Dredged material. 3. Field investigations. 4. Galveston Bay. 5. Habitat development. 6. Habitats.
 Hydrodynamics. 8. Marshes. 9. Sediment. 10. Mater quality.
 Glairain, Ellis J., joint author. II. Simmers. John W., joint author. III. United States. Army. Corps of Engineers. IV. Series: United States. Waterways Experiment Station, Vicksburg, Mins. Technical report ; D-78-15, Appendix A. TAZ. W34 no. D-78-15 Appendix A.

The states

DREDGED MATERIAL Research Program

TECHNICAL REPORT D-78-13

HABITAT DEVELOPMENT FIELD INVESTIGATIONS BOLIVAR PENINSULA MARSH AND UPLAND HABITAT DEVELOPMENT SITE GALVESTON BAY, TEXAS APPENDIX B: BASELINE INVENTORY OF TERRESTRIAL

FLORA, FAUNA, AND SEDIMENT CHEMISTRY

by

J. D. Dodd, D. J. Herlocker, B. W. Cain B. J. Lee, L. R. Hossner, C. Lindau

> College of Agriculture Texas A&M University College Station, Tex. 77843

> > May 1978

Final Report
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Prepared for Office, Chief of Engineers, U. S. Army Watchington, D. C. 20314

> Under Contract No. DACW64-75-C-0101 (DMRP work Unit No. 4A13E)

Monitored by Environmental Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180

HABITAT DEVELOPMENT FIELD INVESTIGATIONS, BOLIVAR PENINSULA MARSH AND UPL AND HABITAT DEVELOPMENT SITE GALVESTON BAY, TEXAS

- Appendix A: Baseline Inventory of Water Quality, Sediment Quality, and Hydrodynamics
- Appendix B: Baseline Inventory of Terrestrial Flora, Fauna, and Sediment Chemistry
- Appendix C: Baseline Inventory of Aquatic Biota
- Appendix D: Propagation of Vascular Plants and Postpropagation Monitoring of Botanical, Soil, Aquatic Biota, and Wildlife Resources

Destroy this report when no longer needed. Do not return it to the originator.

SECURITY CLASSIFICATION OF THIS PA	GE (When Data Entered)	
REPORT DOCUM	ENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Technical Report D-78-15		
4. TITLE (and Sublit!') HABITAT DE	A TELANSKER FITTA INCOME	5. TYPE OF REPORT & PERIOD COVERED
CATTONE DALIVAD DENINGUL	VELUPMENT FIELD INVESTI-	
GATIONS, BOLIVAR PENINSUL HABITAT DEVELOPMENT SITE,		Final Report
APPENDIX B: BASELINE INV		5. PERFORMING ORG. REPORT NUMBER
FLORA, FAUNA, AND SEDIMEN		the second second second second
7. AUTHOR(#)		8. CONTRACT OR GRANT NUMBER(#)
J. D. Dodd B. J.		Contract No.
D. J. Herlocker L. R.		DACW64-75-C-0101
B. W. Cain C. Li		
PERFORMING ORGANIZATION NAME	AND ADDRESS	10. PROGRAM ELEMENT, PROJECT. TASK AREA & WORK UNIT NUMBERS
Tex.s A&M University		DHOD Work Unit No. 44172
College of Agriculture College Station, Tex. 77	843	DMRP Work Unit No. 4A132
11. CONTROLLING OFFICE NAME AND Office, Chief of Engineer		12. REPORT DATE
Washington, D. C. 20314	S, U. S. Army	May 1978
masnington, D. C. 20314		98
14. MONITORING AGENCY NAME & ADD	RESS/II different from Controlling Office)	15. SECURITY CLASS. (of this report)
U. S. Army Engineer Water		
Environmental Laboratory	ways haperiment oracion	Unclassified
P. O. Box 631, Vicksburg,	Miss. 39180	IER. DECLASSIFICATION/ DOWNGRADING
rt of men jorg theadourgy	11200 00x00	SCHEDULE
17. DISTRIBLITION STATEMENT (of the	shatract entered in Black 30, if different fro	m Resport)
10. SUPPLEMENTARY NOTES		
18. KEY WORDS (Centinue on reverse elde	. If accassory and identify by block number	
Animals	Galveston Bay	Sediment
Birds	Habitats	Sediment Sampling
Bolivar Peninsula	Mammals	Soil chemistry
Dredged material	Marshes	SOTT CHEMISTLY
Field investigations	Plants (Botany)	
B. ANSTRACT (Cauthan an reverse and		and the second se
This study involved baseline data prior to hab purposes were to (a) surve	collection of flora, faun itat development with drea y and evaluate pertinent h vegetation and prepare a	a, and sediment chemistry dged material. The specific historical data and vegetation map; (c) inventory
		(Continued)

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified SELURITY ...

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (Continued)

A total of 74 plant species representing 61 genera and 20 families were present at the study site. The dominant grasses were Spartina patens (marshay) and Andropogon spp. (bluestem). Forb density was over 435,000 plants/acre with Heterotheca subaxillaris (camphorweed) the most common. The Compositae contributed the greatest number of species. A woody plant density of over 3,250 plants/acre occurred. The dominant was Sesbania drummondii (drummond sesbania). The only other woody species that occurred was Croton punctatus (gulf croton). Standing crop biomass production on the study site exceeded 3,000 pounds/acre. The following six major plant communities were mapped, in order area occupied: (a) Andropogon perangustatus, (b) Spartina patens, (c) Sesbania-mixed grass, (d) Sporobolus virginicus-Distichlis spicata, (e) Monarda citriodora, and (f) Spartina alterniflora.

A total of 98 bird species were identified, with red-winged blackbirds the most numerous species. Thirteen mammal species were recorded, 3 of them domestic. The most common were hispid cotton rat, raccoon, and domestic goat. A total of 31 individuals representing 11 species of reptiles and amphibians were observed. Eighteen orders of macroinvertebrates were collected and identified.

Soil and sediment samples were sandy in texture to a depth of 107 cm. Total organic carbon was generally less than 0.2 percent. Extractable ammonium and extractable orthophosphate varied but were present in low quantities. Values of Eh varied from +500 mv for oxidized horizons to near -240 mv in the intertidal area. The pH values of the sediments ranged from 7.00 to 8.50. Interstitial water did not contain excessive concentrations of ammonium-, nitrite- or nitrate-nitrogen. Total inorganic nitrogen never exceeded 6.14 mg/L. Total phosphorus and orthophosphate concentrations were less than 3.25 and 0.625 mg/L, respectively. Total dissolved carbon ranged between 2.0 and 9.55 mg/t. Excessive nutrient concentrations were not found in this series of core samples. Metal concentrations of lowland interstitial vater were similar to those interstitial water values from the profiles located in the intermediate areas. Magnesium, potassium, sodium, and calcium concentrations for interstitial water from the lowland areas were high compared to those for the intermediate sites. Heavy metal concentrations (iron, manganese, zinc, copper, lead, cadmium, and mercury) were low.

Unclassified

THE CONTENTS OF THIS REFORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL EN-DORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.

SIMARY

This study involved the collection of flora, fauna, and sediment chemistry baseline data prior to habitat development with dredged material. The specific purposes were to (a) survey and evaluate pertinent historical data and literature; (b) inventory vegetation and prepare a vegetation map; (c) inventory avian, mammal, and macroinvertebrate populations; and (d) determine specific soil chemical properties.

Seventy-four plant species representing 61 genera and 20 families were collected and identified. Vegetation of the study area had a basal cover of 13.2 pertent and a litter cover of 15.8 percent. The Gramineae and Cyperaceae families accounted for most of the basal cover. <u>Spartine</u> patens (marshay)* and <u>Andropogon</u> spp. (bluestem) were the dominant grasses. Forb density on the study area was 437,778 plants/acre. The Compositae contributed more plants to forb density than any other family. <u>Betsrutback</u> subaxillaris (camphorweed) had the highest relative density and frequency. Woody plant species had a density of 3,279 plants/acre. September biomass production was 3,971 pounds/acre for the study area; bluestem and marsing dominated with 30.8 percent and 28.7 percent of the total production, respectively.

Six plant communities were delineated on the basis of basal cover by dominants. These were. (a) Andropogon perangustatus, (b) Spartina patens, (c) Sesoania-mixed grass, (d) Sporobolus virginicus-Distichlis spicata, (e) Monarda citriodora, and (f) Spartina alterniflora. The Andropogon perangustatus and Spartina patens communities were the most extensive accounting for 37 percent and 25 percent of the stady area, respectively. Each also produced over 4,100 pounds/acre biomass.

Forty-one bird species were recorded on the site during July, and the number increased to 50 in September. Overall the total was 98, with red-winged blackbirds the most numerous species. Thirteen manual species were recorded on the site (three of them domestic), and the most common species were raccoon, hispid cotton rat, and domestic goat. There were

* This grass is also known as saltneadow cordgrass in other regions of the nation. Il species of reptiles and amphibians observed represented by a total of 31 individuals. Eighteen orders of macroinvertebrates were collected are identified. The most common forms were grasshepper, land smail, mud fiddler crab, and tiger beetle.

Soil and sediment saties were all sandy in texture to a depth of 107 cm. The least amount of sand reported at any depth was 88 percent. Total organic carbon was generally less than 0.2 percent. Extractable amonium and orthophosphate were veriable but generally present in low quantities. Values of Eh varied from +500 mv for oxidized horizons located in the upland region to near -240 mv in the intertidal are The Eh was closely related to moisture content. The pH values of the sediments ranged from 7.00 to 8.50.

Interstitial water samples did not contain excessive concentrations of amonium-, nitrite-, or nitrate-nitrogen. Total inorganic nitrogen never exceeded 6.14 mg/s and was generally much lower. Total phosphareus and exthophosphate concentrations were less than 3.25 and 0.623 will, respectively. Total dissolved carbon ranged Benneen 1.0 and 9.55 mg/L

Chemical composition of the sediments generally corresponded to the sandy nature of the material. Excessive nutrient concentrations were not found in this series of core samples. Metal concentrations of lowland interstitial water are similar to those interstitial water values from the profiles located in the intermediate areas. Magnesium, potassium, sodium, and calcium concentrations for interstitial water from the lowland areas were high compared to the intermediate sites. Heavy metal concentrations (iron, manganese, zinc, copper, lead, cadmium, and mercury) were low.

PREFACE

This report presents the results of an investigation to describe quantitatively the flora, fauna, and sediment chemistry of a disposal site on Bolivar Peninsula, Galveston Bay, Texas. The investigation was conducted as a part of the Corps of Engineers' Dredged Material Research Frogram (DMRP) under Contract No. DACW64-75-C-0101, entitled "Inventory and Assessment of Terrestrial Flora, Fauna, and Sediment Chemistry at Bolivar Peninsula Habitat Development Site, Calveston Bay, Texas, dated 12 June 1975, between the U. S. Army Engineer District, Galveston, and the College of Agriculture, Texas A&M University, College Station, Texas. The DMRP was sponsored by the Office, Chief of Engineers, U. S. Army, and w s monitored by the Environmental Laboratory (EL) of the U. S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Miss. The Galveston District administered the contract for WES. Contracting Officer was COL D. S. McCoy, CE.

Parts I, II, III, IV, and VII were prepared by D. J. Herlocker and J. D. Dodd, Research Associate and Professor, respectively, in Range Science, Texas A&M University. B. W. Cain and B. J. Lee, Assistant Professor and Research Assistant, respectively, in Wildlife and Fisheries Sciences, Texas A&M University, prepared Part V. "Sediment Chemistry," Part VI, was prepared by L. R. Hossner and C. Lindau, Associate Professor and Research Assistant, respectively, in Soil and Crop Sciences, Texas A&M University.

The contract monitors at WES were J. S. Bo, e and H. H. Allen, EL. Project manager was H. K. Smith, Manager, Habitat Development Project, EL. John Harrison was Chief, EL.

The authors express appreciation to personnal of WES and the Galveston District for their cooperation during this project. Special appreciation is extended to S. L. Hatch and F. Waller for their assistance in plant identification.

COL G. H. Hilt, CE, and COL J. L. Cannon, CE, were Directors of WES during the conduct of the contract and the preparation of this report. Mr. F. R. Brown was Technical Director.

CON!ENTS

SUMMARY	2
PREFACE	4
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS	9
PART I: INT'ODUCTION	10
PART II: DESCRIPTION OF AREA	11
PART III: PLOT AND SAMPLING DESIGN	14
PARI IV: FLORA	16
Methods Results	16 17
PART V: FAINA	38
Methods Results	38 39
PART VI: SEDIMENT CHEMISTRY	56
Methods Results	56 61
PART VII: CONCLUSIONS	88
REFERENCES	90
APPENDIX A': PLANT SPECIES LIST	IA
APPENDIX B': PHYSICAL DESCRIPTION OF SOIL CORES	BI

LIST OF FIGURES

Figure 1	Study Area at Bolivar Peninsula	15
Figure 2	Map of Vegetation Communities at Bolivar Peninsula Habitat Development Site	25
Figure 3	Method Used for Sampling of Interstitial Pore Water in the Field	58
Figure 4	Bolivar Peninsula Study Site with Loce* ons of Nine Core Samples Taken for Chemical and Ph,sical Analyses	62
	LIST OF TABLES	
Table 1	Vegetation Composition by Major Families on the Bolivar Peninsula Study Site	18
Table 2	Major Species Contributing to the Vegetation of the Bolivar Peninsula Study Site Based on Basal Cover	19
Table 3	Relative Density and Frequency of Occurrence of Important Forb Species on the Bolivar Peninsula Study Site	21
Table 4	Herbage Aerial Biomass ^D oduction by Species on the Boliwar Peninsula Study Site	22
Table 5	Major Plant Communities and Area Occupied on the Bolivar Peninsula Study Site (Baseline to Bay)	24
Table 6	Percent Contribution of Major species Total Basal Cover Within Each Plant Community on the Bolivar Peninsula Study Site	26
Table 7	Percent Contribution to Total Density Within a Plant Community by Major Forb Species on the Bolivar Peninsula Study Site	77.
Table 8	Percent Frequency of Occurrence of Major Forb Plant Species Within Each Plant Community on the Bolivar Peninsula Study Site	50
Table 9	Percent Contribution of Major Species to Herbage Biomass for Plant Communities on the Bolivar Peninsula Study Site	31
T abl e 10	Difference Between September and November Herbage Biomuss (Pounds/Acre) for Each Community	32
Table 11	November Litter Biomass as a Percentage of That in September for each Community	34
Table 12	Herbage Aerial Biomass Production by Species on the Bolivar Peninsula Study Site	35

Table 13	Percent Contribution of Major Species to Herbage Biomass for Plant Communities on the Bolivar Peninsula Study Site	36
Table 14	Monthly Bird Fauna of the Bolivar Peninsula Study Site	41
Table 15	Mammals Captured or Seen on the Bolivar Peninsula Study Site	48
Table 16	Population Estimates of Small Mammals on the Study Site	49
Table 17	Amphibians and Reptiles Observed on the Bolivar Peninsula Study Site	51
Table 18	Macroinvertebrate Fauna of the Bolivar Peninsula Study Site	52
Table 19	Chemical and Physical Analyses of Sediments Taken at Various Bepths at Location 1, an Upland Location from Bolivar Peninsula Study Site	64
Table 20	Chemical Analyses of Sediments Taken at Various Depths at Location 1, an Upland Location from Bolivar Peninsula Study Site	65
Table 21	Chemical and Physical Analyses of Sediments Taken at Various Depths at Location 4, an Upland Location from Bolivar Feninsula Study Site	66
Table 22	Chemical Analyses of Sediments Taken at Various Depths at Location 4, an Upland Location from Bolivar Peninsula Study Site	67
Table 23	Chemical and Physical Analyses of Sediments Taken at Various Depths at Location 7, an Upland Location from Bolivar Peninsula Study Site	68
Table 24	Chemical Analyses of Sediments Taken at Various Depths at Location 7, an Upland Location from the Bolivar Peninsula Study Site	69
Table 25	Fortility Analysis of Surface Samples from Bolivar Peninsula as Determined by Standard Methods used by the Texas Agri- cultural Extension Service Testing Laboratory	71
Table 26	Chemical and Physical Analyses of Sediments and Chemical Analysis of Interstitial Water Taken at Various Depths at Location 2, an Intermediate Location from the Bolivar Peninsula Study Site	72
Table 27	Chemical Analyses of Sediments and Interstitial Water Taken at Various Depths at Location 2, an Intermediate Location from the Bolivar Peninsula Study Site	73
Table 28	Chemical and Physical Analyses of Sediments and Chemical Analysis of Interstitial Water Taken at Various Depths at Location 5, an Intermediate Location from the Bolivar Peninsula Study Site	74
	7	

Table 29Chemical Analyses of Sediments and Interstitial Water Taken
at Various Depths at Location 5, an Intermediate Location
from the Bolivar Peninsula Study Site

75

76

77

80

81

82

- Table 30Chemical and Physical Analyses of Sediments and Chemical
Analysis of Interstitial Water Taken at Various Depths
at Location 8, an Intermediate Location from the Bolivar
Peninsula Study Site
- Table 31Chemical Analyses of Sediments and Interstitial Water Taken
at Various Depths at Location 8, an Intermediate Location
from the Bolivar Peninsula Study Site
- Table 32Chemical and Physical Analyses of Sediments and Chemical
Analysis of Interstitial Water Taken at Various Depths
at Location 3, a Location Below Mean High Tide at the
Bolivar Peninsula Study Site
- Table 33Chemical Analyses of Sediments and Intersitial Water Taken
at Location 3, a Location Below Mean High Tide at the
Bolivar Peninsula Study Site
- Table 34Chemical and Physical Analyses of Sediments and Chemical
Analysis of Interstitial Water Taken at Various Depths
at Location 6, a Location Below Mean High Tide at the
Bolivar Peninsula Study Site
- Table 35Chemical Analyses of Sediments and Interstitial Wa. rr Taken
at Various Depths at Location 6, a Location Below Mean High
Tide at the Bolivar Peninsula Study Site83
- Table 36Chemical and Physical Analyses of Sediments and Chemical
Analysis of Interstitial Water Taken at Various Depths
at Location 9, a Location Below Mean High Tide at the Bolivar
Peninsula Study Site84
- Table 37Chemical Analyses of Sediments and Interstitial Water Taken
at Various Depths at Location 9, a Location Below Mean High
Tide at the Bolivar Peninsula Study Site85

CONVERSION FACTORS, U. S. CUSTOMARY TO

METRIC (SI) UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	By	To Obtain
inches	2.54	centimetres
feet	0.3048	metres
miles (U.S. statute)	1.605344	kilometres
square feet	0.09290304	square metres
square miles (U.S. statute)	2,589988	square kilometres
acres	4046.856	square metres
cubic yards	0.7645549	cubic metres
pounds (mass)	0.4535924	kilograms
miles (U.S. statute) per hour	1.609344	kilometres per hour

BASELINE INVENTORY OF TERRESTRIAL FLORA, FAUNA, AND SEDIMENT CHEMISTRY

PART I: INTRODUCTION

1. Coastal marsh comprises 1,250 square miles* and is the most important land resource area on the Texas coast (Godfrey et al. 1973). Marsh is important in flood control and water quality, provides excellent wildlife habitat, and is a valuable source of nutrients for livestock and marine life (National Aeronautics and Space Administration (NASA) 1974). One-third of the population and nearly one-third of the industry of Texas is located on the Gulf coast (Fisher et al. 1972). This has had a serious impact on coastal marshes. Hundreds of acres are filled each year and the land use changed (NASA 1974). Thus, it is important to consider ways and means of maintaining and/or reestablishing marsh.

2. Approximately 2.3 percent of the Coast marsh resource area has been set aside for dredged material sites (U.S. Army Corps of Engineers (USCE) 1975a). These sites provide Substrates for marsh development (especially open-water sites, which comprise about 48 percent of the total). In these areas, few other competitive land uses exist. Thus, an opportunity is provided to investigate the feasibility of marsh establishment on dredged material dispusal sites.

3. This study involves the feasibility of using dredged material as a substrate for development of salt marshes along the upper Texas coast. Phase 1 involves collection of baseline data prior to dovelopment. Objectives include (a) survey and evaluation of historical data and literature pertinent to the study site, (b) inventory of avian, memoral, and uncrumenttebrate populations inhabiting the study site, (c) inventory of vegetation including preparation of a vegetation map, and (d) determination of gracific soil chemical properties of the study area prior to deposition of dredged material.

*A table of factors for converting U.S. customary units of measurements to metric (SI) units is given on page 9.

PART II: DESCRIPTION OF AREA

4. Bolivar Peninsula forms the eastern end of a chain of sand barriers that extend almost 600 miles along the Mexican and Texas coasts. The Bolivar Peninsula has developed as an offshore sand bar since the bost-Pleistocene rise in sea level about 4000 years ago (Lankford and Achkemper 1969). It is maintained by marine sedimentation processes, primarily on the Gulf shore. However, some sediment is also transported by sea water washing over the barrier to the bay (NASA 1974). Rivertransported sediments are negligible (USCE 1968). The peninsula is typically level with occasional elevations of 5 to 10 feet where old dumes occur (U.S. Geological Survey (USCS) 1954a, 1954b, 1954c, 1962a, 1962b).

5. The Galveston area annually receives about 40 inches precipitation, primarily between May and August. High humidities and moderate temperatures reflect proximity to the Gulf (National Oceanic and Atmospheric Administration (NOAA) 1974). Most of the year, prevailing winds are from the south and southeast (USCE 1968). Average velocity is about 11 mph (Lankford and Rehkemper 1969).

6. North of the Bolivar Peninsula, tides in Galveston Bay average about 6 feet and range about 1 foot in amplitude (0.79-1.81 feet above mean sea level) (USCE 1975b). Prevailing south and southeast winds may raise this level 2.3 feet while north winds may lower it as much as 4 feet (Lankford and Rehkemper 1969).

7. Hurricanes are an important factor in the local climate. Since 1871, five tropical storms and seven hurricanes have passed over or near Bolivar Peninsula. There is a 23-percent chance of hurricane occurrence in any one year (Henry et al. 1975). Storm surge associated with hurricanes strongly influences erosional and depositional processes and often results in barrier washover (Lay and O'Neil 1942, NASA 1974, Henry et al. 1975). Storm surges over 8 feet are common, and surges from 15-20 feet have occurred at Galveston. The Bolivar Peninsula, which lies entirely below 15-foot elevation, is thus a prime area for flood_ag (Henry et al. 1975).

8. Bolivar Peninsula occurs within a soil association comprising the Harris, Veston, and Galveston soil series (Godfrey et al. 1973). These are saline clayey and loamy soils of marshes and sandy soils of beaches. Heav,, saline clays generally overlain by peat occur under marsh vegetation (Lay and O'Neil 1942).

9. Composition of vegetation primarily reflects topography and ground water salinity. Barr or flat vegetation dominated by <u>Spartine patens</u> (marshay) and <u>S. spartinae</u> (gulf cordgrass) occupies the seeward half of the Peninsula. Two large salt marshes occur on the bay side (NASA 1974).

10. Lists of important plant species have been compiled for marsh vegetation along the Texas coast (Gould 1975) and for eastern Galveston County (Waller 1974). The principal coastal marsh communities of East Texas have been described by Lay and O'Neil (1942). These are: saline marshes, dominated by <u>Spartina alterniflora</u> Loisel. (smooth cordgrass), brackish marshes dominated by marshay and <u>Distichlis spicata</u> (L.) Green (seashore saltgrass), and fresh marshes dominated by <u>Typha angustifolia</u> L. (narrowleaf cattail), <u>T. latifolia</u> L. (common cattail), <u>Scirpus californicus</u> (California bulrush), and <u>Eleocharis quadrangulata</u> (Michx.) R.&S. (squarestem spikesedge).

11. Texas marshes overlie a heavy mineral soil (often saline) topped by a peaty layer. They are generally formed through subsidence (0.2 foot/ century in the Galveston area) and lie behind beach ridges that prevent direct influx of seawater except during hurricanes (Lay and O'Neil 1942, Lankford and Rehkemper 1969).

12. Muskrat populations were exploited on Bolivar Peninsula until a few decades ago (Lay and O'Neil 1942). Present land use includes livestock ranching (Lay and O'Neil 1942, NASA 1974), exploitation of oil and natural gas fields (Holstrum and Williams 1971), and permanent and summer residences and commercial establishments (USCE 1968). Oyster beds lie immediately offshore on the bay side. This is also a nursery area for fishes of Galveston Bay. It is used extensively for recreational boating and fishing (USCE 1968, 1970, Holstrum and Williams 1971). In addition, commercial shipping uses the Gulf Intra-Coastal Waterway (GIWW), which runs along the entire bay side of the peninsula. Dredging associated with the GIWW has been almost continuous along this statch since completion in 1933 (Lay and O'Neil 1142, USCE 1975c). Selected areas are dredged about every 2 years. The average quantity of materials drouged per contract is 1.6 million cubic yards (USCE 1975c).

13. The study site is located on Galveston Bay between Marsh and Baffle Points near the 1232 end of Bolivar Peninsula. It ranges in elevation from -0.2 feet to about +10.0 feet mean sea level (USCE 1975d).

The location is between the GIWW and the bay in dredged material disposal area No. 41. This area has no containing levee system, unlike some other disposal areas (USCE 1970). Dredged material deposition occurs about every 4 years on this site; the last disposal was in 1971.

PART III: PLOT AND SAMPLING DESIGN

14. The study area is rectangular, 2,000 by 600 feet, 27.5 acres in area. Of this, 14 acres is intertidal and supports little vegetation. The study area has been extended back to the GIWW to include upland vegetation communities. This added 14 acres to the total area.

15. A surveyed baseline forms the south edge of the study area (Figure 1). Thirty-nine topographic transects have been established at 50-foot intervals along and at right angles to the baseline and were surveyed to the bay side of the study area. These have been estended nontopographically back to the GIWW. This system of t insects was a reference for subsequent surveys of vegetation, soils, and windlife.

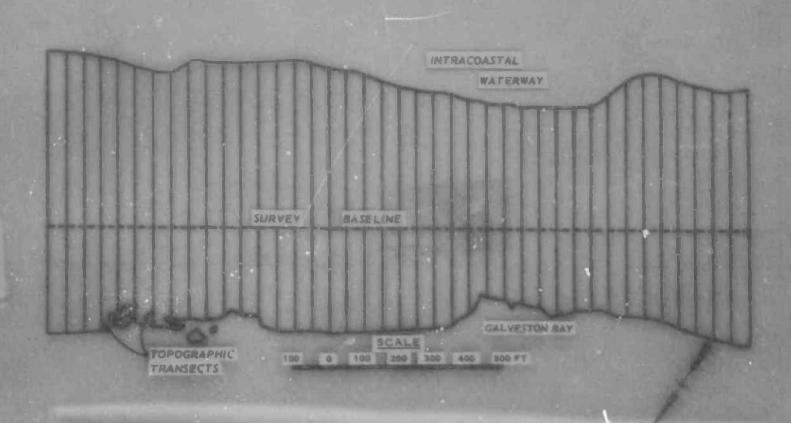


Figure 1. Study area at Bolivar Peninsula. The study area is located between the baseline and Galveston Bay

PART IV: FLORA

16. The purpose of this research was to describe regetation of the study area quantitatively. This included compiling a species list as well as defining the contribution of these species to the cover and production of the area. The major plant communities were identified and delineated.

Methods

17. The study area was periodically and systematically searched for new plant species. All species encountered were pressed and later identified. All scientific and common names follow Gould (1975).

18. Vegetation sampling was conducted along three transects chosen at random in each of four 500-foot sections along the baseline. The surveyed baseline provided locations for the randomly located transects. Phytosociological parameters

19. Masal cover and composition by species of grass and sedge, and the abundance of forb species were sampled with a 10-point frame (Levy and Madden 1933). Hits recorded included bare ground, litter, and plant species contacted at the soll surface (National Academy of Science-National Research Council (NAS-NRC) 1962). Density and frequency of forbs were determined with a square-foot quadrat (NAS-NRC 1962). Sample size and musber were determined by the species area curve (Oosting 1956). Density of woody plants was determined with an 11-square-foot quadrat All of the above parameters were measured in August 1975. Sampling location was systematic along each transect. Thirty 10-point frame sets were utilized on each of the 12 transects (total sets = 360) to determine basal cover and plant composition. Thenty square-foot madrats (total quadrats = 240), and live li-square-foot (total quadrats = 50) quadrats were used per transect (from baseline to bay) to determine forb density and woody plant, density, respectively.

Himmass

20. Biomass production was determined by techniques similar to Wiegert and Evans (1964). Plants were clipped at ground level on five 5.5-square-foot quadrats per transect (total quadrats = o0). Plant material was separated into important species. The remainder was placed

16

iato miscellaneous categories of grass, sedge, and forb. Flant material on the soil surface was collected and placed in a litter category. All material was dried for 30 hours at 30° ... weighed, and reported as production in pounds per acre. Vegetation sampling and clipping for production were conducted at the close of vegetative growth periods in September and November 1975.

Committes

21. Boundaries between plant communities were visually noted along transects during vegetation sampling. These were used to stratify recorded data into plant communities for further analysis. In addition, a preliminary vegetation map was prepared for the study area. A final vegetation map was prepared by (a) establishing a 50-by-59-foot grid of stakes throughout the study area based on the 39 surveyed transect lines, and (b) using these to reference visually determined boundaries of plant communities. Procedures for mapping generally followed Brown (1954) and suchler (1967).

Results

22. A total of 74 species representing 61 genera and 20 femilies have been collected and identified from the study site (Appendix A'). Over 62 percent of the flora occurred in three families, Graminete, Cyperaceae, and Composites (Table 1). This species list is incomplete since vegetation on the study site exhibits considerable seasonal war:sollity. Thus, collection and identification must extend over a full year to ensure that all major species in the flora have been observed. Basal cover

25. Overall, vegetative basal cover sets 15.2 percent, litter was 15.8 percent, and bare soli surface 71 percent in August 1975. Dominance, in terms of high basal cover, was expressed primarily by species of the Gramineae and Cyperaceae (Table 1). <u>Sparting patents (Marshay) and</u> Andropogen perangustatus (bluestem) dominated the vegetation, contributing 20.1 percent and 13.6 percent of the basal cover, respectively. Five other species contributed 5 percent or more. One of these was from the Compositae, <u>Heterotheca subaxillaris</u> (camphorweed). Forb species contributed less to basal cover than did grass or sedge species.

1000	- 1	110		- 1
1110	2.00	- 2 -	<u></u>	
10	212	- 8	500	-

Vegetation Composition by Major Families

on the Bolivar Peninsula Study Site (Sampled in August 1975)

Family	No, Species	Total Flora (%)
Gramineae	22	29.7
Compositae	15	20.3
Cyperaceae	9	12.2
Leguminosae	7	9.5
Euphorblaceae	3	4.1
Verbenaceae	3	4.1
Chenopodiaceae	2	2.7
Solanaceae	2	2.7
Total	63	85.3

Major Species Contributing to the Vegetation of the Bolivar Peninsula

Study Site Based on Basal Cover

Species	Cowancon. Name	Species Composition (% Basal Cover)	Family
Spartine patens	Marshay	20.1	Gramineae
Andropogon perangustatus	Bluestem	13.6	Gramineac
Fimbristylis carolinianum	Finbry	8.6	Cyperaceae
Sporobolus virginicus	Seashore dropseed	6,5	Gramineae
Scirpus americanus	American bulrush	5.9	Cyperaceae
<u>Distichlis spicata</u>	Seashere saltgrass	5.4	Grazineze
Heterotheca subaxillaris	Camphorweed	5.0	Compositae
Andropogen glomeratus	Bushy bluestem	3.8	Granineae
Bragrostis oxylepis	Red lovegrass	2,7	Graninese
Memarda citriodora	Lemon beebalm	2.5	Labiatae
Paspalum setaceum	Thin paspalum	2.1	Gramineae

Noto: Data collected with 10-point frame.

Table 2

The most important forbs were camphorweed (5 percent), Monarda citriodora (lemon beebalm) (2.5 percent), and <u>Chenopodium ambrosioides</u> (wormseed goosefoot) (1 percent),

Frequency, and density

24. Forb density was over 10 plants/square foot (437,738 plants/ acre) in August 1975 (Table 3). The ratio of stems to plants was about 1.2 to 1. This indicated that single-stemmed plants were generally characteristic. Camphorweed contributed most to forb density (35.8 percent) and also was the most frequently occurring forb species in the study area (Table 3), indicating uniform distribution. The Compositae contributed more plants to forb density than any other family. The occurrence of colonies (aggregation of individuals of the same species) was not indicated since all important forb species had higher frequencies than relative densities. Wormseed goosefoot showed the greatest divergence between relative density and frequency, indicating uniform dispersal.

25. Only two species of woody plants were collected, Sesbania drummondii (drummond sesbania) and Croton punctatus (gulf croton). Density of woody plants over 2 feet tall was 3,279 plants/acre in August 1975. The most important species was drummond sesbania with 3,117 plants/acre, 95 percent of the total woody plant density. The stem-to-plant ratio of drummond sesbania was about 1.3:1, similar to that for most forb species. A stem-to-plant ratio of about 1.5 for all woody species reflected the numerous stems typical of gulf croton plants. Biomass

26. Herbage biomass production for the study was area was over 3,070 pounds/acre in September 1975 (Table 4). Bluestem and marshay dominated in contribution to biomass production (30.8 and 28,7 percent of the total, respectively). The relative importance of both species in terms of production (Table 4) was greater than that expressed by basal cover (Table 2). The relative importance of most secondary species was similar for both basal cover and production; exceptions were that <u>Fimbristylis</u> carolinianum (fimbry) was less important for production and camphorweed was more important for production than indicated by basal cover. There Table 3

Relative Density and Frequency of Occurrence of Important Forb

Species on the Bolivar Peninsula Study Site

Scientific Name	Common Name	Family	Absolute Density (No./acre)	Relative Densicy (%)	Prequency
Heterotheca subexillaris	Camphorweed	Compositae	156,816	35.8	45.0
Aphanostephus skirrhobasis	Coast dozedaisy	Compositae	65,340	14.9	22.1
Monarda citriodora	Lemon beebalm	Labitae	60,984	13.9	20.4
Brigeron myrionactis	Corpus Christi fleabane	Compositae	56,628	12.9	33.7
Chenopodium ambrosioides	Wormseed goosefoct	Chenopodiaceae	21,780	5.0	29.6
Gaillardia pulchella	Rosering gaillardia	Compositae	17,424	<5.0	8.7
Trifolium sp.		Leguminosae	17,424	<5.0	11.2
Ambrosia psilostachya	Western ragweed	Compositae	13,068	<\$_0	15.4

Table 4

Herbage Aerial Biomass Production by Species on the

Bolivar Peninsula Study Site

(Sampled in September 1975)

Species	Common Name	Dry weight (pounds/acre)	Percent of Total
Andropogon perangustatus	Bluestem	945.9	30.8
Spartina patens	Marshay	881.2	28.7
Sporobolus virginicus	Seashore dropseed	125.5	4.1
Scirpus americanus	American bulrush	103.9	3.4
Heterotheca subaxillaris	Camphorweed	101.2	3.3
Andropogon glomeratus	Bushy bluestem	85.0	2.8
Distichlis spicata	Seashore saltgrass	78.3	26
Monarda citriodora	Lemon beebalm	71.5	2.3
Finbristylis carolinianum	Finbry	64.8	2.1
Eustachys potraea	No common name	39.1	1.3
Spartina alterniflora	Smooth cordgrass	27.0	0.9
Paspalum setaceum	Thin paspalum	18.9	0.6
Misc. grasses		. 334.6	10.9
Mise, forbs		186.2	6.0
Misc. sedges		8.1	0.2
Total	5 4 1 × 1	3,071.2	
Litter		887.9	

were no data available for comparing the September herbage biomass to other areas along Galveston Bay or the gulf coast.

27. The increase in relative importance of bluestem and muchay as expressed by biomass production over basal area was due to the relatively large clone size of some species. This was particularly evident in bluestem. In comphorweed the increase was due to the presence of multiple stews and large leaves.

Community delineation

23. Five major plant communities were delineated in the study area on the basis of species composition (Table 5 and Figure 3). These communities were named according to dominant species and were: (a) <u>Andropogon perangustatus</u>, (b) <u>Spartina patens</u>, (c) <u>Sesbania-mixed</u> grass, (d) <u>Sporobolus virginicus-Distichlis spicata</u>, and (e) <u>Monarda</u> <u>citriodora</u>. As additional community, dominated by <u>Spartina alterniflora</u>, also was apparent but covered only a small area that yielded only limited data.

29. In general, plant communities were clearly evident from both field surveys and vegetation data since each was dominated by species that were not abundant elsewhere (Table 5). Exceptions did occur in both the <u>Andropogon perangustatus</u> and <u>Sesbania-mixed grast communities</u>. Each contained a number of species important in both examunities.

30. The Andropogon perangustatus and Sparting patens communities were the most extensive within the study area (baseline to bay), contributing 37 and 25 percent of the total study area, respectively (Table 5). Cover, density, and frequency within communities

31. As shown in Table 6, vegetative basal cover within communities ranged from 7.8 percent (Sesbania-mixed grass) and 8 percent (Monarda citriodora) to 15.7 percent (Sporobolus-Distichlis and Spartina patens). Litter cover ranged from 1.9 percent (Sporobolus-Distichlis) to over 43 percent (Monarda citriodora) (Table 6).

32. The <u>Sesbania</u>-mixed grass community had the highest forb density (17.9 plants/square foot), while the <u>Spartina</u> patens community had the lowest (3.4 plants/square foot) (Table 7). Forb density of a community varied inversely with the grass basal cover. Low forb densities in the

23

Table 5

Major Plant Communities and Area Occupied on the Bolivar

Peninsula Study Site (Baseline to Bay)

Community	Common Name	Total Area (Acres)	Percent of Total
Andropogon perangustatus	Bluesten	5.0	37
Spartina patens	Marshay	3.4	25
Sesbania-mixed grass	esbania	2.3	L7
<u>Sporobolus virginicus</u> - Distichlis spicata	Seashere dropseed - Seashere saltgrass	2.0	- 15
Monarda citriodora	Lemon beebalm	0.7	5
Spartina alterniflora	Shooth condgrass	0.1	1
Total		13.5	

24

1.50